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ABSTRACT

Variational inequalities play a key role in machine learning research such as
generative adversarial networks, supervised/unsupervised learning, reinforcement
learning, adversarial training, and generative models. This paper is devoted to the
variational inequality problems. We consider two classes of problems, the first
is classical constrained variational inequality and the second is the same problem
with functional (inequality type) constraints. To solve these problems, we propose
mirror descent-type methods with a weighting scheme for the generated points in
each iteration of the algorithms. This scheme assigns smaller weights to the initial
points and larger weights to the most recent points, thus it improves the conver-
gence rate of the proposed methods. For the variational inequality problem with
functional constraints, the proposed method switches between adaptive and non-
adaptive steps depending on the values of the functional constraints at iterations.
We analyze the proposed methods for the time-varying step sizes and prove the
optimal convergence rate for variational inequality problems with bounded and
monotone operators. The results of numerical experiments of the proposed meth-
ods for classical constrained variational inequality problems show a significant
improvement over the modified projection method.

1 INTRODUCTION

Variational inequalities (VIs) cover as a special case many optimization problems such as mini-
mization problems, saddle point problems, and fixed point problems (see Examples 3.1, 3.2 and 3.3,
below). They often arise in various mathematical problems, such as optimal control, partial differen-
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tial equations, mechanics, finance, and many others. They play a key role in solving equilibrium and
complementarity problems Facchinei (2003); Harker & Pang (1990), in machine learning research
such as generative adversarial networks Goodfellow et al. (2020), supervised/unsupervised learning
Joachims (2005); Xu et al. (2004), reinforcement learning Jin & Sidford (2020); Omidshafiei et al.
(2017), adversarial training Madry et al. (2017), and generative models Daskalakis et al. (2017);
Gidel et al. (2018).

Numerous researchers have dedicated their efforts to exploring theoretical aspects related to the ex-
istence and stability of solutions and constructing iterative methods to solve the classical VIs (by
classical, we mean the problems without functional ”inequality types” constraints), see equation 7.
A significant contribution to developing numerical methods for solving classical VIs was made in
the 1970s, when the extragradient method was proposed in Korpelevich (1976). More recently, Ne-
mirovski in his seminal work Nemirovski (2004) proposed a non-Euclidean variant of this method,
called the Mirror Prox algorithm, which can be applied to Lipschitz continuous operators. Different
methods with similar complexity were also proposed in Auslender & Teboulle (2005); Gasnikov
et al. (2019); Nesterov (2007). Besides that, in Nesterov (2007), Nesterov proposed a method for
variational inequalities with a bounded variation of the operator, i.e., with a non-smooth operator.
There is also extensive literature on variations of the extragradient method that avoid taking two
steps or two gradient computations per iteration, and so on (see for example Hsieh et al. (2019);
Malitsky & Tam (2020)).

Another important class of VIs is the problem with functional constraints (inequality type), see
equation 22. The presence of such type of constraints makes these problems more difficult to solve.
This class of problems arises in many fields of mathematics, among them are economic equilibrium
models Levin et al. (1993), game theory Garcia & Zangwill (1981), constrained Markov poten-
tial games Alatur et al. (2023); Jordan et al. (2024), generalized Nash equilibrium problems with
jointly-convex constraints Facchinei & Kanzow (2010); Jordan et al. (2023) and hierarchical pro-
gramming problems Migdalas & Pardalos (1996), in mathematical physics Baiocchi (1984). See
Antipin (2000) to see some examples. In addition, this class of problems encompasses important
applications in machine learning, including reinforcement learning with safety constraints Xu et al.
(2021) and learning with fairness constraints Lowy et al. (2021); Zafar et al. (2019).

For VIs with functional constraints, the previous works have focused on primal-dual algorithms
based on the (augmented) Lagrangian function to handle the constraints and penalty methods
Auslender (1999; 2003); He et al. (2004); Zhu (2003). These algorithms and their convergence
guarantees crucially depend on information about the optimal Lagrange multipliers. In Zhang et al.
(2024), a primal method was proposed without knowing any information on the optimal Lagrange
multipliers, proving its convergence rate for the problem with monotone operators under smooth
constraints. In Yang et al. (2022), a first order method (ACVI) was presented which combines path-
following interior point methods and primal-dual methods. In Chavdarova et al. (2024), the authors
proposed a primal-dual approach to solving VIs with general functional constraints by taking the
last iteration of ACVI. Although there are many works for the VIs with functional constraints, they
remain very few compared to the existing works for the classical constrained problem.

In this paper, we propose Mirror Descent type methods for solving the classical variational inequality
problem, and the same problem with functional constraints (inequality types); see problems equa-
tion 7 and equation 22. The mirror descent method, for minimization problems, which originated in
Nemirovski (1979); Nemirovskij & Yudin (1983) and was later analyzed in Beck & Teboulle (2003),
is considered as the non-Euclidean extension of standard subgradient methods. This method is used
in many applications, see Ben-Tal et al. (2001); Nazin & Miller (2011); Nazin et al. (2014); Tremba
& Nazin (2013) and references therein. The standard subgradient methods employ the Euclidean
distance function with a suitable step-size in the projection step. Mirror descent extends standard
projected subgradient methods by employing a nonlinear distance function with an optimal step-size
in the nonlinear projection step Luong et al. (2016). The Mirror Descent method not only general-
izes the standard subgradient methods but also achieves a better convergence rate Doan et al. (2018).
It is also applicable to optimization problems in Banach spaces where gradient descent is not Doan
et al. (2018). An extension of the mirror descent method for constrained problems was proposed in
Beck et al. (2010); Nemirovskij & Yudin (1983). The class of non-smooth optimization problems
with non-smooth functional constraints attracts widespread interest in many areas of modern large-
scale optimization and its applications Ben-Tal & Nemirovski (1997); Nesterov & Shpirko (2014).
In terms of continuous optimization with functional constraints, there is a long history of studies.
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The monographs in this area include Bertsekas (2014); Nocedal & Wright (1999). Some of the
works on first-order methods for convex optimization problems with convex functional constraints
include (for example, but not limited to) Bayandina et al. (2018); Lin et al. (2018); Stonyakin et al.
(2018; 2019); Titov et al. (2018) for the deterministic setting and Alkousa (2020; 2019); Lan & Zhou
(2020); Xu (2020) for the stochastic setting.

Recently in Zhu et al. (2024), for the projected subgradient method, the optimal convergence rate
was proved using the previously mentioned time-varying step size with a new weighting scheme
for the generated points in each iteration of the algorithm. This convergence rate remains the same
(optimal) even if we slightly increase the weight of the most recent points, thereby relaxing the
ergodic sense. These results were recently extended to mirror descent methods for constrained
minimization problems in Alkousa et al. (2024b) and for minimization problems with functional
constraints (inequality type) in Alkousa et al. (2024a).

In this paper, for the classical constrained variational inequality problem, we propose a mirror
descent-type method (Algorithm 1) with a weighting scheme for the points generated in each itera-
tion of the algorithm. We extend Algorithm 1 (see Algorithm 2), to be applicable to the variational
inequality problem with functional constraints by switching between adaptive and non-adaptive
steps. We analyze the proposed methods for the time-varying step sizes and obtain the optimal
convergence rate (for Algorithm 1) for the class of variational inequality problems with bounded
and monotone operators.

The paper consists of an introduction and five main sections. In Sect. 2 we mentioned the basic
facts, definitions, and tools for variational inequalities. Sect. 3 devoted to the classical constraint
variational inequality problem. We proposed a mirror descent method (Algorithm 1) with a weight-
ing scheme for the points generated in each iteration of the algorithm, we analyzed Algorithm 1 and
proved its optimal convergence rate for the class of variational inequality problems with bounded
and monotone operators. In Sect. 4, we proposed an extension of Algorithm 1 (see 2) to solve a more
complicated variational inequality problem with functional constraints. In Sect. 5 we present nu-
merical experiments that demonstrate the efficiency of the proposed weighting scheme in Algorithm
1, and compare its work with a modified projection method, proposed in Khanh & Vuong (2014),
to solve some examples of the variational inequality problem. In the last section 6, we review the
results obtained in the paper.

2 PRELIMINARIES

Let (E, ∥ · ∥) be a normed finite-dimensional vector space, with an arbitrary norm ∥ · ∥, and E∗ be
the conjugate space of E with the following norm

∥y∥∗ = max
x∈E

{⟨y, x⟩ : ∥x∥ ≤ 1},

where ⟨y, x⟩ is the value of the continuous linear functional y ∈ E∗ at x ∈ E.

Let Q ⊂ En be a compact convex set with diameter D > 0, that is, maxx,y∈Q ∥x − y∥ ≤ D,
and ψ : Q −→ R be a proper closed differentiable and σ-strongly convex (called prox-function or
distance generating function). The corresponding Bregman divergence is defined as

Vψ(x, y) = ψ(x)− ψ(y)− ⟨∇ψ(y), x− y⟩ ∀x, y ∈ Q.

For the Bregmann divergence, it holds the following inequality

Vψ(x, y) ≥
σ

2
∥y − x∥2 ∀x, y ∈ Q. (1)

Definition 2.1. (δ-monotone operator). Let δ > 0. The operator F : Q −→ E∗ is called δ-
monotone, if it holds

⟨F (y)− F (x), y − x⟩ ≥ −δ ∀x, y ∈ Q. (2)

For example, we can consider F = ∇δf for δ-subgradient ∇δf(x) of convex function f at a point
x ∈ Q: f(y)− f(x) ≥ ⟨∇δf(x), y − x⟩ − δ for each y ∈ Q (see e.g., Chapter 5 in Polyak (1987)).

When δ = 0, then the operator F is called monotone, i.e.,

⟨F (x)− F (y), x− y⟩ ≥ 0 ∀x, y ∈ Q. (3)
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We say that the operator F is bounded on Q, if there exist LF > 0 such that

∥F (x)∥∗ ≤ LF ∀x ∈ Q. (4)

The following identity, known as the three points identity, is essential in analyzing the mirror descent
method.

Lemma 2.2. (Three points identity Chen & Teboulle (1993)) Suppose that ψ : E −→ (−∞,∞]
is a proper closed, convex, and differentiable function on dom(∂ψ). Let a, b ∈ dom(∂(ψ)) and
c ∈ dom(ψ). Then it holds

⟨∇ψ(b)−∇ψ(a), c− a⟩ = Vψ(c, a) + Vψ(a, b)− Vψ(c, b). (5)

Fenchel-Young inequality(Beck & Teboulle (2003)). For any b ∈ E, a ∈ E∗, it holds the following
inequality

⟨a, b⟩ ≤ ∥a∥2∗
2λ

+
λ∥b∥2

2
∀λ > 0. (6)

3 MIRROR DESCENT METHOD FOR CONSTRAINED VARIATIONAL
INEQUALITY PROBLEM

In this section, we consider the following variational inequality problem

Find x∗ ∈ Q : ⟨F (x), x∗ − x⟩ ≤ 0 ∀x ∈ Q, (7)

where F : Q −→ E∗ is a continuous, bounded (i.e., equation 4 holds), and δ-monotone operator
(i.e., equation 2 holds).

Under the assumption of continuity and monotonicity (i.e., δ = 0) of the operator F , the problem
equation 7 is equivalent to a Stampacchia Giannessi (1998) (or strong Nesterov (2007)) variational
inequality, in which the goal is to find x∗ ∈ Q such that

⟨F (x∗), x∗ − x⟩ ≤ 0 ∀x ∈ Q. (8)

To emphasize the extensiveness of the problem equation 7 (or equation 8), we mention three common
special cases for VIs.

Example 3.1 (Minimization problem). Let us consider the minimization problem

min
x∈Q

f(x), (9)

and assume that F (x) = ∇f(x), where ∇f(x) denotes the (sub)gradient of f at x. Then, if f is
convex, it can be proved that x∗ ∈ Q is a solution to equation 8 if and only if x∗ ∈ Q is a solution
to equation 9.

Example 3.2 (Saddle point problem). Let us consider the saddle point problem

min
u∈Qu

max
v∈Qv

f(u, v), (10)

and assume that F (x) := F (u, v) = (∇uf(u, v),−∇vf(u, v))
⊤, where Q = Qu × Qv with

Qu ⊆ Rnu , Qv ⊆ Rnv . Then if f is convex in u and concave in v, it can be proved that x∗ ∈ Q is a
solution to equation 8 if and only if x∗ = (u∗, v∗) ∈ Q is a solution to equation 10.

Example 3.3 (Fixed point problem). Let us consider the fixed point problem

find x∗ ∈ Q such that T (x∗) = x∗, (11)

where T : Rn −→ Rn is an operator. Taking F (x) = x−T (x), it can be proved that x∗ ∈ Q = Rn
is a solution to equation 8 if F (x∗) = 0 ∈ Rn, that is, x∗ is a solution to equation 11.

Definition 3.4. For some ε > 0, we call a point x̂ ∈ Q an ε-solution of the problem equation 7, if

⟨F (x), x̂− x⟩ ≤ ε ∀x ∈ Q. (12)
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Following Nesterov (2007), to assess the quality of a candidate solution x̂, we use the following
restricted gap (or merit) function

Gap(x̂) = max
u∈Q

⟨F (u), x̂− u⟩. (13)

Thus, our goal is to find an approximate solution to the problem equation 7, that is, a point x̂ ∈ Q
such that the following inequality holds

Gap(x̂) = max
u∈Q

⟨F (u), x̂− u⟩ ≤ ε, (14)

for some ε > 0.

For problem equation 7, we propose an Algorithm 1, under consideration

Vψ(x, y) ≤ Vψ(x, x
1) <∞ ∀x, y ∈ Q, (15)

where x1 ∈ Q is a chosen (dependently on Q) initial point for the Algorithm 1.
Remark 3.5. In analyzing the proposed algorithms, we are interested in the optimal complexity for
the number of iterations to solve the problems with the desired accuracy. Therefore, in the proposed
algorithms we assume that the auxiliary minimization problems are simple, in the sense that the set
Q does not have a complex structure and the problems can be solved explicitly. Otherwise, for each
iteration of the proposed algorithms, we must solve the auxiliary problems numerically and then the
analysis will be for the total oracle complexity, which is outside the scope of the research now, which
we will address in future work.

Algorithm 1 Mirror descent method for constrained variational inequality problem.

Require: step sizes {γk}k≥1, initial point x1 ∈ Q s.t. equation 15 holds, number of iterations N .
1: for k = 1, 2, . . . , N do
2: xk+1 = argmin

x∈Q

{
⟨x, F (xk)⟩+ 1

γk
Vψ(x, x

k)
}

.

3: end for

For Algorithm 1, we have the following result.
Theorem 3.6. Let F : Q −→ E∗ be a continuous, bounded, and δ-monotone operator. Then for
problem equation 7, by Algorithm 1, with a positive non-increasing sequence of step sizes {γk}k≥1,
for any fixed m ≥ −1, it satisfies the following inequality

Gap(x̂) ≤ 1∑N
k=1 γ

−m
k

(
R2

γm+1
N

+
1

2σ

N∑
k=1

∥F (xk)∥2∗
γm−1
k

)
+ δ, (16)

where R > 0, such that maxx∈Q Vψ(x, x
1) ≤ R2, and

x̂ =
1∑N

k=1 γ
−m
k

N∑
k=1

γ−mk xk.

Now, let us see the convergence rate of Algorithm 1 with the following (adaptive and non-adaptive)
time-varying step size rules

γk =

√
2σ

LF
√
k
, or γk =

√
2σ

∥F (xk)∥∗
√
k
, k = 1, 2, . . . , N, (17)

and different values of the parameter m ≥ −1.
Corollary 3.7. Let F : Q −→ E∗ be a continuous, bounded, and δ-monotone operator. Then
for problem equation 7, by Algorithm 1, with m = −1, and the time-varying step sizes given in
equation 17, it satisfies the following

Gap(x̃) ≤
LF
(
R2 + 1 + log(N)

)
√
σ

· 1√
N

+ δ = O

(
log(N)√

N

)
+ δ, (18)

where x̃ = 1∑N
k=1 γk

∑N
k=1 γkx

k.
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Note that the convergence rate in equation 18, is suboptimal for the bounded monotone operators
(i.e., when δ = 0 in equation 2).

From Theorem 3.6, with a special value of the parameter m, we can obtain the optimal convergence
rate O

(
1√
N

)
of Algorithm 1, with the time-varying step sizes given in equation 17 and monotone

operators (i.e., δ = 0 in equation 2).

For this, we have the following result.
Corollary 3.8. Let F : Q −→ E∗ be a continuous, bounded, and δ-monotone operator. Then
for problem equation 7, by Algorithm 1, with m = 0, and the time-varying step sizes given in
equation 17, it satisfies the following

Gap(x) ≤
LF
(
2 +R2

)
√
2σ

· 1√
N

+ δ = O

(
1√
N

)
+ δ, (19)

where x = 1
N

∑N
k=1 x

k.

Also, the same optimal convergence rate for Algorithm 1, with bounded monotone operators (i.e.,
δ = 0), can be obtained with any fixed m ≥ 1, and time-varying step sizes given in equation 17.

For this, we have the following result.
Corollary 3.9. Let F : Q −→ E∗ be a continuous, bounded, and δ-monotone operator. Then
for problem equation 7, by Algorithm 1, with any m ≥ 1, and the time-varying step sizes given in
equation 17, it satisfies the following

Gap(x̂) ≤ LF (m+ 2)(1 +R2)

2
√
2σ

· 1√
N

+ δ = O

(
1√
N

)
+ δ, (20)

where x̂ = 1∑N
k=1 γ

−m
k

∑N
k=1 γ

−m
k xk.

Remark 3.10. In comparison with the suboptimal convergence rate equation 18, when m ≥ 1, the
weighting scheme 1∑N

k=1 γ
−m
k

∑N
k=1 γ

−m
k xk assigns smaller weights to the initial points and larger

weights to the most recent points generated by Algorithm 1. This fact will be shown in numerical
experiments (see Sect. 5). In addition, note that the parameter m does not affect the convergence
rate (from a theoretical point of view). But in the experiments (see Sect. 5), it has a good effect on
the convergence. Where the algorithm significantly gives a better solution as m increases while we
do not face the case of division on zero, thus m is bounded above with a constant to avoid a critical
experimental situation.

4 MIRROR-DESCENT METHOD FOR VARIATIONAL INEQUALITY PROBLEM
WITH FUNCTIONAL CONSTRAINTS

Consider a set of convex subdifferentiable functionals gi : Q −→ R, i = 1, 2, . . . , p. Also we
assume that all functionals gi are Lipschitz-continuous with some constant Mgi > 0, i.e.,

|gi(x)− gi(y)| ≤Mgi∥x− y∥ ∀ x, y ∈ Q and i = 1, . . . , p. (21)

This means that at every point x ∈ Q and for any i = 1, . . . , p there is a subgradient ∇gi(x), such
that ∥∇gi(x)∥∗ ≤Mgi .

In this section, we consider the following variational inequality problem

Find x∗ ∈ Q : ⟨F (x), x∗ − x⟩ ≤ 0 ∀x ∈ Q,

and gi(x) ≤ 0 ∀i = 1, 2 . . . , p,
(22)

where F : Q −→ E∗ is a continuous, bounded (i.e., equation 4 holds), and δ-monotone operator
(i.e., equation 2 holds).

It is clear that instead of a set of Lipschitz-continuous functions {gi(·)}pi=1 we can see one Lipschitz-
continuous functional constraint g : Q −→ R, such that

g(x) = max
1≤i≤p

{gi(x)}, and |g(x)− g(y)| ≤Mg∥x− y∥ ∀ x, y ∈ Q, (23)
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where Mg = max1≤i≤p{Mgi}. Thus, the problem equation 22, will be equivalent to the following
problem

Find x∗ ∈ Q : ⟨F (x), x∗ − x⟩ ≤ 0, and g(x) ≤ 0, ∀x ∈ Q. (24)

Definition 4.1. For some ε > 0, we call a point x̂ ∈ Q an ε-solution of the problem equation 24, if

⟨F (x), x̂− x⟩ ≤ ε ∀x ∈ Q, and g(x̂) ≤ ε. (25)

To solve the problem equation 22 (or its equivalent equation 24), we propose a mirror-decent type
method, listed as Algorithm 2 below.

As can be seen from the items of Algorithm 2, the needed point (i.e., the output, see equation 27)
is selected among the points xi for which g(xi) ≤ ε. Therefore, we will call step i productive if
g(xi) ≤ ε. If the reverse inequality g(xi) > ε holds, then the step i will be called non-productive.

Let I and J denote the set of indices of productive and non-productive steps, respectively. |A|
denotes the cardinality of the set A. Let us also set γk := γFk if k ∈ I , γk := γgk if k ∈ J .

Algorithm 2 Mirror descent algorithm for VIs with functional constraints.

Require: ε > 0, initial point x1 ∈ Q, step sizes {γFk }k≥1, {γgk}k≥1, number of iterations N .
1: I −→ ∅, J −→ ∅.
2: for k = 1, 2, . . . , N do
3: if g(xk) ≤ ε then
4: xk+1 = argminx∈Q

{
⟨x, F (xk)⟩+ 1

γF
k

Vψ(x, x
k)
}

.
5: k −→ I ”productive step”
6: else
7: Calculate ∇g(xk) ∈ ∂g(xk),
8: xk+1 = argminx∈Q

{
⟨x,∇g(xk)⟩+ 1

γg
k
Vψ(x, x

k)
}

.
9: k −→ J ”non-productive step”

10: end if
11: end for

For Algorithm 2, we have the following result.

Theorem 4.2. Let F : Q −→ E∗ be a continuous, bounded, and δ-monotone operator. Let g(x) =
max1≤i≤p{gi(x)} be an Mg-Lipschitz convex function, where gi : Q −→ R, ∀i = 1, 2, . . . , p are
Mgi -Lipschitz convex functions, and Mg = max1≤i≤p{Mgi}. Then for problem equation 24, by
Algorithm 2, with a positive non-increasing sequence of step sizes {γk}k≥1, for any fixed m ≥ −1,
after N ≥ 1 iterations, it satisfies the following inequality

Gap(x̂) <
1∑

k∈I(γ
F
k )

−m

(
R2

γm+1
N

+
1

2σ

∑
k∈I

∥F (xk)∥2∗
(γFk )

m−1
+

1

2σ

∑
k∈J

∥∇g(xk)∥2∗
(γgk)

m−1

− (ε−MgD)
∑
k∈J

(γgk)
−m

)
+ δ, (26)

where R > 0, such that maxx∈Q Vψ(x, x
1) ≤ R2, D > 0 is the diameter of Q, and

x̂ =
1∑

k∈I(γ
F
k )

−m

∑
k∈I

(γFk )
−mxk. (27)

Remark 4.3 (Stopping rule for Algorithm 2). From Theorem 4.2, with

x̂ =
1∑

i∈I(γ
F
i )

−m

∑
i∈I

(γFi )
−mxi,

7
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for any k ≥ 1, we find(∑
i∈I

(
γFi
)−m)

Gap(x̂) <
R2

γm+1
k

+
1

2σ

∑
i∈I

∥F (xi)∥2∗
(γFi )

m−1
+

1

2σ

∑
j∈J

∥∇g(xj)∥2∗
(γgj )

m−1

− (ε−MgD)

k∑
i=1

(γi)
−m + (ε−MgD)

∑
i∈I

(γFi )
−m + δ

∑
i∈I

(
γFi
)−m

= (δ + ε)
∑
i∈I

(
γFi
)−m −

(
(ε−MgD)

k∑
i=1

(γi)
−m +MgD

∑
i∈I

(
γFi
)−m

− R2

γm+1
k

− 1

2σ

∑
i∈I

∥F (xi)∥2∗
(γFi )

m−1
− 1

2σ

∑
j∈J

∥∇g(xj)∥2∗
(γgj )

m−1

)
.

From this, without relying on prior knowledge of the number of iterations N that the algorithm
performs, we can set for any k ≥ 1,

MgD
∑
i∈I

(
γFi
)−m ≥ R2

γm+1
k

+
1

2σ

∑
i∈I

∥F (xi)∥2∗
(γFi )

m−1
+

1

2σ

∑
j∈J

∥∇g(xj)∥2∗
(γgj )

m−1
+ (MgD − ε)

k∑
i=1

(γi)
−m

(28)

as a stopping rule of Algorithm 2. As a result, we conclude(∑
i∈I

(
γFi
)−m)

max
x∈Q

⟨F (x), x̂− x⟩ < (δ + ε)
∑
i∈I

(
γFi
)−m

.

Thus,
max
x∈Q

⟨F (x), x̂− x⟩ < δ + ε.

Note that for all i ∈ I it holds that g(xi) ≤ ε, and since g is convex, then we have

g(x̂) ≤ 1∑
i∈I
(
γFi
)−m ∑

i∈I

(
γfi

)−m
g(xi) ≤ ε.

Thus after the stopping rule equation 28 of Algorithm 2 is met we find x̂, which is given in equa-
tion 27, such that

Gap(x̂) = max
x∈Q

⟨F (x), x̂− x⟩ < δ + ε, and g(x̂) ≤ ε.

In Appendix C, we provide an analysis of Algorithm 2 with a variant of time-varying step size rules.

5 NUMERICAL EXPERIMENTS

To show the advantages and effects of the considered weighting scheme for generated points by
Algorithm 1 (see Theorem 3.6) in its convergence, a series of numerical experiments were performed
for some examples of the classical variational inequality problem. We compare the performance of
Algorithm 1 with the Modified Projection Method (MPM) proposed in Khanh & Vuong (2014).
In our experiments, we take the standard Euclidean prox-structure, namely ψ(x) = 1

2∥x∥
2
2 which

is 1-strongly functions (i.e., σ = 1) and the corresponding Bregman divergence is Vψ(x, y) =
1
2∥x − y∥22. In all experiments, we take the set Q as a unit ball in Rn with the center at 0 ∈ Rn.

The compared methods start from the same initial point x1 =
(

1√
n
, . . . , 1√

n

)
∈ Rn. The results of

the comparisons for the considered examples are presented in Figs. 1 and 2. These results show the
values ∥Fk/F (x1)∥22, where Fk := F (x̂k), and x̂k = 1∑k

i=1 γ
−m
i

∑k
i=1 γ

−m
i xi.

8
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Example 5.1. (Dong et al. (2018)) Let F : R2 −→ R2 be a monotone and bounded operator in the
unit ball, defined as follows

F (x1, x2) = (2x1 + 2x2 + sin(x1),−2x1 + 2x2 + sin(x2)) . (29)

Example 5.2. (Sahu & Singh (2021)) Let F : R3 −→ R3 be a monotone and bounded operator in
the unit ball, defined as follows

F (x1, x2, x3) = (F1(x1, x2, x3), F2(x1, x2, x3), F3(x1, x2, x3)) , (30)

where r, s, t ∈ R and F1(x1, x2, x3) = x1 − sx2 + tx3 + sin(x1), F2(x1, x2, x3) = x2 − rx3 +
sx1 + sin(x2), F3(x1, x2, x3) = x3 − tx1 + rx2 + sin(x3).

The results for Examples 5.1 and 5.2, presented in Fig. 1. From this figure, we can see that MPM
works better than Algorithm 1 only for small values of the parameter m. But Algorithm 1 works
better than MPM, with a big difference between their performance when we increase the value of
the parameter m.

Figure 1: Results of Algorithm 1 and Modified Projection Method Khanh & Vuong (2014), for Example 5.1
(in the left) and for Example 5.2 (in the right).

Example 5.3. In this example, we consider the HpHard (or Harker-Pang) problem Qu et al. (2024).
This problem is a well-known issue in nonnegative matrix factorization, appearing in several prac-
tical applications, for example, in image processing, computer vision, and signal processing. Let
F : Rn −→ Rn be an operator defined by

F (x) = Kx+ q, K = AA⊤ +B + C, q ∈ Rn, (31)

where A ∈ Rn×n is a matrix, B ∈ Rn×n is a skew-symmetric matrix (A and B are randomly
generated from a normal (Gaussian) distribution with mean equals 0 and scale equals 0.01) and
C ∈ Rn×n is a diagonal matrix with non-negative diagonal entries (randomly generated from the
continuous uniform distribution over the interval [0, 1)). Therefore, it follows that K is positive
semidefinite. The operator F is monotone and bounded in the unit ball with constant LF = ∥K∥2+
∥q∥2. For q = 0 ∈ Rn, the solution of problem equation 7, is x∗ = 0 ∈ Rn.

The results for Example 5.3, are presented in Fig. 2. From this figure, we can see that Algorithm 1
always works better than MPM for any m ≥ 1.

6 CONCLUSION

In this paper, we studied two classes of variational inequality problems. The first is classical con-
strained (i.e., without functional constraints) variational inequality and the second is the same prob-
lem with functional constrained (inequality type constraints). To solve such problems, we proposed
mirror descent-type methods with a weighting scheme for the generated points in each iteration of
the algorithms. For the second class of problems, we proposed a mirror descent method by switching
between adaptive and non-adaptive steps. We analyzed the proposed methods for the time-varying
step sizes and proved the optimal convergence rate of the proposed algorithm concerning the clas-
sical variational inequality problems with bounded and δ-monotone operators. We conducted some

9
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Figure 2: Results of Algorithm 1 and Modified Projection Method Khanh & Vuong (2014), for Example 5.3
with n = 100.

numerical experiments, which illustrate the advantages of the presented weighting scheme for some
examples of the classical variational inequality problem, with a comparison with the modified pro-
jection method. As a future work, many directions are connected with the problems under consider-
ation, such as the results for the Lipschitz monotone and strongly monotone operators, also for the
stochastic setting of the problem.
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the Russian Federation (Goszadaniye), project No. FSMG-2024-0011.
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A MISSED PROOFS IN SECTION 3

A.1 PROOF OF THEOREM 3.6

Let f̃(x) :=
〈
x, F (xk)

〉
+ 1

γk
Vψ(x, x

k). From Algorithm 1, we have xk+1 = argmin
x∈Q

f̃(x). By the

optimality condition, we get 〈
∇f̃(xk+1), x− xk+1

〉
≥ 0, ∀x ∈ Q.

Thus, 〈
γkF (x

k) +∇ψ(xk+1)−∇ψ(xk), x− xk+1
〉
≥ 0, ∀x ∈ Q.

i.e., 〈
γkF (x

k), xk+1 − x
〉
≤ −

〈
∇ψ(xk)−∇ψ(xk+1), x− xk+1

〉
, ∀x ∈ Q.

By Lemma 2.2, for any x ∈ Q, we have

−
〈
∇ψ(xk)−∇ψ(xk+1), x− xk+1

〉
= −

(
Vψ(x, x

k+1) + Vψ(x
k+1, xk)− Vψ(x, x

k)
)

= Vψ(x, x
k)− Vψ(x, x

k+1)− Vψ(x
k+1, xk).

Thus, we get〈
γkF (x

k), xk+1 − x
〉
≤ Vψ(x, x

k)− Vψ(x, x
k+1)− Vψ(x

k+1, xk), ∀x ∈ Q.

This means that for any x ∈ Q, we have

γk
〈
F (xk), xk − x

〉
≤ Vψ(x, x

k)− Vψ(x, x
k+1)− Vψ(x

k+1, xk) +
〈
γkF (x

k), xk − xk+1
〉
.

By the Fenchel-Young inequality equation 6, with λ = σ > 0, we find〈
γkF (x

k), xk − xk+1
〉
≤ γ2k

2σ
∥F (xk)∥2∗ +

σ

2
∥xk − xk+1∥2.

Therefore, for any x ∈ Q, we get

γk
〈
F (xk), xk − x

〉
≤ Vψ(x, x

k)− Vψ(x, x
k+1)− Vψ(x

k+1, xk) +
γ2k
2σ

∥F (xk)∥2∗

+
σ

2
∥xk − xk+1∥2.

But from equation 1, we have

Vψ(x
k+1, xk) ≥ σ

2
∥xk+1 − xk∥2.

Thus, for any x ∈ Q, we get the following inequality〈
F (xk), xk − x

〉
≤ 1

γk

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
+
γk
2σ

∥F (xk)∥2∗. (32)

Since F is δ-monotone operator, we get〈
F (x), xk − x

〉
− δ ≤

〈
F (xk), xk − x

〉
, ∀x ∈ Q.
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Therefore, for any x ∈ Q, we have〈
F (x), xk − x

〉
≤ 1

γk

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
+
γk
2σ

∥F (xk)∥2∗ + δ. (33)

By multiplying both sides of equation 33 by 1
γm
k

, and taking the sum from 1 to N , for any x ∈ Q,
we get

N∑
k=1

1

γmk

〈
F (x), xk − x

〉
≤

N∑
k=1

1

γm+1
k

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
+

1

2σ

N∑
k=1

∥F (xk)∥2∗
γm−1
k

+

N∑
k=1

δ

γmk
. (34)

But,
N∑
k=1

1

γmk

〈
F (x), xk − x

〉
=

(
N∑
k=1

γ−mk

)〈
F (x),

1∑N
k=1 γ

−m
k

N∑
k=1

γ−mk xk − x

〉

=

(
N∑
k=1

γ−mk

)
⟨F (x), x̂− x⟩ . (35)

For any x ∈ Q, we have
N∑
k=1

1

γm+1
k

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
=

1

γm+1
1

(
Vψ(x, x

1)− Vψ(x, x
2)
)
+

N−1∑
k=2

1

γm+1
k

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
+

1

γm+1
N

(
Vψ(x, x

N )− Vψ(x, x
N+1)

)
≤ 1

γm+1
1

Vψ(x, x
1) +

1

γm+1
N

Vψ(x, x
N ) +

N−1∑
k=2

1

γm+1
k

Vψ(x, x
k)− 1

γm+1
1

Vψ(x, x
2)

−
N−1∑
k=2

1

γm+1
k

Vψ(x, x
k+1)

=
1

γm+1
1

Vψ(x, x
1) +

N∑
k=2

1

γm+1
k

Vψ(x, x
k)−

N∑
k=2

1

γm+1
k−1

Vψ(x, x
k)

=
1

γm+1
1

Vψ(x, x
1) +

N∑
k=2

(
1

γm+1
k

− 1

γm+1
k−1

)
Vψ(x, x

k).

Due to equation 15, we find that Vψ(x, xk) ≤ Vψ(x, x
1), ∀x ∈ Q,∀k = 2, . . . , N . Hence we get

N∑
k=1

1

γm+1
k

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
≤ 1

γm+1
1

Vψ(x, x
1) + Vψ(x, x

1)

N∑
k=2

(
1

γm+1
k

− 1

γm+1
k−1

)

=
1

γm+1
1

Vψ(x, x
1) + Vψ(x, x

1)

(
− 1

γm+1
1

+
1

γm+1
N

)
=
Vψ(x, x

1)

γm+1
N

. (36)

Therefore, from equation 34, equation 35, and equation 36, we get the following(
N∑
k=1

γ−mk

)
max
x∈Q

⟨F (x), x̂− x⟩ ≤ R2

γm+1
N

+
1

2σ

N∑
k=1

∥F (xk)∥2∗
γm−1
k

+

N∑
k=1

δ

γmk
.
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By dividing by
∑N
k=1 γ

−m
k , we get the desired inequality

max
x∈Q

⟨F (x), x̂− x⟩ ≤ 1∑N
k=1 γ

−m
k

(
R2

γm+1
N

+
1

2σ

N∑
k=1

∥F (xk)∥2∗
γm−1
k

)
+ δ.

A.2 PROOF OF COROLLARY 3.7

By setting m = −1 in equation 16, we get the following inequality

Gap(x̃) ≤ 1∑N
k=1 γk

(
R2 +

1

2σ

N∑
k=1

γ2k∥F (xk)∥2∗

)
+ δ, (37)

where x̃ = 1∑N
k=1 γk

∑N
k=1 γkx

k.

Case 1 (non-adaptive rule). When γk =
√
2σ

LF

√
k
, k = 1, 2, . . . , N , and since ∥F (xk)∥∗ ≤ LF , then

by substitution in equation 37 we find

Gap(x̃) = max
x∈Q

⟨F (x), x̃− x⟩ ≤ LF√
2σ

·
R2 +

∑N
k=1

1
k∑N

k=1
1√
k

+ δ,

where x̃ = 1∑N
k=1

1√
k

∑N
k=1

1√
k
xk. But

N∑
k=1

1

k
≤ 1 + log(N), and

N∑
k=1

1√
k
≥ 2

√
N + 1− 2, ∀N ≥ 1.

Therefore,

Gap(x̃) ≤ LF√
2σ

· R
2 + 1 + log(N)

2
√
N + 1− 2

+ δ ≤ LF√
σ
· 1 +R2 + log(N)√

N
+ δ.

Where in the last inequality, we used the fact 2
√
2
(√
N + 1− 1

)
≥

√
N, ∀N ≥ 1.

Case 2 (adaptive rule). When γk =
√
2σ

∥F (xk)∥∗
√
k
, k = 1, 2, . . . , N , and since ∥F (xk)∥∗ ≤ LF ,

then by substitution in equation 37 we find

Gap(x̃) ≤ LF√
2σ

·
R2 +

∑N
k=1

1
k∑N

k=1
1√
k

+ δ ≤ LF√
σ
· 1 +R2 + log(N)√

N
+ δ,

where x̃ = 1∑N
k=1(∥F (xk)∥∗

√
k)

−1

∑N
k=1

(
∥F (xk)∥∗

√
k
)−1

xk.

A.3 PROOF OF COROLLARY 3.8

By setting m = 0 in equation 16, we get the following inequality

Gap(x) ≤ 1

N

(
R2

γN
+

1

2σ

N∑
k=1

γk∥F (xk)∥2∗

)
+ δ, (38)

where x = 1
N

∑N
k=1 x

k.

Case 1 (non-adaptive rule). When γk =
√
2σ

LF

√
k
, k = 1, 2, . . . , N , and since ∥F (xk)∥∗ ≤ LF , then

by substitution in equation 38 we find

Gap(x) ≤ 1

N

(
R2LF

√
N√

2σ
+

LF√
2σ

N∑
k=1

1√
k

)
+ δ.
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But
N∑
k=1

1√
k
≤ 2

√
N, ∀N ≥ 1.

Therefore,

Gap(x) ≤ 1

N
· LF√

2σ

(
R2

√
N + 2

√
N
)
+ δ =

LF
(
2 +R2

)
√
2σ

· 1√
N

+ δ.

Case 2 (adaptive rule). When γk =
√
2σ

∥F (xk)∥∗
√
k
, k = 1, 2, . . . , N , and since ∥F (xk)∥∗ ≤ LF ,

then by substitution in equation 38 we find

Gap(x) ≤ 1

N

(
R2

√
N∥F (xN )∥∗√

2σ
+

1

2σ

N∑
k=1

√
2σ√
k
∥F (xk)∥∗

)
+ δ

≤ 1

N

(
R2LF

√
N√

2σ
+

LF√
2σ

N∑
k=1

1√
k

)
+ δ

≤ 1

N
· LF√

2σ

(√
NR2 + 2

√
N
)
+ δ

=
LF (2 +R2)√

2σ
· 1√

N
+ δ.

A.4 PROOF OF COROLLARY 3.9

Let us see the non-adaptive rule (in a similar way we can consider the adaptive rule). When γk =√
2σ

LF

√
k
, k = 1, 2, . . . , N , and since ∥F (xk)∥∗ ≤ LF , then by substitution in equation 16 we find

Gap(x̂) ≤ LF√
2σ

· 1∑N
k=1

(√
k
)m

(
R2
(√

N
)m+1

+

N∑
k=1

(√
k
)m−1

)
+ δ.

But, for any m ≥ 1 and N ≥ 1,∫ N

0

(√
k
)m

dk ≤
N∑
k=1

(√
k
)m

=⇒
N∑
k=1

(√
k
)m

≥
2
(√

N
)m+2

m+ 2
,

and
N∑
k=1

(√
k
)m−1

≤ N
(√

N
)m−1

=
(√

N
)m+1

, ∀m ≥ 1, N ≥ 1.

Therefore,

Gap(x̂) ≤ LF√
2σ

· m+ 2

2
(√

N
)m+2

(
R2
(√

N
)m+1

+
(√

N
)m+1

)
+ δ

=
LF (m+ 2)(1 +R2)

2
√
2σ

· 1√
N

+ δ = O

(
1√
N

)
+ δ.

B MISSED PROOFS IN SECTION 4

B.1 PROOF OF THEOREM 4.2

Similar to what was done in the proof of Theorem 3.6, we find that for any k ∈ I and x ∈ Q (see
equation 32), 〈

F (xk), xk − x
〉
≤ 1

γFk

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
+
γFk
2σ

∥F (xk)∥2∗.

17



Published as a conference paper at MathAI 2025

By multiplying both sides of the previous inequality with 1
(γF

k )m
, and since F is δ-monotone, i.e.,〈

F (xk), xk − x
〉
≥
〈
F (x), xk − x

〉
− δ, ∀x ∈ Q,

we get (for any k ∈ I and x ∈ Q)
1

(γFk )
m

〈
F (x), xk − x

〉
≤ 1

(γFk )
m+1

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
+

∥F (xk)∥2∗
2σ(γFk )

m−1
+

δ

(γFk )
m
.

(39)

Also, for any k ∈ J and x ∈ Q, we have
g(xk)− g(x)

(γgk)
m

≤ 1

(γgk)
m+1

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
+

∥∇g(xk)∥2∗
2σ(γgk)

m−1
. (40)

By taking the summation, in each side of equation 39 and equation 40, over productive and non-
productive steps, with γk = γFk if k ∈ I and γk = γgk if k ∈ J , we get the following (for any
x ∈ Q) ∑

k∈I

(γFk )
−m⟨F (x), xk − x⟩+

∑
k∈J

(γgk)
−m(g(xk)− g(x))

≤
N∑
k=1

1

γm+1
k

(
(Vψ(x, x

k)− Vψ(x, x
k+1)

)
+

1

2σ

∑
k∈I

∥F (xk)∥2∗
(γFk )

m−1
+

1

2σ

∑
k∈J

∥∇g(xk)∥2∗
(γgk)

m−1

+
∑
k∈I

δ

(γFk )
m
. (41)

But for any x ∈ Q, we have∑
k∈I

(γFk )
−m 〈F (x), xk − x

〉
=

〈
F (x),

∑
k∈I

(γFk )
−mxk −

∑
k∈I

(γFk )
−mx

〉

=

(∑
k∈I

(γFk )
−m

)〈
F (x),

1∑
k∈I(γ

F
k )

−m

∑
k∈I

(γFk )
−mxk − x

〉

=

(∑
k∈I

(γFk )
−m

)
⟨F (x), x̂− x⟩ .

Thus, from the last inequality and equation 41, for any x ∈ Q, we get(∑
k∈I

(γFk )
−m

)
⟨F (x), x̂− x⟩ ≤

N∑
k=1

1

γm+1
k

(
(Vψ(x, x

k)− Vψ(x, x
k+1)

)
+

1

2σ

∑
k∈I

∥F (xk)∥2∗
(γFk )

m−1

+
1

2σ

∑
k∈J

∥∇g(xk)∥2∗
(γgk)

m−1
+ δ

∑
k∈I

(γFk )
−m

−
∑
k∈J

(γgk)
−m(g(xk)− g(x)). (42)

Since, for any k ∈ J , we have
g(xk)− g(x∗) ≥ g(xk) > ε > 0. (43)

Then by the convexity of the function g, for any x ∈ Q, we have

−
∑
k∈J

(γgk)
−m(g(xk)− g(x))

= −
∑
k∈J

(γgk)
−m(g(xk)− g(x∗)) +

∑
k∈J

(γgk)
−m(g(x)− g(x∗))

< −ε
∑
k∈J

(γgk)
−m +

∑
k∈J

(γgk)
−m ⟨∇g(x), x− x∗⟩

≤ −ε
∑
k∈J

(γgk)
−m +MgD

∑
k∈J

(γgk)
−m, (44)
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where in the last inequality, we used the Cauchy-Schwartz inequality and the fact that ∥∇g(x)∥∗ ≤
Mg, ∀x ∈ Q, and Q is bounded with a diameter D > 0.

For any x ∈ Q, we have (see equation 36)
N∑
k=1

1

γm+1
k

(
Vψ(x, x

k)− Vψ(x, x
k+1)

)
≤ Vψ(x, x

1)

γm+1
N

. (45)

Therefore, by combining equation 44 and equation 45 with equation 42, for any x ∈ Q, we get the
following(∑

k∈I

(γFk )
−m

)
⟨F (x), x̂− x⟩ < Vψ(x, x

1)

γm+1
N

+
1

2σ

∑
k∈I

∥F (xk)∥2∗
(γFk )

m−1
+

1

2σ

∑
k∈J

∥∇g(xk)∥2∗
(γgk)

m−1

+ δ
∑
k∈I

(γFk )
−m − (ε−MgD)

∑
k∈J

(γgk)
−m.

By dividing both sides of the last inequality by
∑
k∈I(γ

F
k )

−m ̸= 0, and taking into account that
maxx∈Q Vψ(x, x

1) ≤ R2, we get the desired inequality equation 26.

C ANALYSIS OF ALGORITHM 2 WITH TIME-VARYING STEP SIZE RULES

Let us take the following time-varying step size rules

γk =

γ
F
k :=

√
2σ

LF

√
k
, or γFk :=

√
2σ

∥F (xk)∥∗
√
k
; if k ∈ I,

γgk :=
√
2σ

Mg

√
k
, or γgk :=

√
2σ

∥∇g(xk)∥∗
√
k
; if k ∈ J,

(46)

and first, let us show for Algorithm 2, with equation 46) that |I| ≠ 0. For this, let us assume that
|I| = 0, therefore |J | = N , i.e., all steps are non-productive.

Let M := LF when we have a productive step and M :=Mg when we have a non-productive step.
From equation 43 and equation 46 (we will use the non-adaptive rules, and similarly, we can find
the same results by using the adaptive rules) we get

N∑
k=1

g(xk)− g(x∗)

γmk
>

N∑
k=1

ε

γmk
=

εMm(√
2σ
)m N∑

k=1

(√
k
)m

, (47)

and for all k ∈ J = {1, . . . , N}, we get
N∑
k=1

g(xk)− g(x∗)

γmk
≤ R2

γm+1
N

+
1

2σ

N∑
k=1

∥∇g(xk)∥2∗
γm−1
k

≤ Mm+1(√
2σ
)m+1

(
R2
(√

N
)m+1

+

N∑
k=1

(√
k
)m−1

)
.

But, it can be verified (numerically) that for a sufficiently big number of iterations N (dependently
on suitable values of the parameters R > 0,m ≥ −1,M > 0, ε > 0, σ > 0), the following
inequality holds

Mm+1(√
2σ
)m+1

(
R2
(√

N
)m+1

+

N∑
k=1

(√
k
)m−1

)
<

εMm(√
2σ
)m N∑

k=1

(√
k
)m

. (48)

Therefore, for a sufficiently big number N ≫ 1, we get
N∑
k=1

g(xk)− g(x∗)

γmk
<

εMm(√
2σ
)m N∑

k=1

(√
k
)m

.

So, we have a contradiction with equation 47. This means that |I| ≠ 0.
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Remark C.1. Note that the reverse inequality of equation 48, i.e.,

N∑
k=1

(√
k
)m

≤ M

ε
√
2σ

(
R2
(√

N
)m+1

+

N∑
k=1

(√
k
)m−1

)
,

for any m ≥ −1,M > 0, R > 0, σ > 0 and ε ≤ M√
2σ

, holds for at least N = 1. This means

that by choosing ε ≤ M√
2σ

(∀M >,σ > 0), by Algorithm 2 with equation 46, we have at least one
productive step for any m ≥ −1 and R > 0.

Now let us analyze the convergence of Algorithm 2, by taking the time-varying step size rules
equation 46.

Let M := max{LF ,Mg}. By using the non-adaptive rules from equation 46 (we also can conclude
the same results if we take the adaptive step size rules), and since ∥F (xk)∥∗ ≤ LF ≤ M and
∥∇g(xk)∥∗ ≤Mg ≤M , then for any m > 0, from Theorem 4.2, we have

Gap(x̂) = max
x∈Q

⟨F (x), x̂− x⟩

<

(√
2σ
)m

Mm
∑
k∈I

(√
k
)m
(
R2Mm+1

(√
N
)m+1

(√
2σ
)m+1 +

1

2σ

N∑
k=1

Mm+1
(√

k
)m−1

(√
2σ
)m−1

+MD
∑
k∈J

Mm
(√

k
)m

(√
2σ
)m

)
+ δ

=
M√
2σ

· 1∑
k∈I

(√
k
)m
(
R2
(√

N
)m+1

+

N∑
k=1

(√
k
)m−1

+
√
2σD

∑
k∈J

(√
k
)m)

+ δ

≤ M√
2σ

· 1∑
k∈I

(√
k
)m (R2

(√
N
)m+1

+N
(√

N
)m−1

+
√
2σD|J |

(√
N
)m)

+ δ

=
M(1 +R2)

(√
N
)m+1

+
√
2σMD|J |

(√
N
)m

√
2σ
∑
k∈I

(√
k
)m + δ.

Now, by setting

M(1 +R2)
(√

N
)m+1

+
√
2σMD|J |

(√
N
)m

√
2σ
∑
k∈I

(√
k
)m ≤ ε,

and since |I| ≤ N , we get

M(1 +R2)
(√

N
)m+1

+
√
2σMD|J |

(√
N
)m

√
2σN

(√
N
)m

≤
M(1 +R2)

(√
N
)m+1

+
√
2σMD|J |

(√
N
)m

√
2σ
∑
k∈I

(√
k
)m ≤ ε.

Thus,
M(1 +R2)√

2σ
√
N

+
MD|J |
N

≤ ε.

Hence, we can formulate the following result.
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Corollary C.2. Let F : Q −→ E∗ be a continuous, bounded, and δ-monotone operator. Let g(x) =
max1≤i≤p{gi(x)} be an Mg-Lipschitz convex function, where gi : Q −→ R, ∀i = 1, 2, . . . , p are
Mgi -Lipschitz, and Mg = max1≤i≤p{Mgi}. Then for problem, after N ≥ 1 iterations of Algorithm
2, such that

M(1 +R2)√
2σ

√
N

+
MD|J |
N

≤ ε, (49)

for any fixed m > 0, with step size rules given in equation 46, it satisfies
Gap(x̂) = max

x∈Q
⟨F (x), x̂− x⟩ < ε+ δ, and g(x̂) ≤ ε,

where x̂ = 1∑
k∈I(γ

f
k)

−m

∑
k∈I

(
γfk

)−m
xk.

Now, by setting m = 0 in equation 26, with x = 1
|I|
∑
k∈I x

k, we get

Gap(x) = max
x∈Q

⟨F (x), x− x⟩

<
1

|I|

(
R2

γN
+
∑
k∈I

∥F (xk)∥2∗
2σ

γFk +
∑
k∈J

∥∇g(xk)∥2∗
2σ

γgk − (ε−MgD)|J |

)
+ δ

≤ 1

|I|

(
MR2

√
N√

2σ
+

M√
2σ

∑
k∈I

1√
k
+

M√
2σ

∑
k∈J

1√
k
+MD|J |

)
+ δ

=
M

|I|
√
2σ

(
R2

√
N +

N∑
k=1

1√
k

)
+
MD|J |

|I|
+ δ

≤ M
√
N

|I|
√
2σ

(
2 +R2

)
+
MD|J |

|I|
+ δ.

Thus, by setting M
√
N

|I|
√
2σ

(
2 +R2

)
+ MD|J|

|I| ≤ ε and since |I| ≤ N , we get

M
(
2 +R2

)
√
2σ

√
N

+
MD|J |
N

≤ ε.

Hence, for m = 0, we can formulate the following result.
Corollary C.3. Let F : Q −→ E∗ be a continuous, bounded, and δ-monotone operator. Let g(x) =
max1≤i≤p{gi(x)} be an Mg-Lipschitz convex function, where gi : Q −→ R, ∀i = 1, 2, . . . , p are
Mgi -Lipschitz, and Mg = max1≤i≤p{Mgi}. Then, after N ≥ 1 iterations of Algorithm 2, such that

M
(
2 +R2

)
√
2σ

√
N

+
MD|J |
N

≤ ε,

with m = 0 and step size rules given in equation 46, it satisfies
Gap(x) = max

x∈Q
⟨F (x), x− x⟩ < ε+ δ, and g(x) ≤ ε,

where x = 1
|I|
∑
k∈I x

k.

Remark C.4. By setting m = −1 in equation 26, with x̃ = 1∑
k∈I

1√
k

∑
k∈I

1√
k
xk, we have

Gap(x̃) <
M√
2σ

· 1∑
k∈I

√
k
·

(
R2 +

N∑
k=1

1

k
+D

√
2σ
∑
k∈J

1√
k

)
+ δ

≤ M√
2σ

· 1

2
√
|I|+ 1− 2

(
R2 + 1 + log(N) +D

√
2σ
∑
k∈J

1√
k

)
+ δ

≤ M
√
σ
√
|I|

(
R2 + 1 + log(N) +D

√
2σ
∑
k∈J

1√
k

)
+ δ.
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Thus, after N ≥ 1 iterations of Algorithm 2 (with m = −1), such that

M
√
σ
√
|I|

(
R2 + 1 + log(N) +D

√
2σ
∑
k∈J

1√
k

)
≤ ε,

it satisfies,
Gap(x̃) = max

x∈Q
⟨F (x), x− x⟩ < ε+ δ, and g(x̃) ≤ ε.
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