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Abstract

While image captioning is an essential field of001

vision language models (VLM), a lack of con-002

tinuity between the learning objective and fi-003

nal performance metrics of VLMs complicates004

their training and optimization. Reinforcement005

learning (RL) can directly optimize such met-006

rics, but it is accompanied by a significant com-007

putational cost, making it difficult to apply to008

recent large-scale VLMs. In this paper, we009

propose Direct Metric Optimization (DMO),010

which is a lightweight final-metric-optimizing011

training method. We replace the computa-012

tionally expensive exploration process in RL013

with an offline, diverse text data augmenta-014

tion and show that self-supervised training on015

reward-weighted augmented data leads to di-016

rect and stable metric optimization. Our exper-017

iments demonstrate that DMO achieves perfor-018

mance comparable to those of the state-of-the-019

art RL method while saving hundreds of times020

more model forwarding iterations and greater021

amounts of computation time. This suggests022

that DMO constitutes a promising alternative023

for metric optimization in the era of large-scale024

VLMs.025

1 Introduction026

With the advent of CLIP (Radford et al., 2021), the027

boundaries between vision and language modalities028

in machine learning have been dissolved, leading029

to rapid advancements in research involving these030

areas. Furthermore, the rise of large language mod-031

els (LLM) has led to the emergence of large-scale032

vision language models (VLM), extending their033

influence to practical applications. For example,034

models such as ChatGPT (Achiam et al., 2023) and035

Gemini (Team et al., 2023) generate detailed natu-036

ral language descriptions from visual information.037

With the increasing prevalence of VLMs, methods038

for customizing and fine-tuning these models for039

specific domains or individuals are attracting signif-040

icant interest and attention (Sun et al., 2023; Zhao041

et al., 2023).042
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Figure 1: An overview of our Direct Metric Optimiza-

tion (DMO). Image and tokens are denoted as I and yi
and CE stands for cross entropy function. Precomputed
rewards r assign different weights to each sample in a
textually augmented dataset, effectively enhancing the
targeted performance metrics.

Recent standard captioning models adopt self- 043

supervised learning for training purposes (Wang 044

et al., 2022; Yu et al., 2022; Alayrac et al., 2022; 045

Li et al., 2023). This method treats the ground 046

truth captions both as inputs and labels, and the 047

model predicts only the next token from the given 048

image and preceding tokens. Specifically, recent 049

transformer-based encoder-decoder models can 050

conduct the next token prediction of each step 051

in parallel, significantly enhancing their computa- 052

tional efficiency. However, this approach is subject 053

to certain limitations. Typically, the performance of 054

image captioning is evaluated using metrics such as 055

BLEU (Papineni et al., 2002) or CIDEr (Vedantam 056

et al., 2015); however, self-supervised learning of 057

language modeling does not necessarily optimize 058

those metrics. To target final metrics directly, re- 059

inforcement learning (RL) methods have been em- 060

ployed (Ranzato et al., 2015; Zhang et al., 2017b; 061

Rennie et al., 2017; Gao et al., 2019). Reinforce- 062
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ment learning is a powerful method capable of op-063

timizing even non-differentiable metrics; however,064

it has certain drawbacks, such as learning instabil-065

ity and significant time and computational costs.066

With the growing trend of using large pre-trained067

models, those challenges have become increasingly068

serious. Conducting RL with models containing069

billions of parameters demands extensive computa-070

tional time and resources, making the application071

of RL methods impractical.072

To bypass the prohibitive computational cost of073

RL, we propose to replace the expensive explo-074

ration process in RL with diverse text data aug-075

mentation and reduce RL to simple importance-076

weighted self-supervised learning. The approach077

that utilizes previously collected data for RL is078

known as offline-RL (Levine et al., 2020). Partic-079

ularly in our approach, datasets are augmented by080

various methods and the augmentation diversity081

brings a variety of samples of different rewards,082

enabling the efficient estimation of the optimal cap-083

tion for the image. We call this metric-optimizing084

self-supervised training Direct Metric Optimization085

(DMO). Our experiments demonstrate that DMO086

achieves performance on par with state-of-the-art087

(SOTA) RL methods in standard image captioning088

metrics while retaining lightweight computational089

efficiency and learning stability. This highlights090

DMO’s significant practical advantages in metric091

optimization, especially considering the increasing092

need to tune and customize large-scale VLMs.093

2 Preliminaries094

2.1 Self-Supervised Learning for Image095

Captioning096

The standard approach for image captioning in re-097

cent years has been to employ an encoder-decoder098

model, where the encoder maps the image into the099

latent space and extracts features from the image,100

and the text decoder autoregressively generates to-101

kens for the next step from extracted features and102

previously generated tokens. In the self-supervised103

learning of language models (LM), the model is of-104

ten trained by teacher-forcing (Williams and Zipser,105

1989). This method increases the likelihood of106

ground-truth sentences by aligning the model’s107

conditional distribution pθ(yi|I, y<i) with the la-108

bel distribution q(yi) using cross-entropy (CE) for109

each step i ∈ {1, . . . , T}. Here, yi represents110

a text token at step i and I is the given image.111

The label distribution q(yi) is a one-hot vector or112

label-smoothed vector (Szegedy et al., 2016) from 113

ground truth label yi. The objective function of self- 114

supervised learning for language modeling LLM is 115

expressed as follows: 116

LLM =
T∑

i

CE(q(yi), pθ(yi|I, y<i)). (1) 117

Especially in the recent Transformer-based archi- 118

tecture, the predictions of the next tokens at each 119

time step can be performed in parallel (Vaswani 120

et al., 2017). Thus this training method is extremely 121

time and computationally efficient because it does 122

not require recursive operations, as is the case with 123

conventional RNN-based methods (Vinyals et al., 124

2015; Xu et al., 2015). 125

2.2 Reinforcement Learning for Image 126

Captioning 127

Typically, the performance of captioning models 128

is assessed using metrics such as BLEU or CIDEr. 129

However, self-supervised learning does not neces- 130

sarily optimize these metrics. Furthermore, these 131

evaluation metrics are often non-differentiable, 132

making it impossible to apply the gradient descent 133

directly. One approach for directly optimizing 134

those non-differentiable metrics is to employ RL. 135

Recent studies of image captioning have applied 136

the various RL algorithms including REINFORCE 137

and Actor-Critic (Ranzato et al., 2015; Zhang et al., 138

2017b; Liu et al., 2017; Rennie et al., 2017; Zhang 139

et al., 2021), to captioning tasks by regarding the 140

captioning models as agents and the final evalu- 141

ation metrics (such as CIDEr) as rewards. The 142

objective function of the captioning model in the 143

RL framework is expressed as follows: 144

LRL = −Ewi∼pθ [r({w1, . . . , wT })], (2) 145

where wi is the token sampled from the model’s 146

distribution pθ at the time step i and T is the total 147

length of the token sequence. The partial deriva- 148

tives of LRL can be determined using the REIN- 149

FORCE algorithm (Williams and Zipser, 1989). 150

The calculation of the expected values is approx- 151

imated by Monte Carlo sampling within a mini- 152

batch as follows: 153

∇θLRL ≈ −r({w1, . . . , wT })· 154

∇θ log pθ({w1, . . . , wT }|I). (3) 155
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In RL, the reward metric need not be confined156

to automatic evaluation scores. It can accept any157

user-defined score including ambiguous evalua-158

tions from humans (Christiano et al., 2017; Ouyang159

et al., 2022), thus demonstrating significant versa-160

tility and adaptability to various tasks.161

Notwithstanding these advantages, the RL162

methodology presents significant challenges. First,163

for the method to be effective, extensive explo-164

ration is needed, which makes RL time-consuming.165

Second, the learning process tends to be unstable,166

especially during the early stage of training, when167

the model poorly samples the high-rewarded se-168

quences. (Ranzato et al., 2015; Rennie et al., 2017).169

In addition, the sampling process in RL is compu-170

tationally inefficient because the gradient compu-171

tation requires the last token wT (see Equation 3),172

but token generation is done in a left-to-right man-173

ner, undermining the computational parallelism of174

Transformer architecture.175

2.3 Text Data Augmentation (TDA)176

Data augmentation is a traditional yet effective177

method that is used to enhance a language model’s178

performance (Li et al., 2023; Fan et al., 2023; Yang179

et al., 2023). Previous studies have shown that text180

data augmentation (TDA) strategies can be broadly181

categorized into three types: paraphrasing, noising182

and sampling (Li et al., 2022). Paraphrasing is a183

method that generates data that convey very simi-184

lar information as the original data with restrained185

changes. Noising adds noise to datasets to improve186

the robustness of the model. Sampling produces187

new novel data from the data distribution master.188

The primary objective of these strategies is to intro-189

duce diversity into the dataset. This is particularly190

crucial in scenarios with limited datasets, where191

models are prone to overfitting. Augmenting the192

dataset and smoothing the distribution can effec-193

tively prevent this overfitting.194

In the fields of image and audio processing, data195

augmentation has traditionally achieved significant196

success (DeVries and Taylor, 2017; Zhang et al.,197

2017a). In contrast, it has not been explored as ex-198

tensively in the field of natural language processing.199

This disparity can be attributed to the challenges200

inherent in text augmentation. Unlike images and201

audio, which comprise continuous data, tokenized202

text data is discrete and even minor alterations can203

lead to significant semantic shifts. Implementing204

superficial changes while controlling these seman-205

tic variations is not straightforward, and universally 206

effective methods for achieving this are yet to be 207

established (Feng et al., 2021). 208

3 Proposed Framework 209

3.1 Overview of Method 210

In RL, the sequences are sampled from the model’s 211

distribution pθ, but this raises problems of its 212

high computational cost and instability in the early 213

stages of training. We propose the following per- 214

spective shift: What if we were to consider the 215

sequences drawn from the given dataset as the 216

sequences sampled from the model itself? This 217

approach allows us to obtain the gradients of RL 218

objective function with ground truth data in a self- 219

supervised manner. Furthermore, since sequences 220

are pre-sampled, the bottleneck in RL, specifically 221

the recursive generation process, is resolved. This 222

significantly enhances computational efficiency. 223

The approach that utilizes previously collected 224

data for RL is known as "offline-RL" (Levine et al., 225

2020), and is commonly used to bypass the compu- 226

tationally expensive exploration in RL (Chen et al., 227

2021; Jang et al., 2022; Shi et al., 2023; Baheti 228

et al., 2023). Applying the offline-RL to image 229

captioning, however, is not straightforward. First, 230

because of the nature of major captioning metrics 231

(such as BLEU, METEOR, and ROUGE-L) that 232

measure the overlap of n-grams, words or subse- 233

quences with a set of ground-truth captions, ground 234

truth captions always receive rewards of 1 in the 235

offline-RL framework. Because the rewards are 236

indicators of the quality of samples, receiving a 237

constant value of rewards gives no clue about how 238

good each caption is, and consequently, there is no 239

advantage compared with standard self-supervised 240

training. The second problem is data suboptimality, 241

a common challenge in offline-RL (Levine et al., 242

2020). The reliance on limited static data restricts 243

exposure to high-reward samples, thereby capping 244

the model’s performance improvements. We ad- 245

dress those obstacles by introducing diverse text 246

data augmentation (TDA). With TDA, we expose 247

models to a variety of expressions with different 248

rewards outside the original dataset, providing a 249

greater number of clues about the optimal caption 250

for the images. Furthermore, substituting TDA 251

for exploration improves the stability of the learn- 252

ing process in the early stage. This is because, 253

unlike RL, TDA can consistently provide reason- 254

able quality samples and training does not rely on 255
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the model’s capability of sampling high-reward se-256

quences. This metric-optimizing self-supervised257

training on textually augmented datasets, which we258

call Direct Metric Optimization, offers the follow-259

ing two significant advantages.260

1. It allows direct optimization of metrics in a261

self-supervised manner, significantly enhanc-262

ing computational efficiency.263

2. Training is stable even at an early stage be-264

cause it does not rely on the model’s capability265

of generating captions of high rewards.266

3.2 Direct Metric Optimization267

In the proposed DMO method, sequences are sam-268

pled from textually augmented dataset Daug. Be-269

cause the dataset is known, scores for each ground270

truth sample can be calculated in advance. Let the271

score function (for example, the BLEU and CIDEr272

scorer) be the reward function r(·). Once ground273

truth data d = {y1, . . . , yT } from dataset Daug is274

sampled, the gradient of our DMO objective LDMO275

is defined as follows:276

∇θLDMO(d) = −r({y1, . . . , yT })·277

∇θ log pθ({y1, . . . , yT }|I) (4)278

= −r(d)∇θ

T∑

i

log pθ(yi|I, y<i) (5)279

= r(d)∇θ

T∑

i

CE(q(yi), pθ(yi|I, y<i)) (6)280

= r(d)∇θLLM(d), (7)281

where q(yi) is a one-hot vector from label yi. This282

can be interpreted as a reward-weighted gradient of283

self-supervised learning loss. This approach elimi-284

nates the bottleneck inherent in RL, specifically the285

recursive generation process, through the utiliza-286

tion of pre-sampled sequences. Consequently, it287

enables the model to leverage the parallel computa-288

tional capabilities of the Transformer architecture,289

resulting in a substantial enhancement of computa-290

tional efficiency.291

This reward-weighted self-supervised training292

on augmented datasets is related to noise/similarity-293

aware supervised training that adaptively assigns294

different weights to each sample (Atliha and Šešok,295

2020; Yang et al., 2023; Kang et al., 2023). How-296

ever, there are notable differences. First, while297

those noise-aware methods often focus on large-298

scale pre-training from noisy datasets and mitigate299

the effect of noisy samples, our approach features 300

the finetuning stage with relatively small and clean 301

datasets, and deliberately augments datasets to in- 302

troduce the diversity of samples. Second, while 303

similarity-aware methods often utilize CLIP/BERT 304

scores or custom weights (Ding et al., 2019; Atliha 305

and Šešok, 2020; Yang et al., 2023), we directly 306

employ target metrics for sample weighting. While 307

the CLIP/BERT score is useful for denoising or 308

filtering, training with these measures does not di- 309

rectly lead to the optimization of the final metrics. 310

With these perspectives, our method enables more 311

effective optimization of the target metrics. 312

4 Experiment Implementations 313

This section describes the detailed experiment im- 314

plementations for the evaluation of our DMO train- 315

ing. 316

4.1 Datasets and Captioning Models 317

We validate our method with the MS-COCO 318

dataset (Lin et al., 2014) and Flickr8K (Hodosh 319

et al.), which are commonly used in image cap- 320

tioning research. Both datasets have 5 captions per 321

image. For the evaluation, the datasets are split into 322

training, validation, and testing sets according to 323

the Karpathy method (Karpathy and Fei-Fei, 2015) 324

so that the numbers of images in the training, val- 325

idation and test datasets become 6091/1000/1000 326

for Flickr8k and 113287/5000/5000 for MS- 327

COCO. For captioning models, we employ GIT- 328

base/large (Wang et al., 2022) and BLIP2-2.7b (Li 329

et al., 2023), which have different sizes of param- 330

eters and architectures. GIT has a simplified ar- 331

chitecture of one image encoder and one text de- 332

coder and the base model has 178M parameters 333

while the large model has 390M parameters for 334

each. BLIP2-2.7B has 2.7B parameters and it em- 335

ploys large pre-trained frozen models for its vi- 336

sion encoder and text decoder. Both models are 337

pre-trained on datasets that include COCO (Lin 338

et al., 2014), Visual Genome (Krishna et al., 2017), 339

CC3M (Sharma et al., 2018), and other large image- 340

text pair datasets. In our experiments, all mod- 341

els are finetuned for 3 epochs with learning rate 342

1.0 × 10−5 and batch size 960, using a fixed sin- 343

gle random seed. Further details are explained in 344

Appendix A.1. 345
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4.2 Text Data Augmentation Strategy346

Based on Section 2.3, we adopt the following three347

augmentation methods accordingly. From each348

of the following three methods, two augmented349

captions are randomly sampled for each image and350

added to the original training dataset.351

• Back-translation: The En-Fr translation352

model from MarianNMT (Junczys-Dowmunt353

et al., 2018) is adopted. Back-translation is354

applied to each ground truth caption and the355

same number of back-translated captions as356

original captions are created.357

• Pre-trained VLM Sampling: Using the358

COCO-pre-trained BLIP2-6.7B model, five359

captions are generated from each image in the360

training dataset with temperature 1.0.361

• Paraphrasing by LLM: We employ Llama2-362

7b-chat (Touvron et al., 2023) to paraphrase363

captions. The detailed prompt text is pre-364

sented in Appendix B.365

We do not explicitly adopt a noising strategy, as suf-366

ficient semantic noise is introduced by each TDA367

method.368

4.3 Metrics and Rewards369

We evaluate the performance of models by CIDEr,370

BLEU-4, METEOR (Banerjee and Lavie, 2005),371

ROUGE-L (Lin, 2004) and SPICE (Anderson et al.,372

2016). Since our method requires each sample to373

be scored by a reward function, we directly use the374

metrics above as the rewards in the training. As375

the scoring of each metric demands a set of ground376

truth captions as references, we employ the original377

training dataset as the reference dataset.378

5 Results379

We evaluate our proposed method in terms of met-380

ric optimization performance, learning stability and381

computational efficiency. We further investigate382

how reward-weighting architecture facilitates ro-383

bust metric optimization by comparing DMO with384

standard LM training under noisy data and limited385

data settings.386

5.1 Evaluating Metric Optimization387

Performance388

5.1.1 Does DMO Enhance Final Metrics?389

First, we examine whether our method effectively390

improves the targeted metrics for image caption-391

ing. We use a textually augmented Flickr8k dataset392

Training Evaluation Metrics
Metric CIDEr B4 MET. ROU.

CIDEr 97.0 33.3 27.7 57.5

BLEU-4 96.8 33.5 27.7 57.5

METEOR 96.1 32.8 27.5 57.0
ROUGE-L 96.0 33.0 27.6 57.5

standard LM 95.1 33.4 27.0 57.1

Table 1: Performance evaluation of GIT-base model
optimized for each metric by DMO on the textually aug-
mented Flickr8k dataset. ’B4’, ’MET.’ and ’ROU.’ refer
to BLEU-4, METEOR and ROUGE-L, respectively.

(TDA-Flickr8k) and apply DMO to the GIT-base 393

so that each CIDEr, BLEU-4, METEOR, and 394

ROUGE-L is optimized respectively. We then eval- 395

uate whether DMO improves these metrics com- 396

pared to training with the standard Language Model 397

(LM) loss. The result is presented in table 1. We 398

find that when optimized for each metric, there is 399

an improvement in each metric compared to train- 400

ing with the standard LM loss. This result implies 401

that our method can effectively enhance the tar- 402

get metrics. Interestingly, optimizing for CIDEr or 403

BLEU-4 leads to improved scores in other metrics 404

as well. This can be attributed to the similarities in 405

the way each evaluation metric is measured. In the 406

following experiments, we use CIDEr as the target 407

metric because CIDEr-optimizing DMO leads to 408

general improvements in scores across other met- 409

rics. 410

5.1.2 Comparison of DMO and LM Training 411

We compare the performance of DMO training with 412

LM training for different models and dataset set- 413

tings. We use three models, GIT-base, GIT-large, 414

and BLIP2-2.7b and two datasets, the Flickr8k and 415

the COCO dataset. We apply CIDEr-optimizing 416

DMO to each model and compare CIDEr, BLEU- 417

4, METEOR, ROUGE-L, and SPICE scores with 418

the models trained by standard LM loss. The re- 419

sults are presented in Table 2. We observe that 420

DMO results in significant performance improve- 421

ments in almost all models and datasets compared 422

with models trained with LM loss without TDA. 423

On the Flickr8k dataset, all models exhibit score 424

improvements across all metrics with DMO. A sim- 425

ilar trend is observed when fine-tuning GIT-base 426

on the COCO dataset. This suggests that DMO 427

consistently enhances the scores beyond standard 428

LM training across various models and datasets. 429

In the analysis comparing with LM training on 430
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Captioning Optimization Flickr8k MS-COCO
Model Method CIDEr B4 MET. ROU. SPICE CIDEr B4 MET. ROU. SPICE

GIT-base LM 95.1 33.4 27.0 57.1 21.4 135.6 41.0 30.5 60.4 23.6
GIT-base LM w/ TDA 93.6 33.2 26.9 57.0 21.0 132.1 39.4 29.8 59.9 23.5
GIT-base DMO 99.6 35.4 27.9 58.1 22.3 137.4 41.5 30.5 60.9 24.0

GIT-large LM 96.3 33.3 26.9 56.9 21.2 140.9 42.5 31.3 61.3 24.3

GIT-large LM w/ TDA 101.1 34.9 27.9 58.0 22.2 134.7 39.8 30.3 60.4 23.9
GIT-large DMO 110.7 37.6 29.1 60.2 23.2 140.6 42.0 31.1 61.5 24.3

BLIP2-2.7b LM 101.3 33.8 28.6 58.5 23.4 132.2 39.1 29.6 59.5 23.3
BLIP2-2.7b LM w/ TDA 100.2 32.7 28.3 58.2 22.8 132.9 38.7 29.9 59.7 23.6
BLIP2-2.7b DMO 103.7 33.8 28.7 58.4 23.7 138.3 41.1 30.4 60.7 24.0

Table 2: Evaluation of three models trained by standard LM training (with and without TDA) and CIDEr-optimizing
DMO on Flickr8k and COCO datasets. The performance metrics include CIDEr, BLEU-4 (B4), METEOR (MET.),
ROUGE-L (ROU.) and SPICE.

TDA datasets, we observe that LM training on TDA431

datasets causes a decline in the performance in cer-432

tain scenarios, such as training GIT-base/BLIP2 on433

Flickr8k and GIT-base/large on the COCO. This434

implies that the TDA datasets possess excessive435

noise and this noise leads to a deterioration in the436

performance of the models trained with standard437

LM loss. In contrast, DMO training, which utilizes438

the TDA dataset, exhibits rather enhanced perfor-439

mance. BLIP2 trained with DMO on Flickr8k and440

GIT-base DMO-trained on the COCO show im-441

proved scores for almost all metrics while those442

trained with LM loss show worse performance by443

introducing TDA. These findings indicate that our444

DMO can effectively leverage even noisy datasets445

that would deteriorate the performance of regular446

LM training. Moreover, when GIT-large is trained447

on TDA-COCO, a reduction in performance is ob-448

served for both LM and DMO training. However,449

the decline in performance is significantly differ-450

ent: 6.1 points for LM training compared with 0.3451

points for DMO training, highlighting DMO’s ro-452

bustness under noisy dataset conditions.453

5.1.3 Does TDA-Diversity Matter?454

We hypothesize that diversifying the augmenta-455

tion techniques serves as a replacement for ex-456

ploration, enhancing the performance of DMO.457

To validate this hypothesis, we conduct an abla-458

tion study and evaluate the performance of mod-459

els trained with DMO on datasets augmented by460

a single method and on datasets augmented by461

multiple methods, respectively. We denote the462

datasets augmented solely by the back-translation,463

pre-trained BLIP2 sampling, and Llama2 para-464

phrasing as Dbktrs, Dblip2, and Dllama respectively.465

For a fair comparison, each dataset is adjusted to466

Dataset Evaluation Metrics
Setting CIDEr B4 MET. ROU. SPICE

Dbktrs 93.6 32.8 27.3 56.9 22.1
Dblip2 98.2 33.0 28.0 57.9 22.1
Dllama 99.5 34.3 28.0 58.0 21.9
Dall 99.6 35.4 27.9 58.1 22.3

baseline 95.1 33.4 27.0 57.1 21.4

Table 3: Scores of GIT-base model trained with CIDEr-
optimizing DMO on each dataset setting. Baseline is the
score of LM training without any TDA. B4: BLEU-4,
MET: METEOR, ROU: ROUGE-L.

have approximately the same number of image- 467

caption pairs. For datasets Dbktrs, Dblip2, Dllama, 468

we increase 5 captions per image by augmentation. 469

Note that the dataset Dall is constructed by sam- 470

pling two augmented captions from each augmenta- 471

tion method and adding them to the original dataset. 472

We use the Flickr8k dataset and train GIT-base by 473

CIDEr-optimizing DMO. The results are presented 474

in Table 3. While all data augmentation methods 475

except for back-translation improve performance 476

over the baseline, which is the score of LM train- 477

ing without any TDA, the highest performance is 478

achieved with the dataset that combines all aug- 479

mentation methods, suggesting that exposing the 480

model to a variety of expressions from diverse aug- 481

mentation techniques yields the most significant 482

performance improvement. Further analysis of the 483

advantages of combining multiple TDA methods is 484

discussed in Appendix C. 485

5.2 Stability and Computational Efficiency 486

DMO replaces the exploration with TDA and re- 487

solves the learning instability and computational 488

bottleneck of RL. We examine DMO’s stability and 489
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Figure 2: Transition of CIDEr scores for the GIT-base
model trained using three different methods: DMO,
standard LM training, and SCST. The scores reflect the
CIDEr values of sequences greedily generated by each
model for images in the mini-batches of the Flickr8k
training dataset.

efficiency by comparing them with those of RL and490

standard LM training. We use the GIT-base model491

trained on the Flickr8k dataset. As an RL method,492

we employ SCST (Rennie et al., 2017), which is493

one of the most prominent reinforcement learning494

methods for image captioning, utilized in training495

many SOTA models (Wang et al., 2022; Xu et al.,496

2023). We assess the stability of training by con-497

ducting experiments with five seeds and calculating498

the average and variance of the final scores at the499

3rd and 20th epoch. To equalize the number of500

parameter updates, the number of explorations in501

RL is set to equal the number of image-text pairs in502

the training dataset. SCST requires intricate hyper-503

parameter tuning and we present the detailed con-504

figuration for SCST training in Appendix A.2. The505

result is presented in Table 4. With 3-epoch train-506

ing, our DMO produces the highest score. SCST is507

still unstable at 3 epochs, with a standard deviation508

(SD) of 4.1, which is significantly larger than LM’s509

SD of 0.74 or DMO’s SD of 1.26. Figure 2 shows510

the CIDEr score progression on training data up to511

5 epochs for DMO, LM, and SCST, respectively.512

While DMO and LM show steady score improve-513

ments, SCST exhibits large fluctuations. This insta-514

bility in SCST is attributed to its poor capability of515

sampling high-reward sequences in early training.516

On the other hand, DMO utilizes samples from517

TDA throughout the entire training, which makes518

training more stable. By the end of the 20th epoch,519

SCST achieves the highest score, owing to SCST’s520

Method 3 epochs 20 epochs

LM 94.4 ± 0.74 94.2 ± 1.65
SCST 93.6 ± 4.10 99.8 ± 1.50
DMO 97.7 ± 1.26 98.0 ± 1.36

Table 4: The average and standard deviation of CIDEr
scores when the model was trained for 3 epochs and 20
epochs with five different seeds by each method.

Optimization Forwarding Execution
Method iterations time

LM 1.68× 103 13 sec
SCST 1.50× 105 9971 sec
DMO 1.68× 103 14 sec

Table 5: The number of model forwarding iterations and
execution time for the GIT-base to complete 3 epochs
on Flickr8k. The time is measured during the loss com-
putation and the number of iterations is measured by
counting the number of batch model forwarding.

ability to continually explore and obtain new sam- 521

ples. DMO displays minimal score improvements 522

from epoch 3 to epoch 20, suggesting that training 523

for only 3 epochs may suffice for model optimiza- 524

tion in DMO training while SCST requires at least 525

20 epochs. This indicates that DMO optimizes the 526

performance of the model more rapidly than SCST. 527

Additionally, we measure the number of model 528

forwarding iterations and the training time required 529

for each method to complete 3 epochs. To elimi- 530

nate the impact of differences in implementation 531

and hardware differences on timing, we specifically 532

measure the duration between feeding the data to 533

the model and obtaining the loss values. The re- 534

sult is presented in Table 5. With respect to com- 535

putational efficiency, we find that LM and DMO 536

have the same number of batch forwardings, while 537

SCST requires approximately 100 times more (the 538

rationale behind the results is explained in Ap- 539

pendix A.1). In terms of execution time, while 540

DMO training takes approximately the same du- 541

ration as LM training, SCST requires about 1000 542

times longer. The slight increase in time for DMO 543

training compared to LM training is due to the ne- 544

cessity of reward-weighting operations. On the 545

other hand, SCST requires the recursive genera- 546

tion process, resulting in a number of forwardings 547

approximately 100 times greater and a duration ap- 548

proximately 1000 times longer, compared to LM 549

7



Noise ratio LM DMO

0% 95.1 (−0%) 98.6 (−0%)
20% 82.1 (−14%) 97.9 (−1%)
40% 69.6 (−27%) 98.0 (−1%)
60% 58.6 (−38%) 90.9 (−8%)
80% 5.1 (−95%) 81.9 (−17%)

Table 6: CIDEr scores of GIT-base model trained with
noisy dataset. Noise ratio is the ratio of original ground-
truth captions replaced by irrelevant random captions.
The numbers in parentheses represent the percentage
decrease from the score at the 0% noise ratio.

and DMO training. These results emphasize the550

DMO’s substantially greater computational effi-551

ciency compared to that of SCST.552

5.3 Noise Robustness and Data Efficiency553

We experimentally show that DMO can train mod-554

els robustly even in data-noisy or low-resource555

settings, by effectively leveraging the reward. To556

evaluate the pure effect of reward utilization, we557

compare LM training and DMO training without558

TDA.559

5.3.1 Evaluation on Extremely Noisy Dataset560

In this experiment, we examine how robustly our561

method can train models on the noisy dataset. To562

simulate the case where the training dataset is ex-563

tremely noisy, we construct datasets in which a564

certain percentage of the ground truth captions in565

the Flickr8k dataset are replaced with entirely ir-566

relevant captions (we randomly sampled from the567

COCO dataset). With these datasets, we train GIT-568

base both with DMO and LM loss and observe569

how training is affected by those toxic samples. In570

DMO training, we use the original clean dataset for571

the reference dataset to ensure that the quality of572

each sample is accurately scored. We increase the573

noise ratio from 0% to 80% and evaluate the CIDEr574

scores of the model trained by LM and DMO. The575

results are presented in Table 6. Compared to the576

baseline, both LM and DMO training exhibit a de-577

cline in performance; however, while LM training578

experiences a significant performance drop, DMO579

manages to minimize this reduction. This indi-580

cates that, by utilizing scores as cues, our proposed581

method can effectively discern samples that should582

be learned from samples that should be ignored,583

enabling robust learning even from noisy datasets.584

Dataset Size LM DMO

100% 95.1 (−0%) 98.6 (−0%)
80% 92.1 (−3%) 97.4 (−1%)
60% 93.8 (−1%) 97.6 (−1%)
40% 90.4 (−5%) 95.4 (−3%)
20% 86.5 (−9%) 95.0 (−4%)

Table 7: CIDEr scores of GIT-base model trained with
the limited number of data. Dataset size is the volume of
the available training data. The numbers in parentheses
represent the percentage decrease from the score at the
100% dataset volume.

5.3.2 Evaluation under Low-Resource Setting 585

We simulate a scenario where training is con- 586

strained by limited data samples due to low com- 587

putational resources, as is typical in edge device 588

training that is aimed at minimizing time and bat- 589

tery consumption. We construct small datasets to 590

evaluate how effectively data can be utilized under 591

conditions of low resource availability. We reduce 592

the amount of training data progressively from 20% 593

to 80%. For the scoring in DMO training, we use 594

the full original dataset as the reference dataset. 595

The results are presented in Table 7. While LM 596

training exhibits a 9% drop in scores as the data 597

size decreases, DMO demonstrates robust learn- 598

ing even with limited data, exhibiting a smaller 599

decrease of 4%. This result demonstrates that our 600

method can efficiently learn even from a small num- 601

ber of data samples by leveraging the importance 602

score of each sample. 603

6 Conclusion 604

In this paper, we present Direct Metric Optimiza- 605

tion (DMO), which is a lightweight final-metric- 606

optimizing training method. We hypothesize that 607

diverse text augmentation can substitute the explo- 608

ration in RL, and show that self-supervised train- 609

ing on reward-weighted augmented data leads to 610

direct and stable metric optimization. Our experi- 611

ments demonstrate that DMO can directly optimize 612

evaluation metrics across models of various archi- 613

tectures and parameter sizes, and stably achieves 614

performance comparable to the SOTA RL method 615

while saving hundreds of times more model for- 616

warding iterations and greater amounts of computa- 617

tion time. With these practical advantages of stable 618

and lightweight cost of tuning, DMO emerges as 619

a new promising choice for metric optimization in 620

the era of large-scale VLMs. 621
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Limitations622

Although our experiments yield promising results,623

it is important to acknowledge the limitations of our624

method. The first limitation is the quality subopti-625

mality of TDA. Our approach substitutes the explo-626

ration phase in RL with diverse data augmentation.627

However, in theory, data augmentation is distinct628

from exploration because it does not actively pur-629

sue higher rewards. Consequently, over extended630

training periods, RL methods, which consistently631

seek new and higher-quality samples, can outper-632

form our DMO which relies on a fixed dataset.633

However, considering that RL methods for VLM634

are often very sensitive to hyperparameters and635

challenging to optimize, our DMO offers distinct636

practical advantages such as learning stability and637

the straightforward training process without the638

need for intricate hyperparameter tuning—benefits639

that are absent in most of RL approaches.640

Another limitation is the data augmentation over-641

head. While DMO avoids the computationally ex-642

pensive exploration process in RL, data augmenta-643

tion still necessitates a certain computational cost.644

Therefore, considering the data preparation phase645

in addition to the training phase, the computational646

costs required for DMO increase and DMO’s supe-647

riority over RL methods in terms of computational648

costs is diminished. However, a key distinction649

from exploration is that TDA can be conducted on650

separate machines (e.g., cloud servers) from the651

one the target VLM is deployed on. This aspect652

becomes particularly beneficial for model tuning in653

scenarios where resources such as time, memory,654

and battery of devices are constrained, as is typical655

in edge device training. Collecting augmented data656

on different servers enables models on the resource-657

constrained device to bypass the data augmentation658

overhead, making DMO a genuinely lightweight659

metric optimization method.660
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A Experiments Setting in Detail 898

A.1 Hardware Environment 899

We use two RTX A6000 Ada GPUs for GIT- 900

base/large and four H100 GPUs for BLIP2-2.7B. 901

Because each GPU has a different size of VRAM, 902

we adopt the gradient accumulation method so that 903

the batch size becomes 960 regardless of the size 904

of the VRAM of the GPU that is used in each 905

experiment. We present the hyperparameters for 906

GIT-base/large and BLIP2-2.7B in Table 8. This 907

configuration explains the number of model iter- 908

ations in LM/DMO training presented in Table 5. 909

The training uses 6091 images and 11 captions 910

per image (including augmented captions) across 911

3 epochs. Dividing this by a mini-batch size of 60 912

and 2 GPUs results in approximately 1.68 × 103 913

iterations. For SCST, the maximum token length 914

is set to 128 and the model recursively generates 915

tokens up to this length, resulting in nearly 100 916

times more model forwarding iterations compared 917

to LM/DMO training. 918

A.2 Configuration for SCST Training 919

Due to the instability of training with SCST, it 920

necessitates pre-fine-tuning through standard self- 921

supervised training (Rennie et al., 2017). Therefore, 922

we initially fine-tune the model for three epochs 923

with a learning rate of 1.0× 10−5 before applying 924

SCST. Given that fine-tuning has already been com- 925

pleted, we reduce the learning rate to 5.0 × 10−6
926

and only update the parameters of the text decoder 927

to stabilize training. Moreover, during the sam- 928

pling process in SCST, we opt for a temperature of 929

0.1. This is because we observe that higher temper- 930

atures, such as 0.5 or 1.0, often lead the model to 931

generate random, meaningless sequences of words, 932

which ultimately results in model collapse. 933

B Prompt for Llama2 Paraphrasing 934

For the Llama2-paraphrasing method, we em- 935

ploy the same prompting method proposed in La- 936

CLIP (Fan et al., 2023). We present the prompt that 937
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Model Learning Rate Batch Size Mini-Batch Size Grad. Acc. Step GPU

GIT-base 1.0× 10−5 960 60 8 RTX A6000 Ada × 2
GIT-large 1.0× 10−5 960 30 16 RTX A6000 Ada × 2

BLIP2-2.7B 1.0× 10−5 960 30 8 H100 × 4

Table 8: Hyperparameters for GIT-base/large and BLIP2-2.7B. The number of batch sizes is equal to the product of
the mini-batch size, the number of gradient accumulation steps (Grad. Acc. Step) and the number of GPUs.

Figure 3: The prompt that is used in Llama2-
paraphrasing. The part ’<target caption>’ in the prompt
text is replaced by the caption to be augmented.

is used in our experiments in Figure 3. The part938

’<target captions>’ in the prompt text is replaced by939

the caption to be paraphrased. In the prompt, three940

examples of paraphrasing are provided. The first941

and second examples are constructed by regard-942

ing the two captions for the same image in each943

Flickr8K and COCO dataset as the captions be-944

fore and after paraphrasing. The third paraphrasing945

example is made by feeding ChatGPT4 a caption946

from Flickr8k with the prompt "rewrite this image947

caption".948

C Distributions Difference by TDA949

Method950

In this section, we explore how the quality of sam-951

ples varies across different TDA methods. We952

present the distribution of scores of samples gener-953

ated by each TDA method in Figure 4. Scores954

are CIDEr scores based on the training dataset955

of Flickr8k. The back-translation tends to yield956

higher scores while BLIP2-sampling tends to pro-957
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Figure 4: CIDEr score distributions of captions aug-
mented by back-translation, BLIP2-sampling, and
Llama2-paraphrasing.

duce samples of lower scores. Examples of gener- 958

ated captions by each TDA method are shown in 959

Figure 5. We find that captions generated by the 960

back-translation show little change compared to 961

the ground truth (GT) captions. On the other hand, 962

BLIP2 sampling generates captions that are signifi- 963

cantly different from GT in terms of style and level 964

of detail. Back-translation receives the GT captions 965

to augment captions. Thus captions generated by 966

back-translation closely resemble GT captions. On 967

the other hand, BLIP2-sampling generates captions 968

solely from images. Therefore, captions generated 969

by BLIP2-sampling often deviate from the GT cap- 970

tions and sometimes include incorrect descriptions 971

(e.g., BLIP2 misidentified the person in the image 972

as "woman" in Figure 5). Moreover, because the 973

paraphrasing by Llama2 takes the GT captions as a 974

prompt, the generated captions by Llama2 are se- 975

mantically close to the GT captions. However, the 976

changes from GT captions are greater than those 977

of captions augmented by back-translation, owing 978

to the prompt which encourages Llama2 to change 979

expressions (e.g., ’surf’ is paraphrased as ’ride a 980

wave’ in Figure 5). 981

Interestingly, considering the result that DMO 982

training on a dataset solely augmented by back- 983
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Figure 5: Examples of captions generated by each augmentation method, back-translation, BLIP2-sampling, and
Llama2-paraphrasing.

translation does not improve scores (shown in Ta-984

ble 3), TDA that often produces samples of high985

scores may not provide an advantage for DMO if986

it hardly alters the expression of the original GT987

data. Rather, TDA methods that produce samples988

of diverse expressions and structures can improve989

the performance of DMO by introducing various in-990

formation that is not present in the original dataset.991

With the analysis above, we emphasize that the di-992

versity of samples is important for DMO training993

and especially diversifying the augmentation tech-994

niques themselves is an effective approach because995

utilizing multiple augmentation methods generates996

a diverse set of samples across various distribu-997

tions.998

D Examples of Captions Generated by999

DMO, LM Training and SCST1000

Figure 6 shows examples of images and corre-1001

sponding ground truth captions and captions gen-1002

erated by a GIT-base model trained by DMO, stan-1003

dard LM training and SCST. Models are trained for1004

three epochs on the textually augmented Flicker8k1005

dataset. Expressions which seem to be unique to1006

the image are underlined. Those examples show1007

that the model trained by DMO captures distinc-1008

tive information and objects within the image and1009

depicts them in the generated captions.1010
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Figure 6: Examples of ground truth captions and captions generated by GIT-base model trained by DMO, standard
LM training and SCST. Each model is trained on the textually augmented Flickr8k dataset for 3 epochs. Expressions
which seem to be unique to the image are underlined.
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