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ABSTRACT

Generative models for human motion synthesis have demonstrated remarkable
capabilities across tasks such as text-to-motion generation, motion inbetweening,
style transfer, and motion captioning. However, their adoption in industry remains
limited, largely due to challenges in data representation. Industry applications of-
ten require diverse articulated skeleton topologies tailored to specific use cases,
which are further constrained by limited data availability. Existing methods ad-
dress these challenges by aligning datasets through shared subsets or unified rep-
resentations. However, these approaches rely on error-prone alignment processes,
limiting their flexibility and scalability. In this work, we leverage Euclidean space
to represent human poses, bypassing the need for alignment in configuration space
and significantly simplifying the learning objective. Using Euclidean space also
frees us from the need to use a common subset representation and allows us to rep-
resent poses in any complexity we desire. To disentangle pose and body shape, we
introduce a simple yet effective learning strategy. Our method achieves robust in-
verse kinematics with minimal data requirements, needing just over five minutes
of motion capture data to integrate new topologies. We demonstrate the effec-
tiveness of our topology-agnostic representation across three downstream tasks:
motion retargeting, text-to-motion generation, and motion captioning.

1 INTRODUCTION

Generative models for human motion synthesis have gained significant traction within the research
community, demonstrating their ability to address a wide range of tasks, including text-to-motion
generation, motion inbetweening, style transfer, and motion captioning. Despite these advance-
ments, their adoption in industry remains limited. A key challenge contributing to this gap lies in
the choice of data representation: industry applications often require unique articulated skeleton
topologies tailored to specific use cases and character designs, compounded by limited data avail-
ability. Figure 1 shows one such character, while Figure 2 (a)–(c) illustrates the variability in human
skeletons for the same pose.

The configuration space of an articulated human pose consists of two components: the skeleton
topology, which is a tree structure of bones typically fixed for a character, and the local joint rotations
of the bones, which determine the actual pose of the skeleton. Forward kinematics (fk) is used to
express the pose in 3D space, while inverse kinematics (ik) recovers the local joint rotations given
the 3D points and skeleton. Importantly, the 3D pose is determined by both the local joint rotations
and the individual bones, which are 3D vectors. This is particularly crucial for bilateral structures,
such as humans, as directionality can be expressed either through the direction of the bone or a joint
rotation. Many existing human skeleton topologies use a mix of both methods. To visualize this, we
show three reset poses, where all local rotations are set to the unit rotation, in Figure 2 (d)–(f).

This structural ambiguity makes learning a generative model for multiple skeleton topologies chal-
lenging, especially considering that many motion models focus solely on local pose parameters and
rarely account for the skeleton topology, which defines the local rotation space.

One approach to address this challenge is to retarget various skeletons to a unified representation, as
seen in AMASS (Mahmood et al., 2019) and HumanML3D (Guo et al., 2022). While this solves the
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Figure 1: Industry animation projects rely on custom articulated human skeletons while generative
models for motion generation require a unified representation, often SMPL. In this work, we learn
a unified human representation which allows for easy translation between various skeletons. In
contrast to other skeleton-agnostic embeddings, our approach learns to align different skeletons in
Euclidean space, greatly simplifying the learning process. We provide visualizations of both the
underlying articulated skeletons and the skinned meshes, which represent the final output.

problem of data scarcity and structural ambiguity, the process is complex, error-prone1, and often
undesired by artists, who prefer to work directly in the topology of the target character.

Learning topology-agnostic representations in configuration space has seen progress in recent years.
Aberman et al. (2020) introduced a learned representation and operations for retargeting between
different humanoid skeletons. Similarly, Skeleton-Agnostic Motion Embedding (SAME) (Lee et al.,
2023) employs a graph-convolutional autoencoder to retarget motion snippets across skeletons.
More recently, AnyTop (Gat et al., 2025) explicitly modeled skeletal structures using kinematic
graphs and limb names, extending retargeting capabilities to non-humanoid skeletons.

Despite these advancements, topology-agnostic methods still face limitations. To handle topologies
with different reset poses, they must learn poses relative to a common neutral pose (often a T-pose),
which may not be perfectly aligned across skeletons. Additionally, bilateral structures must remain
consistent across all skeletons, requiring rotations and bone directions to uniformly determine hand-
edness - a condition rarely met, as illustrated in Figure 2 (d)–(f). Consequently, current methods
must first align skeleton topologies for inverse kinematics consistency, often relying on proprietary
software such as MotionBuilder (Autodesk, 2025). This alignment process is labor-intensive and
error-prone, making it difficult to extend to new topologies.

In this work, we make a simple yet effective observation: while skeletons can have vastly differ-
ent configuration spaces - defined by complex, non-linear systems with multiple solutions - they
are inherently aligned in Euclidean space by construction. In realized 3D space, points are quasi-
independent of their hierarchical structure, greatly simplifying the learning process. Reconstruction
loss in Euclidean space is straightforward, whereas hierarchical structures require careful weighting
due to the influence of early elements in the kinematic chain.

One challenge of using realized 3D joints is the entanglement of pose and human shape, such as
varying bone lengths within the same topology. To address this, we introduce a learning scheme to
explicitly disentangle body shape and human pose in our learned representation. Finally, to recover
articulated poses, we learn inverse kinematics. Our experiments show that slightly more than five
minutes of motion capture data is sufficient to learn consistent ik for a human skeleton topology,
which indicates that our framework enables us to add new topologies easily.

In summary, our contributions are three-fold: 1. We introduce a learned latent representation that
leverages human poses in Euclidean space rather than their various configuration spaces. 2. We
provide a simple yet effective learning strategy to disentangle pose and body shape for the learned
latent representation. 3. We demonstrate that our topology-agnostic representation can be utilized
for three downstream tasks: motion retargeting, text-to-motion generation, and motion captioning.

2 RELATED WORK

Motion Latent Space: Early deep-learning-based motion representations (Holden et al., 2015; Vil-
legas et al., 2018) utilized convolutional neural networks to enable tasks such as denoising, interpo-

1i.e. https://github.com/EricGuo5513/HumanML3D/issues/119

2

https://github.com/EricGuo5513/HumanML3D/issues/119


108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) Human3.6M (b) SMPL-H (c) LAFAN1 (d) Human3.6M (e) SMPL-H (f) LAFAN1

Figure 2: Heterogeneity of human motion datasets: Human motion datasets exhibit significant vari-
ability in skeletal topologies. (a) - (c) To illustrate this, we retarget a given pose to three distinct hu-
man topologies. Human3.6M (2a) represents only the thumb and index finger, while SMPL-H (2b)
models a full five-finger hand. In contrast, LAFAN1 (2c) omits fingers entirely. (d) - (f) Neutral pose
for various skeleton topologies: The neutral pose is depicted for different skeleton topologies, where
all joint rotations are reset to θ = 0. Note that the neutral pose (reset pose) does not necessarily
represent a realistic human pose. Human3.6M (2d): This topology uses distinct bones with oppo-
site directions for the hips, while the shoulders share the same bone direction. SMPL-H (2e): This
topology expresses a T-pose, with all bilateral limbs pointing in different directions. LAFAN1 (2f):
This topology has the hip and collarbone bones oriented in different directions, while all other bones
point in the same direction. (Larger plots in Figure 9 and Figure 10)

lation or similarity search. Aberman et al. introduced a joint space for transfering 2D motion to a 3D
skeleton. Deep-Phase networks (Starke et al., 2022) are Markov-chain style neural networks with
a periodic heartbeat to effectively model temporal data. PMNet (Lim et al., 2019) learns pose and
motion separately for retargeting, to better adapt to various character sizes. Aberman et al. (2020)
introduce a skeleton-agnostic representation which utilizes a minimal primal skeleton for motion
modelling. Skeleton-Agnostic Motion Embedding (Lee et al., 2023) (SAME) learns an embedding
space over a large set of augmentations of an initial set of skeletons, learning to disentangle differ-
ent topologies. CAR (Cao & Yang, 2024) introduces a purely algorithmic solution for retargeting
between different skeletons. MoMa (Martinelli et al., 2024) proposes a masked auto-encoder to re-
target motion sequences between different skeletons. AnyTop Gat et al. (2025) explicitly encodes
the graph topology as well as node names into the model, allowing for a joint learning of completely
different topologies. Motion2Motion (Chen et al., 2025) allows transferring motion across different
topologies, utilizing only a few corresponding samples.

SMPL (Loper et al., 2015) is a widely-used 3D human body model that represents the human body
as a mesh with a fixed topology. It is designed to capture a wide range of human shapes and poses
using a small number of parameters. SMPL-H (Romero et al., 2017) extends SMPL with articulated
hands.

Generative Motion Generation: Early generative models for motion synthesis include the works
of Komura et al. (2017), Ghorbani et al. (2020), and Ling et al. (2020). More recently, text-to-
motion Guo et al. (2022) models have seen increased popularity, ranging from data-space based
methods (Tevet et al., 2023; Li et al., 2026) to masked prediction models (Guo et al., 2024) to latent
diffusion models (Zhang et al., 2024; Meng et al., 2025; Uchida et al., 2025). All these models utilize
a unified representation, usually HumanML3D Guo et al. (2020), which cannot be readily applied
to different skeleton topologies. Furthermore, latent-space based methods such as MoMask (Guo
et al., 2024) and MARDM (Meng et al., 2025) explicitly model motion at a fixed frame rate only,
making industry adoption more challenging.

Inverse Kinematics: Inverse Kinematics is a non-linear, often non-unique, transformation from
Euclidean space to joint configuration space. Analytical solutions exist for simple kinematic chains,
but for more complex ones, such as the kinematic trees that make up humans, numerical methods
are required. However, these methods often rely on a good initial estimate for convergence. Neural
Inverse Kinematics (Bensadoun et al., 2022) utilizes a Gaussian Mixture Model to model the solution
space. In contrast, Lu et al. (2022) utilizes a simple feed-forward neural network to provide a first
estimate and then utilizes an iterative refinement to obtain the final configuration parameters. We
follow their simple yet effective approach in utilizing a simple MLP to provide a first estimate, and,
if needed, apply gradient-descent based optimization to align the end-effectors.
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(a) (b) (c)

Figure 3: An articulated human pose (θ, o,S) ∈ T can be realized in Euclidean space via for-
ward kinematics (fk). Conversely, joint rotations can be recovered from the 3D Euclidean points
x ∈ RJ×3 using inverse kinematics (ik). State-of-the-art skeleton-agnostic methods first align their
configuration spaces to learn a joint representation in configuration space (3b). In contrast, we
directly learn to align different poses in Euclidean space, which is inherently aligned by construc-
tion (3c). We then learn the ik back to configuration space, ensuring that our learned representations
are fully compatible with the original configuration spaces.

3 METHOD

3.1 PRELIMINARIES

An articulated human pose with J joints is represented by a set of local joint rotations θ ∈ SO(3)J ,
bone offsets o ∈ RJ×3, and a skeleton S, which defines the kinematic chains as a tree structure
for the given topology. The articulated pose triplet (θ, o,S) ∈ T is an element of the configuration
space T.

In this work, we adopt the 3D Cartesian coordinates to represent human poses in Euclidean space,
which is a common practice. To compute the 3D Cartesian coordinates of the human pose, x ∈
RJ×3, forward kinematics (fk) is applied:

x = fk(θ, o,S) (1)

Here, the position of each joint in x is determined by both the joint rotations θ and the bone offsets
o. Importantly, there can be infinitely many combinations of rotations and offsets that produce the
same x.

To recover the joint rotations from the Cartesian coordinates, inverse kinematics (ik) is used:

θ̂ = ik(x, o,S) (2)

where θ̂ represents one possible solution. Unlike forward kinematics, which is linear, inverse kine-
matics is non-linear and may have multiple solutions. While analytical solutions exist for simple
kinematic chains, more complex structures, such as the kinematic trees that define human skeletons,
require numerical methods. In this work, we approximate the inverse kinematics function ik using a
neural network.

3.2 METHOD OVERVIEW

Our model consists of three main components: (1) the translation-to-anchor module, (2) the dis-
entangled anchor representation autoencoder, and (3) the neural inverse kinematics module. While
the entire architecture is trained end-to-end, each sub-component can also be trained independently,
which is particularly useful when integrating a new topology into a pretrained model without re-
training the other components. This enables us to leverage knowledge of the model pretrained on a
larger scale of data. A comprehensive overview of our model is presented in Figure 4. All models
are trained using a reconstruction loss, specifically the Mean Squared Error (MSE).

Anchor Representation: Similar to other retargeting methods such as Aberman et al. (2020), we
utilize a common representation to learn human poses. However, unlike methods that operate in
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Figure 4: Model overview: Given articulated pose (θ, o) for a given topology, we learn a topology-
dependent projection f that maps the Cartesian coordinates x to the anchor representation x▷◁.
Alternatively, we provide generic learned mappings f−, f=, and f≡ which map generic reduced
skeletons to the anchor. Given the anchor x▷◁ we use encoder e to produce pose and shape em-
beddings zo and z. We utilize shape decoder do to regress the input shape parameter o▷◁ and pose
decoder dp to regress the anchor. Note that pose decoder takes as input both z and a learned projec-
tion of the input shape o▷◁. We regress per-topology 3D representations x with g and learn inverse
kinematics function r to obtain articulated pose parameters θ.

configuration space and require a minimal sub-skeleton, our approach employs a flexible common
representation, referred to as the anchor representation, which can handle arbitrary complexity and
even act as a superset of many skeletons. This flexibility is achieved by learning the representation
directly from poses in Euclidean space rather than configuration space.

We use the 3D joints of SMPL-H as our anchor topology due to its widespread availability and ability
to represent complex poses, including detailed finger movements (see Figure 9b). The anchor pose
is represented as x▷◁ ∈ RJ▷◁×3 in Euclidean space, distinguishing our method from prior works.

To convert poses to the anchor representation, we employ two approaches:

1. Paired Data: For select datasets, we use off-the-shelf retargeting software to carefully retarget
the dataset to SMPL-H. This provides paired data for training the pose-to-anchor function f and the
anchor-to-pose function g.

2. Preset Representations: For datasets without paired SMPL-H data, we define three simplified
pose presets: x− (minimal skeleton without fingers), x= (skeleton with two fingers: thumb and
index), and x≡ (skeleton with all five fingers). Regular human pose skeletons can be converted to
one of these presets by selecting the appropriate joints. We pre-train f−, f=, and f≡ to translate
from these presets to the anchor pose, leaving only the anchor-to-pose function g to be learned for
new datasets.

Pose Representation Autoencoder: One downside of utilizing the 3D Euclidean pose representa-
tion is its entanglement between pose and body shape, which in our work are represented by the
skeleton offset vectors o ∈ RJ×3. However, we want our learned pose representation to be indepen-
dent of the body shape. To facilitate this, we learn an autoencoder where the encoder e predicts two
latent vectors, zo, and z, and where z is our latent disentangled pose representation, which we utilize
for downstream tasks. To recover the 3D Euclidean pose x̂▷◁, we learn decoder dp, conditioned on
the ground-truth human shape o▷◁. Note that o▷◁ can be directly regressed from the 3D points x▷◁,
assuming that the direction of the skeleton in reset pose is known.

To disentangle pose and body shape, we utilize two strategies: first, we learn auxiliary decoder do
to directly regress ô▷◁ (Lo). Second, we train decoder dp with augmented o▷◁, where the skeleton
is randomly scaled up, down and randomly sampled from another character. During training, the
decoder then has to recover not just the original x▷◁ but also the ones conditioned on the augmented
offsets, while provided with the same z (Laug).

Training Objective: Our autoencoder training objective is defined as follows:

Lae = Lrec + λo · Lo + λaug · Laug (3)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

where Lrec is the reconstruction loss of the original pose, Laug is the reconstruction loss for shape
augmentations, and Lo is the reconstruction loss for the offset.

Our end-to-end loss is defined as:

L = λ▷◁

(
L→▷◁ + L▷◁→

)
+ λik · Lik + Lae (4)

where L→▷◁ and L▷◁→ are the losses for converting to and from the anchor representation, respec-
tively, and Lik represents the inverse kinematics loss. We use mean squared error for all loss func-
tions.

Implementation Details: Implementation details are described in Appendix A.3.

4 EXPERIMENTS

In Section 4.1, we evaluate the inverse kinematics, which are crucial to recover articulated poses for
downstream tasks. Section 4.2 discusses the various design choices, while we discuss downstream
applications such as retargeting, text-to-motion, and motion captioning in Section 4.3.

4.1 INVERSE KINEMATICS

Table 1: Inverse kinematics mean error (in cm)
and accuracy for different datasets.

Dataset MPJPE Acc@10 Acc@5 Acc@1

AMASS (Mahmood et al., 2019) 1.40 98.20% 86.87% 1.30%
LAFAN1 (Harvey et al., 2020) 0.86 99.22% 94.92% 12.31%
Motorica (Valle-Pérez et al., 2021) 1.24 99.08% 88.48% 0.18%
Human3.6M (Ionescu et al., 2013) 0.94 98.11% 94.06% 11.25%
FineDance (Li et al., 2023) 1.66 95.68% 69.48% 0.02%

Table 2: Ablation of inverse kinematics func-
tions. Mean error is measured in cm.

Human3.6M

Method MPJPE Acc@10 Acc@5 Acc@1 #param

Linear 1.96 92.21% 61.97% 0.00% 18,624
MLP-2 1.24 99.33% 89.57% 1.35% 148,160
MLP-5 0.93 98.41% 95.24% 15.18% 936,128
MLP-5 + Opt 0.13 100.00% 100.00% 99.98% 936,128

Figure 5: Evaluation of mean positional error (in
cm) and accuracy of the learned inverse kine-
matics on the Human3.6M dataset, given varying
numbers of training samples. The model demon-
strates the ability to generalize to the test set with
approximately 16,000 training samples, equiva-
lent to around 5.33 minutes of data at a frequency
of 50 Hz.

We show qualitative results of our inverse kine-
matics for five different datasets and skeleton
topologies in Figure 11 and in Appendix A.2.
We adopt the evaluation metrics established in
prior work (Bensadoun et al. (2022)) to assess
the performance of our learned inverse kine-
matics (IK) method, specifically mean distance
and accuracy. However, we introduce a stricter
definition of accuracy: rather than determining
accuracy based on whether the mean joint error
falls below a given threshold, we instead thresh-
old the maximum limb mismatch. This adjust-
ment ensures that a single poorly aligned joint
is not overshadowed by the average of well-
aligned joints. We evaluate accuracy at three
thresholds: 10 cm, 5 cm, and 1 cm. In Table 1,
we evaluate the capabilities of our learned in-
verse kinematics for five different datasets. We find that our model works best on Human3.6M
and LAFAN1, which contain common motion sequences, such as walking, running or sitting, while
dance datasets, such as Motorica and FineDance, are more difficult, due to them containing more ex-
treme poses on average. AMASS contains a wide variety of motions and, crucially, of body shapes,
which makes the problem more challenging.

In Table 2, we ablate the inverse kinematics function. Surprisingly, even a linear function provides a
reasonable approximation in many instances. This can also be visually inspected in Appendix A.2.

Generalization Performance: The primary objective of our representation is to enable various gen-
erative modeling capabilities across different human motion representations and even new topologies
not encountered during the training of either the generative model or the pose representation. When
using a new, unseen topology, it is necessary to learn a Euclidean space decoder g(·) and an inverse
kinematics function r(·) specific to that topology. In Figure 5, we evaluate the number of training
samples required for the learned inverse kinematics to generalize on the Human3.6M (Ionescu et al.,
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2013) dataset. Our experiments indicate that the model can generalize to the unseen test set with
just 5.33 minutes of training data.

4.2 RECONSTRUCTION

Table 3: Autoencoder evaluation of the recon-
struction and disentanglement in cm.

z-size Lo Laug
reconstruction disentanglement

MPJPE ↓ MPJPE ↓
128 ✓ ✓ 1.41 2.10

256 0.90 3.50
256 ✓ 0.86 1.70
256 ✓ 0.90 3.46
256 ✓ ✓ 0.78 1.26

512 ✓ ✓ 0.66 1.22

Table 4: Retargeting evaluation on the Mixamo
evaluation protocol established by Aberman et al.
(2020).

Method Intra ↓ Cross ↓
Copy rotations 8.86 N/A
NKN (Villegas et al., 2018) 6.24 243
PMnet (Lim et al., 2019) 5.72 N/A
CycleGAN adaptation (Aberman et al., 2020) 7.66 8.97
Aberman et al. (2020) (no Ladv) 0.47 3.81
Aberman et al. (2020) (full approach) 2.76 2.25
SAME (Lee et al., 2023) 2.91 2.47
Ours (same latent) 5.31 1.62

In Table 3, we qualitatively evaluate our method and latent space design choices, particularly fo-
cusing on how they affect the disentanglement of pose and body shape. We use two metrics for
evaluation: reconstruction, which measures the Euclidean distance between the input pose and the
reconstructed pose in centimeters, and disentanglement, which assesses how well the latent decoder
generates the same pose under different body shapes, also measured in centimeters.

For the experiments, we utilize a withheld test set from AMASS and cluster the poses into 128 pose
clusters and select 64 random poses from each cluster to ensure that more common poses do not
overshadow extreme and rare poses. Similarly, we cluster the offsets into 32 clusters and use the
cluster centers as our input body shapes. This approach ensures a wide physical variety without the
risk of results being dominated by average-height individuals, which are more prevalent in many
datasets. In Appendix Figure 13, we show four random pose samples from four different clusters
with two different offsets.

Disentanglement measures how well the decoder is conditioned on the provided offsets o▷◁ and
how effectively the latent space z represents the same pose under different body shape offsets. We
measure this by first encoding a pose x▷◁ into the latent space z and then decoding the pose under
the 32 selected offsets, which represent different human body shapes, such as very small, medium,
or tall individuals. The disentanglement metric represents the average distance error across these
predicted results.

As expected, increasing the latent space dimension improves reconstruction. However, for all our
experiments, we set the size of the latent space to 256 to remain comparable with the data represen-
tation sizes used in generative human motion modeling. We find that Laug is crucial for disentan-
glement.

We qualitatively discuss the disentanglement of the latent space in Appendix Section A.5.

4.3 DOWNSTREAM APPLICATIONS

4.3.1 RETARGETING

Retargeting involves transferring motion from one skeleton to another, and our work is closely re-
lated to other efforts in this space, such as Aberman et al. (2020) and SAME (Lee et al., 2023).
For this experiment, we follow the established retargeting benchmark on the Mixamo dataset, as
outlined in Aberman et al. (2020), and present our results in Table 4. Qualitative results are shown
in Figure 6.

To demonstrate the extensibility of our method to new topologies, we learn our embedding space
using only the AMASS dataset. For learning the different characters required for retargeting and
inverse kinematics, we use approximately 10 minutes of training data - significantly fewer training
samples than those used in Aberman et al. (2020) or SAME. This data is used to train the from-
anchor model g and the ik model r.

To avoid the need to retarget SMPL-H to Mixamo, we utilize the reduced preset x≡.
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(a) Goblin → Goblin (cross) (b) Mousey → Mousey (cross) (c) Goblin → Mousey (intra)

Figure 6: Retargeting results on the Mixamo dataset, comparing our and state-of-the-art (Aberman
et al., 2020) results against ground-truth. (a) and (b) show results on the cross-structure retargeting
task for characters Goblin and Mousey. (c) shows intra-structural retargeting from Goblin to Mousey.
Note that our representation maintains the pose of the source pose (leaning forward) instead of
adjusting it to the target character.

Table 5: Text-to-motion evaluation on HumanML3D (Guo et al., 2022): We assess the performance
of our representation across two distinct text-to-motion models: the data-space-based method MDM
and the latent diffusion model MARDM.

Method R Precision↑ FID ↓ MM Dist.↓ Diversity→ MModality ↑Top 1 Top 2 Top 3

MDM (Tevet et al., 2023) 0.320±.005 0.498±.005 0.611±.007 0.544±.007 5.566±.027 9.559±.086 2.799±.072

MDM (ours) 0.419±.001 0.631±.002 0.742±.002 0.663±.008 3.540±.001 9.950±.077 2.174±.019

MARDM-DDPM (Meng et al., 2025) 0.492±.007 0.690±.005 0.790±.005 0.116±.004 3.349±.010 10.613±.105 2.470±.053

MARDM-DDPM (Ours) 0.492±.000 0.694±.000 0.794±.000 0.238±.000 3.236±.000 10.897±.170 2.234±.089

Intra-Structural Retargeting tests how well a motion representation allows for the transfer of a
pose of a given topology T and proportions oa to another skeleton with the same topology but
different proportions ob. Directly translating from one topology to another but utilizing the same
encoding z will result in the same pose, which might not be desired for character transfer, as can
be seen in Figure 6c, where the Goblin character leans forward while the Mousey character of the
same pose leans backwards. In this sense, our method is similar to Copy Rotations, which copies
the exact pose. Our method, however, produces better results than Copy Rotations as it is explicitly
conditioned on o, and thus can make some adjustments to the pose to better align joints.

Cross-Structural Retargeting tests how well a motion representation allows for the transfer of a
pose in a given topology T1 to a new topology T2. To obtain those two different topologies, extra
bones are added in-between existing ones in the neck, legs and arms, by splitting the original bone.
This task is extremely difficult when learning in a hierarchical rotation space but becomes trivial
when using Euclidean space, as the salient joints remain at their original locations.

4.3.2 TEXT-TO-MOTION

To evaluate the suitability of our representation for the text-to-motion task, we follow the established
evaluation protocols for the HumanML3D benchmark (Guo et al., 2022). We test our approach
with two generative models, the data-space-based method MDM (Tevet et al., 2023), and the latent
diffusion model MARDM (Meng et al., 2025). As shown in Table 5, our representation performs
competitively compared to the original HumanML3D representation.

Our representation offers several advantages over HumanML3D. Although HumanML3D relies on
3D keypoints and velocities that encode both human shape and framerate, our representation is in-
herently more flexible. It can directly represent articulated motion, including more complex motions
such as hand movements. Furthermore, our representation enables seamless translation to different
skeletons, as demonstrated in Figure 7.

We discuss the slightly higher FID scores in Appendix A.4.
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(a) SMPL-H (b) Human3.6M (c) LAFAN (d) SMPL-H (e) Human3.6M (f) LAFAN

(g) SMPL-H (h) Human3.6M (i) LAFAN (j) SMPL-H (k) Human3.6M (l) LAFAN

Figure 7: Generative results of MDM in human topologies SMPL-H, Human3.6M and LAFAN.
Note that that the same latent sequence was used to extract the motion in the representations. Cap-
tions: (a) - (c): A person is doing jumping jacks.; (d) - (f): A person puts their hands together and
kicks their right foot.; (g) - (i): A person walking side to side.; (j) - (l): A person walks forward with
right foot, then trips and continues walking forward. Better viewed in the supplementary video.

Table 6: Text generation and motion-text-alignment scores on HumanML3D.

Text Quality R Precision↑
Method Bleu@1↑ Rouge↑ Bert Score↑ Top 1 Top 2 Top 3 MM-Dist↓
MotionGPT (Jiang et al., 2023) 0.291±0.001 0.282±002 0.221±0.002 0.435±0.004 0.627±0.004 0.730±0.001 3.581±0.008

MotionAgent (Wu et al., 2025) 0.325±0.003 0.339±001 0.290±0.001 0.499±0.004 0.698±0.005 0.801±0.004 3.243±0.009

Ours (#clusters 512, single) 0.311±0.001 0.306±001 0.244±0.002 0.414±0.004 0.598±0.005 0.703±0.003 3.761±0.014

Ours (#clusters 256, 4-set) 0.316±0.001 0.314±002 0.246±0.001 0.436±0.005 0.618±0.003 0.722±0.003 3.729±0.018

Ours (#clusters 512, 4-set) 0.302±0.003 0.305±0.002 0.237±0.002 0.419±0.003 0.602±0.004 0.706±0.007 0.378±0.015

Ours (#clusters 1024, 4-set) 0.306±0.001 0.308±0.001 0.246±0.001 0.439±0.004 0.623±0.002 0.731±0.002 0.365±0.008

4.3.3 CAPTIONING

Another relevant generative model task is motion captioning, where a large language model gen-
erates a caption for a provided input motion. We compare our method to two existing approaches,
MotionGPT (Jiang et al., 2023) and MotionAgent (Wu et al., 2025), and retrain MotionAgent on two
variants of our representation: (1) k-means clustering of our latent space, and (2) k-means clustering
of groups of four adjacent frames in latent space to encode motion, similar to the VQ-VAE utilized
in both MotionGPT and MotionAgent. Our results are presented in Table 6, with qualitative results
shown in Appendix A.8.

Our experiments reveal that even the simple discretization method k-means can be effectively uti-
lized for motion captioning. We attribute the slightly lower performance of our representation to
the absence of global transformation, which makes distinguishing relative motion more challenging.
This is further supported by the slightly larger multi-modal distance observed in our results.

5 CONCLUSION

We presented a simple yet effective approach to human pose representation that leverages Euclidean
space, eliminating the need for alignment in configuration space. This simplicity allows our method
to flexibly handle diverse articulated skeleton topologies. By introducing a learning strategy to
disentangle pose and body shape, we ensure robustness and generalizability. Furthermore, we show
that we learn inverse kinematics with minimal data requirements.

Our topology-agnostic representation demonstrates effectiveness across three downstream tasks:
motion retargeting, text-to-motion generation, and motion captioning. The simplicity of our ap-
proach makes it scalable and practical.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

Societal Impact: This method is particularly valuable to industry partners who work with diverse
skeleton topologies and may face legal restrictions on using motion capture sequences. By reducing
the labor and cost associated with manual retargeting, our method offers significant efficiency gains.

Moreover, by integrating modern generative technologies into artists’ workflows, this method has the
potential to enhance productivity. It frees artists from repetitive and labor-intensive tasks, allowing
them to focus more on creative endeavors. This not only improves their efficiency but also fosters
greater innovation and creativity in their work.

However, the automation of manual processes may impact certain jobs, particularly entry-level po-
sitions in animation and motion capture.

LLM Usage: We utilize LLMs for academic proofreading. We also used them for coding assistance,
including algorithm implementation and visualization of experimental results. However, all research
ideas were developed solely by the authors.
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Figure 8: Various T-poses of different human motion datasets.

(a) Human3.6M (b) SMPL-H (c) LAFAN (d) All

Figure 9: Heterogeneity of human motion datasets: Human motion datasets exhibit significant vari-
ability in skeletal topologies, which are influenced by the tools and use cases for which they are
designed. To illustrate this, we retarget a given pose to three distinct human topologies. For in-
stance, Human3.6M (9a) represents only the thumb and index finger, while SMPL-H (9b) models a
full five-finger hand. In contrast, LAFAN (9c) omits fingers entirely. Overlaying all three skeletons
(9d) reveals additional differences, such as variations in how the hip, neck, and spine are modeled
across topologies.

(a) Human3.6M (b) SMPL-H (c) LAFAN1

Figure 10: Reset pose for various skeleton topologies: The reset pose is depicted for different skele-
ton topologies, where all joint rotations are reset to θ = 0. Note that the reset pose does not neces-
sarily represent a realistic human pose. Human3.6M (10a): This topology uses distinct bones with
opposite directions for the hips, while the shoulders share the same bone direction. SMPL-H(10b):
This topology expresses a T-pose, with all bilateral limbs pointing in different directions. LAFAN1
(10c): This topology has the hip and collarbone bones oriented in different directions, while all other
bones point in the same direction.
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Figure 11: Results of the learned inverse kinematics on the unseen test sets for AMASS, LAFAN1,
Motorica, Human3.6M and FineDance. The blue skeletons represent the ground truth 3D projec-
tions, while the red skeletons correspond to the predictions obtained by applying forward kinematics
to the articulated pose parameters.

A APPENDIX

A.1 DIFFERENCES IN STRUCTURE BETWEEN DATASETS AND TOPOLOGY

A T-pose is a default posing for many human skeleton topologies and is often used to align an
animation rig with a 3D mesh. However, various datasets and human topologies might define a T-
pose slightly differently, i.e., with different angles at the shoulders or at the legs, as can be seen in
Figure 8.

Furthermore, human motion datasets exhibit significant variability in skeletal topologies, which are
influenced by the tools and use cases for which they are designed. To illustrate this, we retarget a
given pose to three distinct human topologies. For instance, Human3.6M (9a) represents only the
thumb and index finger, while SMPL-H (9b) models a full five-finger hand. In contrast, LAFAN
(9c) omits fingers entirely. Overlaying all three skeletons (9d) reveals additional differences, such
as variations in how the hip, neck, and spine are modeled across topologies.

The reset pose of an articulated human skeleton is the pose when all local rotations are set to the unit
rotation. We visualize different skeleton topologies under the reset pose in Figure 10. Note that the
reset pose does not necessarily represent a realistic human pose. Human3.6M (10a): This topology
uses distinct bones with opposite directions for the hips, while the shoulders share the same bone
direction. SMPL-H (10b): This topology expresses a T-pose, with all bilateral limbs pointing in
different directions. LAFAN1 (10c): This topology has the hip and collarbone bones oriented in
different directions, while all other bones point in the same direction.

A.2 INVERSE KINEMATICS

In Section 4.1, we discuss the performance of our inverse kinematics model. We test three model
variants: a linear model that directly maps normalized 3D joint positions to 6d rotations, an MLP
with two layers, and an MLP with five layers. For completeness, we also evaluate a post-processing
gradient descent optimization procedure to obtain results as close as possible to the ground truth
target points.

In Figure 11, we show inverse kinematics results of test poses on five different datasets with differ-
ent human skeleton topologies, while in Figure 12, we show inverse kinematics results for various
challenging poses on Human3.6M, comparing the linear model, our model, and our model with the
post-processing optimization.

A.3 IMPLEMENTATION DETAILS

For simplicity, we utilize simple MLPs as function approximators in all our learned functions, as our
main focus is on the representation. For the inverse kinematics function r, we follow Lu et al. (2022)
and also represent it as a 5-layer MLP. Our anchor encoder-decoder module has 2.8M parameters
while the per-topology-representations have around 0.7M parameters. We train this model with the
Adam optimizer and a learning rate of 0.0001.
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Figure 12: Results of the learned inverse kinematics on the unseen Human3.6M test set are pre-
sented. The blue skeletons represent the ground truth 3D projections, while the red skeletons cor-
respond to the predictions obtained by applying forward kinematics to the articulated pose param-
eters. We compare the outputs of a linear model, our 5-layer MLP, and gradient descent-based
post-optimization. The first row highlights two failure cases with the highest errors across the test
set. Notably, even the linear model produces reasonable predictions in many challenging examples.
The direct output of the MLP closely matches the ground truth, and the post-optimization step fur-
ther refines the alignment, achieving the most accurate results.
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(a) (b) (c) (d) (e)

Figure 13: Visualization of shape augmentation for pose-shape disentanglement. In 13a, 13b, 13c
and 13d, we show two shape variants of the same pose, while in 13e, we show the Euclidean distance
in latent space between all four poses and their 32 variants, which are used for the evaluation.

(a) Lo (✓) + Laug (✓) (b) Lo (✗) + Laug (✓) (c) Lo (✓) + Laug (✗) (d) Lo (✗) + Laug (✗)

Figure 14: PCA Visualization of Pose Variations with Different Offsets: We visualize five poses,
each with 32 different offsets, as used in our experiments. The top row displays two instances of
each pose, color-coded, with two different offsets. The bottom row shows the projection of the
latent space z. By inspection, we observe that adding the augmentation loss Laug helps to separate
different clusters of the same pose, while the shape loss Lo further pushes them apart in the latent
space.

A.4 DISCUSSION ON FID SCORE ON THE TEXT-TO-MOTION TASK

Our experiments reveal a slightly higher FID score for models trained on our representation, which
we attribute to two main factors: distribution shift and noise accumulation during representation con-
version. The distribution shift arises from converting our representation to the original HumanML3D
format for evaluation, a challenge also observed in prior works such as STMC (Petrovich et al., 2024)
and GENMO (Li et al., 2026), which directly utilize SMPL rather than the HumanML3D represen-
tation. Additionally, as in STMC, we only use the AMASS portion of HumanML3D and exclude
HumanAct12 (Guo et al., 2020), as the pose formats between these datasets are not readily aligned2.

A.5 DISENTANGLEMENT EVALUATION

In the experiment (Section 4.2), we evaluate how disentangled the output poses of our pipeline are.

Here, we verify qualitatively the disentanglement of the latent space. Figure 13 illustrates the effect
of shape augmentation on the latent space. As described in Section 4.2, we generate 32 random
shape variants for each pose. In Figure 13e, we visualize the Euclidean distances between these 32
variants for four random test poses. As expected, the distances within a single pose, regardless of
shape variations, are shorter than the distances across different poses.

2Aligning them is a pre-processing step in generating HumanML3D.
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(a) Walking (b) Running (c) Samba-Dancing (d) Salute

Figure 15: PCA-projection of Mixamo sequences for characters Goblin, Mousey, Vampire and
Mremireh.

To further verify the disentanglement of our latent space, we visualize a 3D projection obtained via
PCA on the latent space of the 32 pose variants for five different test poses in Figure 14. We show
the clusters for our final model as well as for the ablations where parts of the disentanglement loss
functions Laug and Lo were removed. We observe that Laug encourages disentanglement, while Lo

pushes clusters apart.

In Figure 15, we use the same PCA projection to visualize the same sequences of various Mixamo
characters, Goblin, Mousey, Vampire, and Mremireh. As shown in Figure 6, the character topologies
and scales vary significantly, resulting in different poses even for the same frames. This is reflected
in the traversal of the latent space, as the trajectories for different characters are offset between
different characters.

A.6 ALIGNMENT OF CONFIGURATION SPACES

To understand why previous methods require alignment of their configuration spaces, consider two
toy topologies, a and b, each consisting of a single bone. The bone offset for topology a is oa =
(1, 0, 0), while for topology b, it is ob = (−1, 0, 0). To represent the same pose, where xa ≡ xb,
the joint rotations must satisfy θa = {R} and θb = {RR180y}, where R ∈ SO(3) is an arbitrary
rotation, and R180y represents a 180-degree rotation around the y-axis.

However, there are infinitely many valid solutions for aligning θb to xa, such as rotations around
different axes. This ambiguity complicates the learning process, as the model must determine which
specific rotation to use. The choice of the rotation plane depends on the inverse kinematics (ik)
algorithm. Consistently using the same ik algorithm across all datasets ensures uniformity in the
rotation subspaces, making learning-based approaches feasible.

In contrast, directly learning in Euclidean space eliminates the need for alignment between configu-
ration spaces. Each joint is treated independently, simplifying the learning process and allowing for
the inclusion of new topologies without additional alignment. This approach assumes internal con-
sistency within each topology, significantly reducing the complexity of integrating new skeletons.

A.7 ANCHOR REPRESENTATION

Similar to other retargeting methods such as Aberman et al. (2020), we utilize a common represen-
tation to learn human poses. However, unlike methods that operate in configuration space and thus
require a minimal sub-skeleton, our approach employs a common representation, which we call the
anchor representation, with arbitrary complexity. This anchor representation can even be a superset
of many of the used skeletons. This flexibility is possible because we learn the representation from
poses in Euclidean space rather than in configuration space.

Joint positions in Euclidean space, unlike local joint rotations, are global and independent of each
other, meaning that they do not explicitly depend on their neighbors in the kinematic chain. We
exploit this property by using the 3D joints of SMPL-H (Romero et al., 2017) as our anchor topology
due to its widespread availability and its ability to represent complex poses, including detailed finger
movements (see Figure 9b). Notably, we represent the anchor pose x▷◁ ∈ RJ▷◁×3 in Euclidean space,
unlike previous works.
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(a) SMPL-H (b) Preset x− (c) Preset x= (d) Preset x≡

Figure 16: Visualizations of normalization and presets. 16a shows a SMPL-H pose in a normalized
Euclidean frame, where the hip center is at the origin and where the hip lies on the y-axis. 16b shows
preset x−, 16c shows preset x=, and 16d shows preset x=.

Figure 17: Sample captioning on the HumanML3D test set with MotionAgent (Wu et al., 2025),
MotionGPT (Jiang et al., 2023) and our method.

The independence of each joint in Euclidean space allows us to use arbitrary subsets of x▷◁ without
the need for re-fitting the data, as required in previous methods. In this work, we define three pose
subsets: x−, x=, and x≡, which represent minimal common skeletons without fingers, with two
fingers (thumb and index finger), and with all five fingers, respectively. We visualize those presets in
Figure 16. Hips exhibit significant variability in annotation across different human pose topologies.
For instance, SMPL-based models use the head of the femur, while many professional motion cap-
ture systems, such as Vicon, model the hips further apart, resembling the Greater Trochanter of the
femur (see Figure 9d). To address this, we define a pseudo-hip, positioning the origin of the reduced
skeletons at the center of the two hip joints. We set the pseudo-hip width equal to the shoulder width
and maintain the original direction of the pseudo-hip. Sample reduced skeletons are illustrated in
Figure 4.

These reduced skeletons can be directly used to encode unseen topologies into our latent represen-
tation without the need for additional training or fine-tuning.

A.8 CAPTIONING

In Figure 17, we visualize some captioning examples and compare them to the results from Motion-
Agent (Wu et al., 2025) and MotionGPT (Jiang et al., 2023).
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A.9 LIMITATIONS

One limitation of our method is its inability to directly retarget to a different style based on a target
skeleton topology. This limitation is most evident in our intra-structural retargeting experiments in
Section 4.3.1, where our method underperforms compared to specialized approaches. We attribute
this to two main factors: first, our method prioritizes pose fidelity over style, meaning it preserves the
original source pose under the new target skeleton, as illustrated in Figure 6c; second, our approach
operates strictly on a per-frame basis, whereas state-of-the-art retargeting methods leverage motion
sequences to capture style.

This design choice is intentional, as our focus is on achieving high pose fidelity rather than encoding
motion or style. For generative models, it is critical that the representation remains as close to the
respective pose as possible, ensuring accuracy and consistency.

One way to mitigate this in the future is to learn a function which can predict the offset in latent
space, as seen in Figure 15, given source and target topology.
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