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Abstract

Deepfake detection models face two critical challenges: generalization to unseen
manipulations and demographic fairness among population groups. However,
existing approaches often demonstrate that these two objectives are inherently
conflicting, revealing a trade-off between them. In this paper, we, for the first
time, uncover and formally define a causal relationship between fairness and gen-
eralization. Building on the back-door adjustment, we show that controlling for
confounders (data distribution and model capacity) enables improved generaliza-
tion via fairness interventions. Motivated by this insight, we propose Demographic
Attribute-insensitive Intervention Detection (DAID), a plug-and-play framework
composed of: i) Demographic-aware data rebalancing, which employs inverse-
propensity weighting and subgroup-wise feature normalization to neutralize dis-
tributional biases; and ii) Demographic-agnostic feature aggregation, which uses
a novel alignment loss to suppress sensitive-attribute signals. Across three cross-
domain benchmarks, DAID consistently achieves superior performance in both
fairness and generalization compared to several state-of-the-art detectors, validating
both its theoretical foundation and practical effectiveness.

1 Introduction

With the advancement of cutting-edge facial synthesis models, attackers can generate high-quality
forged faces at minimal cost [69, [27], resulting in serious negative social implications [65]. In
response to these threats, numerous deepfake detection methods have been proposed [17, 131} [80]].
Employing binary real/fake classification 79, 53], these approaches have achieved promising results
when trained and tested on datasets with similar distributions (i.e., forged samples generated using
the same manipulation techniques). However, their generalization ability remains limited when faced
with previously unseen forgery methods [128} 152, 163} 139, 15, 13} 73} [19].

On the other hand, the fairness of deepfake detectors has also drawn increasing attention [[13}35]. The
problem lies in that a detector should maintain consistent performance across different demographic
groups, such as gender and race. However, prior studies [2, [12}34] have predominantly shown that
simply improving cross-domain generalization does not benefit all demographic subgroups equally
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Figure 1: (a) Comparison of model performance on Celeb-DF on Skew [16] (fairness metric, the lower
the better) and AUC (generalization metric, the higher the better). FG [33]] is a method to improve
fairness, but it may compromise the detector’s generalization ability. (b) Causal graph for relationship
between fairness and generalization, where data distribution (D D) and model capacity (M C) act as
confounders, i.e., they can affect both metrics, thereby obscuring the true causal relationship.

(i.e., generalization /> fairness). Meanwhile, as shown in Figure [Th, pushing detectors to be more fair
can compromise generalizability, which arguably makes these two a trade-off [23]].

Different from existing studies that treat fairness and generalization as competing objectives, our
preliminary experiments show that improving detector fairness can occasionally lead to enhanced
cross-domain generalization. This finding motivates our hypothesis that demographic fairness causally
improves generalization performance (i.e., fairness — generalization), although this effect is often
obscured by confounders. To formalize this intuition, we investigate two possible confounders
(data distribution (D D) and model capacity (M C)) and construct the resulting causal graph (see
Figure[Ip). In this graph, fairness (F') functions as a treatment variable exerting a causal influence on
generalization (A). However, data distribution (D D) and model capacity (M C) act as confounders
affecting both metrics and potentially obscuring the true causal relationship. Using the back-door
criterion [46]], which blocks spurious paths, we demonstrate a causal relationship between fairness
and generalization under this causal model. Specifically, we explicitly stratify the dataset based on
human demographic attributes and control for model capacity (see Section [3|for details).

To further validate our insight, we propose a novel Demographic Attribute-insensitive Intervention
Detection (DAID) approach. Rather than directly optimizing for cross-domain generalization [S7,[71],
DAID explicitly controls for both data distribution and model capacity confounders. In doing so,
DAID elucidates the causal relationship between fairness and generalization during training, and
generalization can be improved by intervening on fairness. To this end, our DAID is equipped
with two complementary modules. First, we apply a demographic-aware data rebalancing module,
which uses adaptive sample reweighting and per-group normalization to mitigate distributional bias.
Second, we propose demographic-agnostic feature aggregation, which aligns same-label samples
across different demographic groups through a demographic-agnostic optimization strategy. Together,
these modules serve distinct but synergistic purposes: the data rebalancing module ensures equitable
representation across subgroups, while the feature aggregation module enhances the model’s ability
to mitigate the influence of human-related attributes. As a result, DAID effectively controls both data-
and model-level confounders, while achieving substantial improvements in fairness.

We conduct extensive experiments across multiple datasets and different backbones. The results
demonstrate that our approach leads to improvements in both fairness and generalization. For
instance, on the DFDC [14]], DFD [1], and Celeb-DF [32] datasets, our method outperforms several
the state-of-the-art (SOTA) approaches. Our contributions are threefold:

* To the best of our knowledge, we are the first to establish a causal relationship where
enhancing fairness leads to improved generalization in deepfake detection. This finding
reveals a one-stone-hits-two-birds strategy: It enables the development of fairness-aware
strategies that also enhance robustness.

* We propose a novel approach that improves generalization by promoting fairness. Our
method controls the confounders, thereby isolating the causal relationship between fairness
and generalization and achieving improvement in both objectives.

* We evaluate our approach on multiple datasets and backbones, showing consistent improve-
ments in fairness and generalization. Code is provided in the supplementary materials.



2 Related Work

2.1 Deepfake Detection

Generalization in Deepfake Detection. Deepfake detection [21} 72, 167, [17, 37, 168 125] is gener-
ally cast as a binary classification task. Preliminary efforts often endeavor to detect the specific
manipulation traces [22} 42} 166, 77, which have shown certain improvements on intra-dataset setting.
However, these methods often encounter inferior performance when applied to data with different
distributions or manipulation methods. To address this generalization issue [60, |29} 51]], subsequent
research has increasingly devoted efforts to learning more generalized features [[19} 73] 136,57, [19]].
For instance, D&L [24]] introduces a novel framework that jointly leverages semantic and noise
cues to achieve SOTA deepfake localization performance. RealForensics [[18] exploits the visual
and auditory correspondence in real videos to enhance detection performance [8]]. MoE-FFD [26]]
represents the first innovative framework that utilizes MoE modules to achieve superior deepfake
detection with significantly reduced computational cost.

Fairness in Deepfake Detection. Fairness in deepfake detection pertains to potential biases against
certain demographic groups [62} 20l 50], particularly in terms of race and gender [44] [13]. For
instance, Pu et al. [S0] evaluate the fairness of the detector Mesolnception-4 and find it to be unfair
to both genders. Some recent approaches [35] have been proposed to address this problem by
chasing for improved fairness metrics. For instance, Ju et al. [23] mitigate sharp loss landscapes
during training to improve fairness within the same data domain. Lin et al. [33] aims to enhance
cross-domain fairness by leveraging contrastive learning across different demographic subgroups.
Furthermore, several approaches [56, 43| use distributionally robust optimization to improve worst-
group performance, thereby addressing fairness and robustness together. Nevertheless, these methods
treat fairness as the main optimization objective, without establishing a clear connection between
fairness and generalization. Our DAID framework is tailored to visual deepfake data for robust
cross-domain deepfake detection. Leveraging fairness as a causal intervention, DAID simultaneously
boosts fairness and cross-domain robustness (generalization).

2.2 Causality Inference

In recent years, causal inference has emerged as a powerful tool to uncover causal relationships [4,
381 75]. A growing body of research confirms that robust causal identification can lead to substantial
improvements in model performance [40, 41} [76]. Causal inference methods can be categorized into
back-door and front-door adjustment [49, 48]]. The backdoor adjustment removes the confounding
bias by stratifying the data according to the values of the confounders [[78]]. Li et al. [30] leverage
back-door adjustment to mitigate inter- and intra-modal confounding, resulting in improved image-
text matching accuracy. Chen et al. [[7]] apply back-door causal intervention to neutralize the textual
bias to detect fake news. In contrast, the front door adjustment recovers the causal effect of a
treatment by conditioning an observed mediator that fully carries the influence of the treatment on
the outcome [[6]. For instance, Zhang et al. [74] employ LLM-generated prompts as a mediator
and calculate the causal effect between prompts and responses. In this paper, we apply back-door
adjustment to block the influence of confounders, thus demonstrating the causal relationship between
fairness and generalization.

3 Causal Analysis Between Fairness and Generalization

3.1 Causal Relationship Construction

Causal Graph. Figure[Ib illustrates our assumed causal structure as a directed acyclic graph (DAG)
over four variables: fairness (F’), generalization performance (A), data distribution (D D), and model
capacity (M C). F serves as a binary treatment variable: ‘low fairness’ vs. ‘high fairness’, based on
the absolute value of Skew metric (smaller Skew indicates greater fairness). A is the testing-set AUC,
reflecting the generalization capability. D D captures the distribution of sensitive attributes (e.g., race,
gender), while M C denotes the model’s architectural capacity (e.g., the number of parameters and
performance on benchmarks). Since DD and M C' influence both F' and A, we must control for them
to isolate the causal effect of fairness on generalization.



This DAG contains two types of paths: i) Causal path: ' — A represents our hypothesis that
improving fairness boosts generalization; ii) Confounding paths: DD — {F, A}, MC — {F, A},
where data distribution and model capacity each affect both fairness and generalization. Confounding
paths that simultaneously influence both F' and A, such as F' < DD — Aand F < MC — A, can
induce a back-door effect, introducing a spurious association between F' and A.

Therefore, it is essential to block these back-door effects for recovering the true causal effect of F' on
A. To this end, we apply the back-door adjustment [46]. Specifically, if there exists a set of variables
Z that satisfies the back-door criterion, we can estimate the causal relationship by conditioning on Z.

Definition 1 (Back-door Criterion) Ler G be a causal DAG and let X and Y be two nodes in G. A
set of variables Z satisfies the back-door criterion relative to X, Y if:

1. No element of Z is a descendant of X € G.

2. Z blocks every path between X and Y that begins with an arrow pointing into X.
In this study, Z is defined to include both the data and the model factors, i.e., Z = {DD, MC}.

Theorem 1 (Back-door Adjustment Formula) If a set Z satisfies the back-door criterion relative
to X,Y in G, then the causal effect of X on'Y is identifiable and given by:

P(Y|do(X =x))=) P(Y|X=x2,Z=2)P(Z=2). (1)

Here, do(X =) denotes an intervention that forcibly sets X to z, disconnecting it from its natural
causes. This allows us to distinguish causal effects from spurious associations in observational
data. Theorem [l| demonstrates that as long as the conditional distribution P(Y" | X, Z) and the
marginal distribution of the confounder set P(Z) can be observed, the causal effect can be identified
without experimental randomization. In our context, if the influence of varying fairness levels F' on
generalization performance A remains consistent when conditioned on different values of DD and
MC, then a direct causal relationship between fairness and generalization can be established.

3.2 Causal Effect Estimation
According to the back-door criterion, adjusting for Z = {DD, MC }E] suffices:
P(A|do(F=f)) = Z P(A | F=f,DD=dd, MC=mc)P(DD=dd, MC=mc), (2)
dd,mc

where f, dd, and mc represent the values of F', DD, and M C, respectivelyﬂ For simplicity, we
discretize the two levels of fairness with a binary variable {0, 1}, where f = 0 denotes low fairness.
To examine the causal effect of F' on A, we define the Average Causal Effect (ACE) [53]] as follows:

ACE =P(A|do(F =1)) — P(A|do(F =0))
> [P(A | F =1,dd, me) — P(A | F =0,dd, mc)} P(dd, mc). 3
dd,mc

In other words, the causal effect is defined as the weighted average of the performance differences
observed between high and low fairness conditions within each subgroup. Moreover, we define
po = P(A|do(F = 0)), for any fairness level f, we can apply a simple substitution:

P(A|do(F = f)) = po + f- [P(A | do(F = 1)) — P(A | do(F = 0))}

“

ACE
= o + f - ACE.

This leads to a straightforward linear formulation: When f = 0, we have P(A | do(F' = 0)) = ppo.
When f = 1, we have P(A | do(F = 1)) = po + ACE. As long as ACE # 0, we can assert that

*We approximate P(DD, M C) by the empirical frequency in the held-out test set, assuming that this set is
an i.i.d. sample from the deployment population.

31t is worth noting that the confounding factors may vary depending on the task setting, potentially expanding
beyond DD and M C. Nevertheless, this does not affect the applicability of EquationE}
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fairness F' has a causal effect on generalization performance A: ACE > 0 implies that improving
fairness leads to better model performance, and ACE < 0 indicates the opposite.

We further design a concrete experiment to estimate the ACE to establish the causal relationship
between fairness and generalization (more details are provided in the supplementary materials).

Confounder Stratification. For DD, we stratify the dataset based on the intersection of gender
and race. Specifically, the dataset is first divided into two groups according to binary gender:
Male and Female. Within each gender group, samples are further categorized by skin tone into
three subgroups: White, Black, and Asian. Each intersection of gender and race is treated as a
distinct demographic distribution. For M C, we employ two different architectures: Xception [54]]
(lower capacity) and EfficientNet [61] (higher capacity), the latter of which is known for stronger
cross-domain performance [72].

Fairness Intervention (do(F')). We implement two training regimes to approximate do(F = 0) and
do(F = 1) [47]: 1) Low fairness (F' = 0): Standard cross-entropy training. 2) High fairness (F' = 1):
Cross-entropy loss with a simple resampling strategy [9], where each sample in the cross-entropy
loss is assigned a weight to suppress the over-representation of majority groups.

ACE Estimation Results. Based on the above procedure, we observe an average ACE gain of 2.35
percentage points (stratified bootstrap resampling with B = 1000, A = 0.0235, 95% CI [0.0186,
0.0280], two-sided p < 0.001). This result indicates that, after removing the influence of confounders,
a direct relationship between fairness and generalization emerges.

3.3 Demographic Attribute-Insensitive Intervention Detection

Motivated by our causal findings, we conclude that, as long as confounders are properly controlled, the
clear causal pathway can be leveraged to enhance generalization by intervening on more readily mea-
surable fairness. Therefore, we introduce Demographic Attribute-Insensitive Intervention Detection
(DAID), a training approach that uses fairness interventions to boost cross-domain generalization.

As illustrated in Figure 2] DAID counteracts two key confounders: data distribution (D D) and model
capacity (M C) via two complementary modules: i) Demographic-aware Data Rebalancing, and ii)
Demographic-Agnostic Feature Aggregation.

Demographic-aware Data Rebalancing. To neutralize the spurious dependency induced by the
data distribution confounder DD, our rebalancing module includes two key components: sample-
wise reweighting and representation-level normalization, that jointly calibrate both the optimization
direction and the feature space geometry [45]].

Firstly, we employ the inverse-probability reweighting strategy. Let x; denote an input sample with
sensitive demographic attributes s; (e.g., gender, race). To equalize the influence of majority and
minority groups, we compute a sample-specific importance weight:

K -1
w; = (H I@(sgk))> : (5)
k=1



where s{*) is the k-th sensitive attribute of x;, and @(35’“)) is the empirical marginal frequency

estimated from the training data. This inverse propensity weighting ensures that the expected
contribution of each demographic subgroup to the loss function is approximately uniform, thus
suppressing spurious correlations between D D and the optimization target.

Beyond reweighting, we further mitigate D D-induced feature shifts by normalizing latent features
within each subgroup. Denote the feature vector for x; as h,. For each DD group dd, we estimate
the first and second moments:

Baq = Bidd,—aalhi), 054 = Variqa,—aalhil, (6)
and apply the following demographic-conditioned normalization:
. h; — .
by = o Hddi @)

1
/ 2
a’ddi—|—€

This operation aligns the group-conditioned feature distributions, removing systematic shifts induced
by demographic imbalance and restoring feature comparability across subgroups.

In summary, these two strategies decouple the confounding influence of D D from both model updates
and representation space, yielding unbiased learning that better reflect the intrinsic relationship
between fairness (F') and generalization (A).

Demographic-Agnostic Feature Aggregation. To eliminate the confounding influence of M C,
we propose to encourage the model to focus on task-relevant cues while marginalizing residual
demographic signals. Therefore, we perform demographic-invariant optimization in the learned
representation space. The key intuition is that manipulation-consistent samples, i.e., those with the
same class label but differing sensitive attributes, should lead to similar internal representations.

Formally, let P = {(x;,x;)} be a set of sample pairs such that y; = y; (same task label) and
dd; # dd; (different demographic attributes). We define:

1 PO
ACa‘ctr = W Z ‘Ccos(hiy hj)7 (8)
(4,4)€P
where fli and flj are normalized feature vectors, and Los(-, -) denotes a cosine similarity loss:

Leos (hi,hj) =1 —cos (h;,h;) +e¢ 9)
where cos(-) denotes the cosine similarity between feature vectors. To ensure this alignment occurs
in a semantically meaningful subspace, we factorize h € R via a low-rank projection layer:

h=U"h, (10)
where U is a trainable orthonormal basis, used to filter out irrelevant directions. To avoid collapsing
to trivial solutions, we regularize the projected features with:

Lowno = [UUT ~T|F, (1D
where I is the identity matrix, and | - | r denotes the Frobenius norm.
By enforcing demographic-invariant structure in a filtered representation space, this module sup-

presses the model’s reliance on demographic features, thereby neutralizing M C' as a confounder and
sharpening the causal interpretability of fairness-driven generalization.

Training Objective. We adopt a fully end-to-end optimization strategy that preserves the backbone
architecture of the base detector. Specifically, we only insert our proposed modules before the
classification head. It is worth noting that our approach is model-agnostic and can be seamlessly
integrated into various deepfake detection backbones, which ensures inference efficiency.

Let fy : x — h denote the backbone encoder, and gy : h +— ¢ denote the binary classifier. Our total
objective integrates the classification loss with two fairness-enhancing regularizers:

Etotal = »Ccls + )\attrﬁattr + )\orthoﬁorthm (12)

where Lois = E(x,y) [w; - B(gs(fo(x)),y)] is the weighted binary cross-entropy loss over labels
and sample-specific importance weight (see Equation (5)); Lat, enforces demographic-invariant
alignment between same-label samples across subgroups (see Equation ); Lortho ensures that
the projected representation remains compact and expressive (see Equation (I1))). Aagtr, Aortho are
hyperparameters that modulate the contribution of each loss.



Method \ DFDC \ DFD | Celeb-DF

| Skew | AUCT | Skew| AUCT | Skew| AUC?T
Xception [54] 2221 60.63 0.564 80.69 0.597 70.91
EffcientNet [61] 2.011 60.49 0.351 83.12 0.437 75.36
F3-Net [53] 2.143 60.17 0.589 77.68 0.556 74.36
Face X-ray [28] 1.982 62.00 0.821 80.46 0.491 74.20
SBI [57] 2.385 63.39 0.757 86.43 0.715 79.76
RECCE [3] 2.622 61.63 0.738 80.13 0.644  70.55
GRU [11] 2.432 62.63 0.551 86.48 0.405 76.00
CADDM [15] 2.183 63.77 0.547 88.59 0.391 81.75
UCF [71] 2272 60.03 0.510 81.01 0.619 71.73
ProDet [10] 2.306 65.89 0.432 89.18 0.569 82.71
VLFFD [58] 2411 65.21 0.669 90.08 0.526 81.17
DAW-FDD [23] | 2.127 59.96 0.528 71.40 0.509 69.55
FG [33] 1.932 60.11 0.447 80.42 0.498 68.30
DAID | 1460 66.85 | 0263 9115 | 0.289  84.39

Table 1: Frame-level cross-dataset performance comparison on fairness and generalization of baselines
and our approach. We reproduced all baselines on three datasets and reported their Skew and AUC
values. *: This method is proposed to enhance the fairness of the detector.

4 Experiments

4.1 Datasets and Metrics

Datasets. Following prior work [[72}159, 58], we employed FaceForensics++ (FF++) as the training
set and evaluate the generalization performance on three other datasets: DFDC [14], DFD [1]], and
Celeb-DF [32]. Since none of these datasets contain native demographic annotations, we follow
the data processing, annotation protocol, and sensitive attribute intersection strategy of previous
fairness studies [33} 70, [23]]. Specifically, we annotated each face with a combination of gender and
race attributes, resulting in six demographic subgroups: Male-Asian (M-A), Male-White (M-W),
Male-Black (M-B), Female-Asian (F-A), Female-White (F-W), and Female-Black (F-B).

Metrics. We used AUC as the primary metric to evaluate the generalizability of the model and
adopted Skew as the fairness metric [16, 164} 9. Skew is a commonly used indicator for measuring
model fairness, which quantifies the performance disparity across different demographic subgroups.
In our context, a lower Skew value indicates better fairness, with Skew = 0 representing perfectly fair
predictions. The detailed computation of Skew is provided in the supplementary materials.

4.2 TImplementation details

We used several deepfake detectors as backbone models, including Xception [54] (=22.9M pa-
rameters), F3-Net [53] (~37.3M parameters), EfficientNet-B4 [61]] (~19.3M parameters), and
CADDM [15] (=21.5M parameters), to evaluate the effectiveness of DAID. Training employs
AdamW (learning rate 1 x 1073, weight decay 4 x 10~2) until convergence, with a batch size of 64.
All input images are resized to 224 x 224 and normalized using ImageNet statistics. All experiments
are conducted on a single NVIDIA H100 GPU.

4.3 Main Results

In Table[T] we reported a comparison of our method, DAID, against several SoTA baselines in terms
of both fairness and generalization performance. It can be seen that DAID consistently achieves the
best results in all three datasets. For instance, on Celeb-DF, our method improves fairness by 26%
compared to the best-performing baseline. On the DFDC and DFD datasets, DAID achieves AUC
scores of 66.85% and 91.15%, outperforming all competing methods. By controlling for confounding
factors, we successfully achieve simultaneous improvements in both fairness and generalization.

It can be observed that achieving a high AUC does not necessarily imply high fairness. For example,
VLFFD attains an AUC of 90.08% on the DFD dataset. However, its fairness performance lagged
behind that of UCF, which exhibits significantly lower generalizability than VLFFD but demonstrates
better fairness as indicated by a lower skew. Moreover, fairness-oriented methods, i.e., DAW-FDD
and FG, effectively enhance the fairness of the model. Nevertheless, this improvement may come



Module \ Dataset
Data Rebalancing | Feature Aggregation | DFDC DFD Celeb-DF
Reweight  Normalization | Lot Lortho | Skew | AUC?T Skew| AUC?T Skew| AUCYT
- - ‘ - - ‘ 2.183 63.77 0.547 88.59 0.391 81.75

v 1.719 64.94  0.295 89.63 0.340 83.07
v v 1.574 6596  0.274 90.67 0.319 83.98
v 1.750 6540  0.273 89.38 0.327 83.59
v v 1.715 64.96  0.271 89.55 0.321 83.88
v v v 1.495 66.49 0.266 91.05 0.292 84.12
v v v v 1.460 66.85 0.263 91.15 0.289 84.39

Table 2: Performance of ablation studies on each module of DAID.

at the cost of reduced generalization. For instance, on the Celeb-DF dataset, FG outperforms most
baselines in terms of fairness, yet its AUC score is only around 68%, significantly lower than those
achieved by other methods.

4.4 Ablation Studies

4.4.1 Comparison on Modules

We reported the ablation studies on the modules of our DAID in Table[2] Specifically, we incrementally
integrate each DAID module into the backbone model to assess their individual contributions. The
results indicate that omitting any single module negatively impacts performance. For instance,
removing the data rebalancing module, i.e., no longer controlling the confounding factor DD, leads
to a significant performance drop across all three datasets. Overall, the integration of all DAID
modules yields the best performance in both generalization and fairness.

4.4.2 Comparison on Hyperparameters

We employ two hyperparameters, At and 68 68

Aorthos to control the relative weights of the T et 06 T et

corresponding loss functions. To investigate

their impact on model generalization, we

conducted a parameter sensitivity analysis,

with the results shown in Figure[3] As both

parameters increase, model performance ini-

tially improves and then stabilizes. Based on 8702 04 06 08 10 005 010 015 020 025 030
s . /\attr /\onho

empirical observations, we select Ayt = 0.7

and A\ortno = 0.2 as default values. It worth Figure 3: Hyperparameter analysis.

noting that our method demonstrates robustness to hyperparameter selection.

o
<
o
<

AUC (%)
!
AUC (%)

e .

o
=)
o
=)

4.4.3 Comparison on Demographic Attributes
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significantly lower skew values. This indicates

that DAID achieves greater fairness in various demographic dimensions.
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FF++ ‘ DFDC DFD Celeb-DF

Method ‘

| Skew | AUC?T | Skew| AUC?T Skew| AUC?T Skew] AUC?T
Xception [54] 0.177 97.85 2.221 60.63 0.564 80.69 0.597 70.91
+DAID 0.122 98.64 1.772 63.36 0.398 82.54 0.467 75.23
EffcientNet 0.185 98.08 2.011 60.49 0.351 83.12 0.437 75.36
+DAID 0.136 98.72 1.697 63.43 0.264 84.31 0.352 78.49
F3-Net 0.219 97.32 2.143 60.17 0.589 77.68 0.556 74.36
+DAID 0.127 97.63 1.544 62.68 0.220 78.53 0.541 76.54
CADDM [135] 0.220 99.15 2.183 63.77 0.547 88.59 0.391 81.75
+DAID 0.119 99.26 1.460 66.85 0.263 91.15 0.289 84.39

Table 3: Performance comparison after applying our DAID to different backbones. All models
are trained on the FF++ dataset and evaluated on four datasets. Our method consistently leads to
significant improvements across all backbone architectures.

FF++

Backbone

DAID

M-W  M-A M-B F-W F-A F-B M-W  M-A M-B F-W F-A F-B
Figure 5: Non-cherry-picked Heatmaps. We included heatmaps for six demographic subgroups
across two datasets: Male-Asian (M-A), Male-White (M-W), Male-Black (M-B), Female-Asian
(F-A), Female-White (F-W), and Female-Black (F-B).

4.4.4 Comparison on Backbones

Table 3] presents the performance when applying the DAID to different backbone architectures.
Specifically, we compare the performance of the four backbones, i.e., Xception, EfficientNet, F3-
Net, and CADDM. As shown in the table, our method consistently enhances both fairness and
generalization across all backbones. For instance, on Celeb-DF, applying our DAID to the Xception
backbone yields a 5% increase in AUC and nearly a 20% improvement in fairness. It worth noting
that this process does not require any architectural modifications to the model, leading to synergistic
gains greater than the sum of individual improvements.

4.5 Visualization Results

In Figure[5] we present the heatmap results of the backbone model without fairness enhancement and
our proposed DAID method. It can be seen that the backbone exhibits markedly different attention
regions for different attributes. For instance, it focuses primarily on the lips for male subjects, while
emphasizing the upper faces for female subjects. Furthermore, within the same gender, subtle differ-
ences in attention regions are also observed across different racial groups. For example, the backbone
tends to focus more on the left side of the lips for the Male-White group, whereas for the Male-Black
group, the nose is more frequently included in the attention region. This indicates that the backbone
model conflates demographic attributes with cues for deepfake detection, potentially undermining
reliable decision-making. In contrast, DAID demonstrates consistent detection patterns across both
gender and race groups, effectively indicating that our method is insensitive to demographic attributes.
Moreover, compared to the backbone, DAID generally focuses on broader regions of the image,
reflected in its superior generalization capability.

4.6 Efficiency Analysis

We assess the additional computation introduced by DAID’s two modules on a single NVIDIA H100
GPU (batch size 64, input resolution 224x224). For the data rebalancing module, the reweighting
step adjusts only the classification loss based on subgroup frequencies, and subgroup-wise feature
normalization operates directly on batch statistics. Neither requires extra gradient computations
beyond standard training, resulting in negligible run-time impact. For feature aggregation module,
we introduce two regularization losses and a low-rank projection layer. These involve only light



matrix multiplications and loss evaluations, resulting in minimal extra cost. On EfficientNet, standard
training takes 233 min for the full session. Incorporating DAID increases this to 243 min - a relative
overhead of 4.3%. Therefore, DAID’s fairness-driven interventions add under 5% to total training
time, making the framework practical for large-scale use.

5 Discussion

5.1 Why Fairness and Generalization May Be at Odds

The conflict between fairness and generalization may arise from both data and model characteristics.
Pertaining to the data aspect, the most representative factor, i.e., imbalanced distribution can lead to
increased bias toward the majority group, thus improving generalization under certain limited datasets
or scenarios. This however, poses the fairness problem a great challenge. Even worse, existing
models tend to amplify this imbalance distribution problem, making the prediction biased. Unlike
the existing methods, in this work, we propose to leverage the causal theory with the confounder
controlling guidance. Informed by this, our proposed method in fact aims to rebuild balance from
imbalance. Therefore, we can maintain the generalization capability of vanilla models, and can also
improve the prediction fairness.

Conflicts may be difficult to resolve. For instance, in high-security systems, developers might
prioritize reducing overall overall misclassification, thereby sacrificing the performance on minority
groups (e.g., individuals wearing unusual clothing). In contrast, for judicial models such as sentencing
decisions or crime risk prediction systems, fairness across different demographic groups must be
prioritized, even if it comes at the cost of reduced generalizability.

5.2 Connection with General Fairness Definitions

The primary fairness goal of DAID is to reduce performance disparities across demographic subgroups
— in other words, to achieve a form of group fairness. In terms of common definitions, this aligns
most with pursuing equalized performance (e.g., smaller gaps in accuracy between groups), which is
what the used Skew metric captures. By making feature embeddings invariant to sensitive attributes,
our method mitigates the model’s reliance on those attributes, thus helping to satisfy criteria related
to demographic parity (outcomes independent of demographics).

5.3 Comprehensive General Proof for Causal Relationship

As introduced in Section[I] our causal claim regarding the relationship between fairness and gener-
alization is defined with respect to the causal graph presented in Figure [Ib. This graph is built on
the assumption that data distribution (D D) and model capacity (M C') constitute an exhaustive set
of confounders. If additional confounding factors are to be identified, the generality of our causal
argument might be limited. Nevertheless, our experiments with DAID demonstrate that controlling
for DD and M C is sufficient to effectively reveal a positive causal relationship between fairness and
generalization. In future work, we plan to investigate whether a comprehensive and fully general
proof can be established to formally substantiate this causal relationship.

6 Conclusion

In this paper, we demonstrate that improving fairness can causally lead to a better generalization
in deepfake detection. Building on this insight, We propose the Demographic Attribute-insensitive
Intervention Detection (DAID), a novel plug-and-play approach that jointly ensures demographic
fairness and generalization without modifying base architectures. Extensive experiments on various
benchmarks validate the theoretical foundation and practical value of DAID. Our findings reframe
fairness from a mere ethical concern into a strategic lever for enhancing model robustness. By
harnessing fairness as a means to improve generalization, we offer a new perspective and a practical
path toward building more robust and equitable deepfake detectors. However, one limitation of our
current framework is its reliance on demographic annotations. Extending DAID to operate under
unlabeled or multi-dimensional fairness settings remains an important direction for future work.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The concluding paragraphs of both the abstract and the introduction explicitly
enumerate and elaborate on the three contributions of this work.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in the final section of the paper.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Complete proofs for all the theorems and formula definitions are provided in
the appendix.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Sections 3 and 4 describe all the methods and implementation details.
Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The code will be uploaded as supplementary material.
Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All training and testing details are provided in Section 4.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Significance analysis is incorporated. Specifically, Section 3.2 presents 95%
confidence intervals to quantify uncertainty.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Sections 4.2 and 4.6 report the hardware environment and runtime efficiency.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There are no ethical concerns, provided that the guidelines have been read and
followed.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper addresses the issues of fairness and generalization in deepfake
detection and does not pose any significant negative societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our method does not involve generative models or the construction of high-risk
datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: All external resources are properly cited.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: The new code is accompanied by documentation.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: No subjective human studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: No subjective human studies.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: LLMs are used solely to write and format the manuscript and are not involved
in the core technical contributions.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Skew Calculation

To assess fairness at the subgroup level, we introduce a log-ratio skew metric that quantifies the
deviation between predicted and ground-truth label distributions across demographic attributes. We
compute this skew separately for the real and fake classes, across both marginal (e.g., gender, race)
and intersectional (e.g., female-Asian) groups.

A.1 Definition

Given a subgroup s € S and class label ¢ € {real, fake}, we define the skew as:
Py =c| 8))

Ply=cls))’

where (P(y = ¢ | s)) denotes the empirical proportion of samples with ground-truth label ¢ in group

s, and (P(§ = ¢ | s)) denotes the corresponding proportion in model predictions. This skew reflects
the relative distortion introduced by the model’s predictions:

Skew(s, ¢) = log ( (13)

» Skew(s,c) > 0: group s is overrepresented in predicted class c,
* Skew(s,c) < 0: group s is underrepresented in predicted class ¢,

*» Skew(s,c) = 0: perfect parity between prediction and ground truth.

To capture extreme disparities, we define:

maxskew = max |Skew(s, ¢)|, (14)
seS,c
The maxskew metric corresponds to the Skew metric reported in our paper. It measures the degree of
bias in the most skewed group, regardless of whether that group is overrepresented or underrepre-
sented. A lower value Skew indicates a lower level of the most severe group bias and thus reflects a
fairer model overall.

A.2 Implementation Summary

The calculation procedure is summarized in Algorithm [I] It is applied to both marginal groups
(gender and race) and intersectional groups (gender & race).

Algorithm 1 Skew Computation for Each Demographic Group

Require: Ground-truth labels y, predicted probabilities p, binary predictions ¢, demographic at-
tributes gender, race

1: Convert predictions: §; = I[p; > 0.5]

2: for each group s € S do

3:  foreachclass ¢ € {real,fake} do
4: Compute: P(y = ¢ | s) from ground-truth labels
5 Compute: P(j = c¢ | s) from predicted labels
6
7

Compute: Skew(s, c) = log (I;EZZEB)
end for
8: end for

9: Collect: maxskew, minskew across all s, ¢

We discard any subgroup s for which P(y = ¢ | s) = 0, to avoid numerical instability.

A.3 Illustrative Example
Consider a scenario where female-Asian individuals constitute 10% of all real samples, but the
model predicts 20% of real instances as belonging to that group. Then:

0.20
0.10

indicating an overrepresentation of that subgroup in the predicted class. Conversely, a skew of —0.693
would indicate underrepresentation.

Skew(female-Asian, real) = log ( > = log(2) =~ 0.693, (15)
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Figure 6: The performance of CADDM and DAID in terms of AUC (left) and Skew (right) across all
demographic groups and their intersections.

A.4 Application and Utility
This skew metric is used to:

* Audit group-level disparities in prediction outcomes;
* Reveal intersectional bias not captured by marginal analysis;

* Guide fairness-aware model interventions and reweighting strategies.

Figure [6] presents the fairness and generalization performance of CADDM and DAID across all
groups, revealing a substantial improvement in the consistency of DAID.

B Details for Causal Effect Estimation

B.1 Experiment Settings

Data Stratification (Controlling D D). Following prior research [33]], we apply the FF++ dataset [54]]
and the DFDC dataset [14] as the training set and the testing set, respectively. Both datasets are
augmented with additional demographic annotations [/0], i.e., they contain diverse demographic
attributes. In our training-testing pipeline, the entire training set is used for model training, following
standard practices [63}139]. The testing set, on the other hand, is stratified based on the intersection
of gender and race. Specifically, the dataset is first partitioned based on binary gender into Male and
Female groups. Within each gender group, samples are further categorized according to skin tone
into three subgroups: White, Black, and Asian. Each intersection of gender and race is treated as a
distinct distribution dd € DD, with its proportion can be computed using conditional probability:

P(dd = (gi,r:)) = P(rilgi) x P(g:), (16)

where the g; and r; are the value of gender and race, respectively.

Model Capacity (Controlling M C'). We employ two different architectures: Xception [54] and
EfficientNet [61] to simulate the effect of model capacity. The latter, EfficientNet, has demonstrated
superior generalization performance [72] and therefore serves as the representative of a more complex

model.

Fairness Intervention (do(F')). We create two fairness levels by in-processing de-biasing [47].
Specifically, we employ standard cross-entropy training to conduct the training process with

low-fairness (fiow):
XN
Liow = o ; [~yilog(§:) — (1 — i) log(1 — 4:)], (17)

where y; € {0,1} and ¢; € (0, 1) are the ground truth and predicted labels for the i-th sample,
respectively. Moreover, we adopt a simple resampling strategy [9]], where each sample in the cross-
entropy loss is assigned a weight to suppress the over-representation of majority groups, to formulate
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Method Fi];s:ls S Skew Male_Black Male_White Male_Asian Female_Black Female_White Female_Asian
Xception frow 222 56.61 64.19 44.95 58.98 58.35 60.91

P Fhigh 2.06 61.74 62.86 49.46 65.83 58.81 62.34

. Jiow 2.01 55.36 65.00 37.32 53.35 60.49 51.36
EfficientNet | "% To1 5551 65.29 39.44 60.89 61.81 74.95

Table 4: Observed model AUC (%) under different data distribution (D D) and model capacity (M C).
The ‘Skew’ column represents the fairness metric of the model, where lower values indicate better
fairness.

the high-fairness ( fuign) version:

N

Lhigh = Y (1= X;) [~y log(3:) — (1 — i) log(1 — ;)] (18)
=1

where )\; is a weighting factor defined based on the proportion of a specific group in the dataset.
For example, if the subgroup with dd = (male, white) constitutes 70% of the dataset, then all
‘male-white’ samples are assigned a weight of 0.3 during training.

Measurement and Computation. To estimate the causal effect of our bias intervention, we first
compute the conditional AUC within each stratum defined by DD and MC factors. Specifically, for
each combination (dd, mc) and for each bias setting f € { fiow, fhign }» We evaluate the empirical
stratum AUC on the held-out testing dataset as

Adgame(f) = P(A|F = f, DD =dd, MC = mc). (19)

This is obtained by selecting all test samples whose sensitive-attribute stratum equals dd and whose
model architecture equals mc, then measuring the fraction correctly classified under the fairness
intervention f.

Subsequently, we compute the marginal weight of each stratum from the full test set,
Wadme = P(DD =dd, MC = mc). (20)

The wqq,me is the proportion of test samples that fall into stratum (dd, mc). We then apply the
back-door adjustment formula to recover the interventional AUC under each fairness level:

A(f) = Z Add.me(f) Wad,me- 2D

dd, mc

From Equation ll , we sum the stratum accuracies fldd,mc (f) weighted by their marginal frequencies
Wqd,mc to emulate the causal effect of setting F' = f for the entire population.

Finally, we perform a causal comparison between the two fairness settings. Specifically, we compare
A( fiow) against A( Jhigh)- A statistically significant increase in A when moving from the low-fairness
to the high-fairness model provides strong empirical evidence that improving fairness causally
improves overall AUC.

B.2 Numerical Illustration

Table 5 lists the observed AUCs under every combination of DD and M C'. We then aggregate each
stratum using Equation and obtain Aj,w = 52.08% and Apigh = 53.98%. Stratified bootstrap
resampling (B = 1000) further shows that moving from the low-fairness to the high-fairness model
yields an average gain of 2.35 percentage points (A = 0.0235, 95 % CI [0.0186, 0.0280], two-
sided p < 0.001). Thus, irrespective of DD or MC, higher fairness consistently translates into
better generalisation. Combining (i) the rigorously specified DAG, (ii) back-door adjustment for
identification, and (iii) stratified empirical estimates under controlled bias interventions, we obtain
clear, quantitative evidence that reducing model bias causally improves overall performance.
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Method  ACCt TPRT FPR|
DAW-FDD 57.89  60.69  43.33
FG 6127 6585  40.73
DAID 64.99  72.62 38.34

Table 5: Comparison of different methods on ACC, TPR, and FPR.

C More Experiments

C.1 Other Metrics

We have conducted additional metrics such as Accuracy (ACC), True Positive Rate (TPR), and False
Positive Rate (FPR). Our method significantly outperforms previous fairness approaches.

C.2 Hyperparameter and Fairness

)\attl'
Value Performance Value Performance

(Reference) 1.574 (Reference) 1.495

0.1 1.559 0.05 1.483

0.2 1.541 0.1 1.475

0.3 1.529 0.15 1.464

0.4 1.513 0.2 1.460

0.5 1.509 0.25 1.462

0.6 1.497 0.3 1.461

0.7 1.495

0.8 1.496

0.9 1.498

1.0 1.497

We have added the results between the two hyperparameters for loss functions and skew in Table
6. Overall, improvements in fairness are generally positively correlated with improvements in
generalization. The best performance is achieved when A4, reaches 0.7 and A+, reaches 0.2.

Table 6: Ablation on Ayt and Aypiho -
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