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Abstract001

We describe an experiment that isolates concep-002
tual semantics by averaging concept activations003
derived via Sparse Autoencoders. By translat-004
ing between natural languages and averaging005
the concept vectors we can mechanistically in-006
terpret more accurate meaning from internal007
states. We apply the experiment to the domain008
of Ontology Alignment, which seeks to align009
concepts across different representations of do-010
mains. Our results show that improvements011
occur when averaging the concept activations012
of English texts and their French and Chinese013
translations. The trend of improvement corre-014
lates to the reduction in symbolic representa-015
tion from French to Chinese, indicating that the016
overall process is isolating conceptual seman-017
tics by averaging out language specific sym-018
bolic representations.019

1 Introduction020

We parse OWL ontology classes into text repre-021

sentations and use these as prompts to input into022

Sparse Autoencoders (SAEs). The output concept023

set of activations is initially noisy (low correlation024

from final analysis) and so we perform a natural025

language translation and compare the translated026

text’s concept activations. The resulting average027

of different natural language text representations is028

more semantically relevant to the annotated ground029

truth that accompanies the corpus (from the Ontol-030

ogy Alignment Evaluation Initiative 2024 1). We031

compare the concept activations for each ontology032

class and correlate with the ground truth class map-033

pings. We find that the difference between the034

multi-language averages and the single language035

analyses is significant and that the effect of trans-036

lating and averaging appears to isolate conceptual037

semantics.038

1https://oaei.ontologymatching.org/2024/
conference/index.html

2 Related Work 039

An ontology in general terms can be thought of as 040

a formal representation of a domain of knowledge. 041

Any representation has to be subjective and, in 042

practice, ontologies tend to be bespoke to a domain 043

or application. 044

2.1 Ontology Parsing 045

OWL2 ontologies are a standard, machine-readable 046

and flexible format for representing any domain. 047

Due to the subjective nature of semantic represen- 048

tation, our goal of creating a text prompt from an 049

OWL ontology is also subjective. The extraction 050

of OWL classes, properties and relationships can 051

be performed with libraries for various program- 052

ming languages (we used OWLAPI (Horridge and 053

Bechhofer, 2011)), and tools have been created to 054

generalise text extraction, e.g. NaturalOWL (An- 055

droutsopoulos et al., 2013) and OWL Verbalizer 056

(Kaljurand and Fuchs, 2007). The recursive con- 057

cept verbaliser approach for ontology subsumption 058

inference (He et al., 2023) presents a toolbox for 059

OWL ontology analysis (OntoLAMA). 060

2.2 Ontology Alignment 061

The challenge of matching concepts between ontol- 062

ogy representations is as old as the representations 063

themselves. Since 2004, the Ontology Alignment 064

Evaluation Initiative3 has provided a framework for 065

evaluating various approaches. From straightfor- 066

ward lexical approaches, through structural and se- 067

mantic techniques to more recent innovations with 068

machine learning (Qiang et al., 2023) (and a multi- 069

tude of hybrid methods (Euzenat et al., 2004; Code- 070

scu et al., 2014; Jiménez-Ruiz and Cuenca Grau, 071

2011)), we believe our research is novel in ap- 072

proaching the problem with analyses of LLM inter- 073

nal concept states. 074

2https://www.w3.org/OWL/
3https://oaei.ontologymatching.org/
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2.3 Mechanistic Interpretability and Sparse075

Autoencoders076

Mechanistic Interpretability (MI) is a domain077

which aims to interpret the internal activation states078

of neural networks for various purposes such as AI079

safety, neural network decision-making and im-080

proving network design (Sharkey et al., 2025). Our081

interest in MI is for the learned concept activations082

— the correlation between conceptual semantics083

and node activations of LLMs.084

When applied to language models, Sparse Au-085

toencoders are unsupervised algorithms that learn086

to map from latent representations to interpretable087

concepts (also called features). An SAE is a pair088

of encoder and decoder functions that compresses089

an input into a hidden representation and tries to re-090

construct the input from the hidden representation091

— thereby learning a set of activation features which092

can be correlated via techniques such as Dictionary093

Learning (Bricken et al., 2023) to a vocabulary094

of human understandable concepts. The sparsity095

controls that are applied during training result in096

a reduced set of activations that are more easily097

computed (compared with billions of activations in098

a full LLM).099

Gemma Scope (Lieberum et al., 2024) is an open100

suite of SAEs trained on Google’s Gemma 2 LLM101

— at every layer and sublayer.102

3 Method103

The corpus used in this experiment comes from the104

conference track of the Ontology Alignment Eval-105

uation Initiative 2024. Across the 16 ontologies,106

there are 867 class definitions and a set of 174 ref-107

erence class mappings as ground truth alignments.108

The method we apply can be broken down into109

stages, which are:110

1. We use the Java library OWLAPI4 to parse111

each owl ontology file. Due to the nature of owl112

representations, each ontology can take a different113

format and so the Java script has bespoke logic114

that extracts classes, any related subclasses, super-115

classes, object properties and data properties. Some116

manipulation of the representation is needed. There117

are two styles of output we create: a summary and118

a verbose version — summary and verbose exam-119

ples for the class Author are shown in quotes (A)120

and (B), below. The verbose output is a text string121

which encapsulates a description of the class and122

includes connecting and descriptive words, but the123

4https://github.com/owlcs/owlapi

summary version is simply a concatenation of the 124

target class name and any associated class names. 125

(A) Author is a SuperClassOf Presenter 126

and hasRelatedPaper Paper 127

(B) Author is a SubClassOf some writes 128

Contribution and is a SubClassOf Person 129

and is a SubClassOf only writes Contri- 130

bution and writes Contribution 131

2. We use the googletrans Python library5 to per- 132

form a natural language translation from English 133

to French. There are no parameters supplied to this 134

process - it’s a straightforward translation service. 135

Examples of French and Chinese translations of 136

summary and verbose representations are shown 137

below: 138

(C) Personne auteur uniquement Contri- 139

bution Certaines écritures Contribution 140

Contribution 141

(D) L’auteur est une sous-classe de con- 142

tribution des écritures et est une personne 143

sous-classe et est une sous-classe unique 144

en rédaction de contribution et écrit la 145

contribution 146

(E) 作者有些人写贡献只写贡献 147

(F) 作者是一个子类人，是一个仅写 148

作贡献的子阶级，并且是某些撰写贡 149

献的子类别，并写下了贡献 150

3. Using the huggingface library6 (Wolf et al., 151

2020) to access the Gemma Scope open suite of 152

sparse autoencoders, we process each text repre- 153

sentation as a prompt to a PyTorch neural network 154

(using a Jump ReLu activation function). The par- 155

ticular SAE set used here is the 2 billion parameter 156

model based on Google’s Gemma 2 Large Lan- 157

guage Model. We take every layer (0 to 25) of 158

the 16.4k width model and we take the L0 Norm 159

variant for model regularisation (the number of non- 160

zero elements in the activation vector) where the 161

average is between 13 and 23 active features as 162

possible (e.g. 13 out of 16.4k on average). If L0 is 163

set too high then features overlap and interpretabil- 164

ity breaks down. Set L0 too low and the network 165

underfits and misses important structures. The out- 166

put is a set of concepts and an activation weighting. 167

An example tensor with 8 concept identifiers and 168

activation values is shown in (G). 169

5https://pypi.org/project/googletrans/
6https://huggingface.co/google/gemma-scope
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(G) [[ 9664.0000, 50.2211], [ 3923.0000,170

25.5779], [ 4819.0000, 19.8034], [171

1072.0000, 28.4082], [ 4819.0000,172

20.4854], [15978.0000, 18.5160], [173

9271.0000, 29.4970], [ 8433.0000,174

20.8372]]175

4. The same process as in (3) is repeated for the176

translated (French and Chinese) texts.177

5. For each class representation, the English178

and translated concept activation sets are averaged,179

using a weighting average function that preferences180

the same concept activations taking the relative181

weights into account. The average is of the same182

concept identifier and weighting value format.183

6. Every class average is compared with every184

other class average using a Cosine Similarity func-185

tion. For control purposes, the similarity is also186

computed for the same language concept sets - all187

English values are compared with all English, and188

the same for the French and Chinese equivalents.189

Where the class comparison has a pre-defined map-190

ping in the ground truth dataset, we align the simi-191

larity score with a target variable value of 1, else it192

is set to 0. An example record, showing the simi-193

larity score of the Author classes from the emt and194

edas ontologies, with a target of 1 is shown below,195

at (H).196

(H) cmt-Author,edas-Author,0.8362799,1197

7. The resulting output of the previous steps,198

is a set of differences between representations of199

classes from the source ontologies. The ground200

truth class reference mappings are used to create201

a correlation between the correct relationship and202

the conceptual difference. The correlation algo-203

rithm used is the Point-Biserial Correlation, which204

is ideal for correlations between binary and contin-205

uous variables.206

Due to the nature of the corpus, the layer-by-207

layer analysis only has 174 ground truth mappings208

(from a total of 370,000 class comparisons) and209

hence there is a large class imbalance for each210

layer. We reduce the imbalance by using a random211

re-sampling to reduce the false target variable size212

to be the same as the true size.213

A further analysis was undertaken using the214

same approach, but instead of translating to French,215

simplified Chinese was used.216

Example code is available for validation7.217

7TBC

Figure 1: Summary prompt - translated correlation vs
English-only

Figure 2: Verbose prompt - translated correlation vs
English-only

4 Results 218

The outputs consist of a correlation between ontol- 219

ogy classes and over a number of variations such 220

as the nature of the text representation (either a 221

summary or verbose representation) and the layer 222

of concept activation (0-25). These results are then 223

compared at the level of language, e.g. are the En- 224

glish and French concept sets different from the 225

concept sets generated after averaging the different 226

language representations. 227

Results are shown in Figure 1, for the summary 228

text representation, and Figure 2 for the verbose 229

prompt. Both results show a clear improvement in 230

correlation after averaging the activations between 231

English and the translations (either French or Chi- 232

nese). There is a small increase in correlation when 233

we look at averages of translations between English 234

and Simplified Chinese for summary texts, but a 235

reduction for the verbose texts. 236

Table 1 shows the correlations compared. 237

NB: some results are incomplete at time of 238

writing. 239

5 Discussion 240

In the same way that “Conceptual Semantics takes 241

the meanings of words and sentences to be struc- 242

tures in the minds of language users” (Jackendoff, 243
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Text Version Language Correlation
Summary English only 0.093
Summary Avg Eng/French 0.371
Summary Avg Eng/Chinese 0.372
Verbose English only 0.004
Verbose Avg Eng/French 0.302
Verbose Avg Eng/Chinese 0.249

Table 1: Average correlations for each text version and
the translated language

2006), we might assume that LLMs have structures244

which represent the meaning of words that are pro-245

cessed through their neural network states. We246

might also assume that LLMs don’t have concepts247

of meaning in themselves, but instead are learn-248

ing and storing correspondences between symbolic249

and linguistics structures upon which LLMs are250

trained. Arguments are emerging, however, which251

show that LLMs do represent real world concepts252

(Gurnee and Tegmark, 2023 and Kim et al., 2025)253

beyond the purely linguistic. When we peek into254

the network internals (via Sparse Autoencoders)255

we often see that concepts are activated which re-256

late to surface cues such as syntactic and linguistic257

semantics, but our results show that we can reduce258

the symbolic concept space for a set of activations259

and isolate concepts that reflect a purer semantic260

representation.261

After we extract an English text version of an on-262

tology class, we put that string through a set of SAE263

neural networks and compare the concept activa-264

tions between other classes from related ontologies.265

We have a (small) set of ground truth correspon-266

dences between classes and we see a fairly weak267

correlation emerge. This is potentially due to the268

small size of the corpus and also the relatively sub-269

jective extraction from OWL representation to a270

string of words. We notice that there is a differ-271

ence in overall correlations between the summary272

extracted text and the more verbose version.273

We take the same English text and translate it to274

French and Simplified Chinese and put these two275

prompts through the same SAEs. The resulting con-276

cept activation sets are averaged for each ontology277

class between the English and French and between278

the English and Chinese versions. This represents279

a different concept activation set for each ontology280

class. When we calculate the same correlations as281

with the English only activations, we see a signifi-282

cant improvement in correspondence for the French283

translation and an even stronger correlation for the 284

Chinese translations. The difference in average cor- 285

relations between the French and Chinese (from 286

Table 1) is small, however the average percentage 287

difference is 9% (summary). 288

We suggest that the translation and averaging 289

process is removing linguistic specific concepts 290

and leaving concepts that are a purer representation 291

of the core semantics of the original prompt. The 292

trend for this pattern to be stronger for the Chinese 293

translation adds credence to the argument since 294

Chinese language tokens contains fewer syntactic 295

elements, “e.g. more frequent functional words 296

in English texts” (Wang and Jiang, 2024). Given 297

that the dataset is small and the representations and 298

translations relatively subjective, this result should 299

be validated. 300

This slightly unexpected result hints at a new 301

technique for improving conceptual analyses of 302

LLMs, especially via SAEs. We expect future re- 303

search to confirm and extend this result. 304

6 Future Work 305

We highlight some problems which we hope to 306

address in future versions of the research. 307

The accuracy of extraction of class representa- 308

tions is exposed to problems of subjectivity. Both 309

the conceptual model used to create an OWL on- 310

tology and the extraction process to create a text 311

string version are prone to idiosyncrasies in design. 312

The corpus used is relatively small, having a 313

low number of OWL classes. There is also a class 314

imbalance because there are missing ground truth 315

mappings for many OWL classes. The ground truth 316

is also a manual annotation and liable to potential 317

bias. 318

The use of SAEs for interpretability is a rela- 319

tively novel approach and there are known chal- 320

lenges e.g. feature splitting (Chanin et al., 2024), 321

terse concept dictionaries and reconstruction errors 322

(Shu et al., 2025). 323

More explicitly, these areas are in scope for next 324

steps: (i) Extend the corpora to confirm and ex- 325

plore this result, (ii) Explore a generalised ontol- 326

ogy class extraction process, (iii) Analyse concept 327

features for a common sense analysis, (iv) Apply 328

improvements in interpreting conceptual semantics 329

to Ontology Alignment tasks. 330
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7 Limitations331

At the time of writing, the results presented are332

not fully complete across all layers of the model333

(some Chinese results were not completed). Other334

limitations are described in the main text above,335

related to the subjectivity of various elements in336

the experiment.337

References338

Ion Androutsopoulos, Gerasimos Lampouras, and Dim-339
itrios Galanis. 2013. Generating natural language340
descriptions from owl ontologies: the naturalowl341
system. Journal of Artificial Intelligence Research,342
48:671–715.343

Trenton Bricken, Adly Templeton, Joshua Batson, Brian344
Chen, Adam Jermyn, Tom Conerly, Nick Turner,345
Cem Anil, Carson Denison, Amanda Askell, and 1346
others. 2023. Towards monosemanticity: Decompos-347
ing language models with dictionary learning. Trans-348
former Circuits Thread, 2.349

David Chanin, James Wilken-Smith, Tomáš Dulka,350
Hardik Bhatnagar, and Joseph Bloom. 2024. A is351
for absorption: Studying feature splitting and ab-352
sorption in sparse autoencoders. arXiv preprint353
arXiv:2409.14507.354

Mihai Codescu, Till Mossakowski, and Oliver Kutz.355
2014. A categorical approach to ontology alignment.356
In Proceedings of the 9th International Workshop on357
Ontology Matching collocated with the 13th Interna-358
tional Semantic Web Conference (ISWC 2014), Riva359
del Garda, Trentino, Italy, October 20, 2014, volume360
1317. CEUR-WS. org.361

Jérôme Euzenat, David Loup, Mohamed Touzani, and362
Petko Valtchev. 2004. Ontology alignment with ola.363
In Proc. 3rd ISWC2004 workshop on Evaluation of364
Ontology-based tools (EON), pages 59–68. No com-365
mercial editor.366

Wes Gurnee and Max Tegmark. 2023. Language367
models represent space and time. arXiv preprint368
arXiv:2310.02207.369

Yuan He, Jiaoyan Chen, Ernesto Jimenez-Ruiz, Hang370
Dong, and Ian Horrocks. 2023. Language model371
analysis for ontology subsumption inference. arXiv372
preprint arXiv:2302.06761.373

Matthew Horridge and Sean Bechhofer. 2011. The owl374
api: A java api for owl ontologies. Semantic web,375
2(1):11–21.376

Ray Jackendoff. 2006. On conceptual semantics.377

Ernesto Jiménez-Ruiz and Bernardo Cuenca Grau. 2011.378
Logmap: Logic-based and scalable ontology match-379
ing. In International Semantic Web Conference,380
pages 273–288. Springer.381

Kaarel Kaljurand and Norbert E Fuchs. 2007. Verbaliz- 382
ing owl in attempto controlled english. 383

Junsol Kim, James Evans, and Aaron Schein. 2025. 384
Linear representations of political perspective 385
emerge in large language models. arXiv preprint 386
arXiv:2503.02080. 387

Tom Lieberum, Senthooran Rajamanoharan, Arthur 388
Conmy, Lewis Smith, Nicolas Sonnerat, Vikrant 389
Varma, János Kramár, Anca Dragan, Rohin Shah, 390
and Neel Nanda. 2024. Gemma scope: Open sparse 391
autoencoders everywhere all at once on gemma 2. 392
arXiv preprint arXiv:2408.05147. 393

Zhangcheng Qiang, Weiqing Wang, and Kerry Taylor. 394
2023. Agent-om: Leveraging llm agents for ontology 395
matching. arXiv preprint arXiv:2312.00326. 396

Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lind- 397
sey, Jeff Wu, Lucius Bushnaq, Nicholas Goldowsky- 398
Dill, Stefan Heimersheim, Alejandro Ortega, Joseph 399
Bloom, and 1 others. 2025. Open problems 400
in mechanistic interpretability. arXiv preprint 401
arXiv:2501.16496. 402

Dong Shu, Xuansheng Wu, Haiyan Zhao, Daking Rai, 403
Ziyu Yao, Ninghao Liu, and Mengnan Du. 2025. A 404
survey on sparse autoencoders: Interpreting the in- 405
ternal mechanisms of large language models. arXiv 406
preprint arXiv:2503.05613. 407

Letao Wang and Yue Jiang. 2024. Do translation uni- 408
versals exist at the syntactic-semantic level? a study 409
using semantic role labeling and textual entailment 410
analysis of english-chinese translations. Humanities 411
and Social Sciences Communications, 11(1):1–12. 412

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien 413
Chaumond, Clement Delangue, Anthony Moi, Pier- 414
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, 415
Joe Davison, Sam Shleifer, Patrick von Platen, Clara 416
Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le 417
Scao, Sylvain Gugger, and 3 others. 2020. Trans- 418
formers: State-of-the-art natural language processing. 419
In Proceedings of the 2020 Conference on Empirical 420
Methods in Natural Language Processing: System 421
Demonstrations, pages 38–45, Online. Association 422
for Computational Linguistics. 423

5

https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6

	Introduction
	Related Work
	Ontology Parsing
	Ontology Alignment
	Mechanistic Interpretability and Sparse Autoencoders

	Method
	Results
	Discussion
	Future Work
	Limitations

