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ABSTRACT

Open-Vocabulary Detection (OVD) trains on base categories and generalizes to
novel categories with the aid of text embeddings from Vision-Language Models
(VLMs). However, existing methods are insufficient in utilizing semantic cues
from the text embeddings to guide visual perception, which hinders the perfor-
mance of zero-shot object detection. In this paper, we propose OVRD, an Open-
Vocabulary Relation DINO with text-guided salient query selections. Specifi-
cally, we introduce text-guided salient query selection to choose image features
most relevant to the text embeddings, along with their corresponding reference
points and masks, thereby providing additional semantic cues for guiding vi-
sual perception. Building upon this, the salient reference points are used to re-
cover the relative spatial structure of the selected features, enhancing positional
awareness in the salient transformer decoder. Moreover, to fully leverage both
the semantic cues and the recovered spatial structure, we develop a self-attention
model of semantic relationships to model sparse semantic relations in OVD sce-
narios to further guide visual perception. We evaluate OVRD on public bench-
marks in a zero-shot setting, achieving 37.0 AP on LVIS Minival, which per-
forms favorably against the state-of-the-art methods. The code is available at
https://anonymous.4open.science/r/OVRD.

1 INTRODUCTION

Traditional object detection is a fundamental task in computer vision. Numerous works Girshick
(2015); Ren et al. (2015); Redmon et al. (2016); Carion et al. (2020); Zhang et al. (2023) accomplish
promising detection performance. However, these methods are typically trained on datasets with
closed-set categories, and thus struggle to recognize unseen categories.

To overcome this challenge, Open-Vocabulary Detection (OVD) Wu et al. (2024) is designed to
detect both base and novel categories based on closed-set base categories. Recent pre-trained vision-
language models (VLMs) Radford et al. (2021); Li et al. (2021) have demonstrated remarkable zero-
shot capabilities, attributed to their training on massive and diverse image-text pairs. These models
align image features and text embeddings in a shared embedding space, providing valuable priors for
OVD. Early OVD methods, leveraging techniques, such as knowledge distillation Gu et al. (2022);
Li et al. (2023); Ma et al. (2022); Wang et al. (2023) and region-text pre-training Zhong et al. (2022);
Kim et al. (2024), compare image features and text embeddings mainly in the stage of classification,
neglecting multi-modal fusion in the feature learning stage. In contrast, recent methods Cheng et al.
(2024); Du et al. (2024); Wang et al. (2024) explicitly integrate multi-modal fusion into the model
architecture. However, such fusion is still insufficient in leveraging the semantic cues to guide visual
perception. Thus, we enhance it with a text-guided mechanism to improve zero-shot performance.

A text-guided mechanism provides additional semantic cues, which can be more effectively lever-
aged when combined with semantic relation modeling to improve object detection performance
Yang et al. (2018); Xu et al. (2019); Hao et al. (2023). In this paper, we explicitly model semantic
relations in open-vocabulary scenarios to fully exploit these semantic cues and guide visual per-
ception. Figure 1 shows the key idea of the semantic relation modeling. We select an image1

1Figure 1(a) which is the ground-truth image from COCO, and Figure 1(b) which is the predicted image
from our model.
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Figure 1: Demonstration of our semantic relation modeling in open-vocabulary scenarios. (a)
Given an image in the closed dataset which contains a base category "train", (b) the model detects
additional novel objects in open-vocabulary scenarios, including "person", "street sign" and "traffic
light". (c) We then capture the symmetric and fully-connected semantic relations with the aid of
text-aware soft-mapping. (d) Finally, we model the directional and sparse relations to guide multi-
modal fusion and improve zero-shot detection performance.

from the closed COCO Lin et al. (2014) dataset, containing a base category "train" as in Figure
1(a). In open-vocabulary scenarios, as shown in Figure 1(b), the model detects novel categories
"person", "street sign", and "traffic light" in addition to the base category "train". Detecting more
categories beyond the base classes enables a richer visual perception of the scene and captures more
comprehensive semantic relations. Nevertheless, open-vocabulary settings introduce long-tailed and
ambiguous category distributions, making accurate detection more challenging. To address this is-
sue, we employ text-aware soft mapping to capture semantic embeddings of categories, which are
then used to capture the symmetric and fully-connected semantic relations as in Figure 1(c). It is
well-known that many relations are inherently asymmetric and directional, such as ‘train → fol-
lows → traffic light’ versus ‘traffic light → guides → train’. Moreover, fully-connected relations
among numerous objects can introduce redundancy and noise, which may hinder effective relation
modeling. Therefore, we model the asymmetric and sparse relations to capture directionality and
retain only the most informative relations, as illustrated in Figure 1(d). Modeling these semantic
relations in open-vocabulary scenarios enhances visual perception and improves zero-shot detection
performance.

In this paper, we propose Open Vocabulary Relation DINO (OVRD), a method that further en-
hances multi-modal fusion and explores relation modeling in open-vocabulary scenarios. Specifi-
cally, OVRD follows the standard DINO Zhang et al. (2023) architecture and leverages a pre-trained
CLIP Radford et al. (2021) text encoder to extract text embeddings. We explore Text-guided Salient
Query Selection (TSQS) to initialize queries in decoder and select text-relevant image features, ref-
erence points and masks utilized in salient multi-head attention to strengthen multi-modal fusion,
providing additional semantic cues. However, this module discards the original spatial structure of
encoder features, making it difficult to apply absolute sinusoidal positional embeddings. Thus, we
leverage vision rotary positional embeddings to recover relative spatial structure and enhance po-
sitional awareness. Furthermore, we introduce Semantic Relation Self-Attention (SRSA) to fully
utilize the semantic and spatial cues to better guide visual perception, which models semantic rela-
tions through text-aware soft mapping, while applying directionality to capture asymmetric relations
and sparsification to avoid the disturbance from redundant relations. We train OVRD on large-scale
datasets and evaluate the zero-shot performance on public OVD benchmarks.

Our main contributions are summarized as follows:

• We propose OVRD, an open-vocabulary detection model designed to improve zero-shot
performance for real-world applications.

• We conduct Text-guided Salient Query Selection (TSQS) to select text-relevant features,
reference points, and masks and improve text-guided visual perception.

• We introduce Semantic Relation Self-Attention (SRSA) to model sparse and directional
semantic relations among object queries in open-vocabulary scenarios.

• OVRD is pre-trained on large-scale datasets and evaluated in a zero-shot setting, which
achieves 29.6 AP on LVIS Val, surpassing OV-DINO by +2.7 AP. Ablation studies demon-
strate our contributions to detection performance.
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2 RELATED WORKS

2.1 DETECTION TRANSFORMERS

OVRD is built upon DINO Zhang et al. (2023), a DETR-like Transformer-based detection model.
DETR Zhu et al. (2021) is inspired by the success of Transformers Vaswani et al. (2017), where
features are enhanced by a Transformer encoder and static query embeddings are decoded with-
out interaction with encoder features. DN-DETR Li et al. (2022a) adopts the same query selection
method as DETR but feeds ground-truth bounding boxes with added noise into the decoder, leading
to faster convergence. Deformable DETR Zhu et al. (2021) introduces deformable attention to accel-
erate convergence and reference boxes initialization through Top-K selection from encoder feature.
Efficient DETR Yao et al. (2021) selects Top-K features based on classification score. DINO Zhang
et al. (2023) further improves query selection based on the aforementioned methods and denoising
techniques Li et al. (2022a), achieving strong performance. These traditional object detectors are
trained on closed-set datasets with limited, pre-defined categories, therefore struggling to generalize
to novel categories.

2.2 OPEN VOCABULARY OBJECT DETECTION

Open-Vocabulary Object Detection (OVD) Zareian et al. (2021) aims to detect both seen (base) and
unseen (novel) categories by learning from seen categories, which differs from traditional object
detection. Early approaches distill knowledge from pre-trained VLMs into object detectors Gu et al.
(2022); Li et al. (2023); Ma et al. (2022); Wang et al. (2023). For instance, ViLD Gu et al. (2022) dis-
tills from teacher VLMs to compute image embeddings and text embeddings of regions. DK-DETR
Li et al. (2023) introduces semantic and relational distillation schemes based on auxiliary queries to
extract knowledge from VLMs. Although these distillation-based approaches are straightforward,
their detection and generalization capabilities are inherently constrained by the teacher models. As
VLMs are image-text pre-training, several methods propose to implement region-text pre-training
Zhong et al. (2022); Kim et al. (2024) to fit detection task, but also lack multi-modal fusion. Re-
cent methods pay more attention to the alignment and fusion of multi-modal features. YOLO-World
Cheng et al. (2024) injects text features into image features through max-sigmoid attention to en-
hance multi-modal feature fusion. Several DETR-like models leverage text features to select queries
and guide detection. Grounding-DINO Liu et al. (2024b) fuses image and text features via cross-
attention in both Transformer encoder and decoder. OV-DINO Wang et al. (2024) utilizes text-aware
object embeddings for query selection and introduces gated cross-attention in the decoder to improve
multi-modal alignment. Our method further enhances multi-modal fusion and text-guided visual
perception by leveraging text-guided salient query selection and semantic relation self-attention.

2.3 RELATION MODELING IN OBJECT DETECTION

The effectiveness of relation modeling between objects has been well demonstrated in object de-
tection. Many image recognition methods Zhao et al. (2021); Chen et al. (2019) and region-based
detectors Xu et al. (2019); Chen et al. (2021) compute correlation matrices and utilize Graph Convo-
lutional Networks (GCNs) to model relational features. However, few works have explored relation
modeling within Transformer-based detectors. Relation-DETR Hou et al. (2024) focuses on model-
ing explicit positional relationships by extracting geometric features of bounding boxes from each
decoder layer, while leaving semantic relation modeling underexplored. Relation-enhanced DETR
Hao et al. (2023) learns class correlations through a trainable relation matrix, which fails to gener-
alize to novel categories in open-vocabulary settings due to its reliance on fixed class labels. Our
method explores semantic relations in open-vocabulary scenarios through text-aware soft mapping,
and models directional relations, while implementing sparsification to avoid interference from re-
dundant and irrelevant connections.

3 METHODS

In this section, we first overview our proposed OVRD (Section 3.1), then introduce the Text-guided
Salient Query Selection (Section 3.2), followed by the Positional Awareness Enhancement (Section
3.3), and finally the Semantic Relation Self Attention (Section 3.4).

3
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Figure 2: Overall architecture of OVRD. (a) OVRD builds upon DINO, where image features
are extracted by the backbone and enhanced by the encoder. The text encoder receives detection
and grounding texts to generate text embeddings. (b) Salient image features, along with their cor-
responding reference points and masks, are selected under the guidance of text embeddings. The
initialized reference points are simultaneously selected according to these salient indices to initialize
the learnable queries. (c) Salient Transformer Decoder iteratively refines the queries and predicts
labels and bounding boxes via the contrastive heads and box heads.

3.1 OVERVIEW

The overall architecture of the proposed OVRD is illustrated in Figure 2 (a), which is basically
built upon DINO Zhang et al. (2023). Given an image I ∈ RH× W×3, multi-scale features are first
extracted by the backbone and then flattened, while producing the image masks M ∈ {0, 1}Ntoken to
indicate valid tokens and mask out the padded ones, where Ntoken denotes the number of flattened
image tokens. The flattened image features, along with the positional embeddings, are fed into
the transformer encoder to generate the encoder features Eenc ∈ RNtoken×DI and reference points
Renc ∈ RNtoken×4 , where DI denotes the dimension of image features.

In OVD, the processing and utilization of text is a key distinction from closed-set detection. Labels
T ∈ RC from detection and grounding datasets are first preprocessed, where C is the number of
nouns. Specifically, categories with single nouns in detection datasets are formatted as "a photo of
a {}.". For grounding datasets, noun phrases are extracted from captions and formatted in the same
way. Text encoder receives the processed texts and generate text embeddings ET ∈ RC×DT , where
DT denotes the dimension of text embeddings.

The image features Es ∈ RNQ×DI most relevant to the text embeddings were selected in text-aware
salient query selection (Figure 2 (b)), along with their reference points Rs ∈ RNQ×4 and masks
Ms ∈ {0, 1}NQ , to improve multi-modal fusion, where NQ is the number of queries. The initialized
reference points of learnable queries are simultaneously selected according to these salient indices.

The initialized learnable queries Q ∈ RNQ×DI are fed into the salient transformer decoder (Figure
2 (c)) and first enhanced by semantic relation self attention (Figure 3) to focus on semantic rela-
tions. They are then refined by deformable cross-attention where the encoder features serve as the
memories. Additionally, the queries are updated via a salient multi-head cross-attention mechanism,
in which the salient memories emphasize the most text-relevant visual cues. However, these salient
selections discard the original spatial structure of encoder features. Thus, we employ vision rotary
position embeddings for both the selected salient memories and queries in salient multi-head at-
tention to better recover relative spatial structure. Finally, the updated queries are passed through

4
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feed-forward networks (FFNs) and the subsequent contrastive head and box head to produce the
labels and bounding box predictions.

3.2 TEXT-GUIDED SALIENT QUERY SELECTION

Text-guided Salient Query Selection identifies the image features most relevant to the text embed-
dings. Along with these text-related salient image features, the corresponding reference points and
masks are also selected as shown in Figure 2 (b). These salient selections, including the salient fea-
tures, reference points, and masks, are then sent into salient multi-head attention, highlighting the
image features most relevant to the input text. In this way, this module provides additional semantic
cues and helps the queries focus on the most semantically relevant regions, improving the guidance
of visual perception by text embeddings.

Review of Text-guided query selection. Query selections in DETR-series are continuously evolv-
ing as introduced in Section 2.1. To better guide open-vocabulary detection, Grounding DINO Liu
et al. (2024b) is inspired by DINO Zhang et al. (2023) to propose text-guided query selection2, inte-
grating its query selection module with text embeddings to select the text-relevant encoder features.
OV-DINO Wang et al. (2024) further improves text-guided query selection3 by selecting text-related
salient features4 Es, which served as keys in the added salient multi-head attention. Specifically,
the top NQ encoder features are selected under the guidance of text embeddings, as proposed in
OV-DINO Wang et al. (2024):

Es,Ks = TopNQ
(TCLS(∥Eenc∥2, ∥EPT ∥2)), (1)

where Ks ∈ RNQ denote the salient indices, and TCLS denotes the contrastive classifier. The
initialized reference points of queries are simultaneously selected according to these salient indices.

Text-guided Salient Query Selection. As described in overview (Section 3.1), multi-scale image
features are first flattened and sent into the transformer encoder with absolute positional embeddings,
which provides implicit global positional information to the encoder features. Feature masks are
calculated through multi-scale image features to prevent attention on invalid or padding tokens,
ensuring that the model focuses only on meaningful spatial features.

However, implementing the Top-K operation solely on encoder features without updating the cor-
responding reference points causes salient features to lose their associated positional information.
Similarly, neglecting the corresponding masks diminishes the attention’s focus on actual objects.

Therefore, we adopt text-guided salient query selection to obtain complete salient selections, includ-
ing the salient features with the attached salient reference points and masks. Specifically, salient
features are obtained as in Equation 1, while the reference points Rs and masks Ms are selected as:

Rs = {Renc,k | k ∈ Ks}, Ms = {Mk | k ∈ Ks}. (2)

Note that both the original masks M and the salient masks Ms are calculated during training only.

3.3 POSITIONAL AWARENESS ENHANCEMENT

In DETR-series models, positional embeddings (PEs) explicitly encode spatial order in Transformer-
based models, allowing them to distinguish element positions and improve structural relation mod-
eling and contextual understanding.

Positional Embeddings in Salient Transformer Decoder. In the salient transformer decoder, the
original reference points calculated in text-guided salient query selection (Section 3.2) are used to
generate the initialized PEs of the queries. Sinusoidal PEs are commonly used in DETR-series
models to calculate absolute position information between tokens. Queries in deformable cross
attention share the same PEs, while the reference points are explicitly utilized to compute their
spatial locations. However, selecting the most text-relevant features from the encoder discards the

2Originally called Language-Guided Query Selection in Grounding DINO.
3Originally called Language-Aware Selective Fusion in OV-DINO.
4Originally called Object Embeddings in OV-DINO.
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Figure 3: Detailed illustration of the Semantic Relation Self Attention. This module first per-
forms contrastive classification of queries with text embeddings at each layer, followed by operating
softmax to obtain the probability distribution over labels. The result distribution is then transformed
into high-level semantics through text-aware soft mapping. These semantic representations are sub-
sequently projected as subjects and objects, emphasizing their different roles in directional relations.
The outputs are multiplied to generate a high-level semantic relation matrix. Finally, the matrix is
sparsified and integrated into the self-attention mechanism.

original grid-based spatial structure. This makes it challenging for the additional salient multi-head
attention to correctly infer the positions of the selected feature tokens. Even though the salient
reference points are simultaneously chosen to calculate the absolute PEs, the effect is still limited
due to the loss of the global spatial continuity of the original dense grid.

Vision Rotary Positional Embeddings. To mitigate these issues and enhance the positional
awareness, we leverage vision rotary positional embeddings (RoPE) Heo et al. (2024) for queries
and keys in salient multi-head attention, while keeping the other PEs in salient transformer decoder
unchanged. Vision RoPE injects relative positions into the query and key vectors through rotation,
allowing the attention weights to naturally reflect relative positions between tokens. Specifically,
RoPE Su et al. (2024) in language model utilizes the multiplication of Euler’s formula (eiθ) to inject
relative positions. Vision RoPE extends this idea by considering axial frequencies, expanding 1D
RoPE to horizontal and vertical axes, and further implementing mixed learnable frequencies to cap-
ture relations along diagonal directions. By extracting relative positional information from salient
reference points, vision RoPE helps recover the spatial structure and provides relative positional
cues, enabling attention to reason about positions even when features are sparsely selected.

3.4 SEMANTIC RELATION SELF-ATTENTION

Modeling semantic relations benefits object detection, which has been widely demonstrated. Seman-
tic Relation Self-Attention (SRSA), as depicted in Figure 3, guides the self-attention mechanism to
focus on semantic relations in open-vocabulary scenarios using text embeddings. This module fully
utilizes the semantic cues from TSQS (Section 3.2) and relative spatial cues from vision RoPE (Sec-
tion 3.3) to further enhance multi-modal fusion.

Label Distribution via Contrastive Classifier. This module first obtains probability distribution
over labels through a contrastive classifier. Specifically, given queries Q in each decoder layer and
text embeddings ET from text encoder with its projector WT ∈ RDI×DT , we first compute the
projected text embeddings EPT = ETW

⊤
T , EPT ∈ RC×DI . The probability distribution P ∈

6
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RNQ×C is then obtained by the contrastive classifier TCLS after a softmax operation σ:
P = σ(TCLS(∥Q∥2, ∥EPT ∥2)). (3)

Text-aware Soft Mapping. Prior methods Yang et al. (2018); Zhao et al. (2021); Hao et al. (2023)
compute semantic relations based on weights of linear classifier, since they are trained on closed-
set datasets with limited categories, which allows the classifier to easily capture distinct semantics
from different labels. However, in open-vocabulary scenarios, labels are not fixed during training,
and evaluation occurs on datasets with long-tail and ambiguous categories. These challenges ne-
cessitate robust characterization of high-level semantic visual embeddings for category prototypes,
motivating the Text-aware Soft Mapping. Specifically, the probability distribution is multiplied with
projected text embeddings to produce the high-level semantic embeddings Ehls ∈ RNQ×DI :

Ehls = PEPT . (4)
In this way, the classification probability space is mapped into the semantic space, where the proba-
bility distribution acts as weights over the text embeddings, enhancing semantic awareness of queries
and improving the alignment between queries and the semantic space.

Directional Relations Modeling. As mentioned in introduction (Section 1), semantic relations
are asymmetric and directional. To capture such relations, we employ two separate MLPs with
identical structures, denoted as MLPsubj : RDI → RDR and MLPobj : RDI → RDR , on the obtained
high-level semantic embeddings, where DR represents the dimension of the relations and is set to
64 by default. Each MLP contains two linear layers with an activation function in between. This
design helps select targets with directional semantics, enhancing both the flexibility and accuracy of
relation modeling. The semantic relation matrix SR ∈ RNQ×NQ can be calculated as:

SR = MLPsubj(Ehls)MLPobj(Ehls)
⊤. (5)

Semantic Relation Sparsification. Numerous categories in open-vocabulary scenarios result in
large fully-connected relation matrices, which inevitably include redundant connections and thereby
hinder accurate relation modeling. To address this, we sparsify the semantic relation matrix by
selecting semantic relations with higher scores for each query. Specifically, the sparsification follows
the under expression:

SSRi,j = SRi,j · 1[SRi,j ∈ TopSN (SR:, j)] , (6)
where SSR ∈ RNQ×NQ denotes the sparse semantic relation, 1(·) equals 1 when the condition holds
and 0 otherwise, TopSN picks the top SN elements and SN is a sparse number controlling how many
elements are retained, which is set to 32 by default.

Integration into Self-Attention. Finally, the sparse semantic relation is integrated into the vanilla
self-attention mechanism as follows:

SRSA(Q,ET ) = σ(SSR(Q,ET )+
Que(Q)Key(Q)⊤√

DI

)Val(Q). (7)

This integration allows the module to model sparse semantic relations in open-vocabulary scenar-
ios. By incorporating textual information, the self-attention mechanism is enhanced in capturing
semantic relations and improving multi-modal fusion.

4 EXPERIMENTS

In this section, we demonstrate the effectiveness of OVRD, which is pre-trained on large-scale
datasets and evaluated in a zero-shot setting. We introduce the datasets and the evaluation met-
ric in Section 4.1, then the implementation details in Section 4.2. The main result and comparisons
with other methods are then present in Section 4.3, and finally the ablation studies in Section 4.4.

4.1 DATASETS AND METRIC

For fair comparison with existing methods, we pre-trained OVRD on large-scale datasets, including
detection dataset Objects365v1 Shao et al. (2019) and grounding dataset GoldG Kamath et al. (2021)
(GQA Hudson & Manning (2019) and Flickr30k Plummer et al. (2015)). We evaluate our method
on the LVIS dataset Gupta et al. (2019) in a zero-shot setting and report Fixed AP Dave et al. (2021)
on LVIS Minival and LVIS Val for comparison. Details of datasets are provided in Appendix A.2.

7
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Table 1: Zero-shot evaluation on LVIS. We evaluate OVRD for fixed AP on LVIS minival and
LVIS val in a zero-shot setting and compare with other recent methods. AP for LVIS minival is the
main metric. AP with subscripts r, c, and f denotes AP for rare, common and frequent categories,
respectively. In the column of Datasets, O means Objects365v1, G is GoldG, VG is Visual Genome
Krishna et al. (2017). † means the re-evaluated results, discussed in Appendix A.5.

LVIS MiniVal LVIS Val
Model Datasets AP APr APc APf AP APr APc APf

GLIP-T(B) Li et al. (2022b) O 17.8 13.5 12.8 22.2 11.3 4.2 7.6 18.6
G-DINO-T Liu et al. (2024b) O,G 25.6 14.4 19.6 32.2 – – – –
LAMI-DETR Du et al. (2024) O,VG 35.4 37.8 – – – – – –
YOLO-W-L Cheng et al. (2024) O,G 35.2 27.8 32.6 38.8 28.3 22.5 24.4 35.1
YOLOE-v8-L Wang et al. (2025) O,G 35.9 33.2 34.8 37.3 – – – –
Open-Det Cao et al. (2025) VG 33.1 31.2 32.1 34.3 – – – –
OV-DINO1† Wang et al. (2024) O 21.2 7.9 16.6 27.7 16.5 6.8 12.4 25.3
OV-DINO2† Wang et al. (2024) O,G 36.1 32.9 35.0 37.7 26.9 24.2 27.8 34.0

OVRD-T1 (Ours) O 28.1 23.0 26.2 30.8 22.4 17.8 19.5 27.6
OVRD-L1 (Ours) O,G 37.0 33.1 33.4 40.9 29.6 22.4 26.0 36.7

4.2 IMPLEMENTATION DETAILS

We conduct the main experiments on 8 40G A100 GPUs with batch size 4 for each GPU. We provide
two scales of the proposed OVRD. OVRD-T utilizes Swin-T Liu et al. (2021) as image backbone and
is trained on Objects365v1 dataset for 12 epochs. OVRD-L utilizes Swin-L as image backbone and
is trained on both Objects365v1 and GoldG datasets for 30 epochs. CLIP-B Radford et al. (2021)
text encoder is implemented for both models, and we follow YOLO-UniOW Liu et al. (2024a) to
utilize LoRA Hu et al. (2022) to fine-tune the text encoder. Following the settings in mm-grounding-
dino Zhao et al. (2024) and other DINO-based OVD methods Wang et al. (2024); Du et al. (2024),
we adopt the AdamW Loshchilov & Hutter (2019) optimizer with a weight decay of 1e-4. Base
learning rate is 1e-4 for both the model and LoRA-fine-tuned text encoder, while it is 0.1× the base
learning rate to the image backbone. Moreover, we use a multi-step learning rate schedule. Learning
rate in OVRD-T is reduced to 0.1 times base learning rate after 10 epochs, while in OVRD-L, the
learning rate is reduced to 0.1 and 0.01 times base learning rate after 19 and 26 epochs, respectively.
Detailed parameters are largely identical to the original DINO and are provided in Appendix A.3.

4.3 MAIN RESULTS

The main results are shown in Table 1 and the comparison with recent state-of-the-art methods are
also provided. For the result on LVIS Minival, OVRD-T, trained only on the Objects365v1 for 12
epochs, achieves 28.1 AP, outperforming OV-DINO1 by 6.9 AP and even surpassing Grounding-
DINO-T, which is trained on both Objects365v1 and GoldG, by 2.5 AP. OVRD-L is trained on
both Objects365v1 and GoldG datasets, and it achieves 37.0 AP, outperforming OV-DINO2 by 0.9
AP. For the result on LVIS Val, OVRD-T achieves 22.5 AP, outperforming OV-DINO1 by 6.0 AP,
while OVRD-L is 29.6 AP, surpassing OV-DINO2 by 2.7 AP. OVRDs achieve superior performance,
presenting remarkable zero-shot abilities. Visualization results are shown in Appendix A.4.

4.4 ABLATION STUDIES

We conduct ablation studies to analyze OVRD. We randomly sample 20% of the whole training
dataset (OG) with a fixed random seed to reduce the training cost while keeping relatively sufficient
and diverse training data. All ablation studies are conducted on 8 V100 GPUs under OVRD-T
settings. The results of adding semantic relations (Table 2), 32 of the sparse number (Table 3) and
RoPE of the positional embeddings (Table 4) are based on the same default model.

Ablations on OVRD components. Table 2 demonstrates the impact of each component intro-
duced into our OVRD. The reproduced OV-DINO is used as the baseline with the same settings as
OVRD-T, where its original BERT text encoder is replaced by CLIP with LoRA for fair compari-
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Table 2: Ablations on OVRD Components. OVRD improves detection performance through the
salient selections, the use of rope and the add of semantic relations. Numbers in parentheses denote
the gain compared to the previous row / baseline.

Methods AP APr APc APf

Baseline 19.7 16.9 17.7 22.0
+ Text-guided Salient Query Selections (3.2) 21.3 (+ 1.6 / + 1.6) 14.4 17.9 25.6
+ Position Awareness Enhancement (3.3) 22.0 (+ 0.7 / + 2.3) 18.1 20.0 24.6
+ Semantic Relation Self-Attention (3.4) 23.4 (+ 1.4 / + 4.2) 21.2 21.3 25.6

son, achieving 19.7 AP. We set the positional embeddings of keys to Sinusoidal PE calculated by
reference points from text-guided query salient selection and achieve remarkable improvement (+
1.6 AP). The implementation of RoPE instead of Sinusoidal PE enhances position awareness (+ 0.7
AP). OVRD computes the semantic relation in self-attention, which achieves 23.4 AP and totally +
4.2 AP improvement compared to the baseline in the random selected datasets.

Table 3: Ablations on Sparse Number. Different sparse number of semantic relation are evaluated.
Sparse Number AP APr APc APf

0 (w/o Sparse) 21.7 (- 1.7) 15.1 19.0 25.3
16 22.4 (- 1.0) 19.3 21.1 24.0
32 (default) 23.4 21.2 21.3 25.6
64 23.1 (- 0.3) 19.0 21.3 25.6
128 21.9 (- 1.5) 19.8 19.7 24.2
256 21.7 (- 1.7) 18.3 20.0 23.7
512 21.5 (- 1.9) 18.9 19.0 24.2

Ablations on Sparse Number. Table 3 presents the effectiveness of different number to sparsify
the semantic relations. Since the total number of queries is about 1100 (900 initialized and 200
denoising), we set the maximum number of sparse queries to 512, which is nearly half of all queries.
When the sparse number is 64, the result is close to our default setting. When the sparse number
is small (16), some meaningful relations may be overlooked, leading to performance degradation.
However, when the sparse number is 128 or higher, or when sparsification is not applied (0), noisy
and redundant connections may disrupt the self-attention, resulting in decreased performance.

Table 4: Ablations on Positional Embeddings. Different positional embeddings are evaluated.
Positional Embeddings (PE) AP APr APc APf

w/o PE 22.0 (-1.4) 15.0 20.8 24.2
Sinusoidal PE 22.3 (- 1.1) 11.8 19.3 26.9
Learnable PE 23.2 (- 0.2) 20.3 21.6 25.1
RoPE (default) 23.4 21.2 21.3 25.6

Ablations on Positional Embeddings. Table 4 shows the impact of different positional embed-
dings (PE). We first evaluate the performance without PE, where only salient masks are used, which
results in a drop in detection performance (-1.4 AP). Using Sinusoidal PE slightly improves per-
formance compared to not using any PE (+0.3 AP). However, it still lags behind RoPE (-1.1 AP),
mainly due to the loss of original spatial information caused by text-guided salient query selections.
We also evaluate Learnable PE, but it still fails to match the performance of RoPE (-0.2 AP).

5 CONCLUSION

In this paper, we present OVRD, an approach to improve open-vocabulary detection performance.
We introduce text-guided salient query selection to enhance multi-modal fusion and further im-
prove positional awareness using salient reference points. Moreover, we explore semantic relation
modeling in open-vocabulary scenarios and integrate it into self-attention to strengthen text-guided
visual perception. Evaluations on LVIS demonstrate that OVRD achieves remarkable performance
in open-vocabulary detection.
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6 REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our work. The detailed model architecture is
presented in Section 3. Experimental settings, including datasets, implementation details, and eval-
uation metrics, are provided in Section 4. We also provide appendix in Section A with additional
implementation details, including detailed dataset information, parameter settings, visualization re-
sults, and the re-evaluation of compared methods. Codes and pre-trained weights are made available
through the anonymous link in the abstract to facilitate reproduction of our results.
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A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

We used LLMs, mostly ChatGPT, to assist with language polishing and code development, while all
research ideas and results remain solely the authors’ work.

A.2 DETAIL INFORMATION OF DATASETS

We pre-train our OVRD on detection dataset Objects365v1 Shao et al. (2019) and grounding dataset
GoldG Kamath et al. (2021) and evaluate on LVIS Gupta et al. (2019). Datasets information is listed
in table 5.

Table 5: Brief Statistics of used datasets
Dataset Type Classes/Texts Images Anno.

Objects365v1 Detection 365 609K 9621K
GQA Grounding 387K 621K 3681K
Flickr30k Grounding 94K 149K 641K
LVIS Val Detection 1203 20K –
LVIS minival Detection 1203 5K –

Objects365 is a large-scale detection dataset with 365 classes. Objects365v1 has 609K images and
nearly 100M annotations. Objects365v2 is a much larger dataset with 2M images and over 300M
annotations. We use Objects365v1 to train our model.

The grounding dataset GoldG consists of GQA Hudson & Manning (2019) and Flickr30k Plummer
et al. (2015) and excludes images from COCO to obey the zero-shot setting. GQA is for visual
question answering and Flickr30k is for sentence-based image description.

LVIS is based on COCO Lin et al. (2014) with the same images but different annotations. LVIS has
long-tail categories and some of them have only a few examples, which makes it a hard dataset for
detection. LVIS Minival has the same images with COCOval2017 and is the main evaluated dataset.

A.3 DETAIL PARAMETERS

We demonstrate the detail parameters of OVRD-T, OVRD-L in table 6, including the training set-
tings, model parameters and loss function.

A.4 VISUALIZATION

The visualization results of OVRD-L on LVIS Minival is presented in Figure 4.
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Table 6: Parameters of OVRDs
Parameters OVRD-T OVRD-L

Training Settings
Batch size per GPU 4 4
Epochs 12 30
Datasets O O,G
Image Backbone Swin-T Swin-L
Text Encoder CLIP-B+LoRA CLIP-B+LORA
Text Format a photo of a {}. a photo of a {}.
Optimizer AdamW AdamW
Base Learning Rate (lr) 1e-4 1e-4
lr decay milestones
(× ratio) 10 (× 0.1) 19 (× 0.1)

26(× 0.01)
lr for image backbone lr × 0.1 lr × 0.1
lr for text encoder CLIP: 0, LoRA: lr CLIP: 0, LoRA: lr
Weight Decay 1e-4 1e-4
Warmup iter 1000 1000

Model Parameters
Training Categories (C) 80 80
Image Feat Dim (DI ) 256 256
Text Embed Dim (DT ) 512 512
Num of queries (NQ) 900 900
Sem Rel Dim (DR) 64 64
Sparse Number (SN ) 32 32
Enc Layers 6 6
Enc FFN Activation SiLU SiLU
Dec Layers 6 6
Num of Heads 8 8
Dec FFN Activation SiLU SiLU

Loss Function
Losses Focal,L1,GIoU Focal,L1,GIoU
Costs of Losses 1,5,2 1,5,2
Weights of Losses 2,5,2 2,5,2

Figure 4: Visualization results of OVRD-L on LVIS Minival. The left part of each couple of
images is the ground-truth and the right is the prediction.
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A.5 RE-EVALUATING OV-DINO

We evaluate OV-DINO1 and OV-DINO2 using their provided code and weights. However, post-
training tricks are applied in the original implementations, which we discard in our re-evaluation to
ensure a fair comparison with our method.

Specifically, for zero-shot evaluation, the original OV-DINO adds full ImageNet templates (80 in
total) to each text input and feed them into the text encoder, followed by mean pooling to aggregate
the embeddings. With 1203 text labels in LVIS, this requires computing 1203× 80 = 96, 240 short
sentences through the text encoder, which significantly increases computational cost.

Another trick, not mentioned in their paper but present in their code, follows GLIP Li et al. (2022b)
by splitting 40 categories into a single chunk with a total of ⌈1203/40⌉ = 31 chunks. Each chunk is
processed separately, resulting in an evaluation time 31 times longer than standard methods.

These tricks not only greatly increase GPU memory consumption but also prolong evaluation time;
therefore, we omit them in our re-evaluation.

15


	Introduction
	Related Works
	Detection Transformers
	Open Vocabulary Object Detection
	Relation Modeling in Object Detection

	Methods
	Overview
	Text-guided Salient Query Selection
	Positional Awareness Enhancement
	Semantic Relation Self-Attention

	Experiments
	Datasets and Metric
	Implementation Details
	Main Results
	Ablation Studies

	Conclusion
	Reproducibility Statement
	Appendix
	The Use of Large Language Models (LLMs)
	Detail information of datasets
	Detail parameters
	Visualization
	Re-evaluating OV-DINO


