

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 SELF-SUPERVISED LEARNING WITH SIDE INFORMATION

005 **Anonymous authors**

006 Paper under double-blind review

009 ABSTRACT

012 A core assumption behind many successful self-supervised learning (SSL) meth-
013 ods is that different views of the same input share the information needed for
014 downstream tasks. However, this MultiView assumption can be overly per-
015 missive in real-world settings, where task-irrelevant features may persist across
016 views and become entangled with useful signals. Motivated by challenges in
017 colonoscopy—where polyp cues must be isolated from dominant but irrelevant
018 background textures—we present an information-theoretic analysis of this gen-
019 eral failure mode in SSL. We further formalize this with our proposed Nuisance-
020 Free MultiView (NF-MV) assumption, which reframes the goal of SSL as learn-
021 ing representations that are sufficient for task-relevant information while being
022 invariant to shared nuisance structure. We theoretically show that such rep-
023 resentations yield improved generalization, and derive an idealized objective that
024 balances standard view alignment with a mutual information penalty on nuisance
025 content. To implement this in practice, we introduce a method that leverages
026 side information—auxiliary data that shares nuisance structure but does not con-
027 tain any task-relevant signals. The nuisance penalty is then approximated using a
028 Jensen-Shannon divergence between main and side representations, in a way that
029 is tractable and compatible with standard joint embedding architectures. Experi-
030 ments on synthetic tasks with spurious correlations and on real-world colonoscopy
031 datasets demonstrate that the proposed method improves generalization for a wide
032 range of SSL methods and architectures by learning the relevant features. These
033 findings highlight the benefits of explicitly modelling what should not be pre-
034 served during self-supervised learning, offering a new and practical perspective
035 on the MultiView framework.

037 1 INTRODUCTION

040 Machine learning and deep learning are rapidly transforming medical image analysis, offering
041 promising avenues to improve diagnostic accuracy and efficiency across numerous clinical appli-
042 cations. Among the applications that can benefit significantly from these advances is the detection
043 of colorectal cancer (CRC), a major global health concern with approximately two million new cases
044 detected annually (Morgan et al., 2023). Most CRCs originate from adenomatous polyps, whereas
045 hyperplastic polyps pose limited risk of transitioning to cancer (Bretthauer et al., 2022). Despite
046 its importance, colonoscopy remains highly operator-dependent, and variations in visual perception
047 and clinical skill can reduce the effectiveness of screenings (Cherubini & East, 2023). AI-based
048 systems have been proposed to assist in polyp detection and classification, but they typically rely
049 on large-scale labelled datasets — which are costly and time-consuming to obtain. Self-supervised
050 learning (SSL) offers a promising alternative by enabling models to learn useful representations
051 from unlabeled data. Some of the most successful SSL approaches are joint embedding architec-
052 tures (JEAs), which align representations of augmented views of the same input. These methods
053 are motivated by the *MultiView assumption* (Sridharan & Kakade, 2008): the relevant information
is shared across augmented views, and aligning these views encourages the encoder to learn useful
representations. Modern JEAs, such as SimCLR, Barlow Twins, and Masked Siamese Networks,

054 have achieved outstanding results relying on this assumption (Chen et al., 2020; Bardes et al., 2022;
 055 Assran et al., 2022; 2023; Hu et al., 2024; Wang et al., 2023; Hirsch et al., 2023)¹.
 056

057 However, the MultiView assumption can be overly permissive. It does not distinguish between task-
 058 relevant and task-irrelevant (nuisance) information that may be shared across views. In settings such
 059 as colonoscopy, augmented views often preserve for instance strong background textures, irrelevant
 060 to downstream diagnostic tasks. Standard SSL methods may entangle such nuisance features with
 061 the more subtle task-relevant signals, degrading downstream performance. To address this, we in-
 062 troduce the *Nuisance-Free MultiView* (NF-MV) assumption, an information-theoretic perspective
 063 on the MultiView setting that explicitly excludes shared nuisance structure from the representation.
 064 Under NF-MV, we frame the goal of SSL as learning representations sufficient for the task while
 065 being invariant to nuisance information (see Fig. 1). We implement this framework using *side in-
 066 formation*—auxiliary data that shares nuisance structure but lacks task-relevant information—and
 067 penalize representational overlap using a Jensen-Shannon divergence between main and side repre-
 068 sentations. This leads to a simple and general extension of standard joint embedding objectives. We
 069 evaluate our method on a controlled image classification task with synthetic spurious correlations
 070 and on real-world colonoscopy image analysis. Our approach leverages this typically overlooked
 071 redundancy to support more effective representation learning.
 072

082 Figure 1: Illustration of information overlap between views x_1, x_2 . Under the standard MultiView
 083 assumption (left), the learned representations encode features that support both task-relevant (\mathcal{T}_R)
 084 and task-irrelevant (\mathcal{T}_I) predictions. In contrast, our framework (right) leverages side information to
 085 promote representations that emphasize the task-relevant content.
 086
 087

088 2 BACKGROUND AND RELATED WORK 089

090 The Information Bottleneck (IB) framework (Tishby et al., 1999) provides a principled way to learn
 091 representations that are both compact and task-relevant. Given data x and target y , the goal is to
 092 learn a stochastic mapping $p(z|x)$ that compresses x into z while preserving information about y .
 093 Chechik & Tishby (2002) extended this principle by introducing a nuisance variable n , modelling
 094 task-irrelevant structures. The goal is then to learn a representation z that is informative about y but
 095 invariant to n . Inspired by this extension, we propose leveraging side information in SSL by treating
 096 samples from an auxiliary side dataset S as exemplars of nuisance factors, and encourage the model
 097 to separate them from task-relevant signals learned from our main dataset.
 098

099 **Side Information in Context.** Leveraging auxiliary datasets is an active area for research, previ-
 100 ously explored in domain adaptation and contrastive analysis. Domain Adversarial Neural Networks
 101 employ a minimax problem where a domain discriminator tries to distinguish between source and
 102 target domains, while the feature extractor learns to produce domain-invariant features that minimize
 103 a classification loss on the source domain (Ganin et al., 2016; Long et al., 2018). Similarly, Domain
 104 Separation Networks (Bousmalis et al., 2016) decompose representations into shared and private
 105 components, preserving task-relevant information while isolating domain-specific variations. In

106 ¹Masking is prone to violate this assumption in certain domains. We hypothesise that this may explain why
 107 masking-based approaches sometimes underperform in medical domains, where adaptive masking strategies
 have proven useful (Yang et al., 2023; Basu et al., 2024; Hu et al., 2024).

108 contrast to Domain Adversarial/Separation Networks, our goal is to isolate and utilize the domain-
 109 specific signals as the useful representations. In addition, these methods assume that source and
 110 target domains share the same label spaces but differ in low-level statistics, an assumption that we
 111 do not make in our work. More closely related to our work is contrastive analysis (CA). CA methods
 112 assume access to a target dataset containing both salient and common (nuisance) variations and a
 113 background dataset that contains only common patterns. Their goal is to extract the target-specific
 114 variations by contrasting against the background features (Zou et al., 2013). This is achieved by
 115 using multiple generative encoders and mutual information penalties between the target and back-
 116 ground encoders (Louiset et al., 2024a; Weinberger et al., 2022). These generative methods optimise
 117 log-likelihood objectives, and thus focus on modelling densities via the joint distribution: a strength
 118 for generation but typically less ideal for the discriminative structure needed in classification tasks,
 119 which our work focuses on. Most recently, SepCLR (Louiset et al., 2024b) employed deterministic
 120 encoders, combining CA with contrastive learning to learn the salient representations better suited
 121 for discriminative tasks. Importantly, however, CA-based techniques rely on multiple encoders and
 122 feature spaces, and thus incur substantial computational and memory costs, limiting scalability. This
 123 is particularly the case for momentum-based JEA architectures (Grill et al., 2020), which would re-
 124 quire four separate encoders to allow the implementation of CA methods. Instead, our work targets
 125 separation within a single feature space using a single encoder, aiming at negligible computational
 126 overhead and easy integration with any existing JEA method.

127 2.1 SELF-SUPERVISED LEARNING

128 Self-Supervised Learning (SSL) employs self-designed signals to establish a proxy objective be-
 129 tween the input and the signal, enabling training without additional labels. The model is initially
 130 trained using this proxy objective, and then fine-tuned on the target task. The training signals are
 131 derived from co-occurrence relationships within the data. To generate such signals, different kinds
 132 of architectures have been proposed, including generative models that reconstruct input data and
 133 Joint Embedding Architectures (JEAs). Joint Embedding Architectures process multiple views of
 134 an input signal through encoders to produce representations of the same underlying signal. The
 135 proxy objective is then to make these representations informative and mutually predictable, while
 136 avoiding trivial solutions by regularizing the feature space (Chen & He, 2021; Chen et al., 2020; He
 137 et al., 2020; Grill et al., 2020; Bardes et al., 2022). In this paper, we focus on JEA-based methods.

138 **Applications in Medical Imaging and Endoscopy.** SSL is set to become a key tool in medical
 139 and endoscopic image analysis. For instance, Wang et al. (2023) aligns spatiotemporal views to
 140 train encoders on endoscopy videos. Hirsch et al. (2023) applied the Masked Siamese Network ap-
 141 proach to endoscopic video analysis, while M²CRL (Hu et al., 2024) combines contrastive learning
 142 and masked image modelling, achieving impressive results. These methods typically rely either on
 143 private datasets or curated clips that emphasise frames with visible polyps. For example, M²CRL
 144 leverages 10 publicly available datasets totalling over 33,000 videos and 5.5 million frames, but pri-
 145 marily focuses on sequences where non-polyp frames have been filtered out. In contrast, full-length
 146 colonoscopy videos are dominated by *negative* frames. The REAL-Colon dataset (Biffi et al., 2024),
 147 which we use for pre-training in our colonoscopy experiments, reflects this distribution: 87.6%
 148 of frames contain no polyps. Developing methods and frameworks that can effectively utilise this
 149 under-explored redundancy in real-world datasets has been a central motivation for our work.

150 2.2 SSL AND THE MULTIVIEW ASSUMPTION

151 The Information Bottleneck (IB) principle offers a foundational, information-theoretic framework
 152 to interpret supervised learning. However, adapting this principle to SSL remains challenging due to
 153 architectural and assumption-specific differences (Ziv & LeCun, 2024). Nevertheless, the MultiView
 154 assumption has been widely adopted to derive a family of IB-inspired methods (Wen et al., 2024;
 155 Huang et al., 2023; Federici et al., 2020; Tsai et al., 2021; Dubois et al., 2021).

156 **Assumption 1** (MultiView Assumption (Sridharan & Kakade, 2008)). *There exists an $\varepsilon > 0$ such
 157 that:*

$$I(y; x_2|x_1) \leq \varepsilon, \quad I(y; x_1|x_2) \leq \varepsilon$$

158 *In other words, different views x_1, x_2 of the same underlying sample x do not contain substantially
 159 different information about the task label y ; the views are assumed to share task-relevant content.*

The MultiView assumption implies that the information preserved across augmented views is task-relevant. Accordingly, alignment-based objectives used in SSL and JEAs are designed to promote invariance to the transformations used to generate the views - implicitly treating the shared content as sufficient for learning useful representations. Recent work has questioned the generality of this assumption and highlighted its limitations. Tian et al. (2020) showed that different types of augmentations are optimal for different tasks, suggesting that no single set of augmentations is universally effective. Wang et al. (2022) examined the case where not all task-relevant information is shared across views, and showed that representations learned via standard SSL may be insufficient under such conditions. These perspectives are complementary but opposite to ours. While these works examine the scenario in which the MultiView assumption is too strict, our focus is on the opposite case — when the assumption is too *permissive*. Specifically, we study cases where views share not only task-relevant signals but also task-irrelevant (nuisance) structures, which can degrade the quality of learned representations.

3 IRRELEVANT INFORMATION IN JOINT EMBEDDING ARCHITECTURES

In the MultiView SSL setting for JEAs we assume access to one unlabeled dataset \mathcal{X} , and some stochastic augmentation A . We define the set of paired views as $\mathcal{U} = \{(x_1^i, x_2^i)\}^K$ where $x_1^i, x_2^i \sim A(x^i)$ and $x^i \in \mathcal{X}$. By the MultiView assumption, the downstream tasks optimized during pre-training are those satisfying Assumption 1. We denote the set of these tasks by \mathcal{T} , which can be informally associated to the overlap between views in Fig. 1. More formally, the set of tasks are induced by:

$$\mathcal{T} = \{y : I(y; x_2|x_1) < \epsilon, I(y; x_1|x_2) < \epsilon\}, \quad \epsilon > 0. \quad (1)$$

Similar to Wang et al. (2022) we use the notion of sufficient representation and minimal sufficient representation. A representation z_1^s of x_1 is sufficient for the other view x_2 if $I(z_1^s, x_2) = I(x_1, x_2)$, i.e. it keeps all shared information between x_1, x_2 . Furthermore, a representation z_1^{ms} of x_1 is minimal and sufficient if $I(z_1^{ms}, x_1) \leq I(z_1^s, x_1), \forall z_1^s$.

JEAs aim to optimize $I(z_1, z_2)$ to approximate $I(x_1, x_2)$. If the networks have enough capacity and sufficient data, the learned representations can be assumed sufficient. As the representations are learned by aligning the two views, they can also be considered minimal (Wang et al., 2022). By construction of \mathcal{T} , the representations are also minimal sufficient with respect to \mathcal{T} ². However, it is often unnecessary—and potentially harmful—for representations to be useful for all tasks induced by the MultiView assumption. Let us divide the task set into relevant and irrelevant subsets, such that $\mathcal{T} = \mathcal{T}_R \cup \mathcal{T}_I$, where the relevant tasks \mathcal{T}_R form a strict non-empty subset of \mathcal{T} . In this case, the representations learned by the JEA encoder are still sufficient for \mathcal{T}_R , but are no longer minimal with respect to it. We thus aim to learn representations that are minimal and sufficient for \mathcal{T}_R alone, which leads to better generalization for tasks of actual interest. The advantage of doing so can be formalized by an adaptation of the Xu & Raginsky bound (Xu & Raginsky, 2017, Thm. 1).

Theorem 1 (Generalization Benefit of Task-Specific Minimality). *Let \mathcal{T} be a supervised learning task with distinct alphabet \mathcal{Y} and let $\mathcal{T}' \subset \mathcal{T}$ be a strict sub-task. Let $Z = f(X)$ be minimal sufficient for \mathcal{T} and $Z' = f'(X)$ be minimal sufficient for \mathcal{T}' . Draw a training set $S = (X_1, \dots, X_n) \sim \mathcal{D}^n$, and let a fixed learning algorithm yield hypotheses $W = \mathcal{A}(Z^n)$ and $W' = \mathcal{A}((Z')^n)$. Suppose the loss $\ell(W, (X, \mathcal{T}'))$ is σ -sub-Gaussian. Then*

$$\mathbb{E}_{S,W}[\text{gen}(W, S)] \leq \sigma \sqrt{2 I(Z; X)}, \quad \mathbb{E}_{S,W'}[\text{gen}(W', S)] \leq \sigma \sqrt{2 I(Z'; X)},$$

so the upper bound for the generalisation error for Z' is strictly tighter, as $I(Z'; X) < I(Z; X)$.

This result suggests that it is preferable to use representations that are sufficient and minimal for the specific tasks of interest, rather than representations that are merely sufficient, as minimality lead to tighter generalization bounds. A formal proof and discussion can be found in the Appendix B.

Nuisance Factors. A key limitation of the MultiView assumption is that it does not distinguish between task-relevant and task-irrelevant (nuisance) information, as long as that information is shared across views. In realistic settings, shared but irrelevant factors often persist across augmentations and become entangled with the learned representation. These factors may be irrelevant or even

²Note that they are minimal w.r.t. the set of tasks, not for each individual task in \mathcal{T} .

harmful for the tasks of interest. Based on this, we propose a new perspective on the MultiView assumption. By defining what to consider as a nuisance, it is possible to control what the algorithm considers as relevant or irrelevant information. That is, the modeller specifies a structure n that should be considered irrelevant. This nuisance specification induces a family of tasks for which the nuisance carries no label information.

Assumption 2 (Nuisance-Free MultiView Assumption (NF-MV)). *Let x_1, x_2 be two views of an input x , and let n_1, n_2 be nuisance variables extracted from x_1, x_2 , respectively. We assume:*

$$I(y; x_2 | x_1) \leq \varepsilon, \quad I(y; x_1 | x_2) \leq \varepsilon, \quad \text{and} \quad I(y; n_1) = I(y; n_2) = 0$$

Then we say the Nuisance-Free MultiView assumption holds for y .

If we substitute the MultiView assumption for the proposed Nuisance-Free MultiView Assumption, a new, strictly smaller, set of tasks arise.

Definition 1 (NF-MV Induced Task Set). *Given nuisance n , we define the set of induced tasks as:*

$$\mathcal{T}_{nf}(n) := \{y : I(y; x_2 | x_1) \leq \varepsilon, \quad I(y; x_1 | x_2) \leq \varepsilon, \quad I(y; n) = 0\}$$

This task set consists of all labels that can be predicted equally well from either view *and* are independent of the nuisance. Once the modeller specifies a nuisance variable n , this isolates the subset of MultiView-induced tasks that are consistent with the modelling choice of what information should be ignored. If n is sufficiently well-defined, then $\mathcal{T}_{nf}(n)$ captures the tasks for which the learned representations should be minimal and sufficient. This can be formalised as an idealized objective: $\max_{\theta} I(f_{\theta}(x_1), f_{\theta}(x_2)) - \gamma I(f_{\theta}(x), n)$, where $\gamma > 0$ is the parameter controlling the strength of nuisance suppression, and x denotes a view of the input (either x_1 or x_2).

Side Information to Define Nuisance. The NF-MV assumption uses the existence of a nuisance variable n that is independent of task-relevant information yet persists across views. In practice, such nuisance variables are not necessarily easy to express. To address this, we propose to approximate n by using a side information dataset \mathcal{S} , containing samples that are structurally similar to the main data \mathcal{X} but irrelevant to the tasks of interest. The assumption is that the nuisance structure is approximately captured by the overlap between \mathcal{X} and \mathcal{S} . This perspective suggests an operational approach: define a binary indicator variable $B \in \{0, 1\}$ denoting the origin of a sample (main or side), and train the encoder to maximize the mutual information $I(z; B)$ instead of $I(f_{\theta}(x), n)$.

4 LEVERAGING SIDE INFORMATION VIA JENSEN-SHANNON DIVERGENCE

As motivated by the analysis above, it is preferred to learn an encoder that disentangles the nuisance features from relevant ones. To pinpoint nuisance structures we assume access to side information \mathcal{S} , that contains information that is (approximately) irrelevant but overlapping with the main dataset \mathcal{X} . The nuisance is then defined as the structural overlap between \mathcal{X} and \mathcal{S} . When working with joint embedding models in a single feature space, there are additional subtleties to consider. First, we need to have informative representations of the side information $s \sim \mathcal{S}$ in order to disregard it. If the representations $f_{\theta}(s)$ are unreliable, it is not possible to disentangle the representations of the main data $f_{\theta}(x)$ between relevant and irrelevant structures. This means that we must use some of the representational power of the encoder to represent the irrelevant structures. Second, estimating and controlling mutual information in the extremely high-dimensional feature spaces where JEA methods operate is notoriously difficult. Estimators such as CLUB (Cheng et al., 2020) and L1Out (Poole et al., 2019) suffer from high variance and bias in these high-dimensional spaces. Moreover, since they require neural network parametrization, the training procedure becomes more complex.

Estimating the Discrepancy via JSD. Taking these considerations into account, we propose a simple objective for using side information with JEAs. Let $z = f_{\theta}(A(\omega))$, where $\omega \sim M_{\alpha} = \alpha \mathcal{X} + (1 - \alpha) \mathcal{S}$, and let $B_{\alpha} \in \{0, 1\}$ be the binary indicator with $\alpha = \mathbb{P}(B = 0)$. Maximizing the mutual information $I(z; B_{\alpha})$ encourages the learned representations to retain information about whether it originated from \mathcal{X} or \mathcal{S} , supporting the goal of disentangling nuisance from task-relevant structure. The mutual information $I(z; B_{\alpha})$ can be expressed in closed form. A standard result from information theory shows that, when $\alpha = 0.5$, it holds that $I(z; B_{0.5}) = \text{JSD}(p(z | \mathcal{X}) \| p(z | \mathcal{S}))$.

270 This also holds more generally, for any α , when considering a family of weighted Jensen-Shannon
 271 divergences (proof in Appendix A, Lemma 1). Specifically ³:

$$273 \quad I(z; B_\alpha) = \text{JSD}_\alpha(p(z | \mathcal{X}) \| p(z | \mathcal{S})) = \alpha \text{KL}(p(z | \mathcal{X}) \| M_\alpha) + (1 - \alpha) \text{KL}(p(z | \mathcal{S}) \| M_\alpha), \quad (2)$$

274 where KL is the standard Kullback-Leibler divergence. This provides an estimator where the vari-
 275 ance depends on the batch size instead of on the dimensionality of the feature space, and without
 276 any need for additional neural network parametrizations.

278 **Practical Computation.** In practice, the encoder and augmentations are potentially lossy and
 279 stochastic, so we consider the JSD as a tractable approximation to $I(z; B)$. We compute softmax
 280 predictions for each input and average them within each domain to estimate the empirical class
 281 distributions, effectively treating each output neuron as a prototype label:

$$282 \quad \bar{z}_{\mathcal{X}} = \mathbb{E}_{x \sim \mathcal{X}} [\sigma(f_\theta(A(x)))], \quad \bar{z}_{\mathcal{S}} = \mathbb{E}_{s \sim \mathcal{S}} [\sigma(f_\theta(A(s)))], \quad \bar{z}_M = \mathbb{E}_{\omega \sim M_\alpha} [\sigma(f_\theta(A(\omega)))] \quad (3)$$

284 where $\sigma(\cdot) := \text{Softmax}(\cdot)$, and evaluate the weighted divergence:

$$285 \quad \text{JSD}_\alpha(\bar{z}_{\mathcal{X}} \| \bar{z}_{\mathcal{S}}) = \alpha \text{KL}(\bar{z}_{\mathcal{X}} \| \bar{z}_M) + (1 - \alpha) \text{KL}(\bar{z}_{\mathcal{S}} \| \bar{z}_M), \quad (4)$$

287 A further motivation for this approximation arises by interpreting the softmax outputs as defining
 288 a discrete auxiliary variable Y . Given a representation z , we may view $\Pr(Y = y | \sigma(z))$ as a
 289 classifier-induced label distribution. Under this view, the batch-averaged softmax vectors $\bar{z}_{\mathcal{X}}$ and
 290 $\bar{z}_{\mathcal{S}}$ provide Monte Carlo estimates of the domain-conditional label distributions $\Pr(Y | B = 0)$ and
 291 $\Pr(Y | B = 1)$. It then follows that

$$292 \quad I(Y; B) = \text{JSD}_\alpha(\mathbb{E}[\sigma(z) | B = 0] \| \mathbb{E}[\sigma(z) | B = 1]).$$

294 By the data processing inequality, $I(Y; B) \leq I(Z; B)$, so the Jensen-Shannon divergence acts as
 295 a tractable lower bound on the mutual information we aim to maximize. This perspective provides
 296 an information-theoretic justification for our estimator: although coarse, it gives a reliable signal for
 297 separating relevant and nuisance structure in the learned representation. Importantly, this objective is
 298 straightforward to compute, introduces negligible overhead, and is architecturally agnostic, making
 299 it a simple and modular addition to a wide range of SSL methods.

300 5 EXPERIMENTS

303 We first conduct experiments in a controlled setting on natural images (using Cifar), showing that
 304 side information can mitigate bias learned during SSL pre-training. To demonstrate that our
 305 approach is not tied to any specific SSL method, we performed the experiments using Barlow Twins
 306 (Zbontar et al., 2021) and CorInfoMax (Ozsoy et al., 2022). Next, we perform experiments on real-
 307 world colonoscopy data. We pre-train both the baseline Masked Siamese Network (MSN) and our
 308 proposed side information-aware variant (MSN-SI) using a similar architecture to that employed by
 309 Hirsch et al. (2023). However, we use the public REAL-Colon dataset (Biffi et al., 2024), which
 310 comprises full-procedure colonoscopy videos, retaining the 87.6% frames that are polyp-negative.

311 **Baselines.** Throughout the experiments, we compare our method against two types of baselines.
 312 The *standard baselines* are models pre-trained on the main dataset, without access to any side in-
 313 formation. For the *naive baselines* (-N), samples from the side dataset are added to the pre-training.
 314 The aim of this setting is to assess whether exposing the model to irrelevant structures is sufficient
 315 to encourage better representations. For the controlled experiments, we also compare with SepCLR
 316 Louiset et al. (2024b) from contrastive analysis.

317 5.1 CONTROLLED EXPERIMENTS

319 We construct two variants of a hybrid Cifar10+MNIST dataset: a correlated version (C-Cifar10)
 320 and an uncorrelated version (U-Cifar10). In both, MNIST (LeCun et al., 1998) digits are randomly
 321 scaled (0.5–1.0) and overlaid onto Cifar10 (Krizhevsky & Hinton, 2009) images. In C-Cifar10,

323 ³It should be noted that this only holds exactly if the representation is lossless w.r.t. the source separation,
 which is not necessarily true.

331
332
333
334
335
Figure 2: The encoder is pre-trained on the biased data and the side information. Linear and k-NN
336 classifiers are then trained on top of the frozen encoder using either the biased or the uncorrelated
337 data. Evaluation is then performed on uncorrelated data in both cases.
338
339
340
341
342
343

344 each Cifar10 class is consistently paired with the MNIST digit of the same class (e.g., class 0
345 with digit 0), introducing a spurious correlation. In U-Cifar10, digits are assigned randomly. The
346 classification target in the downstream task is the MNIST digit, making the background a task-
347 irrelevant confounder. To introduce side information, we incorporate unlabelled samples from Ci-
348 far100 (Krizhevsky & Hinton, 2009), as it shares structure with the input but is unrelated to the
349 MNIST classification task. During pre-training, a proportion R_{SI} of each batch consists of side sam-
350 ples. Our objective is to determine whether integrating side information during SSL pre-training
351 enables the encoder to focus on task-relevant signals and disregard spurious correlations.
352
353

354 **Evaluation.** Representations are evaluated using two methods: linear probing (LP) and k-nearest
355 neighbours (k-NN). For LP, a linear classifier is trained on top of the frozen encoder for 100 epochs
356 using SGD with momentum 0.9 and no weight decay. We train the LP/k-NN on either U-Cifar10
357 (allowing the model to see the correct decision boundary) or C-Cifar10 (which still contains the bias,
358 presenting a more challenging scenario). We evaluate the performance of both LP and k-NN on the
359 U-Cifar10 validation set (see Fig. 2).
360
361

362 Table 1: Accuracy comparison between baselines and our approach with side information (-SI). The
363 encoders are pre-trained on C-Cifar10: the LP/k-NN classifiers are either fitted with C-Cifar10 or
364 U-Cifar10, and always validated on U-Cifar10 (spurious correlation removed).
365
366

Method	γ	LP: C→U	k-NN: C→U	LP: U→U	k-NN: U→U
Barlow Twins	–	52.19 ± 0.65	45.22 ± 0.38	82.93 ± 0.40	71.56 ± 0.60
Barlow Twins-N	–	51.89 ± 0.68	44.56 ± 0.63	83.48 ± 0.17	71.96 ± 0.49
Barlow Twins-SI	1280	66.14 ± 0.83	62.82 ± 0.40	83.97 ± 0.35	78.33 ± 0.82
CorInfoMax	–	47.22 ± 0.30	36.65 ± 0.46	82.81 ± 0.16	71.31 ± 0.31
CorInfoMax-N	–	46.19 ± 0.23	35.58 ± 0.43	83.10 ± 0.41	71.17 ± 0.85
CorInfoMax-SI	20.0	60.29 ± 0.08	54.88 ± 0.43	83.69 ± 0.77	75.11 ± 0.42
SepCLR	–	58.00 ± 0.97	53.95 ± 1.36	81.33 ± 0.42	66.68 ± 0.74

367 **Barlow Twins and CorInfoMax.** We first evaluate our method using Barlow Twins (Zbontar
368 et al., 2021), extending the original objective with our JSD term. The modified loss becomes:
369
370

$$\mathcal{L}_{BT-SI} = \sum_i (1 - \mathbf{C}_{i,i})^2 + \eta \sum_i \sum_{j \neq i} \mathbf{C}_{i,j}^2 - \gamma \text{JSD}_\alpha(\bar{z}_\mathcal{X} \parallel \bar{z}_\mathcal{S}) \quad (5)$$

371 where \mathbf{C} is the cross-correlation matrix between paired views, and $\bar{z}_\mathcal{X}$, $\bar{z}_\mathcal{S}$ denote the average soft-
372 max outputs over samples from the main and side datasets, respectively. To show that our approach is
373 not tied to any specific method, we also apply it to CorInfoMax Ozsoy et al. (2022), an information-
374 maximization-based JEA. Specifically, we augment the original loss with the proposed JSD term:
375
376

$$\mathcal{L}_{CIM-SI} = \eta \|\mathbf{Z}^{(1)} - \mathbf{Z}^{(2)}\|_F^2 - (\log |\mathbf{R}_{\mathbf{z}^{(1)}} + \epsilon \mathbf{I}| + \log |\mathbf{R}_{\mathbf{z}^{(2)}} + \epsilon \mathbf{I}|) - \gamma \text{JSD}_\alpha(\bar{z}_\mathcal{X} \parallel \bar{z}_\mathcal{S}) \quad (6)$$

377 where $\mathbf{R}_\mathbf{z}$ is the auto-covariance matrix for each view. The first term encourages alignment of dif-
378 ferent views, while the second encourages high information content in the representations. Table 1
379 shows results for different configurations. The most informative setting is when the classifier is
380 trained on C-Cifar10 and tested on U-Cifar10, as this reveals whether the learned representations
381

themselves overcome the spurious correlation. Training on U-Cifar10, by contrast, gives the classifier direct access to the correct decision boundary, making the task easier. First, we observe that incorporating side information naively (-N) provides no noticeable gains over the respective standard baselines. However, when the methods are encouraged to separate main and side representations through the Jensen-Shannon divergence (-SI), their ability to focus on the target features improves considerably, with higher accuracy as a result. SepCLR outperforms standard and naive models, but performs worse than -SI models, despite making use of a dedicated encoder to model nuisance features. We further study the weight γ for the JSD term in Table 2. As γ increases, performance on the challenging C→U improves consistently, indicating that a stronger incentive to disentangle nuisance information yields more robust features. At large values, some over-regularization on the simpler U→U setting is observed, suggesting a trade-off between nuisance suppression and preserving within-domain variability.

Table 2: Performance for different γ (controlling the strength of the JSD term) for the SI methods.

Method	γ	LP: C→U	k-NN: C→U	LP: U→U	k-NN: U→U
Barlow Twins-SI	160	60.33 ± 0.63	54.14 ± 0.62	85.88 ± 0.29	77.44 ± 0.75
Barlow Twins-SI	320	63.93 ± 0.94	58.80 ± 1.20	86.34 ± 0.23	79.00 ± 0.25
Barlow Twins-SI	640	66.11 ± 0.36	62.23 ± 0.22	85.68 ± 0.24	79.34 ± 0.45
Barlow Twins-SI	1280	66.14 ± 0.83	62.82 ± 0.40	83.97 ± 0.35	78.33 ± 0.82
CorInfoMax-SI	1.0	48.17 ± 0.58	37.94 ± 0.39	83.72 ± 0.64	72.99 ± 0.71
CorInfoMax-SI	5.0	53.85 ± 0.47	45.06 ± 0.41	85.50 ± 0.11	76.34 ± 0.31
CorInfoMax-SI	10.0	57.97 ± 0.85	51.24 ± 0.67	85.75 ± 0.38	77.56 ± 0.17
CorInfoMax-SI	20.0	60.29 ± 0.08	54.88 ± 0.43	83.69 ± 0.77	75.11 ± 0.42

5.2 APPLICATION TO COLONOSCOPY

To show the impact of leveraging side information on real-world applications, we evaluate our method on two clinically-relevant downstream tasks in colonoscopy video analysis: 1) *Polyp histology classification*: classifying hyperplastic vs adenomatous polyps, and 2) *Polyp morphology classification*: classifying the polyp’s form and structure.

Masked Siamese Networks. We adapt the MSN framework (Assran et al., 2022) by incorporating our side information method. In addition to the original cross-entropy loss between anchor and target predictions $p^{(a)}$ and $p^{(t)}$, we compute the JSD between aggregated anchor and target predictions across main and side samples. The resulting objective is

$$\mathcal{L}_{\text{MSN-SI}} = \underbrace{\frac{1}{BM} \sum_{i=1}^B \sum_{j=1}^M H(p_i^{(t)}, p_{i,j}^{(a)})}_{\text{cross-entropy}} - \underbrace{\lambda H(\bar{p}^{(a)})}_{\text{ME-MAX}} - \underbrace{\gamma [\text{JSD}_\alpha(\bar{p}_\mathcal{X}^{(a)} \parallel \bar{p}_\mathcal{S}^{(t)}) + \text{JSD}(\bar{p}_\mathcal{S}^{(a)} \parallel \bar{p}_\mathcal{X}^{(t)})]}_{\text{anchor vs. side target}} + \underbrace{\text{side anchor vs. target}}$$

Colonoscopy Data. For pre-training, we use REAL-Colon (Biffi et al., 2024), a large and public dataset with around $2.7M$ frames from 60 recordings. REAL-Colon provides full length colonoscopy screenings, meaning that a majority of these frames are negatives without any polyps. There are in total $\sim 350K$ bounding box annotations, defining the set of positive images. The rest of the dataset is considered as the side information. We use two downstream datasets. PolypsSet (Li et al., 2021) provides bounding box annotations and binary labels for adenoma and hyperplastic polyps, with $\sim 38K$ frames from 155 video sequences split on sequence level into 75%, 10%, 15% train, validation, and test. The SUN database (Misawa et al., 2021) contains $\sim 49K$ frames taken from 100 different polyps with morphology labels. We split at the polyp level (60%/20%/20%) with class-proportion stratification and binarize the morphology classes to create our task by grouping Is, Isp, and Ip into Class I and IIa and IIa (LST-NG) into Class II, following the Paris grouping (Lambert, 2003). For both the histology and morphology classification tasks we perform linear probing. We compare our results to those reported by Hirsch et al. (2023), noting that their models were pre-trained on different datasets—both public and private—than ours, which must be taken into account in the comparisons.

Results. We report macro F1 test results for the polyp histology classification task on PolypsSet in Table 3. A model pre-trained on REAL-Colon with our choice for hyper-parameters (without incorporating side information) outperforms the best previous models pre-trained on public data by 1.5%, and by 5.5% when comparing models with identical architectures, but underperforms when compared to models pre-trained on larger private datasets. The naive incorporation (MSN-N) improves the results by another 1.7%. However, when using our proposed method (MSN-SI), we achieve a F1 macro score of 80.3%, matching the best privately trained models *while using an order of magnitude less data and fewer parameters*. This demonstrates that, when informative data is limited but relevant side information is available, our method can learn useful features more efficiently — compensating for the data disadvantage through auxiliary structure. In Table 4 we see how the downstream performance changes when incorporating different ratios of side information. Across both tasks, MSN-SI outperforms the standard baseline (MSN) at every negative-ratio setting, and it surpasses MSN-N in almost all comparisons.

Table 3: F1 test performance on PolypsSet histology classification. Supervised learning (SL) and SSL pre-training on private and public datasets are compared. Note that data differs between our setting (bottom part) and that of Hirsch et al. (2023) (upper part), their private data being one order of magnitude bigger than our public. This shows that our method learns useful features more efficiently.

Method	Framework	Arch	Private	Public
FS (Ramesh et al., 2023)	SL	RN50	-	72.1
DINO (Ramesh et al., 2023)	SSL	RN50	-	72.4
MSN (Hirsch et al., 2023)	SSL	ViT-S	78.5	70.6
MSN (Hirsch et al., 2023)	SSL	ViT-B	78.2	74.6
MSN (Hirsch et al., 2023)	SSL	ViT-L	80.4	73.6
MSN	SSL	ViT-S	-	76.1
MSN-N (ours)	SSL	ViT-S	-	77.8
MSN-SI (ours)	SSL	ViT-S	-	80.3

Table 4: Average F1, Precision, and Recall for different negative ratios for histology (PolypsSet) and morphology (SUN) classification. Standard deviations obtained by training multiple linear probes.

R_{SI}	Method	PolypsSet			SUN		
		F1	Precision	Recall	F1	Precision	Recall
0	MSN	76.1 ± 0.3	77.4 ± 0.2	75.4 ± 0.4	70.5 ± 0.6	76.0 ± 1.4	68.8 ± 0.5
12.5	MSN-N	75.9 ± 0.3	76.9 ± 0.2	75.4 ± 0.4	77.2 ± 0.5	82.8 ± 2.1	75.0 ± 0.6
	MSN-SI	77.5 ± 0.4	78.5 ± 0.2	76.9 ± 0.5	74.0 ± 1.0	79.5 ± 1.0	72.2 ± 1.2
25	MSN-N	77.2 ± 0.1	78.7 ± 0.2	76.5 ± 0.1	71.2 ± 1.1	79.3 ± 3.7	69.3 ± 0.8
	MSN-SI	80.3 ± 0.1	80.5 ± 0.1	80.1 ± 0.2	72.5 ± 0.4	78.4 ± 2.6	70.8 ± 0.8
50	MSN-N	77.8 ± 0.4	78.0 ± 0.3	77.6 ± 0.4	72.8 ± 1.6	83.7 ± 0.8	70.5 ± 1.5
	MSN-SI	78.0 ± 0.2	78.9 ± 0.2	77.5 ± 0.2	74.6 ± 1.0	83.5 ± 0.4	72.2 ± 1.0

5.3 SENSITIVITY AND HYPERPARAMETERS

NF-MV introduces two hyperparameters: the JSD weight γ and the side-information ratio R_{SI} , which specifies the proportion of main versus side samples in each minibatch. This ratio directly determines the weighting parameter α used in the weighted JSD objective in eq. 4. Although simple, these two parameters govern the balance between (i) the standard MultiView alignment objective and (ii) the nuisance-separation signal provided by side information. We summarise their behaviour below and highlight consistent patterns that appear across all SSL backbones.

JSD weight γ . The coefficient γ controls the relative scale of the JSD penalty with respect to the underlying SSL loss. Across all methods we evaluated (Tables 2, 7), we observe a broad stability region: small values introduce only a mild separation effect, while moderate values reliably improve robustness to nuisance correlations without requiring fine-tuning. As γ increases further, the encoder allocates more of its capacity to identifying nuisance structure, which strengthens the main-side

486 contrast but may lead to over-regularization if the JSD term begins to dominate the optimisation
 487 dynamics.

488 **Side-information ratio R_{SI} .** The ratio R_{SI} determines how frequently side samples appear within
 489 a minibatch and therefore how much gradient budget is allocated to modelling nuisance structure.
 490 This parameter plays a similar role to environment sampling in domain-adversarial or contrastive-
 491 analysis settings. Across experiments, we find that NF–MV is effective for a wide range of moderate
 492 ratios (Tables 4, 8, 9). Too little side information does not allow the model to learn sufficient repre-
 493 sentations of the nuisance, while a too high ratio drowns out the learning signal targeted for the main
 494 data. Importantly, these trends are stable across architectures (Barlow Twins, CorInfoMax, VICReg,
 495 BYOL), suggesting that R_{SI} primarily controls the amount of side signal rather than interacting
 496 idiosyncratically with a particular SSL design.

497 Together, γ and R_{SI} form a simple and interpretable interface: γ regulates how strongly nuisance
 498 structure is separated, while R_{SI} determines how much such structure is observed during training.
 499 In practice, both parameters exhibit wide robustness regions, and we provide default settings in our
 500 code that reproduce the results reported in the paper.

501 **Side information quality.** Consistency with the NF–MV assumption requires that the side set be
 502 approximately task-irrelevant. To assess how deviations from this assumption affect performance,
 503 we introduce controlled contamination by injecting task-relevant signal into the side set (Table 10).
 504 As expected, performance decreases as the contamination level increases, since the contrast between
 505 the main and side distributions becomes weaker. However, degradation is gradual rather than abrupt:
 506 even with non-trivial contamination, NF–MV continues to outperform the baseline. This indicates
 507 that the method does not rely on perfectly curated side information and tolerates moderate violations
 508 of $I(Y; X_{\text{side}}) = 0$.

509 The behaviour is explained by the gradient structure of the JSD term (Appendix D.6). As the two
 510 domain-conditional feature distributions move closer, the population gradient of the JSD vanishes,
 511 while the minibatch estimator retains only finite-sample noise. Thus, contamination increases the
 512 noise-to-signal ratio of the JSD gradient but does not collapse the objective. This theoretical property
 513 aligns with the empirical results: NF–MV becomes less effective under heavy contamination, yet
 514 remains stable and beneficial under moderate impurity levels.

516 6 CONCLUSION

518 Self-supervised learning (SSL) has advanced significantly, often leveraging the assumption that
 519 different views of the same input contain task-relevant information. However, we revisited this
 520 foundational *MultiView assumption* and showed that it can be overly permissive in practical set-
 521 tings—particularly when nuisance factors such as background textures or procedural artifacts persist
 522 across views. These shared but task-irrelevant features can entangle with useful signals and degrade
 523 downstream performance. To address this limitation, we introduced the *Nuisance-Free MultiView*
 524 (NF–MV) assumption, which formally distinguishes between shared, relevant information and per-
 525 sistent nuisance structure. Building on this perspective, we proposed a general and architecture-
 526 agnostic framework for incorporating *side information* into joint embedding pre-training. This en-
 527 ables learning representations that are sufficient for the task while being invariant to nuisance factors.
 528 Our method integrates a simple Jensen–Shannon divergence term into the SSL objective, penaliz-
 529 ing representational overlap between main and side data. This simple approach proves effective
 530 across both controlled synthetic setups and complex real-world domains like colonoscopy video
 531 analysis. Crucially, the kind of side information we exploit is often naturally present in real-world
 532 data pipelines but routinely discarded during dataset curation or ignored during training. Our results
 533 show that such data, when used appropriately, can serve as a powerful signal for guiding representa-
 534 tion learning—not by telling models what to learn, but by clarifying what not to learn. This shift in
 535 perspective has the potential to improve generalization when task-irrelevant structure is abundant.

536
 537
 538
 539

540 REFERENCES
541

- 542 Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes, Pascal Vincent,
543 Armand Joulin, Michael G. Rabbat, and Nicolas Ballas. Masked siamese networks for label-
544 efficient learning. In *European Conference on Computer Vision*, 2022. URL <https://api.semanticscholar.org/CorpusID:248178208>.
- 545 Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent, Michael Rabbat,
546 Yann LeCun, and Nicolas Ballas. Self-supervised learning from images with a joint-embedding
547 predictive architecture. In *2023 IEEE/CVF Conference on Computer Vision and Pattern Recog-
548 nition (CVPR)*, pp. 15619–15629, 2023. doi: 10.1109/CVPR52729.2023.01499.
- 549 Adrien Bardes, Jean Ponce, and Yann LeCun. VICReg: Variance-invariance-covariance regulariza-
550 tion for self-supervised learning. In *Proceedings of the 10th International Conference on Learning
551 Representations (ICLR)*, 2022.
- 552 Soumen Basu, Mayuna Gupta, Chetan Madan, Pankaj Gupta, and Chetan Arora. FocusMAE: Gall-
553 bladder Cancer Detection from Ultrasound Videos with Focused Masked Autoencoders . In *2024
554 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 11715–11725,
555 Los Alamitos, CA, USA, June 2024. IEEE Computer Society. doi: 10.1109/CVPR52733.2024.
556 01113. URL <https://doi.ieee.org/10.1109/CVPR52733.2024.01113>.
- 557 Carlo Biffi, Giulio Antonelli, Sebastian Bernhofer, Cesare Hassan, Daizen Hirata, Mineo Iwatate,
558 Andreas Maieron, Pietro Salvagnini, and Andrea Cherubini. REAL-Colon: A dataset for de-
559 veloping real-world AI applications in colonoscopy. *Scientific Data*, 11(1):539, 2024. ISSN
560 2052-4463. doi: 10.1038/s41597-024-03359-0. URL <https://doi.org/10.1038/s41597-024-03359-0>.
- 561 Konstantinos Bousmalis, George Trigeorgis, Nathan Silberman, Dilip Krishnan, and Dumitru Erhan.
562 Domain separation networks. In *Proceedings of the 30th International Conference on Neural
563 Information Processing Systems*, NIPS’16, pp. 343–351, Red Hook, NY, USA, 2016. Curran
564 Associates Inc. ISBN 9781510838819.
- 565 Michael Bretthauer, Magnus Løberg, Paulina Wieszczy, Mette Kalager, Louise Emilsson, Kjetil
566 Garborg, Maciej Rupinski, Evelien Dekker, Manon Spaander, Marek Bugajski, Øyvind Holme,
567 Ann G. Zauber, Nastazja D. Pilonis, Andrzej Mroz, Ernst J. Kuipers, Joy Shi, Miguel A. Hernán,
568 Hans-Olov Adami, Jaroslaw Regula, Geir Hoff, and Michal F. Kaminski. Effect of colonoscopy
569 screening on risks of colorectal cancer and related death. *New England Journal of Medicine*, 387
570 (17):1547–1556, 2022. doi: 10.1056/NEJMoa2208375. URL <https://www.nejm.org/doi/full/10.1056/NEJMoa2208375>.
- 571 Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jegou, Julien Mairal, Piotr Bojanowski,
572 and Armand Joulin. Emerging properties in self-supervised vision transformers. In *2021
573 IEEE/CVF International Conference on Computer Vision (ICCV)*, pp. 9630–9640, 2021. doi:
574 10.1109/ICCV48922.2021.00951.
- 575 Gal Chechik and Naftali Tishby. Extracting relevant structures with side information. In S. Becker,
576 S. Thrun, and K. Obermayer (eds.), *Advances in Neural Information Processing Systems*, vol-
577 ume 15. MIT Press, 2002.
- 578 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
579 contrastive learning of visual representations. *arXiv preprint arXiv:2002.05709*, 2020.
- 580 Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In *Proceedings of
581 the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, 2021.
- 582 Pengyu Cheng, Weituo Hao, Shuyang Dai, Jiachang Liu, Zhe Gan, and Lawrence Carin. CLUB:
583 A contrastive log-ratio upper bound of mutual information. In Hal Daumé III and Aarti Singh
584 (eds.), *Proceedings of the 37th International Conference on Machine Learning*, volume 119 of
585 *Proceedings of Machine Learning Research*, pp. 1779–1788. PMLR, 13–18 Jul 2020. URL
586 <https://proceedings.mlr.press/v119/cheng20b.html>.

- 594 Andrea Cherubini and James E. East. Gorilla in the room: Even experts can miss polyps at
 595 colonoscopy and how ai helps complex visual perception tasks. *Digestive and Liver Disease*,
 596 55(2):151–153, 2023. ISSN 1590-8658. URL <https://www.sciencedirect.com/science/article/pii/S159086582200737X>.
- 598 Victor Guilherme Turrisi da Costa, Enrico Fini, Moin Nabi, Nicu Sebe, and Elisa Ricci. solo-
 599 learn: A library of self-supervised methods for visual representation learning. *Journal of Machine*
 600 *Learning Research*, 23(56):1–6, 2022. URL <http://jmlr.org/papers/v23/21-1155.html>.
- 602 Yann Dubois, Benjamin Bloem-Reddy, Karen Ullrich, and Chris J Maddison. Lossy
 603 compression for lossless prediction. In M. Ranzato, A. Beygelzimer, Y. Dauphin,
 604 P.S. Liang, and J. Wortman Vaughan (eds.), *Advances in Neural Information Pro-*
 605 *cessing Systems*, volume 34, pp. 14014–14028. Curran Associates, Inc., 2021. URL
 606 https://proceedings.neurips.cc/paper_files/paper/2021/file/7535bbb91c8fde347ad861f293126633-Paper.pdf.
- 608 Marco Federici, Anjan Dutta, Patrick Forré, Nate Kushman, and Zeynep Akata. Learning robust
 609 representations via multi-view information bottleneck. In *International Conference on Learning*
 610 *Representations*, 2020.
- 612 Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pascal Germain, Hugo Larochelle, François
 613 Laviolette, Mario Marchand, and Victor Lempitsky. Domain-adversarial training of neural net-
 614 works. *J. Mach. Learn. Res.*, 17(1):2096–2030, January 2016. ISSN 1532-4435.
- 615 Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond, Elena
 616 Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Mohammad Gheshlaghi
 617 Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent
 618 a new approach to self-supervised learning. In *Proceedings of the 34th International Confer-*
 619 *ence on Neural Information Processing Systems*, NIPS ’20, Red Hook, NY, USA, 2020. Curran
 620 Associates Inc. ISBN 9781713829546.
- 621 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 622 unsupervised visual representation learning. In *2020 IEEE/CVF Conference on Computer Vision*
 623 *and Pattern Recognition (CVPR)*, pp. 9726–9735, 2020. doi: 10.1109/CVPR42600.2020.00975.
- 625 Roy Hirsch, Mathilde Caron, Regev Cohen, Amir Livne, Ron Shapiro, Tomer Golany, Roman
 626 Goldenberg, Daniel Freedman, and Ehud Rivlin. Self-supervised learning for endoscopic video
 627 analysis. In Hayit Greenspan, Anant Madabhushi, Parvin Mousavi, Septimiu Salcudean, James
 628 Duncan, Tanveer Syeda-Mahmood, and Russell Taylor (eds.), *Medical Image Computing and*
 629 *Computer Assisted Intervention – MICCAI 2023*, pp. 569–578, Cham, 2023. Springer Nature
 630 Switzerland. ISBN 978-3-031-43904-9.
- 631 Kai Hu, Ye Xiao, Yuan Zhang, and Xieping Gao. Multi-view masked contrastive representa-
 632 tion learning for endoscopic video analysis. In *The Thirty-eighth Annual Conference on Neu-*
 633 *ral Information Processing Systems*, 2024. URL <https://openreview.net/forum?id=1M67AdMBbg>.
- 635 Weitian Huang, Sirui Yang, and Hongmin Cai. Generalized information-theoretic multi-view clus-
 636 tering. In A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine (eds.), *Advances*
 637 *in Neural Information Processing Systems*, volume 36, pp. 58752–58764. Curran Associates, Inc.,
 638 2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/file/b7aa34d2d24f9bab3056993b7bfa0f1b-Paper-Conference.pdf.
- 640 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 641 <https://arxiv.org/abs/1412.6980>.
- 643 Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
 644 Technical Report 0, University of Toronto, Toronto, Ontario, 2009. URL <https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf>.
- 646 R Lambert. The paris endoscopic classification of superficial neoplastic lesions: esophagus, stom-
 647 ach, and colon: November 30 to december 1, 2002. *Gastrointest Endosc*, 58:S3–S43, 2003.

- 648 Yann LeCun, Corinna Cortes, and Christopher J.C. Burges. The MNIST database of handwritten
 649 digits. <http://yann.lecun.com/exdb/mnist/>, 1998.
 650
- 651 Kaidong Li, Mohammad I. Fathan, Krushi Patel, Tianxiao Zhang, Cuncong Zhong, Ajay Bansal,
 652 Amit Rastogi, Jean S. Wang, and Guanghui Wang. Colonoscopy polyp detection and classi-
 653 fication: Dataset creation and comparative evaluations. *PLOS ONE*, 16(8):e0255809, August
 654 2021. ISSN 1932-6203. doi: 10.1371/journal.pone.0255809. URL <http://dx.doi.org/10.1371/journal.pone.0255809>.
 655
- 656 Mingsheng Long, Zhangjie Cao, Jianmin Wang, and Michael I. Jordan. Conditional adversarial
 657 domain adaptation. In *Proceedings of the 32nd International Conference on Neural Information
 658 Processing Systems*, NIPS'18, pp. 1647–1657, Red Hook, NY, USA, 2018. Curran Associates
 659 Inc.
- 660 Robin Louiset, Edouard Duchesnay, Grigis Antoine, Benoit Dufumier, and Pietro Gori. SepVAE:
 661 a contrastive VAE to separate pathological patterns from healthy ones. In *Medical Imaging with
 662 Deep Learning*, 2024a. URL <https://openreview.net/forum?id=yLySzM5yxs>.
 663
- 664 Robin Louiset, Edouard Duchesnay, Antoine Grigis, and Pietro Gori. Separating common from
 665 salient patterns with contrastive representation learning. In *The Twelfth International Confer-
 666 ence on Learning Representations*, 2024b. URL <https://openreview.net/forum?id=30N3bNAiw3>.
 667
- 668 M. Misawa, S. E. Kudo, Y. Mori, K. Hotta, K. Ohtsuka, T. Matsuda, S. Saito, T. Kudo, T. Baba,
 669 F. Ishida, H. Itoh, M. Oda, and K. Mori. Development of a computer-aided detection system for
 670 colonoscopy and a publicly accessible large colonoscopy video database (with video). *Gastroin-
 671 testinal Endoscopy*, 93(4):960–967.e3, apr 2021. doi: 10.1016/j.gie.2020.07.060. Epub 2020 Jul
 672 31.
 673
- 674 Eileen Morgan, Melina Arnold, A Gini, V Lorenzoni, C J Cabasag, Mathieu Laversanne, Jerome Vi-
 675 gnat, Jacques Ferlay, Neil Murphy, and Freddie Bray. Global burden of colorectal cancer in 2020
 676 and 2040: incidence and mortality estimates from globocan. *Gut*, 72(2):338–344, 2023. ISSN
 677 0017-5749. doi: 10.1136/gutjnl-2022-327736. URL <https://gut.bmjjournals.org/content/72/2/338>.
 678
- 679 Frank Nielsen. On a generalization of the jensen–shannon divergence and the jensen–shannon cen-
 680 trroid. *Entropy*, 22(2):221, 2020. doi: 10.3390/e22020221. URL <https://www.mdpi.com/1099-4300/22/2/221>.
 681
- 682 Serdar Ozsoy, Shadi Hamdan, Sercan Ö. Arik, Deniz Yuret, and Alper T. Erdogan. Self-supervised
 683 learning with an information maximization criterion. In *Proceedings of the 36th International
 684 Conference on Neural Information Processing Systems*, NIPS '22, Red Hook, NY, USA, 2022.
 685 Curran Associates Inc. ISBN 9781713871088.
 686
- 687 Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On variational
 688 bounds of mutual information. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.), *Pro-
 689 ceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceed-
 690 ings of Machine Learning Research*, pp. 5171–5180. PMLR, 09–15 Jun 2019. URL <https://proceedings.mlr.press/v97/poole19a.html>.
 691
- 692 Sanat Ramesh, Vinkle Srivastav, Deepak Alapatt, Tong Yu, Aditya Murali, Luca Sestini, Chinedu In-
 693 nocent Nwoye, Idris Hamoud, Saurav Sharma, Antoine Fleurentin, Georgios Exarchakis, Alexan-
 694 dros Karargyris, and Nicolas Padoy. Dissecting self-supervised learning methods for surgi-
 695 cal computer vision. *Medical Image Analysis*, 88:102844, 2023. ISSN 1361-8415. doi:
 696 <https://doi.org/10.1016/j.media.2023.102844>. URL <https://www.sciencedirect.com/science/article/pii/S1361841523001044>.
 697
- 698 Karthik Sridharan and Sham M Kakade. An information theoretic framework for multi-view learn-
 699 ing. In *COLT*, pp. 403–414, 2008.
 700
- 701 Yonglong Tian, Chen Sun, Ben Poole, Dilip Krishnan, Cordelia Schmid, and Phillip Isola. What
 702 makes for good views for contrastive learning? In *Proceedings of the 34th International Confer-
 703 ence on Neural Information Processing Systems*, NIPS '20, Red Hook, NY, USA, 2020. Curran
 704 Associates Inc. ISBN 9781713829546.

- 702 Naftali Tishby, Fernando C. Pereira, and William Bialek. The information bottleneck method. In
 703 *Proc. of the 37-th Annual Allerton Conference on Communication, Control and Computing*, pp.
 704 368–377, 1999. URL <https://arxiv.org/abs/physics/0004057>.
- 705 Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Self-
 706 supervised learning from a multi-view perspective. In *International Conference on Learning
 707 Representations*, 2021. URL https://openreview.net/forum?id=-bdp_8Itjwp.
- 708 Haoqing Wang, Xun Guo, ZhiHong Deng, and Yan Lu. Rethinking minimal sufficient represen-
 709 tation in contrastive learning. In *2022 IEEE/CVF Conference on Computer Vision and Pattern
 710 Recognition (CVPR)*, pp. 16020–16029, 2022. doi: 10.1109/CVPR52688.2022.01557.
- 711 Zhao Wang, Chang Liu, Shaoting Zhang, and Qi Dou. Foundation model for endoscopy video anal-
 712 ysis via large-scale self-supervised pre-train. In Hayit Greenspan, Anant Madabhushi, Parvin
 713 Mousavi, Septimiu Salcudean, James Duncan, Tanveer Syeda-Mahmood, and Russell Taylor
 714 (eds.), *Medical Image Computing and Computer Assisted Intervention – MICCAI 2023*, pp. 101–
 715 111, Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-43996-4.
- 716 Ethan Weinberger, Nicasia Beebe-Wang, and Su-In Lee. Moment matching deep contrastive latent
 717 variable models. In *International Conference on Artificial Intelligence and Statistics*, 2022. URL
 718 <https://api.semanticscholar.org/CorpusID:247025539>.
- 719 Liangjian Wen, Xiasi Wang, Jianzhuang Liu, and Zenglin Xu. Mveb: Self-supervised learning with
 720 multi-view entropy bottleneck. *IEEE Transactions on Pattern Analysis and Machine Intelligence*,
 721 46(9):6097–6108, 2024. doi: 10.1109/TPAMI.2024.3380065.
- 722 Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learn-
 723 ing algorithms. In *Proceedings of the 31st International Conference on Neural Information Pro-
 724 cessing Systems*, NIPS’17, pp. 2521–2530, Red Hook, NY, USA, 2017. Curran Associates Inc.
 725 ISBN 9781510860964.
- 726 Qiushi Yang, Wuyang Li, Baopu Li, and Yixuan Yuan. Mrm: Masked relation modeling for medical
 727 image pre-training with genetics. In *2023 IEEE/CVF International Conference on Computer
 728 Vision (ICCV)*, pp. 21395–21405, 2023. doi: 10.1109/ICCV51070.2023.01961.
- 729 Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional networks, 2017.
 730 URL <https://arxiv.org/abs/1708.03888>.
- 731 Jure Zbontar, Li Jing, Ishan Misra, Yann LeCun, and Stephane Deny. Barlow twins: Self-
 732 supervised learning via redundancy reduction. In Marina Meila and Tong Zhang (eds.), *Pro-
 733 ceedings of the 38th International Conference on Machine Learning*, volume 139 of *Pro-
 734 ceedings of Machine Learning Research*, pp. 12310–12320. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/zbontar21a.html>.
- 735 Ravid Shwartz Ziv and Yann LeCun. To compress or not to compress—self-supervised learning
 736 and information theory: A review. *Entropy*, 26(3):252, 2024. ISSN 1099-4300. doi: 10.3390/
 737 e26030252. URL <https://doi.org/10.3390/e26030252>.
- 738 James Y Zou, Daniel J Hsu, David C Parkes, and Ryan P Adams. Contrastive learning us-
 739 ing spectral methods. In C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q.
 740 Weinberger (eds.), *Advances in Neural Information Processing Systems*, volume 26. Curran
 741 Associates, Inc., 2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/file/36a16a2505369e0c922b6ea7a23a56d2-Paper.pdf.
- 742
- 743
- 744
- 745
- 746
- 747
- 748
- 749
- 750
- 751
- 752
- 753
- 754
- 755

756 A JENSEN-SHANNON DIVERGENCE AND MUTUAL INFORMATION
757

758 While the connection between mutual information and the Jensen–Shannon Divergence is well-
759 known for the equiprobable setting, here we prove a more general relationship in the non-
760 equiprobable setting using the α -weighted Jensen–Shannon divergence. The Jensen–Shannon Di-
761 vergence (JSD) is a symmetrized version of the Kullback–Leibler divergence KL.

762 **Definition 2** (Jensen–Shannon Divergence). *Let P, Q be two distributions, and M the mixture $\frac{1}{2}(P + Q)$. Then:*

$$765 \quad \text{JSD}(P\|Q) = \frac{1}{2} \text{KL}(P\|M) + \frac{1}{2} \text{KL}(Q\|M), \quad (7)$$

767 It is well known that the mutual information between a random variable Z associated to the mixture
768 $M = \frac{1}{2}(P + Q)$ and the (equiprobable) binary indicator B – that specifies whether Z was drawn
769 from P or Q – can be expressed as $\text{JSD}(P\|Q)$:

$$\begin{aligned} 771 \quad I(Z; B) &= H(B) - H(B|Z) \\ 772 &= -\sum M \log M + \frac{1}{2} \left(\sum P \log P + \sum Q \log Q \right) \\ 773 &= -\sum \frac{P}{2} \log M - \sum \frac{Q}{2} \log M + \frac{1}{2} \left(\sum P \log P + \sum Q \log Q \right) \\ 774 &= \frac{1}{2} \sum P \log \frac{P}{M} + \frac{1}{2} \sum Q \log \frac{Q}{M} \\ 775 &= \text{JSD}(P\|Q) \end{aligned}$$

780 The above assumes the mixture is even, and so that the binary indicator is equiprobable with $\mathbb{P}(B = 0) = \mathbb{P}(B = 1) = \frac{1}{2}$. This can be extended to uneven mixtures, $M_\alpha = \alpha P + (1 - \alpha)Q$. In this setting
781 the indicator is not equiprobable, instead $\mathbb{P}(B = 0) = \alpha$ and the standard JSD loses its connection
782 between the indicator and mutual information. However, it can be recovered by considering a family
783 of weighted Jensen–Shannon divergences.

784 **Definition 3** (Weighted Jensen–Shannon Divergence, (Nielsen, 2020)). *Let P, Q be two distributions, and let $M_\omega = \omega P + (1 - \omega)Q$. Then:*

$$788 \quad \text{JSD}_\omega(P\|Q) = \omega \text{KL}(P\|M_\omega) + (1 - \omega) \text{KL}(Q\|M_\omega). \quad (8)$$

790 With this definition it is possible to extend the above result to a more general setting. Let the weight
791 in JSD_ω be equal to $\alpha = \mathbb{P}(B = 0)$. Let Z be a random variable associated with the mixture
792 $M_\alpha = \alpha P + (1 - \alpha)Q$, so that $\mathbb{P}(B = 0) = \alpha$ and $\mathbb{P}(B = 1) = (1 - \alpha)$. Then:

$$\begin{aligned} 793 \quad I(Z; B) &= H(B) - H(B|Z) \\ 794 &= -\sum M_\alpha \log M_\alpha + \left(\alpha \sum P \log P + (1 - \alpha) \sum Q \log Q \right) \\ 795 &= -\alpha \sum P \log M_\alpha - (1 - \alpha) \sum Q \log M_\alpha + \left(\alpha \sum P \log P + (1 - \alpha) \sum Q \log Q \right) \\ 796 &= \alpha \sum P \log \frac{P}{M_\alpha} + (1 - \alpha) \sum Q \log \frac{Q}{M_\alpha} \\ 797 &= \alpha \text{KL}_\alpha(P\|M_\alpha) + (1 - \alpha) \text{KL}(Q\|M_\alpha) \\ 798 &= \text{JSD}_\alpha(P\|Q) \end{aligned}$$

803 We state this as a lemma:

804 **Lemma 1.** *Let P, Q be two distributions and consider the mixture distribution $M_\alpha = \alpha P + (1 - \alpha)Q$. Define the binary variable B indicating from which distribution Z was drawn, such that $\mathbb{P}(B = 0) = \alpha$ and $\mathbb{P}(B = 1) = (1 - \alpha)$. Then the mutual information between Z and the indicator B is the weighted Jensen–Shannon divergence, with weight α :*

$$809 \quad I(Z; B) = \text{JSD}_\alpha(P\|Q).$$

810 B MINIMAL REPRESENTATION AND GENERALIZATION ERROR
811812 B.1 TECHNICAL PRELIMINARIES
813814 **Mutual information and entropy.** For random variables U, V on finite or countable alphabets,
815

816
$$I(U; V) = H(U) - H(U|V) = H(V) - H(V|U).$$

817 Key properties exploited in the proof are:
818819 * **Data-processing inequality:** if $U \rightarrow V \rightarrow W$, then $I(U; W) \leq I(U; V)$.
820821 * **Entropy upper-bounds mutual information:** $I(U; V) \leq H(U)$ by non-negativity of entropy.
822823 * **Sub-additivity of entropy:** $H(U_1, \dots, U_n) \leq \sum_{i=1}^n H(U_i)$.
824825 **Sub-Gaussian random variables.** A zero-mean random variable Z is called σ -sub-Gaussian
826 if $\mathbb{E}[\exp(\lambda Z)] \leq \exp(\lambda^2 \sigma^2/2)$ for all $\lambda \in \mathbb{R}$. The sub-Gaussian condition ensures that
827 the empirical-to-population loss difference concentrates at a $\sqrt{1/n}$ rate, which underpins the
828 Xu–Raginsky bound below.
829830 **Xu–Raginsky generalization bound.** For a fixed learning algorithm \mathcal{A} and any sample size n ,
831

832
$$|\text{gen}(W, S)| := \left| \mathbb{E}[\ell(W, (X, Y))] - \frac{1}{n} \sum_{i=1}^n \ell(W, (X_i, Y_i)) \right| \leq \sqrt{\frac{2\sigma^2}{n} I(S; W)}.$$

833 B.2 THEOREM AND PROOF
834835 The following theorem is an adaptation of the Xu & Raginsky bound (Xu & Raginsky, 2017,
836 Thm. 1). We restate the theorem from the main paper, Theorem 1.837 **Theorem 1** (Generalization Benefit of Task-Specific Minimality). *Let \mathcal{T} be a supervised learning task with distinct alphabet \mathcal{Y} and let $\mathcal{T}' \subset \mathcal{T}$ be a strict sub-task. Let $Z = f(X)$ be minimal sufficient for \mathcal{T} and $Z' = f'(X)$ be minimal sufficient for \mathcal{T}' . Draw a training set $S = (X_1, \dots, X_n) \sim \mathcal{D}^n$, and let a fixed learning algorithm yield hypotheses $W = \mathcal{A}(Z^n)$ and $W' = \mathcal{A}((Z')^n)$. Suppose the loss $\ell(W, (X, \mathcal{T}'))$ is σ -sub-Gaussian. Then*

838
$$\mathbb{E}_{S, W} [\text{gen}(W, S)] \leq \sigma \sqrt{2 I(Z; X)}, \quad \mathbb{E}_{S, W'} [\text{gen}(W', S)] \leq \sigma \sqrt{2 I(Z'; X)},$$

839 so the upper bound for the generalisation error for Z' is strictly tighter, as $I(Z'; X) < I(Z; X)$.
840841 *Proof. Information ordering.* Because $\mathcal{T}' \subset \mathcal{T}$, any encoder sufficient for \mathcal{T} is sufficient for \mathcal{T}' , so minimality gives $I(Z'; X) \leq I(Z; X)$. If equality held, Z would also be minimal for \mathcal{T}' , contradicting the assumption that the tasks are distinct. Hence $I(Z'; X) < I(Z; X)$.
842843 **Xu–Raginsky bounds.** Xu and Raginsky (Xu & Raginsky, 2017, Thm. 1) give, for any training
844 set S and hypothesis W ,

845
$$|\text{gen}(W, S)| \leq \sqrt{\frac{2\sigma^2}{n} I(S; W)}.$$

846 We now upper-bound $I(S; W)$ by $n I(Z; X)$ in four steps.
847848 i **Data-processing.** $Z^n = f(S)$ with f deterministic and fixed, hence
849

850
$$I(S; W) \leq I(Z^n; W).$$

851 ii **Replace mutual information by entropy.** For any pair of r.v.'s U, V , $I(U; V) \leq H(U)$, so
852

853
$$I(Z^n; W) \leq H(Z^n).$$

854 iii **Sub-additivity of entropy.** Entropy is sub-additive, $H(Z^n) \leq \sum_{i=1}^n H(Z_i)$.
855

864 iv **Deterministic encoder.** Because each $Z_i = f(X_i)$ is a deterministic function of X_i , we have
 865 $H(Z_i | X_i) = 0$ and therefore
 866

$$867 \quad H(Z_i) = I(Z_i; X_i) = I(Z; X).$$

868 Summing over i yields $\sum_{i=1}^n H(Z_i) = n I(Z; X)$.
 869

870 Combining (i)–(iv) gives the desired bound
 871

$$873 \quad I(S; W) \leq n I(Z; X),$$

874 so that
 875

$$876 \quad \mathbb{E}_{S,W} [\text{gen}(W, S)] \leq \sigma \sqrt{2 I(Z; X)}.$$

877 Applying the same four-step argument with Z' in place of Z produces the second inequality with
 878 $I(Z'; X)$. Because $I(Z'; X) < I(Z; X)$, the bound for Z' is strictly tighter.
 879

880 *Tight-bound case.* When \mathcal{A} saturates the Xu–Raginsky bound, the ordering of bounds becomes the
 881 ordering of the expected generalization errors. \square
 882

883 B.3 DISCUSSION

884 Intuitively, the less information an encoder retains about the raw input X , the fewer spurious cor-
 885 relations can be memorised by a learning algorithm \mathcal{A} , and the harder it becomes to over-fit finite
 886 samples.
 887

888 The statement formalises this intuition by comparing the information–risk trade-off of two encoders:
 889 $Z = f(X)$ is *minimal sufficient* for the *parent task* \mathcal{T} ; $Z' = f'(X)$ is minimal sufficient for the
 890 *sub-task* \mathcal{T}' , with $\mathcal{T}' \subset \mathcal{T}$.
 891

892 Because every predictor that solves \mathcal{T} necessarily solves the smaller task, a representation that is
 893 minimal for \mathcal{T}' *cannot contain more* information about X than one that is minimal for \mathcal{T} . The strict
 894 inclusion $\mathcal{T}' \subset \mathcal{T}$ makes this comparison *strict*, leading to the inequality $I(Z'; X) < I(Z; X)$.⁴
 895

896 **Assumptions.** The result rests on two assumptions that deserve emphasis.
 897

1. **Deterministic encoders.** The proof bounds $H(Z^n)$ via $H(Z_i) = I(Z; X)$, which uses
 $H(Z_i | X_i) = 0$.
2. **σ -sub-Gaussian loss.** The Xu–Raginsky inequality applies only when the per-sample loss is
 sub-Gaussian; heavy-tailed losses need alternative concentration tools.

903 C LIMITATIONS

904 *Side information availability.* Our method assumes access to auxiliary data capturing task-irrelevant
 905 structure (e.g., the $\sim 87\%$ polyp-negative frames in REAL-Colon). While such side information is
 906 often available in practice—naturally collected by endoscopes, cameras, and sensors—it is typically
 907 discarded during dataset curation in favour of compact, label-dense benchmarks. *MI proxy.* We use
 908 the Jensen–Shannon divergence between empirical feature distributions as a tractable proxy to pe-
 909 nalize representational overlap with side information. However, this measure is coarse and may not
 910 fully capture the underlying interactions. Future work may explore alternatives such as contrastive
 911 bounds, adversarial losses, or kernel-based dependence measures. *Nuisance–task independence.*
 912 Treating a dataset as side information assumes it contains only nuisance features. If the side data
 913 includes task-relevant signals, this assumption is violated and performance may degrade - however
 914 the proposed method is relatively robust with respect to this (see Table 10).
 915

916 ⁴A typical example is image classification: a representation sufficient for recognising *all* ImageNet classes
 917 carries more bits about the input than one sufficient only for, say, the binary “cat–versus–not-cat” sub-task.

918 **D ABLATIONS AND IMPLEMENTATIONS FOR CIFAR10+MNIST**
919 **EXPERIMENTS**
920

921 We specify the hyper-parameters and settings for the Cifar10+MNIST experiments here. A visuali-
922 sation of the setting (pre-training on correlated data, probing on correlated/uncorrelated data, testing
923 on uncorrelated data) can be seen in Fig. 2.
924

925 **Augmentations.** During pre-training we use the transformations defined in Table 5. We also nor-
926 malize the data with per-channel mean and standard deviation.
927

928 Table 5: Augmentations used during pre-training of CorInfoMax methods. Barlow Twins use the
929 same transformations, with the exception of Gaussian blur which is not used. A_1 and A_2 are used to
930 create the two different views of the same image. RRC denotes random resized crop and CJ denotes
931 colour jitter.
932

933

Transformation	A_1	A_2
RRC-prob.	1.0	1.0
RRC-scale	[0.08, 1]	[0.08, 1]
RRC-size	32	32
CJ-prob.	0.8	0.8
CJ-brightness offset	0.4	0.4
CJ-Contrast offset	0.4	0.4
CJ-Saturation offset	0.2	0.2
CJ-Hue max	0.1	0.1
Horizontal flip prob.	0.5	0.5
Grayscale prob.	0.2	0.2
Gaussian blur prob.	1.0	0.1
Solarization	0.0	0.2

947 **Evaluation.** We evaluate learned representations using two methods: a *linear classifier* and a
948 *weighted k-NN classifier*. For linear probing, we train a linear classifier on frozen features for 100
949 epochs using SGD with momentum 0.9 and no weight decay. The learning rate follows a cosine
950 decay schedule, starting at 0.2 and decaying to a minimum of 0.002. During training, we apply
951 only random horizontal flipping (probability 0.5) and normalization; no augmentations are applied
952 to the validation set aside from normalization using training-set statistics. For the k-NN evaluation,
953 we use a weighted k-NN classifier with temperature $T = 0.5$ and $k = 200$ neighbours. In all
954 cases, we train the probe/k-NN on either C-Cifar10 or U-Cifar10, and evaluate their performance on
955 the uncorrelated (U-Cifar10) validation set. When probing using U-Cifar10 we allow the model to
956 see data without the correlation, and unlearn the shortcut. The most challenging case is when the
957 probing data also contains the bias, using C-Cifar10 both for training the classifier and the encoder.
958

959 **D.1 CORINFOMAX**

960 Our implementation and hyper-parameter selection is based on the original implementation of Cor-
961 InfoMax from Ozsoy et al. (2022). Our implementation was also tested on regular CIFAR10, to
962 assert correctness, showing performance that aligns with the original implementation. All hyper-
963 parameters are chosen based on single runs to keep the number of experiments feasible.
964

965 **Architecture and Projector.** As is standard we use a modified ResNet-18 without max pooling
966 and a 3×3 kernel for the first convolutional layer to accommodate for the low resolution images.
967 The projection head is a 3-layer MLP [2048 – 2048 – 64].
968

969 **Optimization.** All models are pre-trained for 1000 epochs with a batch size of 512 using SGD
970 (momentum 0.9, weight decay $1e - 4$). The learning rate follows a cosine decay schedule with
971 linear warm-up. The starting learning rate is 0.003, which increases over 10 warm-up epochs to the
maximum learning rate of 0.5. The minimum learning rate is set at $1e - 6$.
972

972 **Loss scale.** In the original implementation it is reported that using $\eta = 250$ yields the best performance after having tried $\eta \in [250, 500, 1000]$. In our experiments we performed a sweep over $\eta \in [100, 250]$ for the baselines. We find that using $\eta = 100$ performs best in our setting (see Table 973 6). We hypothesise that this is due to our choice for the pre-training dataset that now carries less 974 information about the downstream task as compared with the original Cifar10 setting. Using the 975 optimal hyper-parameters found for the baselines, we conducted a sweep over $\gamma \in [1, 5, 10, 20]$ to 976 find the appropriate weighting for the additional loss term associated with side information. We use 977 warm-up and a linear schedule for γ , to allow the model to learn stable representations of the side 978 information before removing it as discussed in Section 4. The warm-up lasts for 100 epochs with 979 $\gamma_w = 0$, which then linearly increases for the remaining of the training to the final value γ . 980
981

982 Table 6: Accuracy for the baselines CorInfoMax and CorInfoMax-N over different values of η .
983

Method	η	R_{SI}	LP: C→U	k-NN: C→U	LP: U→U	k-NN: U→U
CorInfoMax	100	-	47.26	36.51	82.94	71.57
CorInfoMax	250	-	45.78	33.65	82.27	70.24
CorInfoMax-N	100	10%	46.04	35.18	83.35	70.88
CorInfoMax-N	250	10%	45.89	33.76	83.57	71.38

991 D.2 BARLOW TWINS

992 Our implementation is based on da Costa et al. (2022), since this achieves better performance than
993 the original implementation of Barlow Twins Zbontar et al. (2021). Our implementation was also
994 tested on regular CIFAR10, to assert correctness, showing performance that aligns with the imple-
995 mentation from da Costa et al. (2022).
996
997

998 **Architecture and Projector.** We use a ResNet-18 without max pooling and a 3×3 kernel for the
999 first convolutional layer to accommodate for the low resolution images. The projection head is a
1000 3-layer MLP [2048 – 2048 – 2048].
1001

1002 **Optimization.** All models are pre-trained for 1000 epochs with a batch size of 256 using LARS
1003 You et al. (2017) (trust coefficient 0.2, weight decay $1e - 4$, exclude bias and norm True). The
1004 learning rate follows a cosine decay schedule with linear warm-up. The starting learning rate is
1005 $3e - 5$, which increases over 10 warm-up epochs to the maximum learning rate of 0.3. Minimum
1006 learning rate is set to 0.
1007

1008 **Loss scale.** The invariance weight η is set to 0.0051, and the total loss scaled with 0.1. We do not
1009 apply the loss scaling to our additional loss term. We perform a sweep $\gamma \in [160, 320, 640, 1280]$
1010 to see its effect. As with CorInfoMax-SI we use warm-up and a linear schedule for γ , to allow
1011 the model to learn stable representations of the side information before introducing the weighted
1012 Jensen-Shannon divergence loss. The warm-up lasts for 100 epochs with $\gamma_w = 0$, which then
1013 linearly increases for the remaining of the training to the final value γ .
1014

1015 D.3 SEPCLR

1016 Our implementation of SepCLR direclty follows that of the original from Louiset et al. (2024b).
1017

1018 **Architecture and Projector.** We use a ResNet-18 without max pooling and a 3×3 kernel for
1019 the first convolutional layer to accommodate for the low resolution images for both the salient and
1020 common encoder. The projection heads are 3-layer MLPs [32 – 128 – 32].
1021

1022 **Optimization.** The models are pretrained for 500 epochs with a batch-size of 512 using the Adam
1023 optimizer (Kingma & Ba, 2017). While Barlow Twins and CorInfoMax was pretrained for 1000
1024 epochs, training SepCLR for 500 epochs consumes about the same computational efforts (slightly
1025 more), and the training saturated. Following their implementation a constant learning rate of $3e - 4$
is used, with momentum 0.9 and no weight-decay.
1026

1026 **Augmentations.** In the reported experiments, the model was trained with augmentations as de-
 1027 scribed in the original paper, with the only difference being the crop-size used, as we used 32x32
 1028 sized crops during training and evaluation to conform with the other experiments. We also tried
 1029 using stronger augmentations, as used in our Barlow Twins experiments, but did not see any im-
 1030 provements from this.
 1031

1032 **On the Comparison.** SepCLR trains one salient encoder and one target encoder. The goal of the
 1033 salient encoder is to learn the digit representations, which we are interested in. Thus, the common
 1034 encoder is not used for downstream testing in our experiments. Furthermore, the salient encoder
 1035 learns a euclidean feature space, different from what is commonly used in SSL, where ℓ_2 normalised
 1036 features are most often used. Due to this, we evaluate the salient encoder without normalising the
 1037 raw features from the salient backbone, as we find this improves the performance of SepCLR. For
 1038 Barlow Twins and CorInfoMax we use normalisation. It should be noted that one of the strengths
 1039 of SepCLR is to remove the salient variations from the common space - something we do not test
 1040 for here, as this is not purpose of our work, and is difficult to compare between single and double
 1041 encoder frameworks.
 1042

1043 D.4 ADDITIONAL RESULTS WITH VICREG AND BYOL

1044 To further validate the approach, we have implemented our method for VICReg Bardes et al. (2022)
 1045 and BYOL Grill et al. (2020). Both implementation follows that from da Costa et al. (2022), and
 1046 the results can be seen in Table 7, where we see significant improvements for these methods as well,
 1047 and similar hyperparameter patterns.
 1048

1049 Table 7: Accuracy comparison between baselines and our approach with side information (-SI). The
 1050 encoders are pre-trained on C-Cifar10: the LP/k-NN classifiers are either fitted with C-Cifar10 or
 1051 U-Cifar10, and always validated on U-Cifar10 (spurious correlation removed).

Method	γ	LP: C \rightarrow U	k-NN: C \rightarrow U	LP: U \rightarrow U	k-NN: U \rightarrow U
VICReg	–	49.64	44.82	79.20	64.00
VICReg-SI	40	55.11	50.44	82.38	69.50
VICReg-SI	80	59.94	55.03	84.27	73.08
VICReg-SI	160	65.65	61.48	84.88	76.06
VICReg-SI	320	66.55	62.96	83.48	76.60
BYOL	–	53.46	43.05	83.28	74.23
BYOL-SI	2	58.05	49.84	84.35	77.78
BYOL-SI	4	57.76	50.80	83.89	77.84
BYOL-SI	8	58.90	53.04	83.12	77.54

1064 D.5 SIDE INFORMATION RATIO

1066 We investigate how the amount of side information in each batch affects the performance of the
 1067 models. Here we have chosen the best performing hyper-parameters from Table 2 ($\gamma = 640$). We
 1068 notice that combining a high γ with a high ratio of side information R_{SI} can destabilize the loss
 1069 during training, leading to sub-optimal performance as seen in Tables 8 and 9.
 1070

1071 Table 8: Accuracy over different negative ratios using Barlow Twins with side information.
 1072

Method	γ	R_{SI}	LP: C \rightarrow U	k-NN: C \rightarrow U	LP: U \rightarrow U	k-NN: U \rightarrow U
BT	-	-	51.50	44.98	83.05	70.86
BT-SI	640	12.5%	66.44	62.61	85.60	79.19
BT-SI	640	25.0%	67.83	64.99	85.52	78.72
BT-SI	640	50.0%	61.04	57.41	81.07	74.31

1080
1081
1082 Table 9: Accuracy over different negative ratios using CorInfoMax with side information.
1083
1084
1085
1086
1087
1088
1089
1090

Method	R_{SI}	LP: C→U	k-NN: C→U	LP: U→U	k-NN: U→U
CorInfoMax	-	46.90	36.28	82.64	70.96
CorInfoMax-N	12.5%	46.81	36.59	83.40	71.38
CorInfoMax-N	25.0%	45.86	35.46	82.29	70.47
CorInfoMax-N	50.0%	45.77	37.03	81.90	70.02
CorInfoMax-SI	12.5%	60.90	54.97	83.07	75.07
CorInfoMax-SI	25.0%	62.58	57.33	82.49	74.59
CorInfoMax-SI	50.0%	55.36	51.64	75.66	66.82

1091
1092
1093 D.6 SENSITIVITY TO SIDE INFORMATION IMPURITY
1094

1095 To evaluate the impact of contamination of side data (where task relevant signals exist in the side
1096 information) on or method, we conduct empirical and qualitative analysis. In the empirical study,
1097 task-relevant information is introduced to the side data at different levels. For the qualitative we
1098 describe why the proposed JSD method is relatively robust to such imperfections.

1099 **Empirical Study** A fraction of the side information is corrupted by replacing it with samples that
1100 contain the target feature, i.e. an MNIST digit. To preserve the correlated structure of the main setup,
1101 we used CIFAR10 as side information rather than CIFAR100, allowing for a one-to-one mapping
1102 between CIFAR10 classes and MNIST digits, while leaving all other settings unchanged. We then
1103 trained Barlow Twins encoders under different corruption ratios and evaluated transfer performance
1104 on U-CIFAR10 via linear probing and k-NN (Table 10). As expected, increasing the proportion of
1105 task-relevant side information consistently degrades performance, highlighting that the benefit of
1106 side information arises from its independence with respect to the main task. Yet, the model still
1107 outperforms the baseline, showing robustness to limited target features in the side information.

1108 Table 10: Ablation on the effect of corrupting the side information with task-relevant signal. We
1109 replace a fraction of side data with CIFAR10–MNIST correlated pairs, while keeping all other set-
1110 tings unchanged. Performance is reported as linear probing (LP) and k-NN transfer from correlated
1111 to uncorrelated CIFAR10.

Method	LP: C→U	k-NN: C→U
BT-SI (0%)	66.11	60.81
BT-SI (5%)	63.84	58.41
BT-SI (20%)	64.18	57.75
BT-SI (40%)	61.37	55.23

1119
1120 **Qualitative Analysis** We begin by considering the behaviour of the JSD penalty in a limiting case
1121 of contamination. The JSD penalty promotes separation between $p_\theta(z | X_{\text{main}})$ and $p_\theta(z | X_{\text{side}})$; as
1122 contamination grows, these two feature distributions move closer. In the limiting case where X_{main}
1123 and X_{side} are drawn from the same input distribution, we have $p_\theta(z | X_{\text{main}}) = p_\theta(z | X_{\text{side}})$ for all
1124 θ , and hence

$$1125 \text{JSD}(p_\theta(z | X_{\text{main}}) \| p_\theta(z | X_{\text{side}})) \equiv 0,$$

1126 so its population gradient vanishes, $\nabla_\theta \text{JSD} = 0$. In practice we optimise a minibatch estimator,
1127 whose expected gradient is then zero and whose residual contribution is due to finite-sample noise.
1128 This explains why the operational method (JSD) is robust to contamination of side information: it
1129 introduces additional noise into the gradients, but does not collapse the objective.

1130 The analysis can be extended to the partial contamination case where $P_\theta := p_\theta(z | X_{\text{main}})$
1131 and $Q_\theta := p_\theta(z | X_{\text{side}})$ become close. In this regime the log-density ratios $\log(P_\theta/M_\theta)$ and
1132 $\log(Q_\theta/M_\theta)$ shrink towards zero, and since JSD is an f -divergence, its population gradient vanishes
1133 at least quadratically in the distributional difference. A minibatch estimator, however, replaces the

1134 expectations by averages over a fixed batch size B , so its variability is determined by finite-sample
 1135 fluctuations of these log-ratio terms. These fluctuations decrease only through the usual $1/\sqrt{B}$ scal-
 1136 ing of sample means and therefore do not vanish at the same rate as the population gradient when
 1137 $P_\theta \rightarrow Q_\theta$. As a result, the *noise-to-signal ratio* of the JSD gradient increases as contamina-
 1138 tion grows; in the limit $P_\theta = Q_\theta$, the signal disappears while the estimator reduces to pure sampling
 1139 noise. This explains why under contamination the JSD term becomes increasingly noisy, possibly
 1140 hurting training dynamics.

1141 This qualitative picture is consistent with our empirical study (Table 10), where performance de-
 1142 grades as side information becomes more contaminated, rather than collapsing learning.
 1143

1144 **D.7 VISUALIZATION OF THE LEARNED REPRESENTATIONS**

1145 In Fig. 3 we show the result of applying t-SNE to visualise the raw features from the pre-trained
 1146 backbones for Barlow Twins with and without side information. It is clear that both models perform
 1147 better on the correlated validation set (C-Cifar10), where the Cifar10 shortcut can be leveraged.
 1148 When the shortcut is removed (U-Cifar10), baseline Barlow Twins does not separate classes well.
 1149 Instead, our proposed method (Barlow Twins with side information) can separate the classes even in
 1150 this scenario, indicating that the correct discriminating features have been learned more effectively.
 1151

1152 **Figure 3: Barlow Twins on (C,U)-Cifar10:** t-SNE visualizations of feature embeddings for the
 1153 correlated (C-Cifar10, left) and uncorrelated (U-Cifar10, right) validation sets. Each row shows the
 1154 learned representations from a different method, Barlow Twins (top) and Barlow Twins-SI (bottom).
 1155 The colours represent the different MNIST classes in the (C,U)-Cifar10 images.
 1156

1157 **Barlow Twins (Baseline):** Strong class separation on the correlated
 1158 validation set (left), but major collapse on the uncorrelated set (right).
 1159

1160 **Barlow Twins-SI (Ours):** Learns well-separated features on both
 1161 domains, demonstrating better generalization to the uncorrelated
 1162 setting.
 1163
 1164
 1165
 1166
 1167
 1168
 1169
 1170
 1171
 1172
 1173
 1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187
 1188

1188 E COLONOSCOPY EXPERIMENTS
11891190 E.1 DATA PROCESSING AND SIDE INFORMATION
1191

1192 To obtain side information, we use the bounding box annotations provided by the REAL-Colon
1193 dataset. These annotations are precise, and some bounding boxes are very small. We therefore apply
1194 size-based filtering: bounding boxes smaller than 10% of the image diagonal or 10% of the image
1195 area are excluded during training. When sampling negative examples (used as side information),
1196 we sample uniformly across the entire dataset after subtracting the bounding boxes. If an image
1197 contains a bounding box, we extract a crop from outside the bounding box (as large as possible),
1198 applying the same thresholding criteria used for positive crops.

1199 **Hyper-parameters.** Significant computational resources and manual effort were devoted to tuning
1200 a strong baseline. All optimization hyper-parameters were selected based on performance on
1201 the validation split of the PolypsSet dataset, using a baseline model trained without side information.
1202 These hyper-parameters were then held constant across all model variants to ensure a fair
1203 comparison. We use a ViT-S backbone initialized from a DINO (Caron et al., 2021) checkpoint and
1204 pre-train for 30 epochs using the AdamW optimizer with a cosine learning rate schedule, including
1205 5 warm-up epochs. A complete summary of the hyper-parameters is provided in Table 11.

1207 Table 11: Pre-training hyper-parameters.
1208

1209 Parameter	1210 Value	1209 Parameter	1210 Value
1211 Learning rate (start / final)	0.0004 / 0.001	1211 Final tail LR	0.001
1212 Weight decay	0.01	1212 Clip gradient	3.0
1213 Epochs	30	1213 Cosine schedule	Yes
1214 Warmup epochs	5	1214 Batch size	512
1215 Model	ViT-Small	1215 Hidden dim	2048
1216 Output dim	256	1216 Drop path rate	0.0
1217 Use BN / FP16	True / False	1217 Pretrained weights	DINO-ViT-S

1218 **Loss Configuration and SSL-Specific Parameters.** We used ME-MAX regularization and
1219 Sinkhorn normalization. We found that using stronger ME-MAX regularization was beneficial in
1220 some settings, so we trained models with ME-MAX strength 1 and 3. Table 12 summarizes these
1221 settings.
1222

1223 Table 12: SSL loss configuration and architectural settings.
1224

1225 Parameter	1226 Value	1225 Parameter	1226 Value
1227 ME-MAX regularization	Enabled	1227 ME-MAX weight	1.0 / 3.0
1228 Sinkhorn normalization	Enabled	1228 Num. prototypes	1024
1229 Temperature	0.1	1229 Use sharpening	Yes
1230 Sharpening start / final	0.25 / 0.25	1230 Use Sinkhorn	True

1231 **Augmentations.** We follow the augmentation pipeline proposed by Hirsch et al. Hirsch et al.
1232 (2023). Each image is first resized to 256×256 and then augmented into one global view and
1233 six focal views using a multi-crop strategy. Global views use a crop scale of $[0.5, 1.0]$ while focal
1234 views use $[0.1, 0.5]$. All views are normalized using domain-specific statistics. Colour jitter,
1235 grayscale augmentation, and horizontal flipping are applied stochastically. Table 13 lists the relevant
1236 parameters.
1237

1238 **Model Selection.** For each method (MSN, MSN-N, MSN-SI), we selected the configuration that
1239 achieved the best performance on the PolypsSet validation set. Linear probing follows the procedure
1240 of Hirsch et al. (2023), with the difference that we use a single optimizer (Adam Kingma & Ba
1241 (2017)) throughout. The best-performing classifier checkpoint is selected from a single seed run,

Table 13: Data augmentation parameters.

Parameter	Value	Parameter	Value
Image resize	(256, 256)	Color jitter strength	0.5
Global crop size	224	Focal crop size	96
Global crop scale	[0.5, 1.0]	Focal crop scale	[0.1, 0.5]
Rand / Focal views	1 / 6	Normalize mean	(0.656, 0.370, 0.268)
Normalize std	(0.0838, 0.0852, 0.0719)	Interpolation	Bicubic
Random flip	$p = 0.5$	Grayscale	$p = 0.2$
Masking Ratio	75%		

after which we re-train the linear probes using multiple seeds to assess performance variability. Linear probes are trained for 20 epochs, as training typically plateaus early. Learning rates were selected via grid search over $\{1e-3, 5e-4, 1e-4\}$.

E.2 SCHEMATIC OVERVIEW

A schematic view of how side information is incorporated in the MSN architecture can be seen in Fig. 4.

Figure 4: Network schematic for our MSN framework leveraging side information (MSN-SI).

Compute and Memory. The dataset used in our experiments, REAL-Colon, is large-scale, consisting of approximately 2.7 million high-resolution images occupying around 1TB of storage. For training, we use image crops defined by bounding boxes, resulting in roughly 350,000 samples. After applying a size threshold to filter out the smallest crops, this is reduced to about 300,000 images. When incorporating side information, the number of samples per epoch increases proportionally to the ratio of negative examples, which correspondingly raises the computational load. We apply a high masking ratio of 75%, which helps reduce computational demands. Nevertheless, due to the large dataset size and the generation of multiple crops per image using the MultiView transformer Assran et al. (2022), training remains computationally intensive. Using $2 \times$ A100 80GB GPUs, the total training time (excluding side information) is approximately 8 hours when training for 30 epochs.

E.3 ABLATIONS

Table 14 (left) shows validation performance of the baseline (0% negatives) under different combinations of epochs, masking ratio (MR), and ME-MAX regularization strength (λ). Table 14 (right) compares performance under standard vs. stronger ME-MAX regularization, showing that MSN-SI benefits from increased regularization.

1296
 1297
 1298
 1299
 1300
 1301
 1302
 1303
 1304
 1305
 1306
 1307
 1308
 1309
 1310
 1311
 1312
 1313
 1314
 1315
 1316
 1317
 1318
 1319
 1320

Table 14: Overview of baseline (0% negatives) hyperparameter search (left) and ME-MAX regularizer strength (λ) over different negative ratios (right). All numbers are from the validation set of PolypsSet.

1321

(a) Hyperparameter Search			
MR(%)	Epochs	λ	F1
50	30	1	77.1
75	10	1	75.5
75	30	1	77.4
75	30	3	78.3
75	50	1	73.8

1322

(b) ME-MAX Regularization					
Method	λ	0	12.5	25	50
MSN-N	1	77.4	78.6	75.3	74.9
	3	78.3	77.3	75.6	–
MSN-SI	1	–	73.3	74.70	–
	3	–	75.8	78.2	77.9

1329
 1330
 1331
 1332
 1333
 1334
 1335
 1336
 1337
 1338
 1339
 1340
 1341
 1342
 1343
 1344
 1345
 1346
 1347
 1348
 1349