
Linear Transformers are Versatile In-Context
Learners

Max Vladymyrov
Google Research
mxv@google.com

Johannes von Oswald
Google, Paradigms of Intelligence Team

jvoswald@google.com

Mark Sandler
Google Research

sandler@google.com

Rong Ge
Duke University

rongge@cs.duke.edu

Abstract

Recent research has demonstrated that transformers, particularly linear attention
models, implicitly execute gradient-descent-like algorithms on data provided in-
context during their forward inference step. However, their capability in handling
more complex problems remains unexplored. In this paper, we prove that each layer
of a linear transformer maintains a weight vector for an implicit linear regression
problem and can be interpreted as performing a variant of preconditioned gradient
descent. We also investigate the use of linear transformers in a challenging scenario
where the training data is corrupted with different levels of noise. Remarkably,
we demonstrate that for this problem linear transformers discover an intricate and
highly effective optimization algorithm, surpassing or matching in performance
many reasonable baselines. We analyze this algorithm and show that it is a novel
approach incorporating momentum and adaptive rescaling based on noise levels.
Our findings show that even linear transformers possess the surprising ability to
discover sophisticated optimization strategies.

1 Introduction

The transformer architecture (Vaswani et al., 2017) has revolutionized the field of machine learning,
driving breakthroughs across various domains and serving as a foundation for powerful models (Anil
et al., 2023; Achiam et al., 2023; Team et al., 2023; Jiang et al., 2023). However, despite their
widespread success, the mechanisms that drive their performance remain an active area of research.
A key component of their success is attributed to in-context learning (ICL, Brown et al., 2020) – an
emergent ability of transformers to make predictions based on information provided within the input
sequence itself, without explicit parameter updates.

Recently, several papers (Garg et al., 2022; Akyürek et al., 2022; von Oswald et al., 2023a) have
suggested that ICL might be partially explained by an implicit meta-optimization of the transformers
that happens on input context (aka mesa-optimization Hubinger et al., 2019). They have shown that
transformers with linear self-attention layers (aka linear transformers) trained on linear regression
tasks can internally implement gradient-based optimization.

Specifically, von Oswald et al. (2023a) demonstrated that linear transformers can execute iterations of
an algorithm similar to the gradient descent algorithm (which they call GD++), with each attention
layer representing one step of the algorithm. Later, Ahn et al. (2023); Zhang et al. (2023) further
characterized this behavior, showing that the learned solution is a form of preconditioned GD, and
this solution is optimal for one-layer linear transformers.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

In this paper, we continue to study linear transformers trained on linear regression problems. We
prove that each layer of every linear transformer maintains a weight vector for an underlying linear
regression problem. Under some restrictions, the algorithm it runs can be interpreted as a complex
variant of preconditioned gradient descent with momentum-like behaviors.

While maintaining a linear regression model (regardless of the data) might seem restrictive, we show
that linear transformers can discover powerful optimization algorithms. As a first example, we prove
that in case of GD++, the preconditioner results in a second order optimization algorithm.

Furthermore, we demonstrate that linear transformers can be trained to uncover even more powerful
and intricate algorithms. We modified the problem formulation to consider mixed linear regression
with varying noise levels1 (inspired by Bai et al., 2023). This is a harder and non-trivial problem with
no obvious closed-form solution, since it needs to account for various levels of noise in the input.

Our experiments with two different noise variance distributions (uniform and categorical) demonstrate
the remarkable flexibility of linear transformers. Training a linear transformer in these settings leads
to an algorithm that outperforms GD++ as well as various baselines derived from the exact closed-
form solution of the ridge regression. We discover that this result holds even when training a linear
transformer with diagonal weight matrices.

Through a detailed analysis, we reveal key distinctions from GD++, including momentum-like term
and adaptive rescaling based on the noise levels.

Our findings contribute to the growing body of research where novel, high-performing algorithms have
been directly discovered through the reverse-engineering of transformer weights. This work expands
our understanding of the implicit learning capabilities of attention-based models and highlights the
remarkable versatility of even simple linear transformers as in-context learners. We demonstrate that
transformers have the potential to discover effective algorithms that may advance the state-of-the-art
in optimization and machine learning in general.

2 Preliminaries

In this section we introduce notations for linear transformers, data, and type of problems we consider.

2.1 Linear transformers and in-context learning

Given input sequence e1, e2, ..., en ∈ Rd+1, a single head in a linear self-attention layer is usually
parameterized by four matrices, key WK , query WQ, value WV and projection WP . The output of
the non-causal layer at position i is ei + ∆ei where ∆ei is computed as

∆ei = WP

(∑n
j=1〈WQei,WKej〉WV ej

)
. (1)

Equivalently, one can use parameters P = WPWV and Q = W>KWQ, and the equation becomes

∆ei =
∑n
j=1(e>j Qei)Pej . (2)

Multiple heads (P1, Q1), (P2, Q2), ..., (Ph, Qh) simply sum their effects

∆ei =
∑H
k=1

∑n
j=1(e>j Qkei)Pkej . (3)

We define a linear transformer as a multi-layer neural network composed of L linear self-attention
layers parameterized by θ = {Qlk, P lk} for k = 1 . . . H, l = 1 . . . L. To isolate the core mechanisms,
we consider a simplified decoder-only architecture, excluding MLPs and LayerNorm components.
This architecture was also used in previous work (von Oswald et al., 2023a; Ahn et al., 2023).

We consider two versions of linear transformers: FULL with the transformer parameters represented
by full matrices and DIAG, where the parameters are restricted to diagonal matrices only.

Inspired by von Oswald et al. (2023a), in this paper we consider regression data as the token sequence.
Each token ei = (xi, yi) ∈ Rd+1 consists of a feature vector xi ∈ Rd and its corresponding output

1We consider a model where each sequence contains data with the same noise level, while different sequences
have different noise levels.

2

yi ∈ R. Additionally, we append a query token en+1 = (xt, 0) to the sequence, where xt ∈ Rd
represents test data. The goal of in-context learning is to predict yt for the test data xt. We constrain
the attention to only focus on the first n tokens of the sequence so that it ignores the query token.

We use (xli, y
l
i) to denote the i-th token in the transformer’s output at layer l. The initial layer is simply

the input: (x0i , y
0
i) = (xi, yi). For a model with parameters θ, we read out the prediction by taking the

negative2 of the last coordinate of the final token in the last layer as ŷθ({e1, ..., en}, en+1) = −yLn+1.

Let’s also define the following notation to be used throughout the paper

Σ =

n∑
i=1

xi(xi)
>; α =

n∑
i=1

yixi; λ =

n∑
i=1

(yi)
2

Σl =

n∑
i=1

xli(x
l
i)
>; αl =

n∑
i=1

ylix
l
i; λl =

n∑
i=1

(yli)
2

2.2 Noisy regression model

As a model problem, we consider data generated from a noisy linear regression model. For each input
sequence τ , we sample a ground-truth weight vector wτ ∼ N(0, I), and generate n data points as
xi ∼ N(0, I) and yi = 〈wτ , xi〉+ ξi, with noise ξi ∼ N(0, σ2

τ).

Note that each sequence can have different ground-truth weight vectors wτ , but every data point in
the sequence shares the same wτ and στ . The query is generated as xt ∼ N(0, I) and yt = 〈wτ , xt〉
(since the noise is independent, whether we include noise in yq will only be an additive constant to
the final objective).

We further define an ordinary least square (OLS) loss as

LOLS(w) =
∑n
i=1 (yi − 〈w, xi〉)2 . (4)

The OLS solution is w∗ := Σ−1α with residuals ri := yi − 〈w∗, xi〉.
In the presence of noise στ , w∗ in general is not equal to the ground truth wτ . For a known noise
level στ , the best estimator for wτ is provided by ridge regression:

LRR(w) =
∑n
i=1 (yi − 〈w, xi〉)2 + σ2

τ‖w‖2, (5)

with solution w∗σ2 :=
(
Σ + σ2

τI
)−1

α. Of course, in reality the variance of the noise is not known
and has to be estimated from the data.

2.3 Fixed vs. mixed noise variance problems

We consider two different problems within the noisy linear regression framework.
Fixed noise variance. In this scenario, the variance στ remains constant for all the training data.
Here, the in-context loss is:

L(θ) = E
wτ∼N(0,I)
xi∼N(0,I)

ξi∼N(0,σ2
τ)

[
(ŷθ({e1, ..., en}, en+1)− yt)2

]
, (6)

where ei = (xi, yi) and yi = 〈wτ , xi〉+ ξi. This problem was initially explored by Garg et al. (2022).
Later, von Oswald et al. (2023a) have demonstrated that a linear transformer (6) converges to a form
of a gradient descent solution, which they called GD++. We define this in details later.
Mixed noise variance. In this case, the noise variance στ is drawn from some fixed distribution
p(στ) for each sequence. The in-context learning loss becomes:

L(θ) = E
wτ∼N(0,I)
xi∼N(0,I)

ξi∼N(0,σ2
τ)

στ∼p(στ)

[
(ŷθ({e1, ..., en}, en+1)− yt)2

]
. (7)

2We set the actual prediction to −yln+1, similar to von Oswald et al. (2023a), because it’s easier for linear
transformers to predict −yt.

3

In other words, each training sequence τ has a fixed noise level στ , but different training sequences
have different noise levels sampled from a specified distribution p(στ). This scenario adds complexity
because the model must predict wτ for changing noise distribution, and the optimal solution likely
would involve some sort of noise estimation. We have found that empirically, GD++ fails to model
this noise variance and instead converges to a solution which can be interpreted as a single noise
variance estimate across all input data.

3 Related work

In-context Learning as Gradient Descent Our work builds on research that frames in-context
learning as (variants of) gradient descent (Akyürek et al., 2022; von Oswald et al., 2023a). For 1-layer
linear transformer, several works Zhang et al. (2023); Mahankali et al. (2023); Ahn et al. (2023)
characterized the optimal parameters and training dynamics. More recent works extended the ideas
to auto-regressive models (Li et al., 2023; von Oswald et al., 2023b) and nonlinear models (Cheng
et al., 2023). Fu et al. (2023) noticed that transformers perform similarly to second-order Newton
methods on linear data, for which we give a plausible explanation in Theorem 5.1.
In-context Learning in LLMs There are also many works that study how in-context learning
works in pre-trained LLMs (Kossen et al., 2023; Wei et al., 2023; Hendel et al., 2023; Shen et al.,
2023). Due to the complexity of such models, the exact mechanism for in-context learning is still a
major open problem. Several works (Olsson et al., 2022; Chan et al., 2022; Akyürek et al., 2024)
identified induction heads as a crucial mechanism for simple in-context learning tasks, such as
copying, token translation and pattern matching.
Other theories for training transformers Other than the setting of linear models, several other
works (Garg et al., 2022; Tarzanagh et al., 2023; Li et al., 2023; Huang et al., 2023; Tian et al.,
2023a,b) considered optimization of transformers under different data and model assumptions. Wen
et al. (2023) showed that it can be difficult to interpret the “algorithm” performed by transformers
without very strong restrictions.
Mixed Linear Models Several works observed that transformers can achieve good performance
on a mixture of linear models (Bai et al., 2023; Pathak et al., 2023; Yadlowsky et al., 2023). While
these works show that transformers can implement many variants of model-selection techniques, our
result shows that linear transformers solve such problems by discovering interesting optimization
algorithm with many hyperparameters tuned during the training process. Such a strategy is quite
different from traditional ways of doing model selection. Transformers are also known to be able to
implement strong algorithms in many different setups (Guo et al., 2023; Giannou et al., 2023).
Effectiveness of linear and kernel-like transformers A main constraint on transformer architec-
ture is that it takes O(N2) time for a sequence of length N , while for a linear transformer this can
be improved to O(N). Mirchandani et al. (2023) showed that even linear transformers are quite
powerful for many tasks. Other works (Katharopoulos et al., 2020; Wang et al., 2020; Schlag et al.,
2021; Choromanski et al., 2020) uses ideas similar to kernel/random features to improve the running
time to almost linear while not losing much performance.

4 Linear transformers maintain linear regression model at every layer

While large, nonlinear transformers can model complex relationship, we show that linear transformers
are restricted to maintaining a linear regression model based on the input, in the sense that the l-th
layer output is always a linear function of the input with latent (and possibly nonlinear) coefficients.

4

Theorem 4.1. Suppose the output of a linear transformer at l-th layer is
(xl1, y

l
1), (xl2, y

l
2), ..., (xln, y

l
n), (xlt, y

l
t), then there exists matrices M l, vectors ul, wl and scalars al

such that

xl+1
i = M lxi + yiu

l, xl+1
t = M lxt,

yl+1
i = alyi − 〈wl, xi〉, yl+1

t = −〈wl, xt〉.

Note that M l, ul, wl and al are not linear in the input, but this still poses restrictions on what the
linear transformers can do. For example we show that it cannot represent a quadratic function:
Theorem 4.2. Suppose the input to a linear transformer is (x1, y1), (x2, y2), ..., (xn, yn) where
xi ∼ N(0, I) and yi = w>xi, let the l-th layer output be (xl1, y

l
1), (xl2, y

l
2), ..., (xln, y

l
n) and let

yl = (yl1, ..., y
l
n) and y∗ = (x1(1)2, x2(1)2, ..., xn(1)2) (here xi(1) is just the first coordinate of xi),

then when n� d with high probability the cosine similarity of y∗ and yl is at most 0.1.

Theorem 4.1 implies that the output of linear transformer can always be explained as linear combina-
tions of input with latent weights al and wl. The matrices M l, vectors ul, wl and numbers al are not
linear and can in fact be quite complex, which we characterize below:
Lemma 4.3. In the setup of Theorem 4.1, if we let(

Al bl

(cl)> dl

)
:=

h∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

 ,
then one can recursively compute matrices M l, vectors ul, wl and numbers al for every layer using

M l+1 = (I +Al)M l + bl(wl)>

ul+1 = (I +Al)ul + albl

al+1 = (1 + dl)al + 〈cl, ul〉
wl+1 = (1 + dl)wl − (M l)>cl,

with the init. condition a0 = 1, w0 = 0,M0 = I, u0 = 0.

The updates to the parameters are complicated and nonlinear, allowing linear transformers to imple-
ment powerful algorithms, as we will later see in Section 5. In fact, even with diagonal P and Q,
they remain flexible. The updates in this case can be further simplified to a more familiar form:
Lemma 4.4. In the setup of Theorem 4.1 with diagonal parameters, ul, wl are updated as

ul+1 = (I − Λl)ul + ΓlΣ
(
alw∗ − wl

)
;

wl+1 = (1 + sl)wl −ΠlΣ(alw∗ − wl)− Φlul.

Here Λl,Γl, sl,Πl,Φl are matrices and numbers that depend on M l, ul, al, wl in Lemma 4.3.

Note that Σ
(
alw∗ − wl

)
is (proportional to) the gradient of a linear model f(wl) =

∑n
i=1(alyi −

〈wl, xi〉)2. This makes the updates similar to a gradient descent with momentum:

ul+1 = (1− β)ul +∇f(wl);wl+1 = wl − ηul.
Of course, the formula in Lemma 4.4 is still much more complicated with matrices in places of β and
η, and also including a gradient term for the update of w.

5 Power of diagonal attention matrices

Although linear transformers are constrained, they can solve complex in-context learning problems.
Empirically, we have found that they are able to very accurately solve linear regression with mixed
noise variance (7), with final learned weights that are very diagonal heavy with some low-rank
component (see Fig. 4). Surprisingly, the final loss remains remarkably consistent even when their Q
and P matrices (3) are diagonal. Here we will analyze this special case and explain its effectiveness.

5

Since the elements of x are permutation invariant, a diagonal parameterization reduces each attention
heads to just four parameters:

P lk =

(
plx,kI 0

0 ply,k

)
; Qlk =

(
qlx,kI 0

0 qly,k

)
. (8)

It would be useful to further reparametrize the linear transformer (3) using:

ωlxx =
∑H
k=1 p

l
x,kq

l
x,k, ωlxy =

∑H
k=1 p

l
x,kq

l
y,k,

ωlyx =
∑H
k=1 p

l
y,kq

l
x,k, ωlyy =

∑H
k=1 p

l
y,kq

l
y,k.

(9)

This leads to the following diagonal layer updates:

xl+1
i = xli + ωlxxΣlxli + wlxyy

l
iα
l

xl+1
t = xlt + ωlxxΣlxlt + wlxyy

l
tα
l

yl+1
i = yli + ωlyx〈αl, xli〉+ ωlyyy

l
iλ
l,

yl+1
t = ylt + ωlyx〈αl, xlt〉+ ωlyyy

l
tλ
l.

(10)

Four variables ωlxx, ωlxy , ωlyx, ωlyy represent information flow between the data and the labels across
layers. For instance, the term controlled by ωlxx measures information flow from xl to xl+1, ωlyx
measures the flow from xl to yl+1 and so forth. Since the model can always be captured by these 4
variables, having many heads does not significantly increase its representation power. When there is
only one head the equation ωlxxω

l
yy = ωlxyω

l
yx is always true, while models with more than one head

do not have this limitation. However empirically even models with one head is quite powerful.
5.1 GD++ and least squares solver
GD++, introduced in von Oswald et al. (2023a), represents a linear transformer that is trained on a
fixed noise variance problem (6). It is a variant of a diagonal linear transformer, with all the heads
satisfying qly,k = 0. Dynamics are influenced only by ωlxx and ωlyx, leading to simpler updates:

xl+1
i =

(
I + ωlxxΣl

)
xli

yl+1
i = yli + ωlyx〈αl, xli〉.

(11)

The update on x acts as preconditioning and the update on y performs gradient descent on the data.

While existing analysis by Ahn et al. (2023) has not yielded fast convergence rates for GD++, we
show here that it is actually a second-order optimization algorithm for the least squares problem (4):
Theorem 5.1. Given (x1, y1), ..., (xn, yn), (xt, 0) where Σ has eigenvalues in the range [ν, µ] with
a condition number κ = ν/µ. Let w∗ be the optimal solution to least squares problem (4), then there
exists hyperparameters for GD++ algorithm that outputs ŷ with accuracy |ŷ−〈xt, w∗〉| ≤ ε‖xt‖‖w∗‖
in l = O(log κ+log log 1/ε) steps. In particular that implies there exists an l-layer linear transformer
that can solve this task.

The convergence rate of O(log log 1/ε) is typically achieved only by second-order algorithms such
as Newton’s method.
5.2 Understanding ωyy: adaptive rescaling

If a layer only has ωlyy 6= 0, it has a rescaling effect. The amount of scaling is related to the amount
of noise added in a model selection setting. The update rule for this layer is:

yl+1
i =

(
1 + ωlyyλ

l
)
yli.

This rescales every y by a factor that depends on λl. When ωlyy < 0, this shrinks of the output based
on the norm of y in the previous layer. This is useful for the mixed noise variance problem, as ridge
regression solution scales the least squares solution by a factor that depends on the noise level.

Specifically, assuming Σ ≈ E[Σ] = nI , the ridge regression solution becomes w∗σ2 ≈ n
n+σ2w

∗,
which is exactly a scaled version of the OLS solution. Further, when noise is larger, the scaled factor
is smaller, which agrees with the behavior of a negative ωyy .

We can show that using adaptive scaling ωyy even a 2-layer linear transformer can be enough to solve
a simple example of categorical mixed noise variance problem στ ∈ {σ1, σ2} and n→∞:

6

10−10

10−5

100

A
dj

. e
va

l l
os

s

σmax = 0

10−2

10−1

100
σmax = 1

10−2

10−1

100
σmax = 2

10−1

100
σmax = 3

1 3 5 7
Number of layers

10−1

100

A
dj

. e
va

l l
os

s

σmax = 4

1 3 5 7
Number of layers

10−1

100 σmax = 5

1 3 5 7
Number of layers

10−1

σmax = 6

1 3 5 7
Number of layers

10−1

σmax = 7

GD++ Diag Full ConstRR AdaRR TunedRR

Figure 1: In-context learning performance for noisy linear regression problem across models with
different number of layers and σmax for στ ∼ U(0, σmax). Each marker corresponds to a separately
trained model with a given number of layers. Models with diagonal attention weights (DIAG) match
those with full attention weights (FULL). Models specialized on a fixed noise (GD++) perform poorly,
similar to a Ridge Regression solution with a constant noise (CONSTRR). Among the baselines, only
tuned exact Ridge Regression solution (TUNEDRR) is comparable with linear transformers.

Theorem 5.2. Suppose the input to the transformer is (x1, y1), (x2, y2), ..., (xn, yn), (xq, 0), where
xi ∼ N(0, 1

nI), yi = w>xi + ξi. Here ξi ∼ N(0, σ2) is the noise whose noise level σ can take
one of two values: σ1 or σ2. Then as n goes to +∞, there exists a set of parameters for two-layer
linear transformers such that the implicit w2 of the linear transformer converges to the optimal ridge
regression results (and the output of the linear transformer is −〈w2, xq〉). Further, the first layer only
has ωyx being nonzero and the second layer only has ωyy being nonzero.

5.3 Understanding ωxy: adapting step-sizes
The final term in the diagonal model, ωxy, has a more complicated effect. Since it changes only the
x-coordinates, it does not have an immediate effect on y. To understand how it influences the y we
consider a simplified two-step process, where the first step only has ωxy 6= 0 and the second step
only has ωyx 6= 0 (so the second step is just doing one step of gradient descent). In this case, the first
layer will update the xi’s as:

x1i = xi + yiωxy

n∑
j=1

yjxj

= xi + ωxyyi

n∑
j=1

(〈w∗, xj〉+ rj)xj

= xi + ωxyyiΣw
∗

= xi + ωxy(〈w∗, xi〉+ ri)Σw
∗

= (I + ωxyΣw∗(w∗)>)xi + ωxyriΣw
∗.

There are two effects of the ωxy term, one is a multiplicative effect on xi, and the other is an additive
term that makes x-output related to the residual ri. The multiplicative step in xi has an unknown
preconditioning effect. For simplicity we assume the multiplicative term is small, that is:

x1i ≈ xi + ωxyriΣw
∗; x1t ≈ xt.

The first layer does not change y, so y1t = yt and y1i = yi. For this set of xi, we can write down the
output on y in the second layer as

y2t = yt + ωyx

n∑
i=1

yi(x
1
i)
>xt

≈ yt + ωyx[

n∑
i=1

yixi + ωxy

n∑
i=1

yiriΣw
∗]xt

= yt + ωyx(1 + ωxy

n∑
i=1

r2i)(Σw
∗)>xt.

7

0.0 0.5 1.0
0.000

0.005

0.010

A
dj

. e
va

l l
os

s σmax = 0

0 1 2
0.00

0.01

σmax = 1

0 1 2 3
0.00

0.05

σmax = 2

0 1 2 3 4
0.00

0.05

0.10
σmax = 3

0 1 2 3 4 5
Variance σ

0.0

0.1

A
dj

. e
va

l l
os

s σmax = 4

0 1 2 3 4 5 6
Variance σ

0.0

0.1

σmax = 5

0 1 2 3 4 5 6 7
Variance σ

0.0

0.1

σmax = 6

0 1 2 3 4 5 6 7 8
Variance σ

0.0

0.1

0.2
σmax = 7

0 1 2 3 4 5 6
Variance σ

0.00
0.05
0.10
0.15
0.20

A
dj

. e
va

l l
os

s 2 layers

0 1 2 3 4 5 6
Variance σ

3 layers

0 1 2 3 4 5 6
Variance σ

4 layers

0 1 2 3 4 5 6
Variance σ

5 layers

0 1 2 3 4 5 6
Variance σ

6 layers

0 1 2 3 4 5 6
Variance σ

7 layers

GD++ Diag Full ConstRR AdaRR TunedRR

Figure 2: Per-variance profile of models behavior for uniform noise variance στ ∼ U(0, σmax). Top
two rows: 7-layer models with varying σmax. Bottom row: models with varying numbers of layers,
fixed σmax = 5. In-distribution noise is shaded gray.

Here we used the properties of residual ri (in particular
∑
i yixi = Σw∗, and

∑
i yiri =

∑
i r

2
i).

Note that (Σw∗)>xt is basically what a gradient descent step on the original input should do.
Therefore effectively, the two-layer network is doing gradient descent, but the step size is the product
of −ωyx and (1 + ωxy

∑
i r

2
i). The factor (1 + ωxy

∑
i r

2
i) depends on the level of noise, and when

ωxy, ωyx < 0, the effective step size is smaller when there is more noise. This is especially helpful in
the model selection problem, because intuitively one would like to perform early-stopping (small
step sizes) when the noise is high.

6 Experiments

In this section, we investigate the training dynamics of linear transformers when trained with a mixed
noise variance problem (7). We evaluate three types of single-head linear transformer models:

• FULL. Trains full parameter matrices.
• DIAG. Trains diagonal parameter matrices (10).
• GD++. An even more restricted diagonal variant defined in (11).

For each experiment, we train each linear transformer modifications with a varying number of layers
(1 to 7) using using Adam optimizer for 200 000 iterations with a learning rate of 0.0001 and a batch
size of 2 048. In some cases, especially for a large number of layers, we had to adjust the learning rate
to prevent stability issues. We report the best result out of 5 runs with different training seeds. We
used N = 20 in-context examples in D = 10 dimensions. We evaluated the algorithm using 100 000
novel sequences. All the experiments were done on a single H100 GPU with 80GB of VRAM. It took
on average 4–12 hours to train a single algorithm, however experimenting with different weight decay
parameters, better optimizer and learning rate schedule will likely reduce this number dramatically.

We use adjusted evaluation loss as our main performance metric. It is calculated by subtracting
the oracle loss from the predictor’s loss. The oracle loss is the closed-form solution of the ridge
regression loss (5), assuming the noise variance στ is known. The adjusted evaluation loss allows for
direct model performance comparison across different noise variances. This is important because
higher noise significantly degrades the model prediction. Our adjustment does not affect the model’s
optimization process, since it only modifies the loss by an additive constant.

Baseline estimates. We evaluated the linear transformer against a closed-form solution to the ridge
regression problem (5). We estimated the noise variance στ using the following methods:

• Constant Ridge Regression (CONSTRR). The noise variance is estimated using a single
scalar value for all the sequences, tuned separately for each mixed variance problem.

8

στ ∈ {1, 3} στ ∈ {1, 3, 5}

1 3 5 7
Number of layers

10−2

10−1

100

A
dj

. e
va

l l
os

s

0 1 2 3 4 5 6
Noise variance

0.0

0.1

0.2

A
dj

. e
va

l l
os

s

1 3 5 7
Number of layers

10−2

10−1

100

A
dj

. e
va

l l
os

s

0 1 2 3 4 5 6
Noise variance

0.0

0.1

0.2

A
dj

. e
va

l l
os

s

σ
τ
∈
{1
,3
}

0.0

0.1

0.2

A
dj

. e
va

l l
os

s 2 layers 3 layers 4 layers 5 layers 6 layers 7 layers

σ
τ
∈
{1
,3
,5
}

0 1 2 3 4 5 6
Variance σ

0.0

0.1

0.2

A
dj

. e
va

l l
os

s

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

0 1 2 3 4 5 6
Variance σ

GD++ Diag Full ConstRR AdaRR TunedRR

Figure 3: In-context learning performance for noisy linear regression across models with varying
number of layers for conditional noise variance στ ∈ {1, 3} and στ ∈ {1, 3, 5}. Top: loss for models
with various number of layers and per-variance profile for models with 7 layers. Bottom: Per-variance
profile of the model across different numbers of layers. In-distribution noise is shaded gray.

• Adaptive Ridge Regression (ADARR). Estimate the noise variance via unbiased estimator
(Cherkassky & Ma, 2003) σ2

est = 1
n−d

∑n
j=1(yj − ŷj)2, where ŷj represents the solution to

the ordinary least squares (4), found in a closed-form.
• Tuned Adaptive Ridge Regression (TUNEDRR). Same as above, but after the noise is

estimated, we tuned two additional parameters to minimize the evaluation loss: (1) a max.
threshold value for the estimated variance, (2) a multiplicative adjustment to the noise
estimator. These values are tuned separately for each problem.

Notice that all the baselines above are based on ridge regression, which is a closed-form, non-iterative
solution. Thus, they have an algorithmic advantage over linear transformers that do not have access
to matrix inversion. These baselines help us gauge the best possible performance, establishing an
upper bound rather than a strictly equivalent comparison.

A more faithful comparison to our method would be an iterative version of the ADARR that does not
use matrix inversion. Instead, we can use gradient descent to estimate the noise and the solution to
the ridge regression. However, in practice, this gradient descent estimator converges to ADARR only
after ≈ 100 iterations. In contrast, linear transformers typically converge in fewer than 10 layers.

We consider two choices for the distribution of στ :
• Uniform. στ ∼ U(0, σmax) drawn from a uniform distribution bounded by σmax. We tried

multiple scenarios with σmax ranging from 0 to 7.
• Categorical. στ ∈ S chosen from a discrete set S. We tested S = {1, 3} and S = {1, 3, 5}.

Our approach generalizes the problem studied by Bai et al. (2023), who considered only categorical
variance selection and show experiments only with two στ values.
Uniform noise variance. For the uniform noise variance, Fig. 1 shows that FULL and DIAG achieve
comparable performance across different numbers of layers and different σmax. On the other hand,
GD++ converges to a higher value, closely approaching the performance of the CONSTRR baseline.

As σmax grows, linear transformers show a clear advantage over the baselines. With 4 layers, they
outperform the closed-form solution ADARR for σmax = 4 and larger. Models with 5 or more layers
match or exceed the performance of TUNEDRR.

The top of Fig. 2 offers a detailed perspective on performance of 7-layer models and the baselines.
Here, we computed per-variance profiles across noise variance range from 0 to σmax + 1. We can
see that poor performance of GD++ comes from its inability to estimate well across the full noise
variance range. Its performance closely mirrors to CONSTRR, suggesting that GD++ under the hood
might also be estimating a single constant variance for all the data.

ADARR perfectly estimates problems with no noise, but struggles more as noise variance increases.
TUNEDRR slightly improves estimation by incorporating σmax into its tunable parameters, yet its

9

Figure 4: Weights for 4 layer linear transformer with FULL parametrization trained with categorical
noise στ ∈ {1, 3}. Top: weights for Ql matrix, bottom: weights for P l matrix.

prediction suffers in the mid-range. FULL and DIAG demonstrate comparable performance across all
noise variances. While more research is needed to definitively confirm or deny their equivalence, we
believe that these models are actually not identical despite their similar performance.

At the bottom of Fig. 2 we set the noise variance to σmax = 5 and display a per-variance profile for
models with varying layers. Two-layer models for FULL and DIAG behave akin to GD++, modeling
only a single noise variance in the middle. However, the results quickly improve across the entire
noise spectrum for 3 or more layers. In contrast, GD++ quickly converges to a suboptimal solution.

Categorical noise variance. Fig. 3 shows a notable difference between DIAG and FULL models
for categorical noise variance στ ∈ {1, 3}. This could stem from a bad local minima, or suggest
a fundamental difference between the models for this problem. Interestingly, from per-variance
profiling we see that DIAG extrapolates better for variances not used for training, while FULL, despite
its lower in-distribution error, performs worse on unseen variances. Fig. 4 shows learned weights
of the 4 layer linear transformer with FULL parametrization. The weights are very diagonal heavy,
potentially with some low-rank component.

For στ ∈ {1, 3, 5}, examining the per-variance profile at the bottom of Fig. 3 reveals differences
in their behaviors. FULL exhibits a more complex per-variance profile with more fluctuations than
the diagonal model, suggesting greater representational capacity. Surprisingly, it did not translate to
better loss results compared to DIAG.

For easy comparison, we compile the results of all methods and baselines in Table 1 in the Appendix.

7 Conclusions

Our research reveals the surprising ability of linear transformers to tackle challenging in-context
learning problems. We show that each layer maintains an implicit linear regression model, akin to a
complex variant of preconditioned gradient descent with momentum-like behavior.

Remarkably, when trained on noisy linear regression problems with unknown noise variance, linear
transformers not only outperform standard baselines but also uncover a sophisticated optimization
algorithm that incorporates noise-aware step-size adjustments and rescaling. This discovery highlights
the potential of linear transformers to automatically discover novel optimization algorithms when
presented with the right problems, opening exciting avenues for future research, including automated
algorithm discovery using transformers and generalization to other problem domains.

While our findings demonstrate the impressive capabilities of linear transformers in learning optimiza-
tion algorithms, we acknowledge limitations in our work. These include the focus on simplified linear
models, analysis of primarily diagonal attention matrices, and the need for further exploration into the
optimality of discovered algorithms, generalization to complex function classes, scalability with larger
datasets, and applicability to more complex transformer architectures. We believe these limitations
present valuable directions for future research and emphasize the need for a deeper understanding of
the implicit learning mechanisms within transformer architectures.

10

8 Acknowledgements

The authors would like to thank Nolan Miller and Andrey Zhmoginov for their valuable suggestions
and feedback throughout the development of this project. Part of this work was done while Rong Ge
was visiting Google Research. Rong Ge’s research is supported in part by NSF Award DMS-2031849
and CCF-1845171 (CAREER).

References
Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,

Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Kwangjun Ahn, Xiang Cheng, Hadi Daneshmand, and Suvrit Sra. Transformers learn to implement
preconditioned gradient descent for in-context learning. arXiv preprint arXiv:2306.00297, 2023.

Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning algo-
rithm is in-context learning? investigations with linear models. arXiv preprint arXiv:2211.15661,
2022.

Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. In-Context language learning: Architec-
tures and algorithms. arXiv preprint arXiv:2401.12973, 2024.

Rohan Anil, Andrew M Dai, Orhan Firat, Melvin Johnson, Dmitry Lepikhin, Alexandre Passos,
Siamak Shakeri, Emanuel Taropa, Paige Bailey, Zhifeng Chen, et al. Palm 2 technical report. arXiv
preprint arXiv:2305.10403, 2023.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as statisticians:
Provable in-context learning with in-context algorithm selection. arXiv preprint arXiv:2306.04637,
2023.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learning
in transformers. Advances in Neural Information Processing Systems, 35:18878–18891, 2022.

Xiang Cheng, Yuxin Chen, and Suvrit Sra. Transformers implement functional gradient descent to
learn non-linear functions in context. arXiv preprint arXiv:2312.06528, 2023.

Vladimir Cherkassky and Yunqian Ma. Comparison of model selection for regression. Neural
computation, 15(7):1691–1714, 2003.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, et al. Rethinking attention
with performers. arXiv preprint arXiv:2009.14794, 2020.

Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization
methods for in-context learning: A study with linear models. arXiv preprint arXiv:2310.17086,
2023.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in Neural Information Processing
Systems, 35:30583–30598, 2022.

Angeliki Giannou, Shashank Rajput, Jy-yong Sohn, Kangwook Lee, Jason D Lee, and Dimitris Pa-
pailiopoulos. Looped transformers as programmable computers. arXiv preprint arXiv:2301.13196,
2023.

Tianyu Guo, Wei Hu, Song Mei, Huan Wang, Caiming Xiong, Silvio Savarese, and Yu Bai. How do
transformers learn in-context beyond simple functions? a case study on learning with representa-
tions. arXiv preprint arXiv:2310.10616, 2023.

11

Roee Hendel, Mor Geva, and Amir Globerson. In-context learning creates task vectors. arXiv preprint
arXiv:2310.15916, 2023.

Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. arXiv preprint
arXiv:2310.05249, 2023.

Evan Hubinger, Chris van Merwijk, Vladimir Mikulik, Joar Skalse, and Scott Garrabrant. Risks from
learned optimization in advanced machine learning systems. arXiv preprint arXiv:1906.01820,
2019.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Angelos Katharopoulos, Apoorv Vyas, Nikolaos Pappas, and François Fleuret. Transformers are rnns:
Fast autoregressive transformers with linear attention. In International conference on machine
learning, pp. 5156–5165. PMLR, 2020.

Jannik Kossen, Tom Rainforth, and Yarin Gal. In-context learning in large language models learns
label relationships but is not conventional learning. arXiv preprint arXiv:2307.12375, 2023.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Arvind Mahankali, Tatsunori B Hashimoto, and Tengyu Ma. One step of gradient descent is
provably the optimal in-context learner with one layer of linear self-attention. arXiv preprint
arXiv:2307.03576, 2023.

Suvir Mirchandani, Fei Xia, Pete Florence, Brian Ichter, Danny Driess, Montserrat Gonzalez Arenas,
Kanishka Rao, Dorsa Sadigh, and Andy Zeng. Large language models as general pattern machines.
arXiv preprint arXiv:2307.04721, 2023.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction heads.
arXiv preprint arXiv:2209.11895, 2022.

Reese Pathak, Rajat Sen, Weihao Kong, and Abhimanyu Das. Transformers can optimally learn
regression mixture models. arXiv preprint arXiv:2311.08362, 2023.

Imanol Schlag, Kazuki Irie, and Jürgen Schmidhuber. Linear transformers are secretly fast weight
programmers. In International Conference on Machine Learning, pp. 9355–9366. PMLR, 2021.

Lingfeng Shen, Aayush Mishra, and Daniel Khashabi. Do pretrained transformers really learn
in-context by gradient descent? arXiv preprint arXiv:2310.08540, 2023.

Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token
selection in attention mechanism. In Thirty-seventh Conference on Neural Information Processing
Systems, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding training
dynamics and token composition in 1-layer transformer. arXiv preprint arXiv:2305.16380, 2023a.

Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demystifying
multilayer transformers via joint dynamics of mlp and attention. In NeurIPS 2023 Workshop on
Mathematics of Modern Machine Learning, 2023b.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017.

12

Johannes von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordvintsev,
Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient descent. In
International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023a.

Johannes von Oswald, Eyvind Niklasson, Maximilian Schlegel, Seijin Kobayashi, Nicolas Zucchet,
Nino Scherrer, Nolan Miller, Mark Sandler, Max Vladymyrov, Razvan Pascanu, et al. Uncovering
mesa-optimization algorithms in transformers. arXiv preprint arXiv:2309.05858, 2023b.

Sinong Wang, Belinda Z Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention with
linear complexity. arXiv preprint arXiv:2006.04768, 2020.

Jerry Wei, Jason Wei, Yi Tay, Dustin Tran, Albert Webson, Yifeng Lu, Xinyun Chen, Hanxiao Liu,
Da Huang, Denny Zhou, et al. Larger language models do in-context learning differently. arXiv
preprint arXiv:2303.03846, 2023.

Kaiyue Wen, Yuchen Li, Bingbin Liu, and Andrej Risteski. Transformers are uninterpretable with
myopic methods: a case study with bounded dyck grammars. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023.

Steve Yadlowsky, Lyric Doshi, and Nilesh Tripuraneni. Pretraining data mixtures enable narrow
model selection capabilities in transformer models. arXiv preprint arXiv:2311.00871, 2023.

Ruiqi Zhang, Spencer Frei, and Peter L Bartlett. Trained transformers learn linear models in-context.
arXiv preprint arXiv:2306.09927, 2023.

13

A Proofs from Sections 4 and 5

A.1 Proof of Theorem 4.1

We first give the proof for Theorem 4.1. In the process we will also prove Lemma 4.3, as Theorem 4.1
follows immediately from an induction based on the lemma.

Proof. We do this by induction. At l = 0, it’s easy to check that we can set a(0) = 1, w(0) =
0,M (0) = I, u(0) = 0.

Suppose this is true for some layer l, if the weights of layer l are (P l1, Q
l
1), ..., (P lk, Q

l
k) for k heads,

at output of layer l + 1 we have:(
xl+1
i

yl+1
i

)
=

(
xli
yli

)
+

p∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

(xli
yli

)
. (12)

Note that the same equation is true for i = n+ 1 just by letting yn+1 = 0. Let the middle matrix has
the following structure:(

A b
c> d

)
:=

p∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

 ,
Then one can choose the parameters of the next layer as in Lemma 4.3

M l+1 = (I +A)M l + b(wl)>

ul+1 = (I +A)ul + alb

al+1 = (1 + d)al + 〈c, ul〉
wl+1 = (1 + d)wl − (M l)>c.

One can check that this choice satisfies (12).

A.2 Proof of Lemma 4.4

This lemma is in fact a corollary of Lemma 4.3. We first give a more detailed version which explicitly
state the unknown matrices Λl,Γl,Πl,Φl:

Lemma A.1. In the setup of Theorem 4.1 with diagonal parameters (9), one can recursively compute
matrices ul, wl using the following formula

ul+1 =
(
(1 + ωlxy(al)2ρ)I + ωlxxΣl

)
ul

+ alωlxy
(
M l + alul(w∗)>

)
Σ
(
alw∗ − wl

)
,

wl+1 = (1 + ωlyyλ
l)wl

− ωlyx(M l)>(M l + alul(w∗)>)Σ(alw∗ − wl)
− alρωlyx(M l)>ul,

where ρ =
∑n
i=1 r

2
i and initial conditions a0 = 1, w0 = 0,M0 = I, u0 = 0

Proof. First, we compute the following matrix that appeared in Lemma 4.3 for the specific diagonal
case: (

Al bl

(cl)> dl

)
=

p∑
k=1

P lk n∑
j=1

((
xlj
ylj

)
((xlj)

>, ylj)

)
Qlk

 ,
=

(
ωlxxΣl ωlxyα

l

ωlyx(αl)> ωlyyλ
l

)
.

14

This implies that Al = ωlxxΣl, bl = ωlxyα
l, cl = ωlyxα

l and dl = ωlyyλ
l. Next we rewrite αl:

αl =

n∑
i=1

ylxl

=

n∑
i=1

(alyi − 〈wl, xi〉)(M lxi + yiu
l)

=

n∑
i=1

(alri + 〈alw∗ − wl, xi〉)((M l + alul(w∗)>)xi + riu
l)

=

n∑
i=1

〈alw∗ − wl, xi〉(M l + alul(w∗)>)xi +

n∑
i=1

alr2i u
l

= (M l + alul(w∗)>)Σ(alw∗ − wl) + alρul.

Here the first step is by Theorem 4.1, the second step replaces yi with 〈w∗, xi〉+ ri, the third step
uses the fact that

∑n
i=1 rixi = 0 to get rid of the cross terms.

The remaining proof just substitutes the formula for αl into Lemma 4.3.

Now Lemma A.1 implies Lemma 4.4 immediately by setting Λl = −ωlxy(al)2ρI − ωlxxΣl,
Γl = alωlxy

(
M l + alul(w∗)>

)
, sl = tuωyyλ

l, Πl = ωlyx(M l)>(M l + alul(w∗)>) and Φl =

alρωlyx(M l)>.

A.3 Proof for Theorem 4.2

Proof. By Theorem 4.1, we know yli = 〈wl, xi〉 for some wl. When n� d, with high probability
the norm of yl is on the order of Θ(

√
n)‖wl‖, and the norm of y∗ is Θ(

√
n). Therefore we only need

to bound the correlation. The correlation is equal to

|〈y∗, yl〉| = |wl1
n∑
i=1

x31 +

n∑
i=1

xi(1)2
d∑
j=2

wljxi(j)|.

We know with high probability |
∑n
i=1 x

3
i | = O(

√
n) because E[x3i] = 0. The second term can be

written as 〈wl, v〉 where v is a vector whose coordinates are v1 = 0 and vj =
∑n
i=1 xi(1)2xi(j) for

2 ≤ j ≤ d, therefore with high probability ‖v‖ = O(
√
nd). Therefore, with high probability the

cosine similarity is at most

|〈y∗, yl〉|
‖y∗‖‖yl‖

= O(1)
|〈y∗, yl〉|
n‖wl

= O(1)
|wl1

∑n
i=1 x

3
1 +

∑n
i=1 xi(1)2

∑d
j=2 w

l
jxi(j)|

n‖wl

≤ O(1)
|wl1||

∑n
i=1 x

3
1|+ |wl|‖v‖

n‖wl

≤ O(1)

√
n+
√
nd

n
.

When n� d this can be made smaller than any fixed constant.

A.4 Proof for Theorem 5.1

In this section we prove Theorem 5.1 by finding hyperparameters for GD++ algorithm that solves
least squares problems with very high accuracy. The first steps in the construction iteratively makes
the data xi’s better conditioned, and the last step is a single step of gradient descent. The proof is
based on several lemma, first we observe that if the data is very well-conditioned, then one-step
gradient descent solves the problem accurately:

15

Lemma A.2. Given (x1, y1), ..., (xn, yn) where Σ :=
∑n
i=1 xix

>
i has eigenvalues between 1 and

1 + ε. Let w∗ := arg minw
∑n
i=1(yi − 〈w, xi〉)2 be the optimal least squares solution, then ŵ =∑n

i=1 yixi satisfies ‖ŵ − w∗‖ ≤ ε‖w∗‖.

Proof. We can write yi = 〈xi, w∗〉 + ri. By the fact that w∗ is the optimal solution we know ri’s
satisfy

∑n
i=1 rixi = 0. Therefore ŵ =

∑n
i=1 yixi =

∑n
i=1〈xi, w∗〉xi = Σw∗. This implies

‖ŵ − w∗‖ = ‖(Σ− I)w∗‖ ≤ ‖Σ− I‖‖w∗‖ ≤ ε‖w∗‖.

Next we show that by applying just the preconditioning step of GD++, one can get a well-conditioned
x matrix very quickly. Note that the Σ matrix is updated as Σ ← (I − γΣ)Σ(I − γΣ), so an
eigenvalue of λ in the original Σ matrix would become λ(1 − γλ)2. The following lemma shows
that this transformation is effective in shrinking the condition number
Lemma A.3. Suppose ν/µ = κ ≥ 1.1, then there exists an universal constant c < 1 such that
choosing γν = 1/3 implies

maxλ∈[ν,µ] λ(1− γλ)2

minλ∈[ν,µ] λ(1− γλ)2
≤ cκ.

On the other hand, if ν/µ = κ ≤ 1 + ε where ε ≤ 0.1, then choosing γν = 1/3 implies

maxλ∈[ν,µ] λ(1− γλ)2

minλ∈[ν,µ] λ(1− γλ)2
≤ 1 + 2ε2.

The first claim shows that one can reduce the condition number by a constant factor in every step
until it’s a small constant. The second claim shows that once the condition number is small (1 + ε),
each iteration can bring it much closer to 1 (to the order of 1 +O(ε2)).

Now we prove the lemma.

Proof. First, notice that the function f(x) = x(1 − γx)2 is monotonically nondecreasing for
x ∈ [0, ν] if γν = 1/3 (indeed, it’s derivative f ′(x) = (1− γx)(1− 3γx) is always nonnegative).
Therefore, the max is always achieved at x = ν and the min is always achieved at x = µ. The new
ratio is therefore

ν(1− γν)2

µ(1− γµ)2
= κ

4/9

(1− 1/3κ)2
.

When κ ≥ 1.1 the ratio 4/9
(1−1/3κ)2 is always below 4/9

(1−1/3.3)2 which is a constant bounded away
from 1.

When κ = 1 + ε < 1.1, we can write down the RHS in terms of ε

ν(1− γν)2

µ(1− γµ)2
= κ

4/9

(1− 1/3κ)2
= (1 + ε)(1 +

1

2
(1− 1

1 + ε
))−2.

Note that by the careful choice of γ, the RHS has the following Taylor expansion:

(1 + ε)(1 +
1

2
(1− 1

1 + ε
))−2 = 1 +

3ε2

4
− 5ε3

4
+O(ε4).

One can then check the RHS is always upperbounded by 2ε2 when ε < 0.1.

With the two lemmas we are now ready to prove the main theorem:

Proof. By Lemma A.3 we know in O(log κ+ log log 1/ε) iterations, by assigning κ in the way of
Lemma A.3 one can reduce the condition number of x to κ′ ≤ 1 + ε/2κ (we chose ε/2κ here to give
some slack for later analysis).

Let Σ′ be the covariance matrix after these iterations, and ν′, µ′ be the upper and lowerbound
for its eigenvalues. The data xi’s are transformed to a new data x′i = Mxi for some matrix

16

0 2 4 6 8
Prediction after K layers

10−1

100

A
dj

us
te

d
ev

al
 lo

ss

GD++

0 2 4 6 8
Prediction after K layers

10−1

100

Diag

0 2 4 6 8
Prediction after K layers

10−1

100

Full
1 layers
2 layers
3 layers
4 layers
5 layers
6 layers
7 layers

Figure 5: Linear transformer models show a consistent decrease in error per layer when trained on
data with mixed noise variance στ ∼ U(0, 5). The error bars measure variance over 5 training seeds.

M . Let M = AΣ−1/2, then since M ′ = AA> we know A is a matrix with singular values
between

√
µ′ and

√
ν′. The optimal solution (w∗)′ = M−>w∗ has norm at most

√
ν/
√
µ′‖w∗‖.

Therefore by Lemma A.2 we know the one-step gradient step with ŵ =
∑n
i=1

1
µ′ yixi satisfy

‖ŵ− (w∗)′‖ ≤ (κ′ − 1)
√
ν/
√
µ′‖w∗‖. The test data xt is also transformed to x′t = AΣ−1/2xt, and

the algorithm outputs 〈ŵ, x′t〉, so the error is at most
√
ν‖w∗‖ ∗ ‖x′t‖ ≤ (κ′− 1)

√
κ
√
κ′‖w∗‖ ∗ ‖xt‖.

By the choice of κ′ we can check that RHS is at most ε‖w∗‖‖xt‖.

A.5 Proof of the Theorem 5.2

Proof. The key observation here is that when n → ∞, under the assumptions we have
limn→∞

∑n
i=1 xix

>
i = I . Therefore the ridge regression solutions converge to w∗σ2 =

1
1+σ2

∑n
i=1 yixi and the desired output is 〈w∗σ2 , xq〉.

By the calculations before, we know after the first-layer, the implicit w is w1 = ωyx
∑n
i=1 yixi. As

long as ωyx is a constant, when n→∞ we know 1
n

∑n
i=1(y1i)2 = σ2 (as the part of y that depend

on x is negligible compared to noise), therefore the output of the second layer satisfies

w2 = (1 + nσ2ωyy)w1 = (1 + nσ2ωyy)ωyx

n∑
i=1

yixi.

Therefore, as long as we choose ωyx and ωyy to satisfy (1 + nσ2ωyy)ωyx = 1
1+σ2 when σ = σ1 or

σ2 (notice that these are two linear equations on ωyx and nωyxωyy, so they always have a solution),
then we have limn→∞ w2 = w∗σ2 for the two noise levels.

B More experiments

Here we provide results of additional experiments that did not make it to the main text.

Fig. 6 shows an example of unadjusted loss. Clearly, it is virtually impossible to compare the methods
across various noise levels this way.

Fig. 7 shows per-variance profile of intermediate predictions of the network of varying depth. It
appears that GD++ demonstrates behavior typical of GD-based algorithms: early iterations model
higher noise (similar to early stopping), gradually converging towards lower noise predictions. DIAG
exhibits this patter initially, but then dramatically improves, particularly for lower noise ranges.
Intriguingly, FULL displays the opposite trend, first improving low-noise predictions, followed by a
decline in higher noise prediction accuracy, especially in the last layer.

Finally, Table 1 presents comprehensive numerical results for our experiments across various mixed
noise variance models. For each model variant (represented by a column), the best-performing result
is highlighted in bold.

17

0 2 4 6
Variance σ

0

2

4

6

U
na

dj
us

te
d

ev
al

 lo
ss GD++

Diag
Full
ConstRR
AdaRR
TunedRR

Figure 6: Example of unadjusted loss given by directly minimizing (7). It is pretty hard to see
variation between comparable methods using this loss directly.

Method Uniform στ ∼ (0, σmax) Categorical στ ∈ S
0 1 2 3 4 5 6 7 {1,3} {1,3,5}

1 layer
GD++ 1.768 1.639 1.396 1.175 1.015 0.907 0.841 0.806 1.007 0.819
DIAG 1.767 1.639 1.396 1.175 1.015 0.906 0.841 0.806 1.007 0.819
FULL 1.768 1.640 1.397 1.176 1.016 0.907 0.842 0.806 1.008 0.820

2 layers
GD++ 0.341 0.295 0.243 0.265 0.347 0.366 0.440 0.530 0.305 0.427
DIAG 0.265 0.214 0.173 0.188 0.219 0.242 0.254 0.259 0.201 0.246
FULL 0.264 0.215 0.173 0.188 0.220 0.245 0.259 0.263 0.202 0.276

3 layers
GD++ 0.019 0.021 0.071 0.161 0.259 0.344 0.454 0.530 0.222 0.422
DIAG 0.013 0.015 0.048 0.087 0.109 0.118 0.121 0.123 0.098 0.119
FULL 0.012 0.015 0.049 0.075 0.101 0.117 0.124 0.127 0.076 0.113

4 layers
GD++ 9.91e-05 0.014 0.066 0.160 0.258 0.344 0.454 0.530 0.222 0.422
DIAG 1.19e-04 0.006 0.024 0.041 0.050 0.059 0.065 0.073 0.043 0.062
FULL 1.63e-04 0.005 0.021 0.038 0.052 0.065 0.068 0.076 0.032 0.061

5 layers
GD++ 1.14e-07 0.014 0.066 0.161 0.265 0.344 0.454 0.530 0.222 0.422
DIAG 1.81e-07 0.004 0.016 0.029 0.041 0.051 0.058 0.062 0.026 0.051
FULL 1.79e-07 0.002 0.015 0.026 0.038 0.048 0.059 0.065 0.016 0.048

6 layers
GD++ 2.37e-10 0.009 0.066 0.161 0.265 0.344 0.454 0.530 0.222 0.422
DIAG 2.57e-10 0.003 0.014 0.028 0.040 0.048 0.054 0.059 0.020 0.047
FULL 2.71e-10 0.002 0.014 0.025 0.036 0.044 0.052 0.059 0.011 0.043

7 layers
GD++ 2.65e-12 0.009 0.066 0.161 0.265 0.344 0.454 0.530 0.222 0.422
DIAG 2.50e-12 0.002 0.014 0.027 0.040 0.047 0.052 0.059 0.018 0.046
FULL 2.50e-12 0.002 0.010 0.025 0.035 0.047 0.050 0.057 0.010 0.035

Baselines
CONSTRR 0 0.009 0.066 0.161 0.265 0.365 0.454 0.530 0.222 0.422

ADARR 0 0.003 0.016 0.034 0.053 0.068 0.081 0.092 0.051 0.084
TUNEDRR 0 0.002 0.010 0.023 0.037 0.049 0.060 0.068 0.021 0.054

Table 1: Adjusted evaluation loss for models with various number of layers with uniform noise
variance στ ∼ U(0, σmax). We highlight in bold the best results for each problem setup (i.e. each
column).

18

0.00

0.25

0.50

0.75

1.00

2
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

GD++ Diag Full

0.00

0.25

0.50

0.75

1.00

3
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

4
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

5
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

6
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0.00

0.25

0.50

0.75

1.00

7
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0 2 4 6 8 10
Variance σ

0.00

0.25

0.50

0.75

1.00

8
la

ye
rs

 m
od

el
A

dj
. e

va
l l

os
s

0 2 4 6 8 10
Variance σ

0 2 4 6 8 10
Variance σ

After 1 layer
After 2 layers

After 3 layers
After 4 layers

After 5 layers
After 6 layers

After 7 layers
After 8 layers

Figure 7: Layer by layer prediction quality for different models with στ ∼ U(0, 5). The error bars
measure std over 5 training seeds.

19

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction accurately state the paper’s main claims: that
linear transformers can learn optimization algorithms, that they maintain an implicit linear
regression model at each layer, and that they can handle noisy linear regression problems
with varying noise levels, surpassing many reasonable baselines.
Guidelines:
• The answer NA means that the abstract and introduction do not include the claims

made in the paper.
• The abstract and/or introduction should clearly state the claims made, including the

contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We acknowledge that the analysis is limited to linear transformers and doesn’t
consider the effects of non-linearities in larger models. We also mentioned in the paper
that the algorithm discovered for mixed noise variance is not proven to be optimal, and the
analysis focuses primarily on the diagonal attention case.
Guidelines:
• The answer NA means that the paper has no limitation while the answer No means that

the paper has limitations, but those are not discussed in the paper.
• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

20

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We provide the full set of assumptions and complete proofs for all theoretical
results. The proofs are detailed and appear in the Appendix, which is clearly referenced in
the main text. Each theorem and lemma is numbered, and all assumptions are clearly stated.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We believe that we provide sufficient details on data generation, model variants,
training parameters, and evaluation metrics to allow anyone to replicate the core experiments
and validate the main claims.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

21

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No] ,

Justification: We talk about synthetic data only, which is very easy to generate. The code,
while net released at this stage, will be released after the paper’s acceptance.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide sufficient detail on the training and test procedures. We specify
the optimizer, learning rate, batch size, number of iterations, and how hyperparameters were
tuned (including adjustming the the learning rate for stability). The data generation process
is also detailed, along with the evaluation metrics and baselines used.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

22

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

Justification: Some figures (like Figs. 2 and 6) include the errorbars, however, the main
figures (Figs. 1,3,5) are reported as best of of 5 training seeds. We have acknowledged that
some runs have stability issues which result in models stuck in a high energy region of the
loss. These outliers would affect the mean significantly, since our loss is already at 10−2

level.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We disclose all the relevant information on the compute resources that we used
to produce the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our paper’s research focuses on theoretical analysis and simulated experiments
on linear regression, which doesn’t present any obvious ethical concerns as outlined in
the NeurIPS Code of Ethics. The study doesn’t involve human subjects, sensitive data, or
potential real-world harms that would require further scrutiny.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

23

https://neurips.cc/public/EthicsGuidelines

• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: Our work focuses primarily on the theoretical analysis of linear transformers
and their ability to learn optimization algorithms in a simplified setting. As such, it does not
directly translate into specific applications with immediate societal impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not involve the release of any trained models or datasets, as it
primarily focuses on theoretical analysis and simulated experiments. Therefore, safeguards
for responsible release are not applicable in this context.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

24

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]

Justification: Our work does not utilize any existing code, data, or pre-trained models. All
experiments were conducted using synthetic data and models implemented specifically for
this study.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: This work does not introduce any new assets such as code, data, or pre-trained
models. We focus on theoretical analysis and use synthetically generated data for our
experiments, so we are not releasing any assets alongside this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This research does not involve any crowdsourcing or experiments with human
subjects. Our study is purely analytical and based on simulated data.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

25

paperswithcode.com/datasets

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our research does not involve any human participants. The study is purely
analytical and experimental, utilizing simulated data and not involving any interaction
or data collection from human subjects. Therefore, IRB approval or considerations for
participant risks are not applicable.
Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

26

	Introduction
	Preliminaries
	Linear transformers and in-context learning
	Noisy regression model
	Fixed vs. mixed noise variance problems

	Related work
	Linear transformers maintain linear regression model at every layer
	Power of diagonal attention matrices
	GD++ and least squares solver
	Understanding yy: adaptive rescaling
	Understanding xy: adapting step-sizes

	Experiments
	Conclusions
	Acknowledgements
	Proofs from Sections 4 and 5
	Proof of Theorem 4.1
	Proof of Lemma 4.4
	Proof for Theorem 4.2
	Proof for Theorem 5.1
	Proof of the Theorem 5.2

	More experiments

