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Abstract

We describe an experiment that isolates concep-
tual semantics by averaging concept activations
derived via Sparse Autoencoders. By translat-
ing between natural languages and averaging
the concept vectors we can mechanistically in-
terpret more accurate meaning from internal
states. We apply the experiment to the domain
of Ontology Alignment, which seeks to align
concepts across different representations of do-
mains. Our results show that improvements
occur when averaging the concept activations
of English texts and their French and Chinese
translations. The trend of improvement corre-
lates to the reduction in symbolic representa-
tion from French to Chinese, indicating that the
overall process is isolating conceptual seman-
tics by averaging out language specific sym-
bolic representations.

1 Introduction

We parse OWL ontology classes into text repre-
sentations and use these as prompts to input into
Sparse Autoencoders (SAEs). The output concept
set of activations is initially noisy (low correlation
from final analysis) and so we perform a natural
language translation and compare the translated
text’s concept activations. The resulting average
of different natural language text representations is
more semantically relevant to the annotated ground
truth that accompanies the corpus (from the Ontol-
ogy Alignment Evaluation Initiative 2024 !). We
compare the concept activations for each ontology
class and correlate with the ground truth class map-
pings. We find that the difference between the
multi-language averages and the single language
analyses is significant and that the effect of trans-
lating and averaging appears to isolate conceptual
semantics.

1h'ctps ://oaei.ontologymatching.org/2024/
conference/index.html

2 Related Work

An ontology in general terms can be thought of as
a formal representation of a domain of knowledge.
Any representation has to be subjective and, in
practice, ontologies tend to be bespoke to a domain
or application.

2.1 Ontology Parsing

OWL? ontologies are a standard, machine-readable
and flexible format for representing any domain.
Due to the subjective nature of semantic represen-
tation, our goal of creating a text prompt from an
OWL ontology is also subjective. The extraction
of OWL classes, properties and relationships can
be performed with libraries for various program-
ming languages (we used OWLAPI (Horridge and
Bechhofer, 2011)), and tools have been created to
generalise text extraction, e.g. NaturalOWL (An-
droutsopoulos et al., 2013) and OWL Verbalizer
(Kaljurand and Fuchs, 2007). The recursive con-
cept verbaliser approach for ontology subsumption
inference (He et al., 2023) presents a toolbox for
OWL ontology analysis (OntoLAMA).

2.2 Ontology Alignment

The challenge of matching concepts between ontol-
ogy representations is as old as the representations
themselves. Since 2004, the Ontology Alignment
Evaluation Initiative® has provided a framework for
evaluating various approaches. From straightfor-
ward lexical approaches, through structural and se-
mantic techniques to more recent innovations with
machine learning (Qiang et al., 2023) (and a multi-
tude of hybrid methods (Euzenat et al., 2004; Code-
scu et al., 2014; Jiménez-Ruiz and Cuenca Grau,
2011)), we believe our research is novel in ap-
proaching the problem with analyses of LLM inter-
nal concept states.
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2.3 Mechanistic Interpretability and Sparse
Autoencoders

Mechanistic Interpretability (MI) is a domain
which aims to interpret the internal activation states
of neural networks for various purposes such as Al
safety, neural network decision-making and im-
proving network design (Sharkey et al., 2025). Our
interest in MI is for the learned concept activations
— the correlation between conceptual semantics
and node activations of LLMs.

When applied to language models, Sparse Au-
toencoders are unsupervised algorithms that learn
to map from latent representations to interpretable
concepts (also called features). An SAE is a pair
of encoder and decoder functions that compresses
an input into a hidden representation and tries to re-
construct the input from the hidden representation

— thereby learning a set of activation features which

can be correlated via techniques such as Dictionary
Learning (Bricken et al., 2023) to a vocabulary
of human understandable concepts. The sparsity
controls that are applied during training result in
a reduced set of activations that are more easily
computed (compared with billions of activations in
a full LLM).

Gemma Scope (Lieberum et al., 2024) is an open
suite of SAESs trained on Google’s Gemma 2 LLM

— at every layer and sublayer.

3 Method

The corpus used in this experiment comes from the
conference track of the Ontology Alignment Eval-
uation Initiative 2024. Across the 16 ontologies,
there are 867 class definitions and a set of 174 ref-
erence class mappings as ground truth alignments.

The method we apply can be broken down into
stages, which are:

1. We use the Java library OWLAPI* to parse
each owl ontology file. Due to the nature of owl
representations, each ontology can take a different
format and so the Java script has bespoke logic
that extracts classes, any related subclasses, super-
classes, object properties and data properties. Some
manipulation of the representation is needed. There
are two styles of output we create: a summary and
a verbose version — summary and verbose exam-
ples for the class Author are shown in quotes (A)
and (B), below. The verbose output is a text string
which encapsulates a description of the class and
includes connecting and descriptive words, but the

*https://github.com/owlcs/owlapi

summary version is simply a concatenation of the
target class name and any associated class names.

(A) Author is a SuperClassOf Presenter
and hasRelatedPaper Paper

(B) Author is a SubClassOf some writes
Contribution and is a SubClassOf Person
and is a SubClassOf only writes Contri-
bution and writes Contribution

2. We use the googletrans Python library’ to per-
form a natural language translation from English
to French. There are no parameters supplied to this
process - it’s a straightforward translation service.
Examples of French and Chinese translations of
summary and verbose representations are shown
below:

(C) Personne auteur uniquement Contri-
bution Certaines écritures Contribution
Contribution

(D) L’ auteur est une sous-classe de con-
tribution des écritures et est une personne
sous-classe et est une sous-classe unique
en rédaction de contribution et écrit la
contribution

(B) TEERLE NS 5imk A 5 ik

F) 1EEZE—PTEAN, 2—PMNE
PRSI T2, B RFERE T
BREOT2R50, FH5 T T otk

3. Using the huggingface library® (Wolf et al.,
2020) to access the Gemma Scope open suite of
sparse autoencoders, we process each text repre-
sentation as a prompt to a PyTorch neural network
(using a Jump ReLu activation function). The par-
ticular SAE set used here is the 2 billion parameter
model based on Google’s Gemma 2 Large Lan-
guage Model. We take every layer (0 to 25) of
the 16.4k width model and we take the LO Norm
variant for model regularisation (the number of non-
zero elements in the activation vector) where the
average is between 13 and 23 active features as
possible (e.g. 13 out of 16.4k on average). If LO is
set too high then features overlap and interpretabil-
ity breaks down. Set LO too low and the network
underfits and misses important structures. The out-
put is a set of concepts and an activation weighting.
An example tensor with 8 concept identifiers and
activation values is shown in (G).
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(G) [[ 9664.0000, 50.2211], [ 3923.0000,
25.5779], [ 4819.0000, 19.8034], [
1072.0000, 28.4082], [ 4819.0000,
20.4854], [15978.0000, 18.5160], [
9271.0000, 29.4970], [ 8433.0000,
20.8372]]

4. The same process as in (3) is repeated for the
translated (French and Chinese) texts.

5. For each class representation, the English
and translated concept activation sets are averaged,
using a weighting average function that preferences
the same concept activations taking the relative
weights into account. The average is of the same
concept identifier and weighting value format.

6. Every class average is compared with every
other class average using a Cosine Similarity func-
tion. For control purposes, the similarity is also
computed for the same language concept sets - all
English values are compared with all English, and
the same for the French and Chinese equivalents.
Where the class comparison has a pre-defined map-
ping in the ground truth dataset, we align the simi-
larity score with a target variable value of 1, else it
is set to 0. An example record, showing the simi-
larity score of the Author classes from the emt and
edas ontologies, with a target of / is shown below,
at (H).

(H) cmt-Author,edas-Author,0.8362799, 1

7. The resulting output of the previous steps,
is a set of differences between representations of
classes from the source ontologies. The ground
truth class reference mappings are used to create
a correlation between the correct relationship and
the conceptual difference. The correlation algo-
rithm used is the Point-Biserial Correlation, which
is ideal for correlations between binary and contin-
uous variables.

Due to the nature of the corpus, the layer-by-
layer analysis only has 174 ground truth mappings
(from a total of 370,000 class comparisons) and
hence there is a large class imbalance for each
layer. We reduce the imbalance by using a random
re-sampling to reduce the false target variable size
to be the same as the true size.

A further analysis was undertaken using the
same approach, but instead of translating to French,
simplified Chinese was used.

Example code is available for validation’.
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Figure 1: Summary prompt - translated correlation vs
English-only
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Figure 2: Verbose prompt - translated correlation vs
English-only

4 Results

The outputs consist of a correlation between ontol-
ogy classes and over a number of variations such
as the nature of the text representation (either a
summary or verbose representation) and the layer
of concept activation (0-25). These results are then
compared at the level of language, e.g. are the En-
glish and French concept sets different from the
concept sets generated after averaging the different
language representations.

Results are shown in Figure 1, for the summary
text representation, and Figure 2 for the verbose
prompt. Both results show a clear improvement in
correlation after averaging the activations between
English and the translations (either French or Chi-
nese). There is a small increase in correlation when
we look at averages of translations between English
and Simplified Chinese for summary texts, but a
reduction for the verbose texts.

Table 1 shows the correlations compared.

NB: some results are incomplete at time of
writing.

5 Discussion

In the same way that “Conceptual Semantics takes
the meanings of words and sentences to be struc-
tures in the minds of language users” (Jackendoff,



Text Version Language Correlation
Summary English only 0.093
Summary Avg Eng/French  0.371
Summary Avg Eng/Chinese 0.372
Verbose English only 0.004
Verbose Avg Eng/French  0.302
Verbose Avg Eng/Chinese  0.249

Table 1: Average correlations for each text version and
the translated language

2006), we might assume that LLMs have structures
which represent the meaning of words that are pro-
cessed through their neural network states. We
might also assume that LLMs don’t have concepts
of meaning in themselves, but instead are learn-
ing and storing correspondences between symbolic
and linguistics structures upon which LLMs are
trained. Arguments are emerging, however, which
show that LL.Ms do represent real world concepts
(Gurnee and Tegmark, 2023 and Kim et al., 2025)
beyond the purely linguistic. When we peek into
the network internals (via Sparse Autoencoders)
we often see that concepts are activated which re-
late to surface cues such as syntactic and linguistic
semantics, but our results show that we can reduce
the symbolic concept space for a set of activations
and isolate concepts that reflect a purer semantic
representation.

After we extract an English text version of an on-
tology class, we put that string through a set of SAE
neural networks and compare the concept activa-
tions between other classes from related ontologies.
We have a (small) set of ground truth correspon-
dences between classes and we see a fairly weak
correlation emerge. This is potentially due to the
small size of the corpus and also the relatively sub-
jective extraction from OWL representation to a
string of words. We notice that there is a differ-
ence in overall correlations between the summary
extracted text and the more verbose version.

We take the same English text and translate it to
French and Simplified Chinese and put these two
prompts through the same SAEs. The resulting con-
cept activation sets are averaged for each ontology
class between the English and French and between
the English and Chinese versions. This represents
a different concept activation set for each ontology
class. When we calculate the same correlations as
with the English only activations, we see a signifi-
cant improvement in correspondence for the French

translation and an even stronger correlation for the
Chinese translations. The difference in average cor-
relations between the French and Chinese (from
Table 1) is small, however the average percentage
difference is 9% (summary).

We suggest that the translation and averaging
process is removing linguistic specific concepts
and leaving concepts that are a purer representation
of the core semantics of the original prompt. The
trend for this pattern to be stronger for the Chinese
translation adds credence to the argument since
Chinese language tokens contains fewer syntactic
elements, “e.g. more frequent functional words
in English texts” (Wang and Jiang, 2024). Given
that the dataset is small and the representations and
translations relatively subjective, this result should
be validated.

This slightly unexpected result hints at a new
technique for improving conceptual analyses of
LLMs, especially via SAEs. We expect future re-
search to confirm and extend this result.

6 Future Work

We highlight some problems which we hope to
address in future versions of the research.

The accuracy of extraction of class representa-
tions is exposed to problems of subjectivity. Both
the conceptual model used to create an OWL on-
tology and the extraction process to create a text
string version are prone to idiosyncrasies in design.

The corpus used is relatively small, having a
low number of OWL classes. There is also a class
imbalance because there are missing ground truth
mappings for many OWL classes. The ground truth
is also a manual annotation and liable to potential
bias.

The use of SAEs for interpretability is a rela-
tively novel approach and there are known chal-
lenges e.g. feature splitting (Chanin et al., 2024),
terse concept dictionaries and reconstruction errors
(Shu et al., 2025).

More explicitly, these areas are in scope for next
steps: (i) Extend the corpora to confirm and ex-
plore this result, (ii) Explore a generalised ontol-
ogy class extraction process, (iii) Analyse concept
features for a common sense analysis, (iv) Apply
improvements in interpreting conceptual semantics
to Ontology Alignment tasks.



7 Limitations

At the time of writing, the results presented are
not fully complete across all layers of the model
(some Chinese results were not completed). Other
limitations are described in the main text above,
related to the subjectivity of various elements in
the experiment.
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