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Abstract

Federated learning (FL) has gained much attention in recent years for building
privacy-preserving collaborative learning systems. However, FL algorithms for
constrained machine learning problems are still very limited, particularly when
the projection step is costly. To this end, we propose a Federated Frank-Wolfe
Algorithm (FEDFW). FEDFW provably finds an ε-suboptimal solution of the
constrained empirical risk-minimization problem after O(ε−2) iterations if the
objective function is convex. The rate becomes O(ε−3) if the objective is non-
convex. The method enjoys data privacy, low per-iteration cost and communication
of sparse signals. We demonstrate empirical performance of the FEDFW algorithm
on several machine learning tasks.

1 Introduction

This paper introduces a novel variant of the Frank-Wolfe Algorithm, FEDFW, designed for the
increasingly popular Federated Learning (FL) paradigm in machine learning. We focus on the
constrained Empirical Risk Minimization (ERM) template with n clients:

min
x∈D

F (x) :=
1

n

n∑
i=1

fi(x), (1)

where domain D ⊆ Rp is a convex and compact set (with diameter D := maxx,y∈D ∥x− y∥), and
the clients’ loss functions fi : Rp → R (for i = 1, . . . , n) are L-smooth (i.e., their gradients are
Lipschitz continuous with constant L).

FL holds great promise for solving optimization problems over large networks, where clients col-
laborate under the orchestration of a server for finding a good global model. FL methods iteratively
alternate between training and aggregation steps. Training steps are performed locally by the clients.
Each participating client updates their local model by taking one or several training steps with their
local data. Then, in the aggregation step, participating clients transfer their local models (but not their
data) to the server. The server maintains and updates the global model and broadcasts it to the clients.

The vast majority of FL algorithms focus on unconstrained optimization problems. Their extensions
for constrained problems require projection at each local training step. In many machine learning
applications, however, the cost of projection causes a computational bottleneck that prevents us from
solving these problems at a realistic scale. Frank-Wolfe Algorithm (FW) [Frank and Wolfe, 1956]
has been the method of choice in the machine learning community for solving such problems in the
centralized setting. The main workhorse of FW is the so-called linear minimization oracle,

lmo(y) = argmin
x∈D

⟨y,x⟩, (2)

which is often cheaper than the projection. A popular example is the nuclear-norm constraint. The
projection onto a nuclear-norm ball requires a full-spectrum singular value decomposition. In contrast,
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linear minimization amounts to finding the top singular vector, which we can approximate efficiently
by using power method.

Intriguingly, FW is not yet studied for FL. This paper takes the initial steps to bridge this gap.

Contributions and roadmap. With the above motivation, we present FEDFW, a novel FW variant
for FL. The paper is organized as follows: Section 2 presents the review of the literatures on FL and
FW. It is surprising that the literature lacks a FW variant for FL. We try to explain this in Section 3 by
presenting an example where an obvious federated FW extension (i.e., standard FW plus aggregation
step) fails. We introduce FEDFW in Section 4. FEDFW does not replace clients’ local models by
the global model sent by the server. Instead, it penalizes clients’ loss functions for the distance
between the global model and their local models. We present convergence guarantees of FEDFW
in Section 4.1. The method provably finds an ε−suboptimal solution after O(ε−2) iterations if the
objective function is smooth and convex, see Theorem 1. When the objective is non-convex, the
complexity becomes O(ε−3), see Theorem 2. Section 5 presents preliminary numerical experiments
on various machine learning tasks with convex and non-convex objective functions. Finally, Section 6
draws conclusions with some discussion on the limitations of the proposed method. Proofs and
technical details are deferred to the appendices.

2 Related Work

Federated Learning. FEDAVG has been the main corner stone for the recent FL literature because of
its practical capability of handling different concerns and issues such as privacy and security, data
heterogeneity, computational costs. It is introduced to train deep networks based on iterative model
averaging [McMahan et al., 2017, Konečnỳ et al., 2016]. Although, it is evident that fix points of
some variants of FEDAVG need not converge to the minimizer of F (x) even in the least squares
problem [Pathak and Wainwright, 2020], and even diverging Zhang et al. [2020], performance of
FEDAVG has been studied widely under different assumptions, see [Yu et al., 2019, Woodworth et al.,
2020a] for homogeneous i.i.d. data assumption, and Woodworth et al. [2020b], Li et al. [2019], Sahu
et al. [2018] for non-independent data and various heterogeneity assumptions, see also Stich [2018]
for a convergence analysis of FEDAVG. Haddadpour et al. [2019] provides convergence analysis of
FEDAVG for non-convex objectives satisfying Polyak-Lojasiewicz (PL) condition condition. [Al-
Shedivat et al., 2020] analyzed FEDAVG from probabilistic inference perspective. Generalizing
FEDAVG, one can consider different update rules for client or server.

Frank-Wolfe Algorithm. FW (aka, conditional gradient method or CGM) is introduced in [Frank
and Wolfe, 1956] for minimization of a convex quadratic objective over a polytope constraint. Its
analysis is later extended for general convex objectives and arbitrary convex and compact sets in
[Levitin and Polyak, 1966]. The method became popular in machine learning applications following
the seminal works of [Hazan and Kale, 2012a] and [Jaggi, 2013].

The ever-increasing interest in FW for data science applications motivated development of new results
and new variants. Faster rates are shown for FW when D is a strongly convex set [Garber and Hazan,
2015]. [Lacoste-Julien, 2016] proved that FW finds a stationary point when the objective function
is non-convex. Online, stochastic, and variance reduced stochastic variants of FW are proposed,
starting with [Hazan and Kale, 2012b] and [Hazan and Luo, 2016] for convex objectives and with
[Reddi et al., 2016] for non-convex. FW is combined with Nesterov smoothing [Nesterov, 2005] for
non-smooth and composite objectives, respectively in [Lan, 2012] and [Yurtsever et al., 2018]. FW
for problems with affine equality constraints are introduced in [Gidel et al., 2018] and [Yurtsever
et al., 2019] based on augmented Lagrangian penalty.

There are also design variants of FW for making better use of computational resources in certain
cases. Examples include (but are not limited to) the well-known away-step [Guélat and Marcotte,
1986] and pairwise step FW [Lacoste-Julien and Jaggi, 2015], FW with in-face directions [Freund
et al., 2017], FW with lazy [Braun et al., 2017] or blended updates [Braun et al., 2019], FW with
line-search [Pedregosa et al., 2020], FW with a restarting scheme [Kerdreux et al., 2019], FW with
sketching for better storage costs [Yurtsever et al., 2017], and the conditional gradient sliding which
reduces the number of gradient evaluations by reusing past gradients [Lan and Zhou, 2016].

The most closely related methods to our work are the distributed FW variants. However, the variants in
[Wai et al., 2017], [Mokhtari et al., 2018], [Gao et al., 2021] are fundamentally different than FEDFW
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as they require sharing gradient information of the clients with the server or with the neighboring
nodes. In FEDFW, clients do not share gradients, which is critical for data privacy [Li et al., 2022].

Other distributed FW variants are proposed in [Zheng et al., 2018], [Wang et al., 2016], and [Zhang
et al., 2021]. However, the method proposed by Zheng et al. [2018] is limited to the covex low-rank
matrix optimization problem, and the methods in [Wang et al., 2016] and Zhang et al. [2021] assume
that the problem domain is block spearable.

3 Preliminaries

The obvious thing to try for extending FW for federated learning is combining local FW steps with
an aggregation step. That is, for t = 1, . . . , T , perform the following procedure:

[local training] sti ∈ argmin
x∈D

⟨∇fi(x̄
t),x⟩ for i = 1, . . . , n

[local training] xt+1
i = (1− ηt)x̄

t + ηts
t
i for i = 1, . . . , n

[aggregation] x̄t+1 =
1

n

n∑
i=1

xt+1
i

(3)

However, this algorithm may fail to find a solution of (1) even for a simple 1-dimensional example.
We demonstrate this in an example in Appendix A.

Why does the above method fail? Consider the following reformulation of problem (1):

min
xi∈D

1

n

n∑
i=1

fi(xi) subj.to x1 = x2 = . . . = xn. (4)

This is an equivalent formulation but written in terms of the clients’ local variables with a consensus
constraint C := {[x1, . . . ,xn] ∈ Rd×n : x1 = x2 = . . . = xn}. Many algorithms in FL can be
viewed as special instances of classic optimization methods applied to (4) (for example, FEDAVG
is the projected gradient method applied to (4)). From this perspective, model aggregation is just a
projection onto C. This approach fails for FW, because FW is a projection-free algorithm, hence the
standard aggregation techniques are not suitable. Nevertheless, formulation (4) is still useful and we
design a functional FW method for FL based on this formulation in the next section.

4 Federated Frank-Wolfe Algorithm

Even though FW is not qualified for an immediate extension with the standard aggregation step, we
can still design a federated FW algorithm by applying an appropriate FW variant to the problem (4).
The literature contains several FW variants which can handle linear equality constraints efficiently,
including the ones in [Gidel et al., 2018], [Yurtsever et al., 2018], [Liu et al., 2019] and [Yurtsever
et al., 2019]. Motivated by its simplicity and the strong performance profile, we focus on the approach
presented in [Yurtsever et al., 2018]. This method is proposed for minimizing a generic composite
convex objective function f + g, where f and g denote the smooth and non-smooth components. We
review it here for our problem with the consensus constraint, which falls into this composite template
in terms of the concatenated variable X := [x1,x2, . . . ,xn] as

min
X∈Dn

1

n

n∑
i=1

fi(Xei) + δC(X), (5)

where ei denotes the ith standard unit vector, and δC is the indicator function for the consensus.

The original FW is not applicable since the objective function is non-smooth due to the indicator
function. The main idea is to perform FW updates on a surrogate objective which replaces the hard
constraint δC with a smooth function that penalizes squared distance between X and the consensus
set C. To this end, at iteration t, we take a FW step with respect to the following surrogate function:

F̂t(X) =
1

n

n∑
i=1

fi(Xei) +
λt

2
dist(X, C)2, where λt > 0 is the penalty parameter. (6)
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Then, the linear minimization oracle is

St ∈ arg min
X∈Dn

⟨∇F̂t(X
t),X⟩. (7)

Since Dn is separable for the columns of X, we can evaluate (7) in parallel for x1,x2, . . . ,xn:

St =

n∑
i=1

sti · e⊤i , where sti ∈ argmin
x∈D

⟨ 1
n
∇fi(x

t
i) + λt(x

t
i − x̄t),x⟩, x̄t :=

1

n

n∑
i=1

xt
i. (8)

Finally, we update our estimation as Xt+1 = (1− ηt)X
t + ηtS

t, columns of which can be computed
in parallel by

xt+1
i = (1− ηt)x

t
i + ηts

t
i for some step-size ηt ∈ [0, 1]. (9)

Notice that communication is needed only for computing x̄, which corresponds to an aggregation
step, and everything else can be computed locally by the clients. We call this method as Federated
Frank-Wolfe Algorithm (FEDFW).

Algorithm 1 FEDFW: Federated Frank-Wolfe Algorithm

set x1
i ∈ Rp, ∀i ∈ [n], λt, ηt, x̄

1 = 1
n

∑n
i=1 x

1
i

for round t = 1, 2, . . . , T do
— Client-level local training ———————————–
for client i = 1, 2, . . . , n do

gt
i =

1
n∇fi(x

t
i) + λt(x

t
i − x̄t)

sti = argmin{⟨gt
i ,x⟩ : x ∈ D}

xt+1
i = (1− ηt)x

t
i + ηts

t
i

Client communicates sti to the server.
end for
— Server-level aggregation ————————————
x̄t+1 = (1− ηt)x̄

t + ηt
(
1
n

∑n
i=1 s

t
i

)
Server communicates x̄t+1 to the clients.

end for

4.1 Convergence Guarantees

This section presents convergence guarantees of FEDFW.
Theorem 1 (Convex setup). Consider problem (1) with L-smooth and convex loss functions fi. Then,
estimation x̄t generated by FEDFW with step-size ηt =

2
t+1 , and penalty parameter λt = λ0

√
t+ 1

for some λ0 > 0 satisfies

F (x̄t)− F ∗ ≤ 2D2L

t
+

1√
t

(
2nD2λ0 +

2G√
nλ0

(
∥Y⋆∥+D

√
λ0(L+ nλ0)

))
, (10)

where Y⋆ denotes an arbitrary solution to the dual of Problem (4).

The proof of Theorem 1 largely follows from Theorem 3 in [Yurtsever et al., 2018]. For the sake of
completeness, we present the details in Appendix B.

Next, we present convergence guarantees of FEDFW for non-convex problems.
Theorem 2 (Non-convex setup). Consider problem (1) with L-smooth and non-convex loss functions
fi. Suppose that the sequence {x̄t} is generated by FEDFW with the fixed step-size ηt = T−2/3, and
penalty parameter λt = λ0T

1/3 for some λ0 > 0. Then,

min
1≤t≤T

max
u∈D∩C

{
⟨∇F (x̄t), x̄t − u⟩

}
≤ O(T−1/3). (11)

We present the proof of Theorem 2 in Appendix C. Note that our analysis in this setting is entirely
novel and nonconvex objectives are not studied in [Yurtsever et al., 2018].
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4.2 FEDFW with augmented Lagrangian

Yurtsever et al. [2019] presents an extension of [Yurtsever et al., 2018] with an augmented Lagrangian
dual step. While the original method offers tighter bounds in theory, the new variant often performs
better in practice. Motivated by this extension, we present a practical variant of the federated Frank-
Wolfe algorithm with augmented Lagrangian dual steps, FEDFW+, in Appendix D. We compare the
empirical performance of FEDFW and FEDFW+ in the next section.

5 Numerical Experiments

This section validates our theory and demonstrates the empirical performance of the FEDFW algo-
rithm on various convex and non-convex optimization problems. All the experiments were run on a
laptop with an Intel i9-10855H processor with 2.40GHz clock speed and with 32 GB of RAM.

5.1 LASSO for Sparse Feature Recovery

First, we consider ℓ1-regularized least squares formulation with a synthetic dataset:
min
x

∥Ax− b∥2 subj.to ∥x∥1 ≤ α, (12)

where A is a random 200 × 400 matrix with entries drawn from a Gaussian distribution with a
diagonal covariance matrix whose diagonal entries are sampled uniformly random from [1, 2] interval.
The ground truth weight vector x∗ is an s-sparse random vector with non-zero entries drawn from
the standard normal distribution, and b = Ax∗. We run FEDFW and FEDFW+ Algorithms for 105
iterations with λFedFW

0 = 5, λFedFW+
0 = 0.5. Figure 1a shows how objective residual F (x̄t) − F ∗

changes with respect to the iteration counter and cpu time for FEDFW and FEDFW+ algorithms.

5.2 Sparse Multi-Class Logistic Regression for Classification

Next, we consider ℓ1-constrained multi-class logistic regression model for UCI ML hand-written
digits dataset [Kaynak, 1995]. The goal is to train a model to recognize hand-written digits from 0
to 9 (see [Kaynak, 1995] for more information on the dataset). Similar to the previous experiment
with LASSO, we ran both the FEDFW and FEDFW+ algorithm for 105 iterations with λFedFW

0 =
λFedFW+
0 = 4× 10−4. Figure 1b shows the logarithmic scale plot of the objective residual versus the

number of iterations and cpu time.

5.3 Matrix Completion with MovieLens Dataset

For this subsection, we discuss how the FEDFW algorithm can be applied to the problem of matrix
completion with the MovieLens100k dataset [Harper and Konstan, 2015]. The goal of the matrix
completion problem is to estimate the elements of a matrix given the some of the entries.

For r customers and q products and a partially completed preference matrix Y ∈ Rr×q, the matrix
completion problem can be stated as follows:

min
X∈Rr×q

r∑
i=1

q∑
j=1

(Xij − Yij)
2 subj.to ∥X∥∗ ≤ α,

where ∥ · ∥∗ denotes the nuclear norm (sum of singular values) and α > 0 is a model parameter.

We ran both FEDFW and FEDFW+ Algorithms for 2×103 iterations with λFedFW
0 = λFedFW+

0 = 10−5

and α = 7000 and 40 clients. The ratings were shuffled and evenly distributed between the clients.
Figure 1c shows the evaluation root mean squared error (RMSE) on the train and test partitions as a
function of the iteration counter and cpu time.

5.4 Quadratic Assignment Programming (QAP) with Birkhoff Constraint

Finally, we test our methods on a relaxation of the quadratic assignment programming (QAP)
proposed in [Vogelstein et al., 2015]. The formulation is as follows:

min
X

trace(AXBTXT ) subj.to X ∈ [0, 1]q×q , X1 = XT1 = 1, (13)
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 FedFW+

 FedFW

 FedFW+

(a) LASSO with synthetic data.

 FedFW

 FedFW+

 FedFW

 FedFW+

(b) Multi-class logistic regression with Digits dataset.

 FedFW Train Loss

 FedFW Test Loss

 FedFW+ Train Loss

 FedFW+ Test Loss

 FedFW Train Loss

 FedFW Test Loss

 FedFW+ Train Loss

 FedFW+ Test Loss

(c) MovieLens matrix completion problem.

 FedFW

 FedFW+

 FedFW

 FedFW+

(d) Quadratic Assignment Problem

Figure (1) Empirical comparison of FEDFW and FEDFW+ in various federated learning problems.

here, A and B are given cost matrices (called as the flow and distance matrix in QAP) and 1 denotes
q-dimensional vector of ones. This is a non-convex optimization problem over the convex hull of
permutation matrices, also known as the Birkhoff polytope. We use CHR12A dataset from QAPLIB
[Burkard et al., 1997]. We use both FEDFW and FEDFW+ algorithms with 72 clients and 105

iterations. We set λFedFW
0 = 65 and λFedFW+

0 = 10.

6 Conclusions

We introduced FEDFW Algorithm for the constrained minimization of a convex or non-convex
function and established convergence guarantees for this algorithm. FEDFW guarantees O(t−1/2)
and O(t−1/3) convergence rates for the convex and non-convex objective functions, respectively. We
also proposed an empirically faster version of FEDFW with augmented Lagrangian dual updates.

We conclude with a short discussion on the opportunities and limitations of our study. In FEDFW,
clients communicate the output of their linear minimization oracle, which is a nonlinear operator
and its reverse operator is ill-conditioned. In general, it is not possible to recover the gradient from
its linear minimization output even if D is known. For example, if D is the ℓ1 norm-ball, then sti
reveals only the sign of the maximum entry of the gradient. Or, if D is the nuclear norm-ball, then sti
reveals only the top eigenvectors of the gradient. The nonlinearity of the FW oracle may improve
the privacy in federated learning. Moreover, FEDFW offers low communication overhead since
the communicated signals are the extreme points of D, which typically have a low dimensional
representation. We plan to analyze communication cost and privacy of FEDFW in a future-work.

This work is still in its early stage. In this paper, we focused on a basic variant of FEDFW which
performs only one local step at each communication round. Moreover, we did not study the stochastic
variant of FEDFW. In a realistic FL framework, however, only a subset of clients can participate in
each communication round. Also, each client can perform different number of iterations in each round.
We plan to extend FEDFW in these directions in the near future. We also plan to perform extensive
numerical experiments with comparisons against existing methods in the literature. We are unaware
of any existing FW variant for FL but we will include performance comparisons against distributed
and decentralized FW variants and a number of baseline heuristics (including FW with aggregation
step and FEDAVG with projection step) and some operator splitting methods for federated/distributed
learning [Tran Dinh et al., 2021].
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A FW with simple aggregation

The trivial extension of FW with an aggregation step (see (3)) fails for the following 1-dimensional
example:

Example 1. Consider the following instance of model problem (1):

min
x∈[−1,1]

1

2
(x− 3)2 +

1

2
(x+ 1)2. (14)

Here, f1(x) = (x − 3)2 and f2(x) = (x + 1)2. It is easy to check that the unique solution of this
problem is x⋆ = 1.

Now, consider procedure (3) initialized from x̄1 = 0. Then, s11 = 1 and s12 = −1, which gives

x̄2 =
1

2
x2
1 +

1

2
x2
2 = (1− η1)x̄

1 + η1
1

2
(s11 + s12) = 0, ∀η1 ∈ [0, 1]. (15)

Therefore, x = 0 is a fixed point for the procedure (3) although the unique solution of (14) is x = 1.
We conclude that this method may fail. Note that similar arguments hold even if we run multiple
local training steps before the aggregation.

B Convergence Analysis of Algorithm 1 (convex case)

In this section we provide the proof of Theorem 1. To start with, we mention some remarks.

Remark 1. Gradient of the surrogate function (6) is given by

∇F̂t(X) =
1

n

n∑
i=1

∇fi(Xei) · e⊤i + λt (X− projC(X))

=
1

n

n∑
i=1

∇fi(xi) · e⊤i + λt

n∑
i=1

(xi − x̄) · e⊤i with x̄ :=
1

n

n∑
i=1

xi.

(16)

Remark 2. Assuming fi(.) are L-smooth, F (.) is L-smooth.

Remark 3. Assuming fi(.) are convex, F (.) and F̂ (.) is also convex.

Remark 4. One can simply prove β
2 ≤ γ

2 + β
2

(
β
γ − 1

)
.

Remark 5. F̂t(X) is L̂t :=
(
L
n + λt

)
- smooth.

10



Proof. Using Equation (16), we have

∥∇F̂t(X)−∇F̂t(Y)∥F = ∥ 1
n

n∑
i=1

(∇fi(xi)−∇fi(yi)) · e⊤i + λt

n∑
i=1

(xi − x̄− yi + ȳ) · e⊤i ∥F

≤ 1

n
∥

n∑
i=1

(∇fi(xi)−∇fi(yi)) · e⊤i ∥F + λt∥
n∑

i=1

(xi − x̄− yi + ȳ) · e⊤i ∥F

≤ 1

n

√√√√∥
n∑

i=1

(∇fi(xi)−∇fi(yi)) · e⊤i ∥2F + λt∥
n∑

i=1

(xi − x̄− yi + ȳ)∥2

≤ 1

n

√√√√ n∑
i=1

∥∇fi(xi)−∇fi(yi)∥2F + λt∥
n∑

i=1

(xi − x̄− yi + ȳ)∥2

≤ L

n

√√√√ n∑
i=1

∥xi − yi∥2F + λt∥
n∑

i=1

(xi − x̄− yi + ȳ)∥2

=
L

n
∥X−Y∥F + λt∥X− X̄−Y + Ȳ∥F

≤ L

n
∥X−Y∥F + λt∥(X−Y)(In − 1

n
Jn)∥F

≤ L

n
∥X−Y∥F + λt∥(X−Y)∥F

=
(L
n
+ λt

)
∥X−Y∥F . (17)

where Jn is all-ones matrix of size n × n and in the 8th line, we used the fact that the maximum
eigenvalue of the centering matrix K = In − 1

nJn is 1.

B.1 Proof of Theorem 1

Algorithm 1 is a special case of Algorithm 2 in [Yurtsever et al., 2018] Therefore, using Theorem 3.3
in [Yurtsever et al., 2018] for smooth and convex F , we have

F (x̄t)− F ∗ ≤ 2D2L

t
+

1√
t

(
2nD2λ0 +

2G√
nλ0

(
∥Y⋆∥+D

√
λ0(L+ nλ0)

))
. (18)

For the sake of completenes we also bring the proof.

F̂t(X
t+1) ≤ F̂t(X

t) + ⟨∇F̂t(X
t),Xt+1 −Xt⟩+ L̂t

2
∥Xt+1 −Xt∥2F

= F̂t(X
t) + ηt⟨∇F̂t(X

t),St −Xt⟩+ L̂tη
2
t

2
∥St −Xt∥2F

≤ F̂t(X
t) + ηt⟨∇F̂t(X

t),St −Xt⟩+ L̂tη
2
t

2
nD2 (19)

Now, let us define F̂ (X) := 1
n

∑n
i=1 fi(Xei). By definition of St and convexity of F̂ (.), we get

⟨∇F̂t(X
t),St −Xt⟩ ≤ ⟨∇F̂t(X

t),X∗ −Xt⟩

= ⟨∇F̂ (Xt),X∗ −Xt⟩+ ⟨∇
(λt

2
dist(Xt, C)2

)
,X∗ −Xt⟩

≤ F̂ (X∗)− F̂ (Xt) +
(

δC(X
∗)︸ ︷︷ ︸

=0 (X∗∈ C)

−λt dist(X
t, C)2

)

= F̂ (X∗)− F̂t(X
t)− λt

2
dist(Xt, C)2 (20)
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where in the third line we used Lemma 10 (d) from [Tran-Dinh et al., 2018]. Combining Equation (19),
and Equation (20), we get

F̂t(X
t+1) ≤ F̂t(X

t) + ηt

(
F̂ (X∗)− F̂t(X

t)− λt

2
dist(Xt, C)2

)
+

L̂tη
2
t

2
nD2, (21)

Using Remark 4 with β = λt, γ = λt−1, we have

F̂t(X
t) = F̂ (Xt) +

λt

2
dist(Xt, C)2

≤ F̂ (Xt) +
λt−1

2
dist(Xt, C)2 + λt

2

( λt

λt−1
− 1

)
dist(Xt, C)2

= F̂t−1(X
t) +

λt

2

( λt

λt−1
− 1

)
dist(Xt, C)2. (22)

Substituting Equation (22) into Equation (21) and subtracting F̂ (X∗) from both sides, we have

F̂t(X
t+1)− F̂ (X∗) ≤ (1− ηt)

(
F̂t(X

t)− F̂ (X∗)
)
− ηtλt

2
dist(Xt, C)2 + L̂tη

2
t

2
nD2

= (1− ηt)
(
F̂t−1(X

t)− F̂ (X∗)
)
+

ζt
2
dist(Xt, C)2 + L̂tη

2
t

2
nD2

≤ (1− ηt)
(
F̂t−1(X

t)− F̂ (X∗)
)
+

L̂tη
2
t

2
nD2 (23)

where ζt := λt

(
λt

λt−1
(1 − ηt) − 1

)
. In the last line, we used the fact that ζt < 0 for ηt = 2

t+1 and
λt = λ0

√
t+ 1. By recursively applying this inequality, we get

F̂t(X
t+1)− F̂ (X∗) ≤ 2nD2

(
L/n

t+ 1
+

λ0√
t+ 1

)
. (24)

From the Lagrange saddle point theory, we know that the following bound holds ∀X ∈ D and
∀R ∈ C

F̂ (X∗) ≤ L(X,R,Y⋆) = F̂ (X) + ⟨Y⋆,X−R⟩ ≤ F̂ (X) + ∥Y⋆∥ ∥X−R∥, (25)

since Xt+1 ∈ D, we can write

F̂ (Xt+1)− F̂ (X∗) ≥ − min
R ∈C

∥Y⋆∥ ∥Xt+1 −R∥ = −∥Y⋆∥ dist(Xt+1, C). (26)

Now, we can write

F̂ (Xt+1)− F̂ (X∗) ≤ F̂ (Xt+1)− F̂ (X∗) +
λt

2
dist(Xt+1, C)2︸ ︷︷ ︸

=F̂t(Xt+1)−F̂ (X∗)

≤ 2nD2

(
L/n

t+ 1
+

λ0√
t+ 1

)
.

(27)
where the last inequality comes from Equation (24). Combining this with Equation (26), we get

−∥Y⋆∥ dist(Xt+1, C) + λt

2
dist(Xt+1, C)2 ≤ 2nD2

(
L/n

t+ 1
+

λ0√
t+ 1

)
≤ 2nD2λ0 (L/n+ λ0)

λt
. (28)

Solving the quadratic inequality in terms of dist(Xt+1, C), we have

dist(Xt+1, C) ≤ 1

λt

(
∥Y⋆∥+

√
∥Y⋆∥2 + 4nD2λ0 (L/n+ λ0)

)
≤ 2

λ0

√
t+ 1

(
∥Y⋆∥+D

√
λ0(L+ nλ0)

)
. (29)

12



Using convexity of F̂ (.), we can write

F̂ (X̄t)− F̂ (X∗) ≤ F̂ (Xt)− F̂ (X∗) + ⟨∇F̂ (X̄t), X̄t −Xt⟩
≤ F̂ (Xt)− F̂ ∗ + ∥∇F̂ (X̄t)∥F · ∥X̄t −Xt∥F
= F̂ (Xt)− F̂ ∗ + ∥∇F̂ (X̄t)∥F · dist(Xt, C)

≤ F̂ (Xt)− F̂ ∗ +
G√
n
· dist(Xt, C)

≤ 2nD2

(
L/n

t
+

λ0√
t

)
+

G√
n

2

λ0

√
t

(
∥Y⋆∥+D

√
λ0(L+ nλ0)

)
, (30)

where in the fourth line we used boundedness of the gradient with G and in the last line we used
bounds (27) and (29). Finally, we use the definition of F̂ to derive our bound for F (x̄t)− F ∗

F̂ (X̄t)− F̂ (X∗) =
1

n

n∑
i=1

fi(X̄
tei)−

1

n

n∑
i=1

fi(X
∗ei)

=
1

n

n∑
i=1

fi(x̄
t)− 1

n

n∑
i=1

fi(x
∗)

= F (x̄t)− F ∗

≤ 2D2L

t
+

1√
t

(
2nD2λ0 +

2G√
nλ0

(
∥Y⋆∥+D

√
λ0(L+ nλ0)

))
. (31)

This completes the proof. □

C Convergence Analysis of Algorithm 1 (non-convex case)

To prove Theorem 2, we generalize Theorem 3.3 in [Yurtsever et al., 2018] for smooth and non-convex
F .

C.1 Proof of Theorem 2

The goal is to bound the Frank-Wolfe gap ht := maxU∈Dn⟨U−X,−∇F̂t(X)⟩ and show conver-
gence of Algorithm 1 in the non-convex case to a feasible stationary point. Theorem 3 provides this
results.

Theorem 3. Consider problem (1) with L-smooth and non-convex loss functions fi. Suppose that
the sequence {x̄t} is generated by FEDFW with the fixed step-size ηt = T−2/3 penalty parameter
λt = λ0T

1/3 for some λ0 > 0. Then,

ht̃ ≤ P(T ) = O
(

1

T
1
3

)
(32)

dist(Xt̃, C) ≤ Q(T ) = O
(

1

T
1
3

)
, (33)

where

P(T ) :=
(
E +

nD2λ0

2

) 1

T
1
3

+
LD2

2

1

T
2
3

, Q(T ) :=
G

λ0
√
n

1

T
1
3

+

√(
E +

D2λ0

2

) 1

T
2
3

+
LfD2

2

1

T
,

(34)
and E is the initial error.

Proof. In what follows, we prove Equation (32) in part (a) and Equation (33) in part (b).

(a) Using the smoothness of F̂t(.), Remark 5, and defining L̂t :=
L
n + λt, we have
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F̂t(X
t+1) ≤ F̂t(X

t) + ⟨∇F̂t(X
t),Xt+1 −Xt⟩+ L̂t

2
∥Xt+1 −Xt∥2F

= F̂t(X
t) + ηt⟨∇F̂t(X

t),St −Xt⟩+ L̂tη
2
t

2
∥St −Xt∥2F

≤ F̂t(X
t) + ηt⟨∇F̂t(X

t),St −Xt⟩+ L̂tη
2
t

2
nD2

= F̂t(X
t)− ηth

t +
L̂tη

2
t

2
nD2. (35)

where in the secomd line we used Equations (8) and (16), and the updating rule xt+1
i =

(1−ηt)x
t
i+ηts

t
i. In the third line we used boundedness of the D, ∥y−x∥ ≤ D ∀ x,y ∈ D.

Now, considering assumptions for the non-convex case, ηt = η = T−2/3, λt = λ =

λ0T
1/3, L̂t = L̂ and rearranging (35), taking the sum of both sides from 1 to T and

deviding by ηT , we have

1

T

T∑
t=1

ht ≤ 1

ηT

T∑
t=1

(
F̂t(X

t)− F̂t(X
t+1)

)
+

L̂η

2
nD2

=
1

ηT

T∑
t=1

(
F̂t(X

1)− F̂t(X
T+1)

)
+

L̂η

2
nD2 ( telescoping series). (36)

Note that

F̂t(X
1)− F̂t(X

T+1) =
1

n

n∑
i=1

fi(X
1ei) +

λ

2
dist(X1, C)2 − 1

n

n∑
i=1

fi(X
T+1ei)−

λ

2
dist(XT+1, C)2

≤ 1

n

n∑
i=1

fi(X
1ei) +

λ

2
dist(X1, C)2 − 1

n

n∑
i=1

fi(X
T+1ei)

≤ 1

n

n∑
i=1

(
fi(X

1ei)− fi(X
T+1ei)

)
+

λ

2
dist(X1, C)2

≤ 1

n

n∑
i=1

(
fi(X

1ei)− fi(X
∗ei)

)
=: E . (37)

where in the forth line we used the assumption that initial conditions belong to C or X1 ∈ C,
therefore we have dist(X1, C) = 0. Substituting Equation (37) into Equation (36) and using
η = T− 2

3 , λ = λ0T
1
3 , L̂ := L

n + λ, we get

1

T

T∑
t=1

ht ≤ E
T · T− 2

3

+
(L/n+ λ0T

1
3 )T− 2

3

2
nD2

=
(
E +

nD2λ0

2

) 1

T
1
3

+
LD2

2

1

T
2
3

. (38)

Now let us define t̃ ∈ argmin{ht} ∈ [T ], we can use Equation (38) to write

ht̃ ≤
(
E +

nD2λ0

2

) 1

T
1
3

+
LD2

2

1

T
2
3

=: P(T ), (39)

which can be translated to ht̃ ≤ P(T ) = O
(

1

T
1
3

)
. This proves the first bound in Theorem 3.
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(b) To prove that Xt converges to C, we start with the definition of ht̃

ht̃ = max
U∈Dn

⟨∇F̂t̃(X
t̃),Xt̃ −U⟩

≥ ⟨∇F̂t̃(X
t̃),Xt̃ − X̄t̃⟩

= ⟨ 1
n

n∑
i=1

∇fi(x
t̃
i) · e⊤i + λ(Xt̃ − X̄t̃),Xt̃ − X̄t̃⟩

= ⟨ 1
n

n∑
i=1

∇fi(x
t̃
i) · e⊤i ,Xt̃ − X̄t̃⟩+ λ∥Xt̃ − X̄t̃∥2F

≥ −∥ 1
n

n∑
i=1

∇fi(x
t̃
i) · e⊤i ∥F · ∥Xt̃ − X̄t̃∥F + λ∥Xt̃ − X̄t̃∥2F (Cauchy–Schwarz inequality)

= − G√
n
∥Xt̃ − X̄t̃∥F + λ∥Xt̃ − X̄t̃∥2F (∥∇fi(x)∥ ≤ G). (40)

Using Equation (39) and Equation (40) , we can write

− G√
n
∥Xt̃ − X̄t̃∥F + λ∥Xt̃ − X̄t̃∥2F ≤ P(T ), (41)

and solve the quadratic inequality (41)

∥Xt̃ − X̄t̃∥F ≤ G/
√
n+

√
(G/

√
n)2 + 4λP(T )

2λ

=
G/

√
n+

√(
G/

√
n+ 2

√
λP(T )

)2

− 2G/
√
n
√
λP(T )

2λ

≤
G/

√
n+

√
λP(T )

λ
. (42)

Plugging λ = λ0T
1
3 and P(T ), we get

∥Xt̃ − X̄t̃∥F ≤ G

λ0
√
n

1

T
1
3

+

√(
E +

D2λ0

2

) 1

T
2
3

+
LfD2

2

1

T
=: Q(T ). (43)

Note that ∥Xt̃ − X̄t̃∥F can be interpreted as the distance of Xt̃ to C

dist(Xt̃, C) ≤ Q(T ) = O
(

1

T
1
3

)
. (44)

This completes the proof of Theorem 3.
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Next, we use Theorem 3 to show the result in Theorem 2. Starting from the definition of ht̃, we write

ht̃ = max
U∈Dn

⟨∇F̂t̃(X
t̃),Xt̃ −U⟩

= max
U∈Dn

{
⟨∇F̄ (Xt̃),Xt̃ −U⟩+ λ⟨Xt̃ − X̄t̃,Xt̃ −U⟩

}
= max

U∈Dn

{
⟨∇F̄ (Xt̃),Xt̃ −U⟩+ λ⟨Xt̃ − X̄t̃, X̄t̃ −U⟩

}
+ λ⟨Xt̃ − X̄t̃,Xt̃ − X̄t̃⟩︸ ︷︷ ︸

=∥Xt̃−X̄t̃∥2
F≥0

≥ max
U∈Dn∩C

{
⟨∇F̄ (Xt̃),Xt̃ −U⟩+ λ⟨Xt̃ − X̄t̃, X̄t̃ −U⟩︸ ︷︷ ︸

≥0

}
(projection is non-expansive)

≥ max
U∈Dn∩C

{
⟨∇F̄ (Xt̃),Xt̃ −U⟩

}
≥ max

U∈Dn∩C

{
⟨∇F̄ (Xt̃)−∇F̄ (X̄t̃),Xt̃ −U⟩︸ ︷︷ ︸

≥−L∥Xt̃−X̄t̃∥∥Xt̃−U∥≥−LD∥Xt̃−X̄t̃∥

+⟨∇F̄ (X̄t̃), X̄t̃ −U⟩
}
+ ⟨∇F̄ (X̄t̃),Xt̃ − X̄t̃⟩︸ ︷︷ ︸

≥−G·∥Xt̃−X̄t̃∥F

≥ max
U∈Dn∩C

{
⟨∇F̄ (X̄t̃), X̄t̃ −U⟩

}
− (LD +G) ∥Xt̃ − X̄t̃∥F

= max
U∈Dn∩C

{
⟨∇F̄ (X̄t̃), X̄t̃ −U⟩

}
− (LD +G) · dist(Xt̃, C). (45)

Using the upper bounds on ht̃,dist(Xt̃, C) and rearranging the last equation above, we have

max
U∈Dn∩C

{
⟨∇F̄ (X̄t̃), X̄t̃ −U⟩

}
≤ (LD +G)Q(T ) + P(T ) = O

(
1

T
1
3

)
. (46)

Last equation can be re-writen as

min
t∈[T ]

max
u∈D∩C

{
⟨∇F (x̄t), x̄t − u⟩

}
≤ O

(
1

T
1
3

)
. (47)

This concludes the proof. □

D FedFW+

This section introduces an extension of FEDFW with augmented Lagrangian dual steps. We call this
new variant FEDFW+ and present the details in Algorithm 2. The new steps in FEDFW+ compared
against FEDFW is highlighted with the red font in Algorithm 2.

Algorithm 2 FEDFW+: Federated Frank-Wolfe Algorithm via augmented Lagrangian

set x1
i ∈ Rp, ∀i ∈ [n], λt, ηt, x̄

1 = 1
n

∑n
i=1 x

1
i

for round t = 1, 2, . . . , T do
— Client-level local training ———————————–
for client i = 1, 2, . . . , n do

yt+1
i = yt

i + λ0(x
t
i − x̄t)

gt
i =

1
n∇fi(x

t
i) + λt(x

t
i − x̄t)+yt+1

i

sti = argmin{⟨gt
i ,x⟩ : x ∈ D}

xt+1
i = (1− ηt)x

t
i + ηts

t
i

Client communicates sti to the server.
end for
— Server-level aggregation ————————————
x̄t+1 = (1− ηt)x̄

t + ηt
(
1
n

∑n
i=1 s

t
i

)
Server communicates x̄t+1 to the clients.

end for
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