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ABSTRACT

Estimating conditional average dose responses (CADR) is an important but chal-
lenging problem. Estimators must correctly model the potentially complex rela-
tionships between covariates, interventions, doses, and outcomes. In recent years,
the machine learning community has shown great interest in developing tailored
CADR estimators that target specific challenges. Their performance is typically
evaluated against other methods on (semi-) synthetic benchmark datasets. Our pa-
per analyses this practice and shows that using popular benchmark datasets with-
out further analysis is insufficient to judge model performance. Established bench-
marks entail multiple challenges, whose impacts must be disentangled. Therefore,
we propose a novel decomposition scheme that allows the evaluation of the im-
pact of five distinct components contributing to CADR estimator performance.
We apply this scheme to eight popular CADR estimators on four widely-used
benchmark datasets, running nearly 1,500 individual experiments. Our results re-
veal that most established benchmarks are challenging for reasons different from
their creators’ claims. Notably, we find that confounding - the key challenge that
motivated recent methods - does not significantly affect CADR estimation per-
formance for the considered datasets. We discuss the major implications of our
findings and present directions for future research.

1 INTRODUCTION

Despite the surge in machine learning (ML) methods for estimating heterogeneous treatment effects
(Shalit et al., 2016; Johansson et al., 2016; Louizos et al., 2017; Shi et al., 2019; Yoon et al., 2018;
Johansson et al., 2020; Wager & Athey, 2018; Hill, 2011), there is comparatively little research on
estimating the heterogeneity of dose responses, i.e., the responses to interventions with a continu-
ous component. This is surprising as such interventions are ubiquitous and understanding a unit’s
response to them is critical in several domains, e.g., for assigning optimal discounts in marketing
(Miller & Hosanagar, 2020), or for administering an effective dose of a medication (Frei & Canellos,
1980). Estimating dose responses from observational data is distinct from estimating treatment ef-
fects: units can be exposed to one of several different interventions for which the associated dose can
vary across units. This introduces several unique challenges and calls for tailored methodologies.

The literature proposing ML-estimators for conditional average dose responses (CADR), also re-
ferred to as “individual” (Schwab et al., 2019) or “heterogeneous” (Zhu et al., 2024) dose responses,
is confined to only a few methods which were proposed in the past five years (Schwab et al., 2019;
Bica et al., 2020; Nie et al., 2021; Wang et al., 2022; Zhang et al., 2022; Zhu et al., 2024; Nagalapatti
et al., 2024; Kazemi & Ester, 2024), and that have not yet seen wide-spread usage in real-world ap-
plications. While the state of the art has progressed significantly, research lacks alignment, focusing
on different challenges and using different benchmarking datasets. This becomes especially appar-
ent when reviewing the established benchmarking practices in CADR estimation: to date, the field
has relied on a selection of (semi-) synthetic benchmarking datasets created from manually defined
data-generating processes (DGPs). These datasets claim to test estimators in the presence of cer-
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Figure 1: Selected components of our decomposition scheme. To
disentangle the effects of confounding from the effects of non-uniform
distributions of doses, we evaluate estimators in three scenarios:
1) When doses are randomly sampled from a uniform distribution,
2) when those distributions are not uniform, but also not specific to a
certain unit, and 3) when the data is confounded, so when dose assign-
ment is specific to a certain unit. The distribution of doses across the
total population is the same in steps 2) and 3). Our complete scheme
includes two additional steps related to the distribution of interven-
tions when there are multiple intervention options (cf. Section 4).

tain challenges, most
notably “confounding”.1
Prior work states con-
founding as the key
challenge motivating their
method, but they do not
clarify how exactly con-
founding makes CADR
estimation challenging.
Conversely, as our exper-
iments show, those DGPs
expose estimators to more
than just one challenge, of
which confounding is not
the most important one.

We believe that further
progress in the field requires a deeper understanding of the nature of CADR estimation and the
challenges therein. To that end, we propose a problem formulation for CADR estimation that unifies
existing research. We conceptualize DGPs along this formulation and identify five components con-
tributing to CADR estimator performance. To facilitate future research, we propose a novel decom-
position scheme that disentangles performance along these five components, allowing researchers to
understand the sources of model performance (cf. Figure 1).

To that end, our paper makes three important contributions: (1) We introduce a unifying problem
formulation for CADR estimation and conceptualize synthetic DGPs for benchmarking dataset cre-
ation; (2) We propose a scheme for decomposing model performance along the mechanisms of a
DGP and specific challenges in CADR estimation; (3) We test a selection of ML estimators and de-
compose their performance on four of the most popular benchmark datasets for CADR estimation.
We elicit strengths and weaknesses and compare their performance against traditional supervised
learning algorithms. As such, we aim to establish a standardized approach that facilitates an effec-
tive evaluation and comparison of methods. Our ambition is for the proposed decomposition scheme
to be adopted in future work on CADR estimation and to guide future research.

Outline. Section 2 introduces related work on evaluating ML estimators, and previous practices in
decomposing model performance. We conceptualize CADR estimation in Section 3. In Section 4,
we conceptualize DGPs and introduce our novel decomposition scheme. We illustrate our approach
for a prominent dataset from Bica et al. (2020) in Section 5, introducing established methods and
discussing the findings. We provide results on different datasets in Section 6 and conclude in Sec-
tion 7.

2 CONTEXT

Evaluating conditional average intervention response estimators is challenging. Evaluating
the performance of conditional average intervention response estimators is challenging, as per unit
of interest we can only observe the response to a single “factual” intervention, and never to any
other one “counterfactual” one (Holland, 1986). In conditional average treatment effect (CATE)
estimation, there is only one counterfactual intervention: units have received either the treatment or
the control. In CADR estimation, this is further complicated. First, one can apply one of several
distinct interventions, and second, a practically infinite number of doses. The full dose response
curve hence cannot be observed. In consequence, using observational data limits evaluation to
measuring accuracy in predicting factual responses as in, e.g., supervised learning (Hastie et al.,
2017).

Lack of established benchmarking practices. In ML research, CADR estimators are typically
evaluated using semi- or fully synthetic datasets that are specified by a certain DGP. This DGP

1Some ML papers refer to confounding as “selection bias” which also relates to the out-of-sample general-
izability of response estimates (Haneuse, 2016). To reduce ambiguity, we adopt the terminology traditionally
used in the causal inference literature (Pearl, 2022; Angrist & Pischke, 2009; Imbens & Rubin, 2015; Cunning-
ham, 2021).
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allows the calculation of counterfactual responses of any unit and to any intervention, to overcome
the challenges in evaluating using observational data. In CATE estimation researchers have relied
predominantly on a single dataset for evaluating estimator performance (Curth et al., 2021). For
CADR estimation, there is no such established standard, and researchers have relied on several
different datasets. Moreover, the creators of these datasets typically do not clarify the challenges
present that might complicate CADR estimation. We will show in our experiments that a dataset
often embodies several challenges (cf. Section 4), which further hinders the understanding of model
performance. We aim to alleviate this issue, by proposing a scheme to decompose performance
along different aspects of benchmarking data.

Decomposing model performance. It is common practice in ML research to decompose (or
to “ablate”) complex model architectures by systematically adding and removing components to
measure their impact on performance. In CADR estimation, such studies have, e.g., been conducted
by Schwab et al. (2019) and Bica et al. (2020). While such ablations inform about which part of an
architecture contributes to improvements in model performance, they do not allow us to understand
the challenges in a certain dataset. This understanding is critical to effective methodology selection
in real-life applications. We attempt to close this gap in CADR estimator research by providing
a scheme to decompose datasets, not models. Such a decomposition enables us to understand the
scenarios in which an estimator might work well or fail. This data-centric decomposition of model
performance is in line with calls in other ML research domains (Ye et al., 2022; Yang et al., 2022).

3 PROBLEM FORMULATION

Defining CADR estimation. We find varying definitions of CADR estimation in the literature,
typically differing in the availability of only one (Hirano & Imbens, 2004; Nie et al., 2021) or
several (Schwab et al., 2019; Bica et al., 2020) distinct interventions with an associated dose. In the
following, we propose a unifying framework that subsumes any of these definitions.

We leverage the Neyman-Rubin potential outcomes (PO) framework (Rubin, 1974; Splawa-Neyman
et al., 1990) and expect a unit of interest i to be specified by a realization xi of random variable
X ∈ X with X ⊂ Rm being the m-dimensional feature space. The unit is exposed to a single
intervention ti sampled from T ∈ T , with the intervention space T = {ω1, . . . , ωk} being discrete
with k different intervention options. Every unit is also exposed to a continuous intensity or dose di
sampled from D ∈ D with D ⊂ R. For the remainder of our paper and without loss of generality,
we setD = [0, 1]. For any realization of intervention and dose variables, there is a potential outcome
Y (t, d) ∈ Y ⊂ R. In line with Schwab et al. (2019) we define Y (t, d) as the “dose response”.

We are interested in finding an estimate of the conditional average dose response (CADR), defined
as

µ(t, d,x) = E[Y (t, d)|X = x] (1)

for every t ∈ T , d ∈ D and x ∈ X , which is in line with the definition by Bica et al. (2020). A
detailed overview of the notation is presented in Appendix A.

D(t)

d

X

Y(t,d)

T

t

Figure 2: The SWIG represents the
causal dependencies between variables
in observational data for CADR estima-
tion. Covariates x influence both inter-
vention type t and dose d. The dose
is also influenced by t. Outcome y de-
pends on all x, t, and d.

Understanding the causal structure of dose responses.
The challenges in estimating dose responses arise from
the causal relationships between variables X, D, T , and
Y , which we illustrate in a single-world intervention
graph (SWIG, Richardson & Robins, 2013) in Figure 2.
Typically, an intervention t is chosen based on the ob-
served realization of the covariates x. Given the interven-
tion, a dose d is assigned. The observed potential out-
come is subsequently dependent on the realization of all
those variables x, t, and d. To find an unbiased estimate
of µ(·) we must hence use an estimator that is flexible
enough to capture the relationship between outcome and
intervention variables, while correctly adjusting for the
effects of X on all Y , T , and D (Nie et al., 2021), but
also for the effect of T on D. The simultaneous influence
of X on the intervention variables and the response is referred to as “confounding” (Porta, 2014).
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On the identifiability of CADR. Estimating dose responses from observational data relies on
a set of assumptions (Stone, 1993). Specifically, the identifiability of intervention responses re-
quires “strong ignorability” (Rosenbaum & Rubin, 1983), subsuming “consistency”, “no hidden
confounders”, and “overlap”. We provide definitions of these assumptions in Appendix C. We as-
sume these assumptions to hold for the remainder of our work, as most previously proposed methods
require them. On top of that, different from estimating treatment effects (Imbens, 2004; Petersen
et al., 2012), there is little research on the impacts of violations of these assumptions when estimat-
ing dose responses.

4 A DECOMPOSITION SCHEME FOR PERFORMANCE OF CADR ESTIMATORS

Abstracting DGPs. When working with observational data, the underlying natural DGP is typi-
cally partially or fully unknown, adding to the challenge of evaluating CADR estimator performance
(cf. Section 2). To counter this, ML research typically relies on synthetic DGPs for benchmarking
intervention response estimators. Those DGPs assume a causal structure (in our case the SWIG in
Figure 2) and define relationships between different variables, allowing for full control over chal-
lenges in the data, such as confounding. A typical DGP for CADR consists of four components: (1)
the definition of observed units through a covariate vector X, (2) an intervention assignment func-
tion at(·) assigning an intervention to every unit, (3) a dose assignment function ad(·) assigning a
dose, and (4) an outcome function µ(·). Each of those components influences the resulting bench-
marking dataset. Functions can be defined to take variable inputs. By taking as input the covariate
vector X, at(·) and ad(·) introduce confounding in the resulting data. While sharing a unified causal
structure, the existing benchmarking datasets are diverse in the mechanisms by which each element
of the DGP is defined. This introduces ambiguity regarding the impacts of each element of the DGP
on model performance.

We provide a list of the established CADR benchmarking datasets in Appendix F along with an
overview of established CADR estimators, and the datasets used for their evaluation. The most
widely used datasets are those proposed in Bica et al. (2020) (TCGA-2) and Nie et al. (2021) (IHDP-
1, News-3, and Synth-1). Typically, assignment functions are non-deterministic to comply with the
strong ignorability assumption. For interventions, this is done by assigning non-zero probabilities to
the various possible interventions before sampling a factual intervention per unit. Doses are sampled
from a distribution with a strictly positive probability mass over D and a mode conditional on the
covariates of a unit, so, e.g., from a normal distribution (Nie et al., 2021) or a beta distribution (Bica
et al., 2020). The outcome function µ(·) specifies a CADR by taking as input the resulting vectors
X, D, and T . Individual responses are generated by adding random noise.
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Figure 3: Dose distribu-
tion for different levels
of confounding in data
by Bica et al. (2020)

Disentangling impacts of synthetic DGPs on estimator performance.
Confounding is the presence of a covariate vector that influences inter-
vention and dose assignment, as well as the response of a unit. Different
mechanisms have been proposed to introduce confounding in a bench-
marking dataset: Bica et al. (2020) set a modal intervention and dose
that would maximize a unit’s CADR, whereas Nie et al. (2021) use some
polynomial non-linear function mapping a unit’s covariates to a modal
dose. The level and complexity of confounding in a (semi-) synthetic
dataset may vary, depending on the confounding mechanism in the syn-
thetic DGP. However, only some of the established DGPs allow to vary
the level of confounding. Therefore, it may be unclear what exactly is
driving model performance: the ability of a method to model a complex
CADR, as specified by µ(·), or its ability to adjust for confounding.

Moreover, the assignment functions at(·) and ad(·) introduce more chal-
lenges to the dataset than just confounding. As a certain assignment
mechanism impacts the probability of being assigned different interven-
tions and doses per unit, it simultaneously influences their distribution
across the observed population (cf. Figure 1 and a detailed discussion
in Appendix B). This is most evident upon analyzing benchmarking
datasets with tunable levels of confounding, such as the TCGA-2 dataset proposed by Bica et al.
(2020). When the level of dose confounding is set to α = 1, so no confounding, doses are uniformly
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distributed across D. When the level of confounding increases, the distribution of doses changes
(cf. Figure 3). This leads to significantly fewer observations for some dose intervals, potentially
impacting the performance of ML estimators (Kokol et al., 2022).

Decomposing performance by randomizing intervention assignment. The adjustment for con-
founding is a key challenge in CADR estimation (Bica et al., 2020; Nie et al., 2021). Yet, without
further investigation, performance on a dataset could be attributed to any of the above-mentioned
challenges in the data. Standard ML benchmarking practices do not reveal whether the performance
of an estimator is impacted by non-linearity of responses, confounding factors, or from the inter-
vention and dose distributions across the population. To overcome this limitation, we propose a
novel decomposition scheme for CADR estimator performance. Our scheme is performance metric-
agnostic. The choice of performance metric is arbitrary and situation-specific.

We consider two boundary scenarios: In the “randomized” scenario, interventions and doses are
completely randomized and sampled uniformly. In the “non-randomized” scenario, the data aligns
with its creators’ specifications, where interventions and doses adhere to assignment functions at(·)
and ad(·). We then explore three intermediary scenarios that progressively move from the “random-
ized” to the “non-randomized” setup.

First, we generate scenario “t non-uniformity”. Per unit, an intervention is sampled from a joint
distribution that is equivalent to the distribution of interventions in the “randomized” scenario. This
conduct maintains the effects of at(·) on the distribution of interventions across the total population,
yet removes confounding, as P(t|x) = P(t) for all t ∈ T and x ∈ X. This scenario informs about
the impact of population-level changes in intervention distributions. Second, we generate scenario “t
confounding”, in which we operate under random dose assignment, but confounded interventions as
generated by at. This allows us to isolate the effects of intervention confounding from distributional
effects investigated previously. Third, and in addition to intervention confounding, we repeat the
process for dose assignment, generating scenario “d non-uniformity”, in which P(d|x) = P(d) for
all d ∈ D and x ∈ X.. The final scenario adds dose confounding, by generating doses according
to ad, yielding the “d confounding” or “non-randomized” scenario, which aligns with the original
specifications of the data. To be in line with the causal dependencies in observational data as outlined
in Section 3, we chose to first decompose along the treatment assignment, yet our scheme is flexible
and would allow for alterations. The full decomposition scheme is summarized in Algorithm 1 in
Appendix E. We refer to Appendix J for the technical implementation. We summarize the resulting
five scenarios below:

1. (Randomized) Random interventions and doses (sampled from uniform distributions)

2. (t non-uniformity) Non-uniformly distributed interventions and random doses

3. (t confounding) Confounded interventions and random doses

4. (d non-uniformity) Confounded interventions and non-uniformly distributed doses

5. (Non-randomized / d confounding) Confounded interventions and confounded doses

By iteratively changing key characteristics of the data, our decomposition scheme represents an
experimental design to test for the effects of various contributing factors on CADR estimator per-
formance. As such, we attempt to further bridge between benchmarking practices in ML and ex-
perimental study design in the wider field of causal inference (Rubin, 2008; Shadish et al., 2015).

5
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5 CASE STUDY: DECOMPOSING PERFORMANCE ON THE TCGA-2 DATASET

5.1 EXPERIMENTAL SETUP

Dataset. To demonstrate the workings of our decomposition scheme and how it helps to understand
model performance, we apply it to the TCGA-2 dataset proposed by Bica et al. (2020).2 Several
other benchmarking datasets for CADR estimation have been proposed in previous studies, which
we enlist in Appendix F. We selected the TCGA-2 dataset for several reasons. First, it comprises
the assignment of one of three distinct interventions per unit and an associated dose, whereas most
other datasets consider a single intervention. Second, the covariate matrix used in the TCGA data
(Cancer Genome Atlas Research Network et al., 2013) is frequently used in other research. Third,
the assignment mechanisms used in the DGP find use in several succeeding papers, such as in Nie
et al. (2021), Schweisthal et al. (2023), Nie et al. (2021), and Vanderschueren et al. (2023). For
technical details, we refer to the original paper (Bica et al., 2020).

ML methods for CADR estimation. We decompose the performance of selected established
CADR estimators, as well as several supervised estimators, to provide a broad set of baseline meth-
ods. Hereby, we follow calls from related ML research to test novel algorithms against a wider array
of methods (Qin et al., 2020). Much of recent ML research has been devoted to developing neural
network architectures to tackle analytical problems, with many papers ignoring classical methods
such as regression or tree-based approaches. First, we apply three prominent ML estimators for
CADR estimation, namely DRNet (Schwab et al., 2019), SCIGAN (Bica et al., 2020), and VCNet
(Nie et al., 2021). Each of these is a neural network (Goodfellow et al., 2016), providing several
favorable characteristics to modeling data (Hornik et al., 1989). The estimators have been the first
tailored ML methods for dose response estimation, and have been used as benchmark methodologies
for several later-proposed methods. Each method uniquely tackles CADR estimation: SCIGAN uses
generative adversarial networks (GANs, Goodfellow et al., 2020) to generate additional counterfac-
tual outcomes per observed unit and effectively randomize intervention and dose assignment, as such
removing confounding. DRNet trains separate models on a shared representation learner per com-
bination of dose intervals and interventions, to reinforce the influence of the intervention variables
in the model. VCNet follows a similar motivation, yet leverages a varying-coefficient architecture
(Hastie & Tibshirani, 1993) to accomplish this. Appendix D provides a detailed description of the
three methods. A complete overview of ML dose response estimators is provided in Appendix F.
Following calls from other fields in ML to benchmark novel methodologies against a complete
set of established methods (Qin et al., 2020), we further apply five supervised learning methods,
which have not been sufficiently benchmarked in prior work (for a list of benchmark methodologies
per established ML dose response estimator see again Appendix F). We apply a linear regression
model, a regression tree (Breiman et al., 2017), a generalized additive model (GAM, Wood, 2017),
xgboost (Chen & Guestrin, 2016) as a state-of-the-art implementation of a gradient-boosted deci-
sion tree (Friedman, 2001), and a simple feed-forward multilayer perception (MLP). In comparing
ML CADR estimators with traditional supervised learning methods we aim to understand both the
complexity of benchmarking datasets and differences in the performance of methods concerning
the challenges in dose response estimation. This facilitates practitioners and researchers in making
a conscious tradeoff between interpretability and performance of estimators (Bell et al., 2022), as
some of the targeted estimators introduce significant complexity over established techniques.

Performance evaluation. Our decomposition scheme is agnostic to the selection of a perfor-
mance metric and could be used across scenarios and use cases. Next to CADR estimators, it could
similarly be used to evaluate “average” dose response estimators. For evaluating CADR estimator
performance, Schwab et al. (2019) propose three performance metrics, especially the “policy error”
and “dose policy error” which evaluate the capability of an estimator to identify the most effective
interventions and doses by the magnitude of the response, as well as the “mean integrated squared
error” (MISE), which evaluates the mean accuracy of the CADR estimate over the intervention and
dose spaces. Since the MISE makes minimal assumptions about the domain of application or use of
a CADR estimator, we adopt it in the experiments reported in this paper. For a number of test units

2The level of intervention and dose confounding can be varied in the TCGA-2 dataset. We opt for the
standard values proposed in the original paper (Bica et al., 2020) with the level of intervention confounding set
to κ = 2 and the level of dose confounding set to α = 2.
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Table 1: Performance decomposition on TCGA-2 dataset (Bica et al., 2020)

Scenario
Method random. → t non-unif.→ t conf. →d non-unif.→ d conf.
Lin. reg. 4.74 ± 0.02 4.84 ± 0.03 4.89 ± 0.02 5.41 ± 0.03 5.41 ± 0.03
Reg. tree 0.40 ± 0.01 0.39 ± 0.01 0.39 ± 0.01 0.55 ± 0.04 0.56 ± 0.04
GAM 3.17 ± 0.02 3.36 ± 0.04 3.30 ± 0.03 3.77 ± 0.23 3.77 ± 0.22
xgboost 0.98 ± 0.07 0.92 ± 0.10 0.88 ± 0.09 1.14 ± 0.07 1.13 ± 0.06
MLP 3.14 ± 0.04 3.22 ± 0.07 3.20 ± 0.07 5.33 ± 0.14 5.30 ± 0.17

SCIGAN 3.05 ± 1.17 2.34 ± 1.84 1.72 ± 0.48 4.40 ± 4.58 2.08 ± 0.77
DRNet 0.97 ± 0.03 1.00 ± 0.04 1.02 ± 0.04 1.17 ± 0.05 1.16 ± 0.03
VCNet 0.29 ± 0.03 0.38 ± 0.02 0.33 ± 0.02 0.60 ± 0.13 0.60 ± 0.13

random.: randomized; non-unif.: non-uniformity; conf.: confounding

N , the true CADR µ(·), and the estimated CADR µ̂(·) we calculate the MISE as

MISE =
1

N

1

|T |
∑
t∈T

N∑
i=1

∫
d∈D

(µ(t, d,xi)− µ̂(t, d,xi))
2 dd (2)

We use 20% of the observations in the benchmarking dataset as a holdout test set to calculate the
MISE.

Model selection. Model selection in causal inference is challenging (Schuler et al., 2018; Curth
& van der Schaar, 2023; Rolling & Yang, 2013). Several methodologies for tuning hyperparameters
on observational data have been proposed, both stand-alone and accompanying an estimator. The
choice of a selection procedure can have a large influence on model performance. To ensure each
method performs (near-)optimally, models are selected based on the mean squared error in predicting
the factual outcomes (factual selection criterion (Curth & van der Schaar, 2023)) on a validation set
(10% of the units in the covariate matrix), the remaining 70% of observations are used for training
models.

5.2 RESULTS

Insights into the dataset. Upon analyzing the decomposed performance of all estimators as pre-
sented in Table 1, we conclude that the TCGA-2 dataset is challenging due to dose non-uniformity,
rather than dose or intervention confounding. The non-uniformity of interventions only has a small
detrimental effect on model performance. Confounding of interventions has seemingly no signifi-
cant effect on the performance, both for CADR estimators and supervised learning methods. The
largest effect on model performance results from introducing dose non-uniformity, i.e., making some
doses less likely to be observed across the population. This increases the MISE for all methods sig-
nificantly when compared with scenario “t confounding”, in which doses are sampled from uniform
distributions. The introduction of dose confounding in scenario “d confounding” again does not ap-
pear to significantly impact performance. This is surprising, given the proposition of the dataset to
test methods for robustness against confounding biases. Further, the non-uniformity of doses and in-
terventions is not a causal issue, but rather related to ML challenges outside of causal inference and
treatment effect modeling, such as learning from imbalanced datasets (He & Garcia, 2009; Haixiang
et al., 2017). We also observe this behavior in analyzing performance for other datasets, as discussed
in Section 6.

Insights into model performance. Comparing performance across the different estimators allows
us to draw further conclusions. Estimators are only little affected by intervention non-uniformity,
and not affected by their confounding. Conversely, performance might even be improved by con-
founding. This is counter-intuitive to the reasoning that confounding might adversely affect perfor-
mance (Bica et al., 2020; Schwab et al., 2019). A possible explanation for this result is that, under
confounding, units have a higher probability of being assigned exactly those doses for which CADR
heterogeneity is greatest. When comparing neural architectures, CADR estimators outperform the
standard MLP. However, the best-performing model is a simple regression tree. We attribute these
results to the overall low heterogeneity of the dose response space in the dataset (cf. Appendix H).
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Figure 4: Distribution of errors per intervention and dose interval
the test set of the TCGA-2 dataset estimated by an MLP. A histogram
of doses in the training set is added per plot in blue. Errors are corre-
lated with dose non-uniformity, supporting that non-uniformity affects
model performance.

Understanding sources of
performance gain. The
presented experimental re-
sults indicate that a decom-
position of performance is
imperative to evaluate the
capabilities of CADR es-
timators. The observa-
tion that model perfor-
mance does not degrade
due to confounding, but
due to non-uniform dis-
tributions of interventions
and doses indicates that the TCGA-2 dataset is not evaluating estimators for their robustness to
confounding, but rather efficiency in learning from imbalanced or limited amounts of training data
(Forman & Cohen, 2004; Wang et al., 2020). This is surprising, as several ML papers use it to test
estimators for robustness to confounding (Bica et al., 2020; Wang et al., 2022; Kazemi & Ester,
2024). To confirm this hypothesis, we visualize the errors in CADR estimation made by an MLP
per dose interval and intervention in Figure 4, next to a histogram plot of doses in the training data.
The plots show that errors in predicting CADR increase with decreasing training observations for a
specific dose. This is most notable for interventions ω2 and ω3.

6 INSIGHTS FROM OTHER DATASETS
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Figure 5: MISE per method and dataset. Across datasets, confounding
has little adverse effects on model performance. Full results including std.
errors can be found in Appendix I.

Datasets proposed
by Nie et al. (2021).
Other prominently
used datasets for
benchmarking CADR
estimators were pro-
posed by Nie et al.
(2021) (IHDP-1,
News-3, and Synth-
1). We decomposed
the performance of all

methods from Section 5 on all three of these datasets and present results in Figure 5). Compared
to the TCGA-2 dataset, the datasets only apply a single intervention, so our decomposition does
not include Scenarios 2 and 3 (t non-uniformity and t confounding). The datasets are confounded
as both the observed doses and outcomes are conditional on the covariate matrices. Yet, as in
the TCGA-2 dataset, this confounding seems to have no additional effect on model performance.
Moreover, also dose non-uniformity does not affect the models. We provide a population-level
distribution of doses per dataset in Appendix H, which shows that distributions are less skewed
compared to TCGA-2. This explains why supervised learning techniques, especially xgboost, are
performing competitively on these datasets. Therefore, experiments using these data sets only
enable limited insight into a method’s ability to tackle challenges inherent to CADR estimation.
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Figure 6: MISE per
method on the IHDP-3
dataset. Strong increase
in error per method at-
tributed to confounding.

Decomposing performance under high CADR heterogeneity. Work-
ing with synthetic datasets also allows visualizing the dose responses of
individual units in the data (see Appendix H). All datasets discussed pre-
viously show little heterogeneity in the dose responses across different
units. This might be a reason why supervised learning methods per-
form competitively against CADR estimators. We test this hypothesis by
proposing a new benchmarking dataset that leverages the IHDP covari-
ates, the “IHDP-3” dataset. IHDP-3 is distinct from the other datasets
discussed in this study. Most importantly, the DGP behind the dataset
assumes that there are different archetypes of units that respond dis-
tinctly to an intervention, e.g., units of one archetype might respond pos-
itively to an increased dose, while units from another archetype might
respond negatively. Archetype assignment is not known ex-ante, but de-
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terministic to comply with strong ignorability. Confounding is introduced by sampling from a beta-
distribution with a mode conditional on a unit’s archetype. For the technical details of the dataset,
we refer to Appendix G. The increase in heterogeneity of CADR is visualized in Appendix H.

We present the decomposed performance of CADR estimators on the IHDP-3 dataset in Figure 6 and
in Appendix I. Compared to the other datasets discussed in our study, we see a significant adverse
effect of dose confounding on model performance, which is evident across all estimators. Similarly,
results reveal the importance of model architecture, given the estimation problem. Training individ-
ual networks per dose strata, as implemented in DRNet, leads to errors that are only comparable to
linear regression, indicating that the neural architecture is not capable of handling high degrees of
heterogeneity in CADR across units. Some neural architectures, especially VCNet and the standard
MLP, outperform other methods in both the randomized scenario and under dose non-uniformity.
The results further indicate that VCNet’s varying coefficient structure aids successful confounding
adjustment.

7 CONCLUSIONS AND FUTURE RESEARCH

This paper aims to understand the nature of conditional average dose response (CADR) estimation
and to provide tools to decompose estimator performance along challenges inherent to the field.
We have provided a unifying problem formulation using a single-world intervention graph (SWIG)
and conceptualized synthetic data-generating processes (DGPs) typically used to evaluate estimator
performance. We have proposed a novel decomposition scheme that allows us to attribute estimator
performance to five challenges: The non-linearity of response surfaces, confounding of interven-
tions and doses, and their non-uniform distributions. From our experiments, we conclude that the
inherent challenges are still poorly understood. Established benchmarks are challenging predomi-
nantly due to non-uniform distributions of interventions and doses, and non-linear response surfaces.
Confounding, on the contrary, seems to have little effect on model performance on these datasets.
Additionally, by proposing a novel DGP and benchmarking dataset (IHDP-3), we show that con-
founding is a challenge for estimators only when the heterogeneity of CADR is high.

Our results show critical limitations in existing ML research on CADR estimation and suggest that
more research is needed to develop benchmarks that accurately test the capabilities of estimators.
We hence encourage researchers to adopt our decomposition for any future research. Additionally,
we provide three further takeaways for researchers and practitioners:

(1) Confounding can materialize in various ways. There is no clear-cut definition of how
confounding might materialize in a DGP and previous works have not clarified how confounding
is making a CADR estimation challenging. Our experiments show that the confounding in most
previously established datasets does not pose a challenge. Further research is needed to understand
and quantify when tailored methods are needed.

(2) Several challenges exist in CADR estimation. In our experiments on established datasets,
neither confounding by intervention type nor by dose have large negative impacts on model perfor-
mance. Instead, the non-uniformity of doses has the largest effect. This contrasts with the claims
in which these benchmarks test for robustness against (any type of) confounding and reveals that
typical DGPs introduce more than just one challenge to CADR estimation. The finding is especially
relevant as the non-uniformities of intervention types and doses are not causal problems. A potential
future research direction might hence be the adoption of methodologies such as data-efficient ML
(Olson et al., 2018; Mirzasoleiman et al., 2020).

(3) Supervised estimators might be appropriate to model CADR. Finally, our results reveal that
standard supervised learning methods might achieve competitive performance in estimating CADR.
This supports takeaway (1) and calls for comparing any future CADR estimators against a complete
set of established benchmarking methods, such as gradient-boosted trees. Improving transparency
might help practitioners gain trust in ML CADR estimators and aid future adoption.
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A NOTATION

We summarize the relevant notation to our paper below. Random variables are denoted in capital
letters, with realizations of such in lowercase. Matrices are denoted in boldface. Realizations of a
variable at a certain position, are denoted with the position as subscript.

X ∈ Rm Covariate space
m Size of X (number of covariates)

T ∈ {ω1, . . . , ωk} Intervention space
k Number of possible interventions

D ∈ R Dose space
Y ∈ R Outcome space
X ∈ X Covariates (random variable)

T Interventions (random variable)
D : T → D Potential dose function (function-valued random variable)

Y : (T ,D) → Y Potential outcome function (function-valued random variable)
µ(t, d,x) Conditional average dose response (E[Y (t, d)|X = x])

B METHODOLOGY DETAILS

We illustrate the non-uniformity and confounding of doses in Figure 7, using a toy example with two
individual units being assigned a dose, sampled from a probability distribution. This visualization is
generalizable and serves to explain any effects on interventions as well.

In the base scenario, every dose in D = [0, 1] is equally likely assigned to any of the units. Under
non-uniformity, some doses are more likely to be assigned, specifically lower and higher ones,
whereas medium doses around 0.5 are less likely. The individual distributions of the dose per unit
are equivalent to the joint distribution. In the case of confounded doses, the joint distribution across
the two units is the same as under non-uniformity but individual distributions differ. Specifically,
Unit 1 is assigned lower doses on average, whereas Unit 2 is assigned higher doses.
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(c) Confounding

Figure 7: Impacts of non-uniformity and confoundedness on dose distributions per unit and per
population in the case of two observed units and for doses only.
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C STRONG IGNORABILITY IN THE DOSE RESPONSE SETTING

The strong ignorability assumption (Rosenbaum & Rubin, 1983) is typically posed for estimating
treatment effects, so in the setting of binary interventions. Below we provide definitions all all
components of this assumption that match the continuous case as tackled in our paper:
Assumption 1. (Consistency) The observed outcome Yi for a unit i that was assigned intervention
ti and dose di is the potential outcome Yi(ti, di).

Assumption 2. (No hidden confounders) The assigned intervention T and dose D are conditionally
independent of the potential outcome Y (t, d) given the covariates X, so {Y (t, d)|t ∈ T , d ∈ D} ⊥⊥
(T,D)|X
Assumption 3. (Overlap) Every unit has a greater-than-zero probability of receiving any possible
combination of intervention and dose, so ∀t ∈ T : ∀d ∈ D : ∀x ∈ X with P(x) > 0 : 0 <
P((t, d)|x) < 1

D ML ESTIMATORS FOR CONDITIONAL AVERAGE DOSE RESPONSES

We will introduce the three CADR estimators considered in our paper in detail:

DRNet (Schwab et al., 2019). DRNet uses a multitask learning approach (Caruana, 1997) to
estimate conditional average dose responses. The method trains a head network per individual in-
tervention on a set of shared layers, as motivated by Shalit et al. (2016) in the binary intervention
setting. Per intervention, the method partitions the dose space D into a set of strata. For each strata,
another individual network is trained to infer the dose response. The architecture can further be
combined with regularization terms during training, to overcome potential covariate shifts between
different interventions.

SCIGAN (Bica et al., 2020). SCIGAN assumes that there is a shift in covariates between different
levels of intervention and dose. This shift leads to non-adjusted estimators overfitting the training
data. At the core of SCIGAN is a specialized generative adversarial network (GAN) structure,
which attempts to generate the outcomes of counterfactual interventions and doses per unit. Creating
those counterfactual observations removes the covariate shift, and allows any estimator to learn an
unbiased dose response model.

VCNet (Nie et al., 2021). VCNet proposes a varying-coefficient architecture (Hastie & Tibshirani,
1993). The method trains a neural network that has a network structure varying in the assigned dose
per unit, reinforcing the influence of the dose on the predicted outcome. Nie et al. (2021) combine
this architecture with estimating the generalized propensity score of the dose to calculate estimates
of the average dose response through an approach proposed as “functional targeted regularization”,
as motivated and inspired by Shi et al. (2019). In our experiments, we do not use this part of the
architecture and focus on estimating the conditional average dose response.
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E PSEUDOCODE

We provide pseudocode for replicating our approach for an arbitrary machine-learning method and
data-generating process:

Algorithm 1: Performance decomposition
Require: Covariate matrix X, Intervention assignment function at(·), Dose assignment

function ad(·), Outcome function µ(·), Machine learning methodM, Performance
metric P (·)

Result: Decomposed performance ofM on DGP specified by X, at, ad and µ

# 0) initialization
(1) sample idstrain, idstest
(2) Trand ← sample at random from {ω1, . . . , ωk} # Get intervention vectors
(3) Tconf ← at(X)
(4) Tnon−u ← shuffle Tconf

(5) Drand ← sample at random from [0, 1] # Get dose vectors
(6) Dconf ← ad(X, Tconf )
(7) Dnon−u ← shuffle(Dconf )

# 1) eval under random interventions and doses
(8) Y ← µ(X, Trand, Drand) # Get outcomes
(9) trainM on (Y,X, Trand, Drand) using idstrain

(10) calculate P (M, Y,X, Trand, Drand) using idstest # Calculate performance

# 2) eval under intervention non-uniformity and random doses
(11) Y ← µ(X, Trand, Drand) # Get outcomes
(12) trainM on (Y,X, Tnon−u, Drand) using idstrain
(13) calculate P (M, Y,X, Tnon−u, Drand) using idstest # Calculate performance

# 3) eval under intervention confounding and random doses
(14) Y ← µ(X, Tconf , Drand) # Get outcomes
(15) trainM on (Y,X, Tconf , Drand) using idstrain
(16) calculate P (M, Y,X, Tconf , Drand) using idstest # Calculate performance

# 4) eval under intervention confounding and dose
non-uniformity

(17) Y ← µ(X, Tconf , Dnon−u) # Get outcomes
(18) trainM on (Y,X, Tconf , Dnon−u) using idstrain
(19) calculate P (M, Y,X, Tconf , Dnon−u) using idstest # Calculate performance

# 5) evaluate under intervention confounding and dose
confounding

(20) Y ← µ(X, Tconf , Dnon−u) # Get outcomes
(21) trainM on (Y,X, Tconf , Dconf ) using idstrain
(22) calculate P (M, Y,X, Tconf , Dconf ) using idstest # Calculate performance
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F OVERVIEW OF ESTABLISHED ESTIMATORS AND BENCHMARKING
DATASETS

When studying previously established dose response estimators, we find that methods have typically
been evaluated on a small selection of benchmark datasets (cf. Table 2). Similarly, each paper does
not compare performance against a complete set of benchmarking methods.

Table 2: Overview of dose response estimators

Multi. Benchmark Benchmark
Method Paper Type treat. datasets methods Description

DRNet Schwab et al. (2019) CA

BART (Chipman et al., 2010)
Multi-head neural network
with separate head network per
treatment. Per treatment,
separate head network per dose
interval.

Causal Forest (Wager & Athey, 2018)
TCGA-1 GANITE (Yoon et al., 2018)
MVICU-1 HIE (Hirano & Imbens, 2004)
News-1 kNN (Cunningham & Delany, 2021)

MLP
TARNET (Shalit et al., 2016)

SCIGAN Bica et al. (2020) CA
TCGA-2 DRNet GAN architecture to remove

training data confounding.MVICU-2 HIE
News-2 MLP

VCNet Nie et al. (2021) A

BART
Varying coefficient network
combined with targeted
regularization.

IHDP-1 Causal forest
News-3 Dragonnet (Shi et al., 2019)
Synth-1 DRNet

HIE

ADMIT Wang et al. (2022) A

DRNet

Representation balancing based
on weighted populations.

TCGA-2 EBCT (Tübbicke, 2021)
News-1 HIE
Synth-1 SCIGAN

VCNet

TransTEE Zhang et al. (2022) CA TCGA-2

DRNet General purpose transformer
architecture for intervention
response estimation.

SCIGAN
TARNet
VCNet

CRNet† Zhu et al. (2024) CA
IHDP-2
News-4
Synth-2

Causal forest

Contrastive representation
balancing.

CBGPS (Fong et al., 2018)
DRNet
HIE
SCIGAN
VCNet

GIKS† Nagalapatti et al. (2024) CA
IHDP-1 DRNet Adjusted learning objective

based on weighted
observations.

News-3 TARNet
TCGA-2 TransTEE

ACFR Kazemi & Ester (2024) CA TCGA-2
News-2

ADMIT

Representation balancing
through adversarial learning.

DRNet
HIE
MLP
SCIGAN
VCNet

†: No code base available, u.n.: unnamed, CA: Conditional average, A: Average, HIE: Hirano-Imbens estimator, MLP: multilayer perceptron

An overview of the proposed datasets for benchmarking dose response estimators can be found in
Table 3 below, presenting the dimensionality of the covariate space, as well as the cardinality of the
intervention space, and the presence of both intervention and dose confounding.
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Table 3: Benchmarking datasets for DR estimators

Dataset Paper Dim(x) |T | t confounding d confounding
MVICU-1

Schwab et al. (2019)
(8040, 49) 3

News-1 (5000, 2870) {2,4,8,16}
TCGA-1 (9659, 20531) 3
MVICU-2

Bica et al. (2020)
(8040, 49) 2

News-2 (5000, 2870) 3
TCGA-2∗ (9659, 4000) 3
News-3∗

Nie et al. (2021)
(2993, 498) 1 n.a.

IHDP-1∗ (747, 25) 1 n.a.
Synth-1∗ (700, 6) 1 n.a.
IHDP-2†

Zhu et al. (2024)
(2993, 498) 1

News-4† (747, 25) {2,4,8,16}
Synth-2† (3000, 100) {1,2,5,10}
IHDP-3∗ This paper (747, 25) 1 n.a.

∗: Considered in this paper, †: No code base available, S: synthetic, R: real, n.a.: not applicable

G THE IHDP-3 DATASET

This proposal of a new dataset for benchmarking CADR estimators, the “IHDP-3” dataset, is mo-
tivated by the dose response heterogeneity (or the lack thereof) in previously established datasets.
To our surprise, most estimators were not, or only a little affected by the presence of confounders
in the DGP. Conversely, in those datasets, the biggest challenge in CADR estimation has been the
non-uniform distribution of doses (cf. Section 5 and 6).

The IHDP-3 dataset leverages the same covariate matrix as the IHDP-1 dataset (Nie et al., 2021),
notably the covariates used in the study of Hill (2011), but the assignment of intervention variables,
as well as the outcome calculation differ significantly.

We consider a scenario with only one distinct intervention. Yet, different from previous datasets,
the response to this intervention has higher heterogeneity in the covariates of a unit. Specifically,
there are four different archetypes of responses to the intervention. We assign every unit in the
covariate matrix to one of these archetypes based on their realization of binary covariates b.marr
and mom.lths. The CADR per archetype is given in Table 4. Per unit, we generate the individual
responses by adding normally distributed random noise.

Table 4: CADR per archetype of units in the IHDP-3 dataset

AT Dose response curve
A1 f1(xi, d) = 10 ∗ (xi,0 + 12 ∗ d ∗ (d− 3

4
∗ (xi,1 + xi,2))

2)

A2 f2(xi, d) = 10 ∗ (xi,1 + sin(π ∗ (xi,2 + xi,3) ∗ d))
A3 f3(xi, d) = 10 ∗ (xi,2 + 12 ∗ (xi,3 ∗ d− xi,4 ∗ d2))
A4 f4(xi, d) = xi,0 ∗ 3 ∗ sin(20 ∗ xi,2 ∗ d) + 20 ∗ xi,3 ∗ d− 20 ∗ xi,4 ∗ d2 + 5

AT: Archetype, xi,j : Variable j in the covariate vector of unit i

Next, we assume that doses are assigned to every observation based on their archetype, and assign
every of the archetypes a modal dose in { 18 , 3

8 ,
5
8 ,

7
8}. We then sample for every unit a factual dose

from a beta distribution with the respective mode and tunable variance, following the approach first
introduced by Bica et al. (2020). For a detailed DGP and the technical implementation, we refer to
our source code (cf. Section J).

The resulting data has a significantly higher heterogeneity in the dose responses across units as we
visualize in Appendix H.
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H DEEP DIVE INTO BENCHMARKING DATASETS

We visualize the CADR per unit in the different benchmarking datasets in Figure 8. The hetero-
geneity in CADR varies along the datasets. For the previously established ones, per intervention,
responses are generated from a single, but differently-parameterized function. This yields little het-
erogeneity in the CADR across units and might explain the good performance of supervised learning
methods on these datasets. For IHDP-3, we can see higher degrees of heterogeneity with CADR de-
pending on the archetype (cf. Appendix G). The confounding in the data significantly complicates
the estimation of CADR, as seen in the detailed results (cf. Appendix I).
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Figure 8: Dose response space in different datasets. Per unit in the dataset, we visualize the
CADR over different interventions and doses (top plots). Accompanying, we provide a histogram of
the assigned doses in the data (bottom plots). We mark the conditional response to the factual dose
with a dot. The factual dose also determines the color per curve, for which the bottom plot provides
a mapping. For the clarification of parameters we refer to Table 3 and the sources therein.

We further visualize confounding in the datasets by generating t-SNE plots (Hinton & Roweis, 2002;
Maaten & Hinton, 2008) of their covariate spaces and color coding observations by their factual
dose (cf. Figure 9). Under confounding, we expect that units different in their covariates would be
assigned different factual doses. Yet, not all plots indicate this behavior. Especially in the News-3
and IHDP-1 datasets units with different factual doses cannot be separated.
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Figure 9: t-SNE plot of covariate space per dataset. Color corresponds to the assigned dose. We
see that in the IHDP-1 and News-3 dataset observations with different assigned doses cannot clearly
be separated in the t-SNE plot, indicating that the confounding in the data might not be severe. In
IHDP-3, TCGA-2, and Synth-1 the separation is clearer, which might indicate a stronger effect on
model performance. For the clarification of parameters we refer to Table 3 and the sources therein.
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I RESULTS PER DATASET

Next to our detailed discussion of model performance on the TCGA-2 dataset (see Sectio 5), we
provide results for every other available benchmarking dataset below:

Table 5: Performance decomposition on IHDP-1 dataset. According to our decomposition
scheme, none of the investigated models was seriously affected by either the non-uniform distri-
bution of doses (d non-uniformity), or dose confounding (d confounding). Per decomposition step
(scenario), the best performing method is highlighted in bold, and the second best in italics.

Scenario
Method random. →d non-unif.→ d conf.
Lin. reg. 4.66 ± 0.03 4.76 ± 0.06 4.85 ± 0.07
Reg. tree 1.33 ± 0.11 1.35 ± 0.21 1.24 ± 0.10
GAM 1.67 ± 0.03 1.71 ± 0.03 1.95 ± 0.13
xgboost 1.04 ± 0.10 1.08 ± 0.10 1.14 ± 0.13
MLP 2.88 ± 0.26 3.10 ± 0.24 2.85 ± 0.24

SCIGAN 6.86 ± 1.21 6.54 ± 1.07 5.88 ± 0.47
DRNet 2.63 ± 0.15 2.39 ± 0.06 2.60 ± 0.11
VCNet 1.38 ± 0.20 1.18 ± 0.20 1.43 ± 0.21

random.: randomized; non-unif.: non-uniformity; conf.: confounding

Table 6: Performance decomposition on IHDP-3 dataset. Our decomposition scheme reveals that
model performance is negatively affected by confounding. This is contrary to all other investigated
datasets. Per decomposition step (scenario), the best performing method is highlighted in bold, and
the second best in italics.

Scenario
Method random. → d non-unif.→ d conf.
Lin. reg. 14.91 ± 0.21 14.79 ± 0.19 17.86 ± 0.52
Reg. tree 6.92 ± 0.77 8.89 ± 2.23 10.82 ± 4.19
GAM 15.22 ± 0.29 15.16 ± 0.32 17.30 ± 0.37
xgboost 7.06 ± 0.69 8.01 ± 0.57 10.92 ± 1.02
MLP 3.47 ± 0.23 3.97 ± 0.44 10.14 ± 0.45

SCIGAN 10.40 ± 2.24 12.33 ± 3.57 14.65 ± 6.24
DRNet 14.92 ± 0.21 15.08 ± 0.26 16.17 ± 0.16
VCNet 2.68 ± 0.35 3.76 ± 0.79 8.45 ± 0.76

random.: randomized; non-unif.: non-uniformity; conf.: confounding
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Table 7: Performance decomposition on News-3 dataset. According to our decomposition
scheme, none of the investigated models was seriously affected by either the non-uniform distri-
bution of doses (d non-uniformity), or dose confounding (d confounding). Per decomposition step
(scenario), the best performing method is highlighted in bold, and the second best in italics.

Scenario
Method random. →d non-unif.→ d conf.
Lin. reg. 1.07 ± 0.10 1.09 ± 0.11 1.08 ± 0.10
Reg. tree 1.26 ± 0.13 1.30 ± 0.10 1.29 ± 0.18
GAM 1.11 ± 0.08 1.16 ± 0.08 1.12 ± 0.05
xgboost 0.98 ± 0.06 0.98 ± 0.04 0.97 ± 0.05
MLP 1.04 ± 0.08 1.03 ± 0.12 1.01 ± 0.11

SCIGAN 1.57 ± 0.15 1.89 ± 0.22 2.32 ± 1.71
DRNet 1.01 ± 0.10 0.99 ± 0.09 1.00 ± 0.08
VCNet 0.91 ± 0.05 0.90 ± 0.04 0.78 ± 0.06

random.: randomized; non-unif.: non-uniformity; conf.: confounding

Table 8: Performance decomposition on Synth-1 dataset. According to our decomposition
scheme, none of the investigated models was seriously affected by either the non-uniform distri-
bution of doses (d non-uniformity), or dose confounding (d confounding). Per decomposition step
(scenario), the best performing method is highlighted in bold, and the second best in italics.

Scenario
Method random. →d non-unif.→ d conf.
Lin. reg. 0.73 ± 0.03 0.73 ± 0.03 0.77 ± 0.03
Reg. tree 0.50 ± 0.05 0.53 ± 0.12 0.57 ± 0.11
GAM 0.44 ± 0.03 0.44 ± 0.03 0.48 ± 0.04
xgboost 0.41 ± 0.03 0.41 ± 0.02 0.49 ± 0.04
MLP 0.32 ± 0.02 0.32 ± 0.03 0.42 ± 0.05

SCIGAN 0.58 ± 0.11 0.62 ± 0.09 1.09 ± 0.13
DRNet 0.49 ± 0.03 0.49 ± 0.03 0.50 ± 0.03
VCNet 0.31 ± 0.03 0.31 ± 0.03 0.37 ± 0.04

random.: randomized; non-unif.: non-uniformity; conf.: confounding
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J IMPLEMENTATION AND HYPERPARAMETER OPTIMIZATION

All experiments were written in Python 3.9 (Van Rossum et al., 1995) and run on an Apple M2 Pro
SoC with 10 CPU cores, 16 GPU cores, and 16 GB of shared memory. The system needs approxi-
mately two days for the iterative execution of all experiments. The code to reproduce all experiments
and figures in our paper can be found online via https://anonymous.4open.science/r/
CADR-performance-deco-8148 including a reference to the necessary covariate matrices.

For SCIGAN and VCNet, we use the original implementations provided by Bica et al. (2020)
(https://github.com/ioanabica/SCIGAN) and Nie et al. (2021) (https://github.
com/lushleaf/varying-coefficient-net-with-functional-tr). All remaining
neural network architectures were implemented in PyTorch (Paszke et al., 2017) using Lightning
(Falcon et al., 2020). Xgboost is implemented using the xgboost library (Chen & Guestrin, 2016).
GAMs were implemented using the PyGAM library (Servén et al., 2018). All other methods were
implemented using the Scikit-Learn library (Pedregosa et al., 2011) and the statsmodels
library (Seabold & Perktold, 2010).

For TCGA-based datasets, linear regression models and GAMs were trained using the first 50 prin-
cipal components of the covariate matrix to reduce computational complexity.

Hyperparameter optimization. For all methods, we used a validation set for hyperparameter
optimization and chose the best model in terms of validation set mean squared errors (MSE). We
do so to ensure fair model comparison and isolate model performance from parameter selection
procedures, as presented accompanying some estimators (Schwab et al., 2019; Bica et al., 2020). We
ran a random search over the hyperparameter ranges as listed per the model below. If not specified
differently, the remaining hyperparameters are set to match the specifications of the original authors.
Results are not to be compared to the original papers, as the optimization scheme and parameter
search ranges differ from the original records.

Table 9: Hyperparameter search range for Linear Regression:

Parameter Values
Penalty {Elasticnet,None}

Table 10: Hyperparameter search range for Regression Tree:

Parameter Values
Max depth {5, 15, None}
Min sample split {2, 5, 20}
Min samples per leaf {1, 5, 10}
Max features per split {None,

√
p(x)}

Splitting criterion {Gini}

Table 11: Hyperparameter search range for GAM:

Parameter Values
Interaction type {Univariate}
Numb configurations {20}
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Table 12: Hyperparameter search range for xgboost:

Parameter Values
Learning rate {0.01, 0.1, 0.2}
Max depth {3, 5, 7, 9}
Subsample {0.5, 0.7, 1.0}
Min child weight {1, 3, 5}
Gamma {0.0, 0.1, 0.2}
Columns sampled per tree {0.3, 0.5, 0.7}

Table 13: Hyperparameter search range for MLP:

Parameter Values
Learning rate {0.0001, 0.001}
L2 regularization {0.0, 0.1}
Batch size {64, 128}
Hidden size {32, 48}
Num steps {5000}
Num layers {2}
Optimizer {Adam}

Table 14: Hyperparameter search range for SCIGAN:

Parameter Values
Hidden size {32, 64, 128}
Batch size {128, 256}
Num head layers {2}
Num dose samples {5}
λ {1}
Optimizer {Adam}

Table 15: Hyperparameter search range for DRNet:

Parameter Values
Learning rate {0.0001, 0.001}
L2 regularization {0.0, 0.1}
Batch size {64, 128}
Hidden size {32, 48}
Num dose strata {10}
Num steps {5000}
Num layers {2}
Optimizer {Adam}

Table 16: Hyperparameter search range for VCNet:

Parameter Values
Learning rate {0.001, 0.01}
Batch size {128, 256}
Hidden size {32}
Num steps {5000}
Optimizer {Adam}
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