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Abstract

The scarcity of annotated surgical data poses a significant challenge for developing
deep learning systems in computer-assisted interventions. While diffusion models
can synthesize realistic images, they often suffer from data memorization, resulting
in inconsistent or non-diverse samples that may fail to improve, or even harm,
downstream performance. We introduce Surgical Application-Aligned Diffusion
(SAADi), a new framework that aligns diffusion models with samples preferred by
downstream models. Our method constructs pairs of preferred and non-preferred
synthetic images and employs lightweight fine-tuning of diffusion models to align
the image generation process with downstream objectives explicitly. Experiments
on three surgical datasets demonstrate consistent gains of 7–9% in classification
and 2–10% in segmentation tasks, with the considerable improvements observed
for underrepresented classes. Iterative refinement of synthetic samples further
boosts performance by 4–10%. Unlike baseline approaches, our method overcomes
sample degradation and establishes task-aware alignment as a key principle for
mitigating data scarcity and advancing surgical vision applications.

1 Introduction

Minimally invasive surgery (MIS) has gained increasing popularity in recent years due to its numerous
benefits, including shorter recovery times, reduced postoperative pain, improved surgical dexterity and
a lower risk of infection (Dagnino and Kundrat, 2024). The primary objective of MIS is to minimize
the number and size of incisions; however, this also introduces challenges for surgeons. Procedures
are typically performed by observing 2D endoscopic images on a monitor, which restricts the field
of view and eliminates depth perception. These constraints highlight the need for computational
methods that can function as assistive technologies, supporting surgeons during interventions. With
the rapid advancements in deep learning (DL), there is an opportunity to develop such systems
to improve surgical safety and efficiency. A key application area is surgical scene understanding,
which involves tasks such as identifying anatomical structures, segmenting target tissues, or issuing
warnings about critical structures (e.g., arteries) near surgical instruments. For instance, DL methods
can help localize hidden tumor tissue by overlaying 3D anatomical structures onto the intra-operative
scene, thereby providing surgeons with crucial real-time guidance. Such visualizations have proven
to improve surgical outcomes (Wagner et al., 2012).

Despite their promise, current DL approaches in the surgical domain rely on supervised learning,
which requires large and diverse annotated datasets. Acquiring such surgical datasets are particularly
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Figure 1: Comparison of real, general synthetic, and our (SAADi) datasets. Real datasets are often
limited and imbalanced, and baseline generative models frequently yield inconsistent samples, such as
blurred images (highlighted in the red box). In contrast, our method (SAADi) produces task-aligned,
diverse, and realistic synthetic images that better capture anatomical structures (green box).

challenging due to patient privacy concerns, logistical constraints in the operating room, and strict
data protection regulations across clinical centers (Maier-Hein et al., 2017). This creates a paradox in
the field: while large-scale datasets are essential for building robust DL models, access to such data
remains scarce.

To address the scarcity of real surgical data, increasing attention has been given to the use of
synthetic datasets. Recent advances in generative modeling, particularly diffusion models (DMs) (Ho
et al., 2020, Dhariwal and Nichol, 2021), have shown remarkable ability to produce high-quality,
photorealistic images. In the surgical domain, DMs have been trained on real-world datasets to
generate clinically plausible synthetic images, which can then be combined with real data to enhance
the performance of downstream deep learning (DL) models (Nwoye et al., 2025, Frisch et al., 2023,
Venkatesh et al., 2025). However, the use of synthetic data poses several key challenges. First,
controlling the composition of generated images is crucial, as this directly influences the effectiveness
of downstream models. Second, due to the typically small size of surgical datasets, DMs are prone to
overfitting, often replicating samples from the training set (Somepalli et al., 2023, Chen et al., 2024)
or producing undesirable configurations (see Fig. 1). Incorporating such low-quality or redundant
samples into training pipelines has been shown to provide limited benefit, and in some cases may
even degrade performance (Alaa et al., 2022, Azizi et al., 2023), thereby undermining the purpose
of synthetic data augmentation. These limitations raise critical questions: how can we effectively
control DMs to ensure that the generated data contributes meaningfully to downstream tasks, and
how can we guarantee that the resulting synthetic data is indeed beneficial? This motivates the central
goal of our work: to develop a diffusion-based framework that generates synthetic surgical data that
is directly beneficial for downstream models.

To this end, we propose SAADi, Surgical Application-Aligned Diffusion, a framework for synthetic
image generation that produces not only realistic samples but also data explicitly aligned with
downstream task performance. To the best of our knowledge, this is the first work to introduce
application-aligned diffusion for surgical image synthesis. We build on Stable Diffusion (SD) (Rom-
bach et al., 2022), a latent diffusion model, and introduce a framework in which the preferences
of a downstream model explicitly guide image generation. Our approach is inspired by Diffusion-
Direct Preference Optimization (DDPO) (Wallace et al., 2024), where DMs are fine-tuned on human
preference data to improve aesthetic quality and prompt adherence. In contrast, we replace human su-
pervision with automatically constructed preference pairs: we generate a large set of synthetic images
using SD (trained on real surgical data), evaluate them with a downstream model (e.g., classification
or detection), and retain or discard samples based on a predefined threshold. These preference pairs of
preferred and non-preferred instances are constructed solely from the synthetic data and subsequently
used to fine-tune SD with LoRA (Hu et al., 2022), introducing only minimal overhead. Our approach
directly addresses the dataset scarcity paradox in surgical science by ensuring that synthetic data is
diverse, clinically relevant, and actively improves downstream surgical computer vision tasks. We
summarize our contributions as follows:

1. We introduce SAADi, the first application-aligned diffusion framework for surgical image
synthesis, explicitly designed to improve downstream performance.
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2. We introduce an innovative preference-pairing strategy that uses only synthetic images,
enabling alignment of diffusion models through lightweight LoRA fine-tuning without
additional human supervision.

3. We provide extensive experiments on three surgical datasets and two key downstream tasks
(classification and segmentation), demonstrating consistent improvements, with performance
gains of up to 15%, particularly in underrepresented classes.

2 Related Work

2.1 Diffusion models

Diffusion models (DMs) (Sohl-Dickstein et al., 2015) have revolutionized image synthesis with their
superior image quality compared to generative adversarial networks (GANs) (Goodfellow et al.,
2014). Particularly, Latent Diffusion Models (LDMs) (Rombach et al., 2022) extend this framework
by performing the diffusion process in a compressed latent space, thereby significantly reducing
computational costs while maintaining high image fidelity. Stable Diffusion (SD) (Rombach et al.,
2022) is a large-scale implementation of LDMs trained on natural image datasets, where image
generation is conditioned on text prompts. This conditioning is achieved by encoding text inputs into
latent vectors using pre-trained language models such as CLIP (Radford et al., 2021). Owing to its
strong generative capabilities and open-source availability, SD has emerged as one of the most widely
adopted LDM variants. In this work, we build our framework on top of the SD model.

2.2 Synthetic surgical images

Laparoscopic image synthesis has been focused predominantly on image-to-image (I2I) translation
methods. For example, computer-simulated surgical images, phantom data, and segmentation maps
have been employed with GANs to synthesize realistic surgical images and videos (Chen et al., 2019,
Sankaranarayanan et al., 2018, Pfeiffer et al., 2019, Rivoir et al., 2021, Venkatesh et al., 2024a, Yoon
et al., 2022, Sharan et al., 2021, Marzullo et al., 2021). More recently, Stable Diffusion (SD)-based
I2I methods were explored in (Kaleta et al., 2024, Venkatesh et al., 2024b, Martyniak et al., 2025,
Venkatesh et al., 2025). Importantly, large quantities of synthetic images are generated, although
their quality can sometimes be detrimental for the downstream task (Venkatesh et al., 2024a, Frisch
et al., 2023). Beyond surgical applications, diffusion models have rapidly gained traction for medical
image generation, particularly in MRI and CT (Dorjsembe et al., 2022, Khader et al., 2022, Lyu and
Wang, 2022). However, these images differ broadly in modality from the surgical images.

2.3 Controllable generation

Effective control of diffusion models (DMs) is critical for customizing generated images. Text-based
editing has been explored through prompt engineering and manipulation of CLIP features (Avrahami
et al., 2022, Brooks et al., 2023, Gafni et al., 2022, Hertz et al., 2022, Kawar et al., 2023), but such
approaches are less suitable in the surgical domain where detailed textual descriptions are scarce. In
contrast, spatial control can be achieved with conditional images processed via adapter networks
resembling the U-Net backbone in latent diffusion models (LDMs) (Zhang et al., 2023), or through
lightweight adapters such as T2I-Adapter (Mou et al., 2023). While these methods provide strong
controllability, they require substantial computational resources, large annotated datasets, and long
training times for surgical adaptation. In this work, we take a simpler approach: we leverage existing
datasets and implicitly guide the generation process by selecting task-relevant samples from the
training distribution, thereby directly improving downstream performance.

3 Methodology

In this section, we present our approach (SAADi) for generating synthetic data that is explicitly
aligned with downstream tasks. The framework consists of two main stages. In the first stage, we
train a Stable Diffusion (SD) model on real-world surgical datasets to learn the underlying data
distribution. In the second stage, we generate synthetic samples from the trained model and construct
preference pairs to guide alignment with the downstream task. To achieve this, we employ a selection
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Figure 2: Overview of the SAADi framework. In Stage 1, we train a Surgical Stable Diffusion
(SSD) model on real surgical images with text prompts and generate a large pool of synthetic images.
In Stage 2, a selector model evaluates these synthetic images and separates them into preferred and
non-preferred sets. In Stage 3, the resulting preference pairs are used to fine-tune the SSD model
with LoRA adapters, aligning it with the preferences of the downstream task. The fine-tuned model
is then used to sample task-aligned synthetic images.

model trained for the specific downstream task and run inference on the generated data. Based on a
predefined threshold, each synthetic sample is categorized into a preferred or non-preferred set. Using
this preference dataset, we fine-tune the SD model obtained from the first stage and subsequently
sample from the refined model to obtain diverse and task-relevant synthetic images. An overview of
the pipeline is shown in Fig. 2.

3.1 Diffusion models

Given samples from a data distribution q(x0), and a noise scheduling function αt and σt (as defined
in (Ho et al., 2020)), diffusion models are generative models pθ(x0) trained to progressively denoise
corrupted data. The training objective is defined as

LDM = Ex0,ϵ,t,xt

[
∥ϵ− ϵθ(xt, t, P )∥22

]
, (1)

where ϵ ∼ N (0, I), t ∼ U(0, T ), and xt ∼ q(xt | x0) = N (xt;αtx0, σ
2
t I). Here, P denotes the text

prompt. In the Stable Diffusion (SD) model (Rombach et al., 2022), an encoder E maps an input
image x0 into a latent space where the diffusion process is carried out, and a decoder D reconstructs
the denoised latent back into the pixel space. We call this model Surgical Stable Diffusion (SSD) and
sample images from it using P .

Similarly, we also employ the Surgical Stable Inpaint (SSI) model from Venkatesh et al. (2025),
which is trained for inpainting-based synthesis. Given an image x0 and a mask m, the model is
trained to synthesize realistic texture within the masked region. Formally, in the forward process, the
masked input x̃t is constructed as x̃t = xt ⊙m+ x0 ⊙ (1−m), where xt denotes the noised image
at timestep t. The denoising network ϵθ is trained with a modified objective:

LSSI = Eϵ∼N (0,I), t

[
∥ϵ− ϵθ(x̃t, t, P,m)∥22

]
. (2)

Since the training objective is localized to the masked regions, SSI learns to generate organ-specific
textures conditioned jointly on the segmentation mask and the text signal.

3.2 Preference data creation

Let R = {ri}Ni=1 denote the set of real surgical images, and Gs = {gj}Mj=1 the pool of synthetic
images generated by the diffusion model (SSD or SSI). A downstream model f(·) is trained on
R to map images to task-specific outputs (e.g., class labels or segmentation masks). To construct
preference pairs, each synthetic sample gj ∈ Gs is evaluated using f , producing a score sj = f(gj).
Given a predefined threshold h, we separate Gs into preferred and non-preferred subsets:

Gp = {gj ∈ Gs | sj ≥ h}, Gnp = {gj ∈ Gs | sj < h}. (3)
From these partitions, we define the preference dataset as Dpref = {(gp, gnp) | gp ∈ Gp, gnp ∈ Gnp},
which is subsequently used to fine-tune the diffusion model for alignment.

3.3 Application aligned optimization

To generate synthetic data from the SSD or SSI models (ϵref) that is beneficial for downstream tasks, it
is necessary to align these models with the preferred samples identified by the downstream model. Our
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Table 1: Overview of the datasets. The different anatomies, tools and diffusion baselines used for
evaluation is listed here.
Dataset Procedure Train/Test #Classes Task: Anatomy Task: Tools Diffusion Baseline

LapGyn (Leibetseder et al., 2018) Gynecological surgery 1014 / 438 5 organs + tools Colon, Liver, Ovary, Oviduct,
Uterus

Graspers, etc. SSD (Surgical Stable Diffusion)

Endoscapes (Murali et al., 2023) Cholecystectomy 343 / 100 5 organs + tools Cystic plate, Calot’s triangle,
Cystic artery, Cystic duct,
Gallbladder

Surgical tools SSI (Surgical Stable Inpaint)

AutoLaparo (Wang et al., 2022) Hysterectomy 1100 / 500 1 organ + 4 tools Uterus Grasping forceps, Dissecting
forceps, LigaSure, Electric
hook

SSI (Surgical Stable Inpaint)

approach, SAADi replaces human labels in DDPO with downstream task evaluations and construct
preference pairs from synthetic data, as described in the previous step. The objective is to learn a new
model ϵpθ whose generations are explicitly aligned with these preferences by fine-tuning on pairs of
preferred and non-preferred synthetic images. Let (xp

0, x
n
0 ) ∼ Dpref be a preferred/non-preferred pair.

For t ∼ U(0, T ), sample ϵp, ϵn ∼ N (0, I) and the forward diffusion is defined via,

xp
t = αtx

p
0 + σtϵ

p, xn
t = αtx

n
0 + σtϵ

n.

Let per-preference sample differences (relative to a fixed reference denoiser ϵref ) be defined as

∆p
θ(t)=∥ϵp−ϵpθ(x

p
t , t)∥22−∥ϵp−ϵref(x

p
t , t)∥22, ∆n

θ (t)=∥ϵn−ϵpθ(x
n
t , t)∥22−∥ϵn−ϵref(x

n
t , t)∥22.

With the logistic function σ(u) = 1/(1 + e−u), we define the loss as

LSAADi(θ) = −E(xp
0 ,x

n
0 )∼Dpref, t, ϵp, ϵn

[
log σ

(
−β

(
∆p

θ(t)−∆n
θ (t)

))]
, (4)

where β is a weighting term. For additional details the readers can refer to Wallace et al. (2024).
Once trained, the model generates synthetic data that are explicitly aligned with downstream task
preferences, ensuring their utility for the downstream task.

4 Experiments

In this section, we present our experimental setup, including the datasets and downstream models.
We evaluate our approach on three surgical datasets across two tasks: (i) multi-class classification of
anatomical structures and surgical tools, and (ii) binary segmentation of anatomical structures and
tools. Our primary objective is to assess the utility of the generated synthetic data by measuring its
impact on downstream performance. An overview of the datasets and tasks is provided in Tab. 1.

Evaluation scheme. We design three evaluation settings to analyze the impact of synthetic datasets
on downstream performance:

1. Baseline comparison. We generate synthetic data using the baseline models (SSD and SSI)
and compare their performance against our approach (SAADi) across the downstream tasks
described earlier. To ensure fairness, we add the same number of synthetic samples as real
samples present in the training set.

2. Data scaling. We study the scaling behavior of synthetic data by adding multiples of the
training set size (2×, 3×, 4×) in synthetic samples from each method to the real dataset. This
experiment assesses the impact of increasing synthetic data on downstream performance.

3. Iterative refinement. We further investigate whether synthetic data quality can be improved
through refinement. In the first round, we train a downstream model on real data combined
with synthetic images generated by SAADi. This trained model is then used as the selection
model to re-score the initial pool of synthetic samples. Based on this updated scoring,
we perform a second round of SAADi fine-tuning and generate a new set of images. The
downstream models are subsequently evaluated on this refined dataset. This iterative process
demonstrates that once useful synthetic data is introduced, downstream models improve,
enabling the selection of stronger and more informative samples in subsequent rounds.

Surgical datasets For the multi-class classification task, we use the LapGyn (LG) dataset (Lei-
betseder et al., 2018), which consists of laparoscopic gynecological procedures. The dataset includes
five anatomical structures: colon, liver, ovary, oviduct, and uterus. The training set contains 1014
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Figure 3: Qualitative results on the LapGyn dataset. Synthetic images from the baseline SSD model
show limited diversity, with minimal variation across samples. In contrast, images generated by our
method (SAADi) are diverse, application-aligned, and visually realistic, closely resembling real data.

images, while the test set contains 438 images. Notably, the dataset is imbalanced across classes. The
task is defined as classifying anatomical structures and surgical tools in a given surgical scene.

For segmentation, we employ two datasets. First, the Endoscapes (Ed) dataset (Murali et al., 2023),
where we use only the segmentation split comprising 343 training images and 100 test images
from laparoscopic cholecystectomy. This dataset allows us to evaluate performance in a low-data
regime. The annotated structures include the cystic plate, Calot’s triangle, cystic artery, cystic duct,
gallbladder, and surgical tools.

Second, the Autolaparo (AL) dataset (Wang et al., 2022), which contains data from 21 patients
undergoing laparoscopic hysterectomy, with 1100 images for training and 500 images for testing.
The annotated classes include surgical tools such as grasping forceps, dissecting forceps, LigaSure,
and electric hook, along with the uterus as the anatomical structure. Since patient diversity is a crucial
factor in the surgical domain, we utilize a held-out, patient-specific test set to assess the models.

These datasets were chosen to investigate the role of synthetic data under both class-imbalanced and
resource-constrained conditions.

Baselines & Models As baselines for diffusion models, we trained the Surgical Stable Diffusion
(SSD) model on the real surgical images from the LG dataset with the text prompts constructed as

“An image of <organ/tool> in laparoscopic gynecological surgery”. We sample images from this
model and add them with real dataset as a baseline against SAADi.

For the segmentation datasets, we used an inpainting model, Surgical Stable Inpaint (SSI) (Venkatesh
et al., 2025), as the task involves generating organ and tool textures conditioned on masks. All
diffusion models were trained using only the training splits of each dataset for 3000 steps with
AdamW (Loshchilov and Hutter, 2017). For the inpainting models, we used 30 denoising steps during
the generation process. Subsequently, SAADi fine-tuning was performed for 1500 steps, requiring
approximately 8 minutes of training on a single 24GB GPU. We change the prompts correspondingly
for each dataset and organ or tool.

For the downstream tasks, we adopted three architectures for classification: ResNet-50 (He et al.,
2016), ConvNeXT-S (Liu et al., 2022), and ViT-S (Dosovitskiy et al., 2020); and three for segmenta-
tion: DeepLabV3 (DV3) (Chen et al., 2017), SegFormer (Xie et al., 2021), and UPerNet (Xiao et al.,
2018). To mitigate class imbalance, we applied pixel weighting and inverse-frequency balancing,
combined with standard data augmentations, during training on real datasets. Employing a diverse
set of architectures allowed us to reduce bias toward any single model. For evaluation, we report the
F1 and Dice score for classification and segmentation tasks respectively.
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Table 2: Classification of anatomies in the LapGyn dataset. Reported values are F1 scores.
Imbalanced classes are highlighted , and the best scores are shown in blue. The addition of synthetic
images from our approach (SAADi) improves performance by approximately 4–9% compared to
training on the real dataset alone.

Method Training data Colon Liver Ovary Oviduct Uterus Mean

ResNet-50
Only Real 0.10 0.22 0.38 0.06 0.26 0.20

Real + SSD 0.10 0.25 0.37 0.09 0.23 0.21 (↑1%)
Real + SAADi 0.15 0.24 0.40 0.13 0.31 0.24 (↑4%)

ConvNeXT/S
Only Real 0.10 0.23 0.30 0.15 0.42 0.24

Real + SSD 0.11 0.23 0.35 0.16 0.41 0.24 (–)
Real + SAADi 0.16 0.26 0.41 0.22 0.48 0.31 (↑7%)

ViT/S
Only Real 0.10 0.25 0.32 0.11 0.37 0.23

Real + SSD 0.14 0.23 0.34 0.22 0.39 0.26 (↑3%)
Real + SAADi 0.19 0.26 0.45 0.24 0.38 0.32 (↑9%)

5 Results & Discussion

Addition of synthetic samples The qualitative results are shown in Fig. 3. The results for the
classification task on the LG dataset are presented in Tab. 2. We observe that adding synthetic samples
from the baseline model provides modest improvements in classification performance. In contrast,
our approach, SAADi, yields substantial gains, with overall improvements of 7% and 9% for the
ConvNeXT and ViT architectures, respectively. Notably, SAADi achieves significant improvements
in the imbalanced classes, including an increase of more than 13% for the oviduct class. Although
the same number of samples is added across all baselines, the results demonstrate that SAADi is
particularly effective in addressing class imbalance and improving performance on underrepresented
categories.

Table 3: Anatomy segmentation in the Endoscapes dataset. Synthetic samples generated by the
baseline method (SSI) often introduce degenerate cases, leading to degraded performance. In contrast,
images produced by our approach (SAADi) yield consistent improvements across all evaluated
downstream models. Dice scores is reported.

Method Training data Cystic plate Calot triangle Cystic artery Cystic duct Gall bladder Tool Mean

DV3
Only Real 0.38 0.37 0.42 0.47 0.70 0.61 0.49
Real + SSI 0.36 0.34 0.43 0.48 0.64 0.66 0.48 (↓1%)

Real + SAADi 0.41 0.36 0.44 0.50 0.73 0.61 0.51 (↑2%)

Segformer
Only Real 0.40 0.36 0.30 0.41 0.68 0.62 0.46
Real + SSI 0.39 0.36 0.38 0.37 0.64 0.55 0.44 (↓2%)

Real + SAADi 0.41 0.49 0.40 0.52 0.70 0.63 0.52 (↑6%)

UPerNet
Only Real 0.33 0.27 0.37 0.38 0.54 0.41 0.38
Real + SSI 0.41 0.42 0.32 0.39 0.52 0.48 0.42 (↑4%)

Real + SAADi 0.40 0.44 0.46 0.40 0.57 0.61 0.48 (↑10%)

Tab. 3 and Tab. 4 show the results of the segmentation models on the Ed and AL datasets. We
observe that adding synthetic samples from the SSI baseline leads to a decline in performance for
both SegFormer and DeepLabV3, suggesting that image generation with structure-specific constraints
alone is insufficient to meet the requirements of downstream models. A modest improvement of 4%
is observed with UPerNet, further highlighting the importance of evaluating synthetic data across
multiple architectures.

In contrast, synthetic samples from SAADi achieve the best performance in five out of six classes,
with gains ranging from 2–10%. Similar trends are observed on the AL dataset, where SAADi
provides consistent improvements while SSI degrades performance. These results highlight an
important observation: simply adding the same number of synthetic samples as the training set may
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Table 4: Segmentation of tools in the Autolaparo dataset. The SSI model fails to generate valid
synthetic data, and its inclusion with the real dataset reduces performance, particularly for surgical
tools. In contrast, our approach (SAADi) provides smaller yet consistent benefits when synthetic
images are added.

Method Training data Grasping forceps Liga Sure Dissecting forceps Electric hook Uterus Mean

DV3
Only Real 0.61 0.90 0.74 0.59 0.73 0.71
Real + SSI 0.56 0.48 0.53 0.54 0.74 0.57 (↓14%)

Real + SAADi 0.63 0.90 0.76 0.61 0.76 0.74 (↑3%)

Segformer
Only Real 0.64 0.92 0.76 0.65 0.77 0.75
Real + SSI 0.65 0.87 0.62 0.62 0.78 0.71 (↓4%)

Real + SAADi 0.67 0.91 0.77 0.64 0.80 0.76 (↑1%)

UPerNet
Only Real 0.60 0.91 0.74 0.62 0.71 0.72
Real + SSI 0.63 0.58 0.54 0.55 0.74 0.61 (↓11%)

Real + SAADi 0.61 0.93 0.76 0.63 0.76 0.74 (↑2%)

not always yield large performance gains. Instead, aligning synthetic data with the downstream
task, as in SAADi, is crucial for maximizing its utility. This further confirms that application-aware
alignment is more critical for the surgical domain.

Data scaling behavior The scaling behavior of synthetic samples on the Ed dataset with the DV3
model is shown in Fig. 4, with additional results provided in the suppl. material. A consistent
trend is that synthetic samples from SAADi yield steady improvements in performance across most
classes. In contrast, samples from the SSI baseline lead to performance degradation beyond a
specific scale for four classes, consistent with the observations of Azizi et al. (2023). Another key
observation is the plateauing of performance when more than 3× or 4× synthetic data is added. This
saturation effect can be attributed to the fact that the diversity within the training distribution has
already been extensively captured, and the generated samples largely reflect this existing diversity.
To further improve performance, future work could explore incorporating variations in shape and
texture depending on the inductive biases of the downstream model. Our findings highlight the need
for both task-alignment and data diversity in synthetic data for surgical applications.

Figure 4: Scaling of synthetic samples for anatomy segmentation in the Endoscapes dataset. Adding
synthetic samples from SAADi results in continuous performance improvements across classes. In
contrast, samples from the SSI baseline lead to a decline in dice scores, reflecting inconsistencies
from application-agnostic image generation.

Iterative refinement of synthetic data Tab. 5 indicates the results of a second round of refinement
of synthetic samples generated by our approach, SAADi, on the Ed dataset. This additional step
yields average performance improvements of 4–10% across the different downstream models. The
gains are modest for surgical tools, while the largest improvements are observed for the cystic plate
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Table 5: Iterative refinement of SAADi samples. Results are reported on the Endoscapes dataset.
1st denotes the first round of SAADi fine-tuning, and 2nd indicates the second round with iterative
refinement of synthetic samples. Refinement consistently improves performance across different
models, with gains in the range of 4–10%.

Method Training data Cystic plate Calot triangle Cystic artery Cystic duct Gall bladder Tool Mean

DV3
Only Real 0.38 0.37 0.42 0.47 0.70 0.61 0.49

Real + SAADi (1st) 0.41 0.36 0.44 0.50 0.73 0.61 0.51 (↑2%)

Real + SAADi (2nd) 0.42 0.36 0.47 0.53 0.73 0.64 0.53 (↑4%)

Segformer
Only Real 0.40 0.36 0.30 0.41 0.68 0.62 0.46

Real + SAADi (1st) 0.41 0.49 0.40 0.52 0.70 0.63 0.52 (↑6%)

Real + SAADi (2nd) 0.43 0.52 0.41 0.52 0.73 0.64 0.54 (↑8%)

Upernet
Only Real 0.33 0.27 0.37 0.38 0.54 0.41 0.38

Real + SAADi (1st) 0.40 0.44 0.46 0.40 0.57 0.61 0.48 (↑4%)

Real + SAADi (2nd) 0.41 0.45 0.48 0.46 0.61 0.64 0.51 (↑13%)

and cystic duct classes. These findings suggest that refinement can be model-dependent, as each
downstream architecture may exhibit its own inductive biases. Further exploration of multi-stage
refinement could provide deeper insights into the limitations of aligning synthetic data generation
with downstream tasks, which we leave for future work. Additional results are provided in the suppl.
material. Overall, these results highlight iterative refinement as a promising strategy for enhancing
the effectiveness of application-aligned synthetic data.

Limitations Although our approach is capable of generating synthetic images that benefit down-
stream tasks, certain limitations remain. First, SAADi requires a base diffusion model to generate the
initial cohort of synthetic data. As a result, any biases present in the base model are propagated during
fine-tuning and cannot be eliminated. Second, our approach relies on a selection model for classifying
or segmenting synthetic images, which in turn requires annotated data. While self-supervised models
may help alleviate this dependency, further investigation is needed. Third, although we employ
lightweight fine-tuning, this step still adds to the computational cost of generation, which may hinder
real-time applications. Future work could explore integrating feedback-guided approach (Askari-
Hemmat et al., 2025) with application alignment to reduce these overheads and further improve
real-time applicability.

6 Conclusion

In this work, we presented SAADi, an application-aligned diffusion framework for surgical image
synthesis that explicitly adapts generation to downstream tasks. Instead of relying on human feed-
back, SAADi leverages downstream model evaluations to fine-tune diffusion models on pairs of
preferred and non-preferred samples, producing synthetic data that is both realistic and task-relevant.
Comprehensive experiments on three surgical datasets demonstrate consistent improvements in both
classification and segmentation tasks, with notable gains for underrepresented classes. Furthermore,
iterative refinement yields additional improvements, highlighting the importance of alignment beyond
simple dataset scaling. Taken together, these results establish preference alignment as a promising
direction for generating clinically indicative synthetic data and mitigating the challenge of data
scarcity in surgical data science.
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A Supplementary Material

Figure 5: Scaling of synthetic samples for anatomy segmentation in the Endoscapes dataset with Seg-
former model. The addition of synthetic samples from SSI model leads to performance improvement
in four out of six classes. The synthetic samples from SAADi leads to continuous gains in dice scores
across different classes.

Figure 6: Scaling of synthetic samples for tool and anatomy segmentation on the Autolaparo dataset
with DV3 model. For this dataset, in constract to Fig. 4 and Fig. 5 the synthetic samples from the
baseline model leads to continuous increase of F1 scores for all the tools. However, the samples from
our appraoch SAADi are more aligned to task and hence they outperform the baseline and shows the
best scores for all the classes. For the Liga sure instrument we notice the scores to plateua beyond
1×.

Figure 7: Scaling of synthetic samples for tool and organ segmentation on the Autolaparo dataset.
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