
Adaptive Threshold Sampling for Pure Exploration in Submodular Bandits

Wenjing Chen1 Shuo Xing1 Victoria G. Crawford1,2

1Department of Computer Science and Engineering, Texas A&M University
2vcrawford@tamu.edu

Abstract

We address the problem of submodular maximiza-
tion under bandit feedback, where the objective
function f : 2U → R≥0 can only be accessed
through noisy, i.i.d. sub-Gaussian queries. This
problem arises in many applications including in-
fluence maximization, diverse recommendation
systems, and large-scale facility location optimiza-
tion. In this paper, we focus on the pure-exploration
setting, where the goal is to identify a high-quality
solution set using as few noisy queries as possible.
We propose an efficient adaptive sampling strategy,
called Confident Sample (CS) that can serve
as a versatile subroutine to propose approxima-
tion algorithms for many submodular maximiza-
tion problems. Our algorithms achieve approxi-
mation guarantees arbitrarily close to the standard
value oracle setting and are highly sample-efficient.
We propose and analyze algorithms for monotone
submodular maximization with cardinality and ma-
troid constraints, as well as unconstrained non-
monotone submodular maximization. Our theoreti-
cal analysis is complemented by empirical evalua-
tion on real instances, demonstrating the superior
sample efficiency of our proposed algorithm rela-
tive to alternative approaches.

1 INTRODUCTION

Submodularity is a property of set functions that arises in
many applications such as cut functions in graphs [Balka-
nski et al., 2018], coverage functions [Bateni et al., 2017],
data summarization objectives [Tschiatschek et al., 2014],
information theoretic quantities such as mutual information
[Iyer et al., 2021], and viral marketing in social networks
[Kempe et al., 2003]. A function f : 2U → R≥0 defined
over subsets of the universe U of size n is submodular if

for all X ⊆ Y ⊆ U and u /∈ Y , f(Y ∪ {u}) − f(Y) ≤
f(X ∪ {u})− f(X). In addition, in many applications of
submodular functions f is monotone [Tschiatschek et al.,
2014, Iyer et al., 2021, Kempe et al., 2003], meaning that
for all X ⊆ Y ⊆ U , f(X) ≤ f(Y). Proposed algorithms
for submodular optimization typically are assumed to have
value oracle access to f . That is, f is a black box that can be
queried for any X ⊆ U , and the value of f(X) is returned
[Nemhauser et al., 1978, Badanidiyuru and Vondrák, 2014,
Balkanski et al., 2019a, Buchbinder et al., 2015].

However, in many optimization scenarios, we can only make
noisy queries from some random distribution to estimate
the objective. This setting arises in applications such as
diversified recommendation systems [Yue and Guestrin,
2011, Hiranandani et al., 2020], data summarization with
human feedback [Singla et al., 2016], influence maximiza-
tion [Kempe et al., 2003, Wen et al., 2017], and feature
selection tasks [Krause and Guestrin, 2005]. In addition to
noisy evaluations that are inherent in applications, submod-
ular optimization algorithms that leverage the continuous
multilinear extension of a discrete submodular function are
an additional example of an application where the objec-
tive is accessed via a noisy approximation [Calinescu et al.,
2011, Badanidiyuru and Vondrák, 2014].

In the above scenarios, querying the exact function value is
unrealistic. Instead, a better model of access to the objective
function is in the form of bandit feedback, i.e. via noisy
i.i.d. sub-Gaussian queries. This model of access has led
to many recent works on submodular bandit [Singla et al.,
2016, Takemori et al., 2020, Yue and Guestrin, 2011, Nie
et al., 2022]. In addition, as modern datasets continue to
grow in scale, a fundamental challenge in implementing
these algorithms is the inefficiency of sample complexity,
which significantly impacts practical feasibility.

Motivated by this, we study the problem of submodular
maximization under bandit feedback with an emphasis on
developing low sample complexity algorithms. In particular,
we consider the pure exploration setting, also known as

best-arm identification. The objective is to identify a super-
arm (subset of the universe) that satisfies the PAC-bound
in as few queries as possible. Specifically, a solution set S
satisfies the (δ, ϵ)-PAC bound if, with probability at least
1− δ, the objective value of S satisfies f(S) ≥ f(S0)− ϵ,
where S0 is the output solution set of an approximation
algorithm for the submodular maximization problems with
an exact value oracle. Therefore, we evaluate our algorithms
using two metrics: the function value of the output solution
and sample efficiency. In particular, the contributions of the
paper are as follows:

(i) We propose the adaptive sampling algorithm
Confident Sample (CS) in Section 3, which can
be used to determine if the mean of a random variable
X is approximately above or below a given threshold
w with high probability in relatively few random
samples. Intuitively, the required number of samples is
inversely proportional to the gap between EX and w,
and therefore we can significantly decrease the number
of samples relative to the fixed-precision approach
(see Section 2) by sampling less when the gap is
large. CS is used as a subroutine for all proposed
algorithms for submodular maximization problems
in the paper, and as a result the proposed algorithms
exhibit an improved sample complexity compared
with fixed-precision approximation.

(ii) We address the problem of Monotone Submodular
Maximization with Cardinality constraint (MSMC)
in Section 4, which is defined to find the set
argmax{f(X) : X ⊆ U, |X| ≤ κ}. We prove two
results for the proposed Confident Threshold
Greedy algorithm (CTG), Theorem 3 and Theorem
4. Theorem 3 is demonstrated to achieve an improved
sample complexity compared with that of the related
work of Singla et al. [2016], while achieving the same
approximation guarantee. The sample complexity in
Theorem 4 is better than Theorem 3 in terms of sub-
Gaussian parameter R, which is important in applica-
tions like influence maximization.

(iii) In Section 5, the algorithm Confident
Continuous Threshold Greedy (CCTG)
is proposed and analyzed for the problem of
Monotone Submodular Maximization with Matroid
constraint (MSMM). MSMM is to find the solution
of argmaxS⊆M f(S), whereM is a matroid defined
on subsets of the ground set U . CCTG accesses the
multilinear extension of f via noisy samples, since
the multilinear extension can be difficult to compute
in general [Calinescu et al., 2011, Badanidiyuru and
Vondrák, 2014]. In particular, we demonstrate that
CCTG has an improved sample complexity compared
with the one proposed in Badanidiyuru and Vondrák
[2014].

(iv) In Section E, we propose Confident Double
Greedy (CDG) for Unconstrained Submodular Maxi-

mization (USM). The goal is to find a subset S ⊆ U
that maximizes f(S) where f is not necessarily mono-
tone. The theoretical guarantee on sample complexity
is presented in Theorem 15 in the appendix.

(v) We experimentally analyze CTG on instances of noisy
data summarization and influence maximization. We
compare CTG to several alternative methods including
the algorithm of Singla et al. [2016] which is discussed
in more detail in Section 1.1 and in the appendix. CTG
is demonstrated to be a practical choice that can save
many samples relative to alternative approaches.

Finally, it is important to distinguish our approach in com-
parison to the standard technique of applying concentration
inequalities to estimate the objective function to a fixed-
precision, e.g. Kempe et al. [2003], Calinescu et al. [2011],
which we call a fixed ϵ-approximation (see Section 2). Fixed-
precision estimation is often highly sample-inefficient, since
an algorithm does not necessarily need to approximate f
with such fine precision at every query to find a high-quality
solution. Instead, we propose methods of adaptively approx-
imating the function f based on decisions that the algorithm
must make, with an emphasis on minimizing the total num-
ber of noisy queries. We further illustrate the significant
technical challenges over the simple fixed ϵ-approximation
approach in Appendix Section C.1.

1.1 RELATED WORK

Approximation algorithms for the maximization of a sub-
modular objective function subject to various constraints
have been extensively studied in the literature [Nemhauser
et al., 1978, Badanidiyuru and Vondrák, 2014, Mirza-
soleiman et al., 2015, Calinescu et al., 2011] with the as-
sumption of oracle access to f . The runtime of these al-
gorithms is generally measured in queries to f as this is
the main bottleneck (see Section A for a more comprehen-
sive discussion on the runtime of algorithms for various
submodular optimization problems).

The problem of submodular maximization under bandit feed-
back has been studied in many previous works [Hiranan-
dani et al., 2020, Yue and Guestrin, 2011, Nie et al., 2022,
Singla et al., 2016]. In most of the works, the objective is
to minimize the regret, where the strategy is to explore new
solution sets while exploiting past sampling results to select
sets with relatively high function values [Yue and Guestrin,
2011, Takemori et al., 2020, Nie et al., 2022, Zhang et al.,
2019]. Within this broader category, [Singla et al., 2016,
Jawanpuria et al., Chen and Crawford, 2025] examine the
same pure-exploration setting as us. In particular, the al-
gorithm ExpGreedy of Singla et al. [2016] is for a noisy
setting identical to ours and is developed for the MSMC
problem specifically. Their algorithm combines the standard
greedy algorithm with the best arm identification problem
found in combinatorial bandit literature [Chen et al., 2014].

An extensive comparison of our algorithms and results with
Singla et al. [2016] are presented in Appendix Section B,
as well as an experimental comparison in Section 6. Addi-
tionally, Chen and Crawford [2025] presents a concurrent
study employing threshold-based greedy algorithms. How-
ever, their approach is tailored to the relatively restricted
class of objective functions with linear structures and does
not apply to the general setting considered here.

Another related but different setting is that of stochastic
submodular optimization [Karimi et al., 2017, Staib et al.,
2019, Özcan and Ioannidis, 2023] which assumes the opti-
mization objective f is the expectation over some unknown
distribution over a set of monotone submodular functions.
Therefore a sample average function can be built, which is
also monotone and submodular, and algorithms run on it.
In contrast, in our setting, it is only assumed that we can
sample noisy queries at each subset X ⊆ U .

The intuition behind CS is similar to the best-arm-
identification problem in the multi-armed bandit literature
[Kalyanakrishnan et al., 2012, Chen et al., 2014]. Both the
algorithm LUCB of Kalyanakrishnan et al. [2012] and CS
share a common underlying intuition: they leverage the dif-
ference between expectations to reduce the number of noisy
queries required. In LUCB, this difference is between the
expectation of the optimal arm and other arms, while in CS,
it is between the expectation of the input variable and the
threshold value w.

2 PRELIMINARY DEFINITIONS AND
NOTATIONS

In this section, we lay the groundwork definitions and no-
tations for the remainder of the paper. Throughout this pa-
per, we assume f : 2U → R≥0 is submodular. U is the
ground set of size n. Let us denote the marginal gain of
adding element u ∈ U to a set X ⊆ U as ∆f(X,u), i.e.,
∆f(X,u) := f(X ∪ {u})− f(X).

We first define the noisy model of access to f . In particular,
given any subset X ⊆ U and u ∈ U , independent sam-
ples can be taken from the distribution D(X,u) to obtain
noisy evaluations of ∆f(X,u). In this paper, we denote
the random variable following the distribution of D(X,u)

as ∆̃f(X,u). We assume the following properties about
the distribution D(X,u): (i) E[∆̃f(X,u)] = ∆f(X,u);
and (ii) ∆̃f(X,u) are bounded in the range of [0, R] for
all X,u (or in some results, they are assumed to be R-sub-
Gaussian).1 In addition, in applications where instead we
have noisy queries directly to f instead of the marginal gain,

1A random variable that is bounded within the interval [0, R]
can be demonstrated to be R/2 sub-Gaussian. Consequently, the
assumption of a random variable being sub-Gaussian is more gen-
eral than that of boundedness.

this also satisfies our setting (see Section A in the appendix
of the supplementary material for more details). Below we
describe three motivating examples of our noisy setting and
illustrate the value of R on these instances.

Diversified recommender systems with human feedback.
The goal here is to select a subset of items to recommend to
users. The objective function is the total number of expected
clicks by the users, typically defined by the cascading linear
submodular bandit model [Hiranandani et al., 2020]. In this
setting, the objective function is computed in expectation
and can only be estimated through noisy feedback from the
users. A noisy sample corresponds to querying a person
for feedback, and samples are i.i.d. The maximum value of
feedback is then bounded by 1. Therefore, R can be set to
be 1/2 for Theorem 1 and 1 for Theorem 2.

Multi-linear extension. This setting specifically applies
to our Algorithm CCTG, which is our continuous algo-
rithm that uses the multilinear extension of f to achieve
an improved approximation guarantee for the matroid con-
straint. The multilinear extension is commonly used in sub-
modular optimization algorithms, and is defined as F(x) =∑

S⊆U

∏
i∈S xi

∏
j /∈S(1− xj)f(S) where x ∈ [0, 1]n. No-

tice that obtaining the true value of the multi-linear exten-
sion requires an exponential number of queries, therefore
the proposed algorithms often require sampling to approx-
imate function values. Noisy queries for the true value of
the multilinear extension can be obtained by taking i.i.d.
samples of sets. On this instance, the noisy marginal gain is
bounded by the maximum singleton value, so we can set R
to be maxs∈U f(s).

Stochastic submodular maximization. The objective func-
tion of the stochastic submodular maximization (SSM) prob-
lem can be expressed as f(S) = Eγ [fγ(S)]. To solve
this problem, we would need to approximate the function
value f by taking samples of fγ(S) from the distribution
of γ. A specific application of this problem is the influ-
ence maximization problem, where the objective function
is the expected number of nodes influenced in the graph
by a seed set S. (A detailed definition of influence maxi-
mization is presented in the Appendix D.1). Another appli-
cation of SSM is the large-scale weighted sum submodu-
lar maximization problem where the objective can be ex-
pressed as f(S) =

∑N
i=1 wifi(S). Here N is very large

and
∑N

i=1 wi = 1. Examples of this problem include large-
scale facility location optimization. In this problem, the cost
of accurately evaluating a problem would be high, but we
can estimate f(S) by sampling the index I ∈ [N] with
probability wi and then f(S) = EI [fI(S)].

Next, we present the definition of fixed ϵ-approximation and
multi-linear extension.

Fixed ϵ-approximation. Given any random variable X , an
estimate X̂ is a fixed ϵ-approximation of X if EX − ϵ ≤
X̂ ≤ EX+ ϵ. Notice that for any X that is R-sub-Gaussian,

we can take O
(

R2

ϵ2 log 1
δ

)
samples and the sample average

is a fixed ϵ-approximation of X with probability at least
1− δ by an application of Hoeffding’s Inequality (Lemma
19 in the appendix in the supplementary material).

Multi-linear extension. For any submodular objective f ,
the multi-linear extension of f is defined as F, i.e., F(x) =∑

S⊆U

∏
i∈S xi

∏
j /∈S(1 − xj)f(S) where x ∈ [0, 1]n.

Here we define S(x) to be a random set that contains each
element i ∈ U with probability xi, then by definition, we
have that F(x) = E[f(S(x))].

3 CONFIDENT SAMPLING ALGORITHM

In this section, we propose and analyze the Confident
Sample (CS) algorithm. CS is used in order to determine if
the expected value of a random variable X is approximately
above or below a threshold value with high probability. CS
works for any random variable that is R-sub-Gaussian (see
Theorem 1) or bounded in the range of [0, R] (see Theorem
2). In Sections 4, E, and 5, we show that CS is useful as
a subroutine for a variety of submodular maximization al-
gorithms where we only have noisy access to the marginal
gains.

We now describe CS. CS takes as input failure probability
δ ∈ R>0, threshold error parameter ϵ ∈ R>0, a threshold
value w ∈ R>0, the unknown distribution DX of the ran-
dom variable X , and the sub-Gaussian parameter R. CS
iteratively takes at most N1 samples from DX , while main-
taining a sample average and a confidence interval. In partic-
ular X̂t is the sample average after taking t-th samples of X .
The confidence region, after taking the t-th sample of X , is a
shrinking region [X̂t−Ct, X̂t+Ct] around X̂t that reflects
where CS is almost certain that the true value of EX lies. We
leave the exact definition of both Ct and N1 until Theorems
1 and 2 for reasons that will become clear. Once the lower
bound of the confidence region crosses w − ϵ, or the upper
bound crosses w+ ϵ, CS completes and returns true or false
respectively. Note that the CS algorithm differs significantly
from the fixed-ϵ approximation approach commonly used in
the submodular optimization literature, such as Algorithm
2 in Fahrbach et al. [2019]. A detailed discussion of this
distinction is in Section C.1 of the appendix.

We now state our first main result for CS in Theorem 1
below. The second item of Theorem 1 states that with high
probability, CS will correctly return the answer to whether
EX is approximately above or below the input threshold
w. The first item states that, in the worst case, CS takes
O(R2 log(1/δ)/ϵ2) samples fromDX to return true or false
no matter what the value of EX is. However, the further
the value of EX is from w, as reflected by ϕ, the fewer
samples CS needs to make a decision. Figure 2 illustrates
how the sample complexity changes with the increase of
gap function ϕ in the result of Theorem 1.

w + ϵ

w

w − ϵ

(a)

(b)

(c) (d)

Figure 1: An illustration of the various states of CS. The
blue dots depict the values of X̂t, while the surrounding
blue lines depict the confidence region [X̂t − Ct, X̂t + Ct].
Once the region looks like (a), CS will return true. In (b), CS
will return false. In (c), CS will continue sampling to reduce
the width of the confidence region. Finally, in (d) CS has
taken N1 samples resulting in an ϵ-additive approximation.

Algorithm 1: Confident Sample (CS)

1: Input: w, ϵ, δ, DX , R
2: for t = 1, 2, ...N1 do
3: X̂t ← updated sample mean after taking t-th sample

from DX

4: Ct ← updated confidence interval
5: if X̂t − Ct ≥ w − ϵ then
6: return true
7: else if X̂t + Ct ≤ w + ϵ then
8: return false
9: end if

10: end for
11: if X̂t ≥ w then
12: return true
13: else
14: return false
15: end if

The details of the proof of Theorem 1 can be found in
Section C.2 of the supplementary material.

Theorem 1. For any random variable X that is R-sub-
Gaussian, if we define N1 = 2R2/ϵ2 log 4

δ , and Ct =

R
√

2
t log

8t2

δ , then the algorithm Confident Sample

achieves that with probability at least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the mini-
mum between{

2R2

ϵ2
log

(
4

δ

)
,
8R2

ϕ2
X

log

(
16R2

ϕ2
X

√
2

δ

)}

noisy samples, where ϕX = ϵ+|w−EX|
2 .

2. If CS returns true, then EX ≥ w − ϵ. If CS returns
false, then EX ≤ w + ϵ.

Here we provide explanation for the result of sample com-
plexity in the first point of Theorem 1. The term on the left-

gap
nu

m
x0

Figure 2: A plot to illustrate how the number of samples
taken by CS (num) changes with the gap function ϕX (see
Theorem 1). There exists some x0 such that when 0 <
ϕX ≤ x0, the required number of samples is R2

2ϵ2 log
2
δ

(the left side in the sample complexity result in Theorem
1). When ϕX > x0, the right-hand side in Theorem 1 is
the minimum and the sample complexity of the algorithm
decreases fast as ϕX increases.

hand side, 2R2

ϵ2 log
(
4
δ

)
, represents the number of samples

required to approximate X within ϵ-distance with proba-
bility, i.e., |X − EX| ≤ ϵ. This corresponds to case (d)
in Figure 1, and is the number of samples that the fixed ϵ-
approximation would take. Such a large number of samples
is only necessary when EX is close to the threshold.

The value on the right-hand side comes from the adaptive
sampling, and it is the number of samples required to shrink
the confidence interval just enough so that we can conclude
whether EX is approximately above or below the threshold,
and it depends on how far EX is from the threshold. This
value cannot be computed before we start sampling, and is
a result of adaptive sampling where we do not know how
many samples we will take initially. This corresponds to
cases (a) and (b) in Figure 1.

Our second result, Theorem 2, is related to Theorem 1 but
instead of an additive approximation error (i.e. EX ≥ w− ϵ
or EX ≤ w+ϵ), the error is a combination of multiplicative
and additive. The intuition behind using this result is that
in many submodular algorithms that require the threshold-
ing procedure, the threshold decreases exponentially which
allows the multiplicative error. On the other hand, in the
case where R can be as large as n, the result in Theorem 2
can be more sample efficient. In order to get Theorem 2, a
different definition of the confidence radius Ct as well as
the maximum number of samples N1 is needed. Theorem 2
is proven in the supplementary material in Section C.3.

Theorem 2. For any random variable X that is bounded
in the range of [0, R], if we define Ct = 3R

tα log(8R
2

δ),
and N1 = 3R

αϵ log(
4
δ) where α is an additional parame-

ter that controls the multiplicative error rate, the algorithm
Confident Sample achieves that with probability at
least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the mini-
mum between{

3R

ϵα
log

(
4

δ

)
,
12R

αϕ′
X

log

(
12R

αϕ′
X

√
8

δ

)}

noisy samples, ϕ′
X = ϵ−αEX+|w−EX|

2 .
2. If the output is true, then (1 + α)EX ≥ w − ϵ. If the

output is false, then (1− α)EX ≤ w + ϵ.

4 MONOTONE SUBMODULAR
MAXIMIZATION

In this section, we address the MSMC problem under
the noisy setting, where we assume the noisy sampling
of the marginal gain ∆f(S, s) is R-sub-Gaussian for any
S ⊆ U and s ∈ U . Necessary definitions and nota-
tions are first given in Section 2. We propose two algo-
rithms Confident Threshold Greedy (CTG) and
Confident Threshold Greedy2 (CTG2) for this
problem. A detailed description of CTG is given in Section
4.1. The approximation and sample complexity guarantees
of CTG and CTG2 are presented in Theorem 3 and Theorem
4 in Section 4.2. For CTG2, the algorithm description and
pseudocode are provided in Section D.3 of the appendix.

4.1 ALGORITHM DESCRIPTION OF CTG

Here we describe Confident Threshold Greedy
(CTG). CTG is based on the algorithm Threshold
Greedy (TG) of Badanidiyuru and Vondrák [2014] which
is for MSMC with an exact value oracle. Pseudocode for
CTG can be found in Algorithm 2.

The algorithm CTG takes as input a parameter α ∈ (0, 1).
CTG proceeds in O(log(κ/α)/α) rounds, where each round
corresponds to a value of w. The threshold w is first set to d,
which is an ϵ-additive approximation of the maximum sin-
gleton value with high probability. In particular, d satisfies
that with probability at least 1− δ/3, maxs∈U f(s) + ϵ ≥
d ≥ maxs∈U f(s) − ϵ. During each round, CTG iterates
through all elements in U . Since for each S and u, the noisy
query to the marginal gain ∆f(S, u) is R-sub-Gaussian,
CTG can use CS as the subroutine to determine whether to
include u to the solution set S. Here h(α) = log (κ/α)

α . The
worst-case query complexity N1 and confidence interval Ct

in CS are defined as in Theorem 1.

4.2 THEORETICAL GUARANTEES AND
ANALYSIS

The main result of CTG is the Theorem 3 below.

Theorem 3. Suppose the noisy marginal gain of any subset
S ⊆ U and element s ∈ U is R-sub-Gaussian, then CTG
makes at most n log(κ/α)/α calls of CS. In addition, with
probability at least 1− δ, the following statements hold:

• The exact function value of the output solution set S
satisfies that f(S) ≥ (1− e−1 − α)f(OPT)− 2κϵ;

Algorithm 2: Confident Threshold Greedy (CTG)

1: Input: ϵ, δ, α
2: N2 ← 2R2 log(6n/δ)/(ϵ2)
3: for all s ∈ U do
4: f̂(s)← sample mean over N2 samples from D(∅, s)
5: end for
6: d := maxs∈U f̂(s),
7: w ← d, S ← ∅
8: while w > αd/κ do
9: for all u ∈ U do

10: if |S| < κ then
11: thre = Confident Sample (w, ϵ, 2δ

3nh(α) ,
D(S, u), R)

12: if thre then
13: S ← S ∪ {u}
14: end if
15: end if
16: end for
17: w = w(1− α)
18: end while
19: return S

• Each call of CS on input (w, ϵ, 2δ
3nh(α) , D(S, u), R)

takes at most the minimum between 8R2

ϕ2(S, u)
log

16R2
√

3nh(α)
δ

ϕ2(S, u)

 ,
2R2

ϵ2
log

(
6nh(α)

δ

)
and noisy samples. Here OPT is an optimal solution
to the MSMC problem, ϕ(S, u) = ϵ+|w−∆f(S,u)|

2 , and
h(α) = log (κ/α)

α .

The proof and analysis of Theorem 3 are deferred to Sec-
tion D.2 in the appendix. We make a comparison of the
theoretical guarantees between our results and those of
ExpGreedy in Singla et al. [2016], which combines the
standard greedy algorithm with the best arm identification
algorithm used in bandit literature. The detailed discussion
is provided in Section B in the appendix. Here we briefly
summarize the results as follows.

First of all, we consider the runtime. Since ExpGreedy
requires updating the confidence interval for all the elements
and two sorting of all elements each time a noisy query is
taken, the required runtime is O(n log n). However, both
CTG and EPS-AP have more efficient runtime complexity
and require only one update of the confidence interval in
Line 4 and two comparisons in Line 5 and 7 in CS, which is
only O(1) in computation.

Next, we consider sample complexity.
ExpGreedy is based on the standard greedy
algorithm where each iteration takes at most

O

(
nκ′R2 min

{
4

∆2
max

, 1
ϵ2

}
log

(
R2κnmin{ 4

∆2
max

, 1
ϵ2

}

δ

))

samples, which depends on the gap ∆max between the top
two marginal gains. Therefore, the sample complexity can
be sensitive to the small difference between top elements.
However, our results depend on ϕ, which only depends on
the difference between and is thus more robust. When ∆
and ϕ are in the same order, the average sample complexity
per marginal gain in CTG is better than ExpGreedy.
In addition, The total evaluated marginal gain in CTG is
smaller compared with ExpGreedy.

Next, we present the theoretical guarantee of CTG2 (Algo-
rithm 3, provided in Appendix D.3) in Theorem 4, the proof
of which is deferred to Section D.2 in the appendix.

Theorem 4. Suppose the noisy marginal gain of any subset
S ⊆ U and element s ∈ U is bounded in [0, R], CTG2
makes at most 3n log(κ/α)/α calls of CS. In addition, with
probability at least 1− δ, the following statements hold:

• The exact function value of the output solution set S
satisfies that f(S) ≥ (1− e−1 − α)f(OPT)− 2κϵ;

• Each call of CS on input (w, ϵ, 2δ
3nh′(α) , D(S, u), R)

takes at most the minimum between

9R

ϵα
log

(
6nh′(α)

δ

)
and

36R

αϕ′(S, u)
log

(
36R

αϕ′(S, u)

√
12nh′(α)

δ

)
noisy samples. Here OPT is an optimal so-
lution to the MSMC problem, ϕ′(S, u) =
ϵ−α∆f(S,u)/3+|w−∆f(S,u)|

2 , and h′(α) = 3
α log (3κα).

Notice that the sample complexity in Theorem 4 has a de-
pendence of O(R) concerning the order of the parameter R,
while the sample complexity result in Theorem 3 is O(R2)
in the order of R. Consequently, in some applications such
as influence maximization, where R can be as large as the
size of ground set n, Theorem 4 has an advantage in sam-
ple complexity compared with Theorem 3. Another related
method is the classic sampling-before-hand approach as de-
scribed in Section D.1 in the appendix. Compared with this
approach, CTG2 has improved sample complexity and is
more practical since in real-world scenarios, it might be im-
possible to store all the graph data and obtain the sampling
of an entire graph. (see Section D.1 for more details.)

5 CONTINUOUS THRESHOLD GREEDY
WITH NOISY QUERIES

In this section, we consider the problem of Monotone Sub-
modular Maximization with a Matroid constraint (MSMM)
assuming noisy access to f . More specifically, we assume
that for any set S ⊆ U and element s ∈ U , the noisy

marginal gain ∆̃f(S, s) is bounded in [0, R]. In many appli-
cations, even with access to an exact oracle for f , F is not
able to be evaluated exactly due to the inherent randomness
in S(x) in the definition of F (see Section 2), so we can only
make noisy queries to F. In addition, our results hold even
for the case that only noisy access to f is provided. We
propose the Confident Continuous Threshold
Greedy (CCTG) algorithm for MSMM, which leverages
the continuous multilinear extension F of the submodular
function f to obtain an approximation guarantee arbitrarily
close to the best possible result of 1− 1/e.

We now describe CCTG, the pseudocode of which is de-
ferred to Algorithm 5 in Section F of the appendix. Let κ
to denote the rank of the matroid, and let S(x) be a ran-
dom set that contains each element i ∈ U with probability
xi The CCTG algorithm initializes a solution in the origin,
x = 0. Then at each step, CCTG selects a subset of coordi-
nates B to increment by a predetermined step size ϵ. The
set of coordinates B is chosen by the subroutine algorithm
Decreasing-Threshold Procedure (DTP), which
is described in Algorithm 6. Here the parameters N1 and Ct

in the subroutine algorithm CS are defined as in Theorem 2
with the multiplicative error parameter α set to be ϵ/3. After
the CCTG is complete, we process the fractional solution x
with the swap rounding procedure in Vondrák et al. [2011]
to obtain the final solution set S.

Theorem 5. CCTG makes at most 3n
ϵ2 log 3κ

ϵ calls of CS.
In addition, with probability at least 1 − δ, the following
statements hold:

• The output fractional solution x achieves the approxi-
mation guarantee of F(x) ≥ (1−e−1−2ϵ)f(OPT)−
Rϵ.

• Each call of CS on input (w, ϵR
2κ , δϵ

2nh′(ϵ) , DX , R) re-
quires at most the minimum between{
18κ

ϵ2
log

(
8nh′(ϵ)

δϵ

)
,
36R

ϵϕ′′
X

log

(
144R

ϵϕ′′
X

√
nh′(ϵ)

δϵ

)}
noisy queries to the marginal gain. Here OPT is
an optimal solution to the MSMM problem. ϕ′′

X =
ϵR
2κ −ϵEX/3+|w−EX|

2 , and h′(ϵ) = 3
ϵ log (

3κ
ϵ).

The proof of Theorem 5 is deterred to Appendix F. Besides,
we discuss and compare our results in Theorem 5 with the
Accelerated Continuous Greedy algorithm in Badanidiyuru
and Vondrák [2014] in Section F.1. Here we briefly summa-
rize the results as follows: First of all, in the case where we
have exact access to the value oracle, the sample complex-
ity of CCTG is better than Accelerated Continuous Greedy
algorithm in Badanidiyuru and Vondrák [2014] while both
algorithms achieve the approximation ratio of 1−1/e−O(ϵ).
Second, in the case where ∆f is noisy, as long as the upper
bound on the noisy marginal gain R is less than f(OPT),
the sample complexity and approximation ratio remains the

same. Therefore, the assumption of access to noisy marginal
gain does not lead to additional sample complexity or worse
approximation ratio when compared to the scenario with an
exact value oracle.

6 APPLICATIONS AND EXPERIMENTS

In this section, we conduct an experimental evaluation of our
algorithm CTG on instances of MSMC with noisy marginal
gain evaluations. In particular, we consider instances of the
noisy data summarization application, which is described
in Section H.1.1 in the appendix. Synthetic noise is intro-
duced into marginal gain queries by adding a zero-mean
Gaussian random variable with σ = 1.0 (σ is the standard
deviation) to the exact value of marginal gain. Therefore,
parameter R = 1.0. Our experiments are conducted on a
subset of the Delicious dataset of URLs that are tagged
with topics [Soleimani and Miller, 2016], and subsets of the
Corel5k dataset of tagged images [Duygulu et al., 2002]. We
give more details about the datasets we use in the appendix
in the supplementary material. We additionally consider
the influence maximization problem in the appendix in the
supplementary material. The setup of our experiments is
described in Section 6.1, while our results are presented in
Section 6.2.

6.1 EXPERIMENTAL SETUP

We now describe the setup of our experiments. In ad-
dition to our algorithm CTG, we compare the following
alternative approaches to noisy MSMC: (i) The fixed ϵ
approximation (“EPS-AP”) algorithm; (ii) Two special
case of the algorithm ExpGreedy of Singla et al. [2016]
“EXP-GREEDY” and “EXP-GREEDY-K” with the parame-
ter k′ in ExpGreedy set to be k′ = 1 and k′ = κ respec-
tively. More details about the three algorithms can be found
in the appendix. We evaluate CTG and EPS-AP on all the
datasets. However, EXP-GREEDY and EXP-GREEDY-K
have greater runtime as discussed in the appendix in the
supplementary material, and so we only evaluate them on
the smaller datasets. Details about the parameter settings
can be found in the appendix in the supplementary material.

6.2 EXPERIMENTAL RESULTS

We now present our experimental results. The algorithms
are compared in terms of: (i) The function value f
of their solution; (ii) The total number of noisy sam-
ples of the marginal gain; (iii) The average number
of samples per marginal gain estimation (average sam-
ples=total samples/# of evaluated marginal gains).

Our results for different values of ϵ and κ are presented
in Figure 3. From Figures 3(a), 3(c), 3(e) and 3(g), one

0.10 0.15 0.20
ε

0.0

0.6

1.2

1.8

2.4

sa
m
pl
es

×107

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(a) delicious_300 samples

0.10 0.15 0.20
ε

0

1

2

3

av
er

ag
e

sa
m

pl
es

×103

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(b) delicious_300 avg samples

20 40 60 80
k

0.0

0.8

1.6

2.4

3.2

sa
m
pl
es

×106

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(c) delicious_300 samples

20 40 60 80
k

0

150

300

450

600

av
er

ag
e

sa
m

pl
es

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(d) delicious_300 avg samples

0.05 0.10 0.15
ε

0.0

0.6

1.2

1.8

2.4

sa
m
pl
es

×107

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(e) corel_60 samples

0.05 0.10 0.15
ε

0

1

2

3

4

av
er

ag
e

sa
m

pl
es

×104

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(f) corel_60 average samples

5 10 15 20
k

0.0

1.5

3.0

4.5

6.0

sa
m
pl
es

×106

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(g) corel_60 samples

5 10 15 20
k

0.0

0.3

0.6

0.9

1.2

av
er

ag
e

sa
m

pl
es

×104

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(h) corel_60 average samples

0.05 0.10 0.15 0.20
ε

0.0

1.5

3.0

4.5

sa
m
pl
es

×108

CTG
EPS-AP

(i) delicious samples

50 100 150 200 250
k

2

4

6

8

sa
m
pl
es

×107

CTG
EPS-AP

(j) delicious samples

0.02 0.04 0.06 0.08
ε

0

2

4

6

8

sa
m
pl
es

×109

CTG
EPS-AP

(k) corel samples

10 20 30 40
k

1.6

2.4

3.2

4.0

sa
m
pl
es

×107

CTG
EPS-AP

(l) corel samples

Figure 3: The experimental results of running different algorithms on instances of data summarization on the delicious URL
dataset ("delicious", "delicious_300") and Corel5k dataset ("corel", "corel_60").

can see that the total samples required by CTG tends to be
smaller than those required by EPS-AP, EXP-GREEDY and
EXP-GREEDY-K, which demonstrates the advantage of
CTG in sample efficiency, which was the main goal of the pa-
per. However, on the delicious_300 dataset (Figures 3(b) and
3(d)), the average samples of EXP-GREEDY-K is slightly
better than CTG, and on the other hand CTG has significantly
better average samples compared to EXP-GREEDY-K on
the corel_60 dataset (Figures 3(f) and 3(h)). This demon-
strates the incomparability of the instance-dependent sample
query bounds given for marginal gain computations on CTG
vs that of ExpGreedy.

From the results where we vary ϵ, it can be seen that both
the total samples and average samples of our algorithm CTG
increase less compared with EPS-AP and EXP-GREEDY
as ϵ decreases (Figures 3(a), 3(b), 3(e) and 3(f)), which
corresponds to our theoretical results (see the discussion
in Section H.2 in the appendix). For the experiments com-
paring different κ, we can see that the total queries of the
EXP-GREEDY and EXP-GREEDY-K increases faster com-

pared with EPS-AP and CTG (Figure 3(c)), which can be
attributed to the better dependence on κ that TG exhibits
compared to the standard greedy algorithm. A result that is
a little different from the above is that the number of total
queries of EXP-GREEDY-K decreases on dataset corel_60
when κ becomes large (Figure 3(g)), which is because when
κ increases, EXP-GREEDY-K is able to better deal with
tiny differences in marginal gains (see the appendix).

Finally, the results on the larger dataset (corel and delicious)
of CTG and EPS-AP are presented in Figures 3(i), 3(j),
3(k) and 3(l). Notably, our proposed algorithm (CTG) show-
cases considerable advantages over the EPS-AP algorithm
in terms of both required total samples and average samples.

7 ACKNOWLEDGEMENTS

Victoria Crawford is supported in part by the Seed Program
for AI, Computing, and Data Science created by the Texas
A&M Institute for Data Science, as well as the Texas A&M

Targeted Proposals Team funding program.

References

Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos.
Best arm identification in multi-armed bandits. In COLT,
pages 41–53, 2010.

Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algo-
rithms for maximizing submodular functions. In Proceed-
ings of the twenty-fifth annual ACM-SIAM symposium on
Discrete algorithms, pages 1497–1514. SIAM, 2014.

Eric Balkanski, Adam Breuer, and Yaron Singer. Non-
monotone submodular maximization in exponentially
fewer iterations. Advances in Neural Information Pro-
cessing Systems, 31, 2018.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An ex-
ponential speedup in parallel running time for submodular
maximization without loss in approximation. In Proceed-
ings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 283–302. SIAM, 2019a.

Eric Balkanski, Aviad Rubinstein, and Yaron Singer. An op-
timal approximation for submodular maximization under
a matroid constraint in the adaptive complexity model. In
Proceedings of the 51st Annual ACM SIGACT Symposium
on Theory of Computing, pages 66–77, 2019b.

MohammadHossein Bateni, Hossein Esfandiari, and Va-
hab Mirrokni. Almost optimal streaming algorithms for
coverage problems. In Proceedings of the 29th ACM Sym-
posium on Parallelism in Algorithms and Architectures,
pages 13–23, 2017.

Christian Borgs, Michael Brautbar, Jennifer Chayes, and
Brendan Lucier. Maximizing social influence in nearly
optimal time. In Proceedings of the twenty-fifth annual
ACM-SIAM symposium on Discrete algorithms, pages
946–957. SIAM, 2014.

Niv Buchbinder and Moran Feldman. Deterministic algo-
rithms for submodular maximization problems. ACM
Transactions on Algorithms (TALG), 14(3):1–20, 2018.

Niv Buchbinder, Moran Feldman, Joseph Seffi, and Roy
Schwartz. A tight linear time (1/2)-approximation for
unconstrained submodular maximization. SIAM Journal
on Computing, 44(5):1384–1402, 2015.

Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Von-
drák. Maximizing a monotone submodular function sub-
ject to a matroid constraint. SIAM Journal on Computing,
40(6):1740–1766, 2011.

Shouyuan Chen, Tian Lin, Irwin King, Michael R Lyu,
and Wei Chen. Combinatorial pure exploration of multi-
armed bandits. Advances in neural information process-
ing systems, 27, 2014.

Wei Chen, Yajun Wang, and Siyu Yang. Efficient influ-
ence maximization in social networks. In Proceedings
of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 199–208,
2009.

Wei Chen, Chi Wang, and Yajun Wang. Scalable influ-
ence maximization for prevalent viral marketing in large-
scale social networks. In Proceedings of the 16th ACM
SIGKDD international conference on Knowledge discov-
ery and data mining, pages 1029–1038, 2010.

Wenjing Chen and Victoria G Crawford. Linear submodular
maximization with bandit feedback. In The 28th Interna-
tional Conference on Artificial Intelligence and Statistics,
2025.

Victoria Crawford. Scalable bicriteria algorithms for non-
monotone submodular cover. In International Conference
on Artificial Intelligence and Statistics, pages 9517–9537.
PMLR, 2023.

Pinar Duygulu, Kobus Barnard, Joao FG de Freitas, and
David A Forsyth. Object recognition as machine transla-
tion: Learning a lexicon for a fixed image vocabulary. In
Computer Vision—ECCV 2002: 7th European Conference
on Computer Vision Copenhagen, Denmark, May 28–31,
2002 Proceedings, Part IV 7, pages 97–112. Springer,
2002.

Eyal Even-Dar, Shie Mannor, and Yishay Mansour. Pac
bounds for multi-armed bandit and markov decision pro-
cesses. In Computational Learning Theory: 15th Annual
Conference on Computational Learning Theory, COLT
2002 Sydney, Australia, July 8–10, 2002 Proceedings 15,
pages 255–270. Springer, 2002.

Matthew Fahrbach, Vahab Mirrokni, and Morteza Zadi-
moghaddam. Submodular maximization with nearly op-
timal approximation, adaptivity and query complexity.
In Proceedings of the Thirtieth Annual ACM-SIAM Sym-
posium on Discrete Algorithms, pages 255–273. SIAM,
2019.

Uriel Feige, Vahab S Mirrokni, and Jan Vondrák. Maximiz-
ing non-monotone submodular functions. SIAM Journal
on Computing, 40(4):1133–1153, 2011.

Marshall L Fisher, George L Nemhauser, and Laurence A
Wolsey. An analysis of approximations for maximizing
submodular set functions—II. Springer, 1978.

Tobias Friedrich and Frank Neumann. Maximizing sub-
modular functions under matroid constraints by multi-
objective evolutionary algorithms. In International Con-
ference on Parallel Problem Solving from Nature, pages
922–931. Springer, 2014.

Gaurush Hiranandani, Harvineet Singh, Prakhar Gupta,
Iftikhar Ahamath Burhanuddin, Zheng Wen, and
Branislav Kveton. Cascading linear submodular ban-
dits: Accounting for position bias and diversity in online
learning to rank. In Uncertainty in Artificial Intelligence,
pages 722–732. PMLR, 2020.

Rishabh Iyer, Ninad Khargonkar, Jeff Bilmes, and Himan-
shu Asnani. Generalized submodular information mea-
sures: Theoretical properties, examples, optimization al-
gorithms, and applications. IEEE Transactions on Infor-
mation Theory, 68(2):752–781, 2021.

Pratik Jawanpuria, Bamdev Mishra, and Karthik S Guru-
moorthy. Revisiting stochastic submodular maximization
with cardinality constraint: A bandit perspective. Trans-
actions on Machine Learning Research.

Kwang-Sung Jun, Kevin Jamieson, Robert Nowak, and Xi-
aojin Zhu. Top arm identification in multi-armed bandits
with batch arm pulls. In Artificial Intelligence and Statis-
tics, pages 139–148. PMLR, 2016.

Shivaram Kalyanakrishnan, Ambuj Tewari, Peter Auer, and
Peter Stone. Pac subset selection in stochastic multi-
armed bandits. In ICML, volume 12, pages 655–662,
2012.

Mohammad Karimi, Mario Lucic, Hamed Hassani, and An-
dreas Krause. Stochastic submodular maximization: The
case of coverage functions. Advances in Neural Informa-
tion Processing Systems, 30, 2017.

Emilie Kaufmann, Olivier Cappé, and Aurélien Garivier. On
the complexity of best arm identification in multi-armed
bandit models. Journal of Machine Learning Research,
17:1–42, 2016.

David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing
the spread of influence through a social network. In
Proceedings of the ninth ACM SIGKDD international
conference on Knowledge discovery and data mining,
pages 137–146, 2003.

Andreas Krause and Carlos Guestrin. Near-optimal non-
myopic value of information in graphical models. In
Proceedings of the Twenty-First Conference on Uncer-
tainty in Artificial Intelligence, pages 324–331, 2005.

Jure Leskovec and Rok Sosič. Snap: A general-purpose
network analysis and graph-mining library. ACM Trans-
actions on Intelligent Systems and Technology (TIST), 8
(1):1–20, 2016.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru,
Amin Karbasi, Jan Vondrák, and Andreas Krause. Lazier
than lazy greedy. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 29, 2015.

George L Nemhauser, Laurence A Wolsey, and Marshall L
Fisher. An analysis of approximations for maximizing
submodular set functions—i. Mathematical program-
ming, 14:265–294, 1978.

Guanyu Nie, Mridul Agarwal, Abhishek Kumar Umrawal,
Vaneet Aggarwal, and Christopher John Quinn. An
explore-then-commit algorithm for submodular maxi-
mization under full-bandit feedback. In Uncertainty in
Artificial Intelligence, pages 1541–1551. PMLR, 2022.

Gözde Özcan and Stratis Ioannidis. Stochastic submodular
maximization via polynomial estimators. In Pacific-Asia
Conference on Knowledge Discovery and Data Mining,
pages 535–548. Springer, 2023.

Adish Singla, Sebastian Tschiatschek, and Andreas Krause.
Noisy submodular maximization via adaptive sampling
with applications to crowdsourced image collection sum-
marization. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 30, 2016.

Hossein Soleimani and David J Miller. Semi-supervised
multi-label topic models for document classification and
sentence labeling. In Proceedings of the 25th ACM in-
ternational on conference on information and knowledge
management, pages 105–114, 2016.

Matthew Staib, Bryan Wilder, and Stefanie Jegelka. Distri-
butionally robust submodular maximization. In The 22nd
International Conference on Artificial Intelligence and
Statistics, pages 506–516. PMLR, 2019.

Sho Takemori, Masahiro Sato, Takashi Sonoda, Janmajay
Singh, and Tomoko Ohkuma. Submodular bandit prob-
lem under multiple constraints. In Conference on Uncer-
tainty in Artificial Intelligence, pages 191–200. PMLR,
2020.

Sebastian Tschiatschek, Rishabh K Iyer, Haochen Wei, and
Jeff A Bilmes. Learning mixtures of submodular func-
tions for image collection summarization. Advances in
neural information processing systems, 27, 2014.

Jan Vondrák, Chandra Chekuri, and Rico Zenklusen. Sub-
modular function maximization via the multilinear relax-
ation and contention resolution schemes. In Proceedings
of the forty-third annual ACM symposium on Theory of
computing, pages 783–792, 2011.

Zheng Wen, Branislav Kveton, Michal Valko, and Sharan
Vaswani. Online influence maximization under indepen-
dent cascade model with semi-bandit feedback. Advances
in neural information processing systems, 30, 2017.

Yisong Yue and Carlos Guestrin. Linear submodular bandits
and their application to diversified retrieval. Advances in
Neural Information Processing Systems, 24, 2011.

Mingrui Zhang, Lin Chen, Hamed Hassani, and Amin Kar-
basi. Online continuous submodular maximization: From
full-information to bandit feedback. Advances in Neural
Information Processing Systems, 32, 2019.

Yuan Zhou, Xi Chen, and Jian Li. Optimal pac multiple
arm identification with applications to crowdsourcing. In
International Conference on Machine Learning, pages
217–225. PMLR, 2014.

Adaptive Threshold Sampling for Pure Exploration in Submodular Bandits
(Supplementary Material)

Wenjing Chen1 Shuo Xing1 Victoria G. Crawford1,2

1Department of Computer Science and Engineering, Texas A&M University
2vcrawford@tamu.edu

A ADDITIONAL RELATED WORK

Approximation algorithms for submodular maximization problems with exact value oracle have been extensively studied
in the literature Nemhauser et al. [1978], Badanidiyuru and Vondrák [2014], Mirzasoleiman et al. [2015], Balkanski et al.
[2019a]. For MSMC, the standard greedy algorithm produces a solution set with the best possible 1− 1/e approximation
guarantee in O(n2) queries of f . Badanidiyuru and Vondrák [2014] proposed a faster greedy-like algorithm that gives an
approximation guarantee of 1− 1/e−O(ϵ) while reducing the sample complexity to O(nϵ log

n
ϵ).

Another variant is USM Buchbinder et al. [2015], Feige et al. [2011], Buchbinder and Feldman [2018]. Notably, Buchbinder
et al. [2015] introduced a deterministic algorithm that gives a 1/3 guarantee in O(n) queries to an oracle for f , and a
randomized version of their algorithm yields the best possible 1/2 guarantee in expectation in the same number of queries.

The final variant of submodular maximization we consider is MSMM Balkanski et al. [2019b], Friedrich and Neumann
[2014], Fisher et al. [1978]. The greedy algorithm only yields an approximation ratio of 1/2 in this setting Fisher et al.
[1978]. But by extending the discrete submodular function to its continuous counterpart, known as the multilinear extension
(see the definition in Section 2), and by solving the problem in this regime, it is proved that an approximation ratio arbitrarily
close to the best possible 1− 1/e can be achieved Badanidiyuru and Vondrák [2014], Calinescu et al. [2011].

Our work is also related to the best-arm-identification in multi-armed bandit literature Audibert et al. [2010], Kaufmann
et al. [2016], Jun et al. [2016], where the objective is to estimate the best action by choosing arms and receiving stochastic
rewards from the environment. The most widely considered setting is the PAC learning setting Even-Dar et al. [2002],
Kalyanakrishnan et al. [2012], Zhou et al. [2014].

Our paper studies the same noisy setting as Singla et al. [2016]. There are essentially two versions of ExpGreedy, one
gives an approximation guarantee of about 1− 1/e with high probability (like our algorithm CTG does), and the other gives
the same approximation guarantee but is randomized. The benefit of the latter over the former is better sample complexity.
The bounds given on the sample complexity of ExpGreedy and the ones given in this paper for CTG are instance-dependent
and incomparable to one another. We discuss how our algorithm relates to ExpGreedy in more depth in Section B, but
we briefly list here the potential advantages of our algorithm CTG compared to ExpGreedy: (i) Our algorithm has an
approximation guarantee of about 1− 1/e with high probability as opposed to an approximation guarantee of about 1− 1/e
in expectation as in the randomized version of ExpGreedy; (ii) Our algorithm is not as sensitive to small differences
in marginal gain between elements since it is not based on the standard greedy algorithm as ExpGreedy is; (iii) The
algorithm of ExpGreedy has greater time complexity beyond just the sample complexity because it requires O(n log n)
computations per each noisy query to ∆f ; (iv) Our algorithm makes less estimations of ∆f overall since it is based on a
faster variant of the greedy algorithm (TG). We further compare the algorithms experimentally in Section 6.2.

A.1 OTHER NOISY MODEL

If the noisy model is that the the samples are taken from distribution D(X) to evaluate f(X) instead of the marginal gain,
the model also satisfies our setting. This is because if the noisy evaluation of f(X) is R-sub-Gaussian, the noisy evaluation

of the marginal gain ∆f(X,u) can be obtained by taking two noisy samples of f and calculating D(X ∪ {u})−D(X) and
that the difference of two independent sub-Gaussian random variables is also sub-Gaussian.

B COMPARISON WITH EXPGREEDY

In this section, we provide more discussion about the related algorithm ExpGreedy of Singla et al. [2016]. ExpGreedy
combines the standard greedy algorithm with the best arm identification algorithm used in combinatorial bandit literature
Chen et al. [2014].

In particular, the standard greedy algorithm for MSMC Nemhauser et al. [1978] goes as follows: A solution S is built
by iteratively choosing the element u ∈ U that maximizes the marginal gain ∆f(S, u) until the cardinality constraint κ
is exhausted. ExpGreedy follows a setting like ours, so instead of choosing the element of maximum marginal gain at
each iteration, they follow the standard greedy algorithm but adaptive sampling following techniques from the best-arm
identification problem is done in order to identify the element(s) with the highest marginal gain. The simplest version of
their algorithm identifies one element with the highest marginal gain at each iteration, and this version has a guarantee
of about 1− 1/e with high probability as in CTG. This algorithm is EXP-GREEDY in Section 6. However, a downside of
this approach is that many samples are often needed to distinguish between elements of nearly the same marginal gain. In
contrast, notice that our algorithm CTG does not need to compare marginal gains between elements and therefore does not
have this issue.

In order to deal with the sample inefficiency, ExpGreedy is generalized to a randomized version. The randomized version
of ExpGreedy involves a subroutine called TOPX, which adaptively samples marginal gains until a subset of elements
with relatively high marginal gains have been identified. Then a randomly selected element among the subset is added to
the solution set. In particular, given an integer 0 < κ′ ≤ κ, the TOPX algorithm runs TOP-l selection algorithms for each
l ∈ {1, 2, ..., κ′}, and each of the TOP-l selection algorithm runs until it returns a subset of l items with highest marginal
gain with high probability. The TOPX algorithm stops once there exists some l such that the TOP-l selection algorithm ends.
This randomized version of ExpGreedy has an almost 1− 1/e approximation guarantee, but it holds in expectation and
with high probability. The case where κ′ = κ is EXP-GREEDY-K in Section 6.

Now that we have described the two versions of ExpGreedy and their corresponding approximation guarantee, we look
into more detail about the efficiency of ExpGreedy in terms of runtime and sample complexity.

It is proven by Singla et al. [2016] that the number of samples taken for each iteration where an element is added to the
solution is at most

O

(
nκ′R2 min

{
4

∆2
max

,
1

ϵ2

}
log

(
R2κnmin{ 4

∆2
max

, 1
ϵ2 }

δ

))

where ∆max is the largest difference amongst the first κ′ element’s marginal gains. In other words, this is the number of
samples taken each time TOPX is called. Since an element being added involves approximating the marginal gains over all
of the elements of U , the average sample complexity to compute an approximate marginal gain for a single element is then

O

(
κ′R2 min

{
4

∆2
max

,
1

ϵ2

}
log

(
R2κnmin{ 4

∆2
max

, 1
ϵ2 }

δ

))
.

We compare the above to a single call of CS in our algorithm CTG, which is the analogous computation where we are
approximating the marginal gain for an element of U . Recall from Theorem 3 that the bound for the sample complexity for
CS is the minimum between 2R2

ϕ2(S, u)
log

4R2
√

3nh(α)
δ

ϕ2(S, u)

 ,
R2

2ϵ2
log

(
6nh(α)

δ

) .

If k′ = 1, i.e. the non-randomized version of ExpGreedy that has a similar approximation guarantee to our algorithm
CTG, then ∆max is the difference between the top two marginal gains, which could be very small and therefore the sample
complexity quite high. On the other hand, CS is not sensitive to this property. In order to make ∆max bigger, one could
increase k′ and use the randomized version of ExpGreedy. But this case could have worse sample complexity compared

to ours as well. If ∆max is small and satisfies that ∆max = O(ϵ), then the sample complexity of ExpGreedy is worse than
our averaged sample complexity by a factor of at least O(κ′).

Further, since ExpGreedy follows the standard greedy algorithm, there are κ calls made to TOPX. In contrast, CTG is
based on the faster variant of the greedy algorithm, TG, and so only requires O(log(κ)) iterations over U .

Another factor that makes CTG preferable to ExpGreedy is its run time besides sample complexity. From the description
of ExpGreedy in Singla et al. [2016], we can see that at each time a noisy query to ∆f is taken, the TOP-l selection
algorithm updates the confidence interval for all the elements, and then the algorithm sorts all elements to find the set Mt of
l elements with highest empirical marginal gain. Then another estimate of the marginal gains is computed to be the empirical
mean plus a confidence interval or minus the confidence interval depending on whether the elements are within Mt. Next,
the algorithm sorts the newly obtained estimates to find the top-l set with respect to the new estimates. However, both CTG
and EPS-AP have more efficient runtime complexity and require only one update of the confidence interval in Line 4 and
two comparisons in Line 5 and 7 in CS, which is only O(1) in computation.

C APPENDIX FOR SECTION 3

In this section, we present the omitted content of Section 3. In Section C.1, we present a comparison of our result with the
fixed ϵ-approximation. In Section C.2, we present the proof of Theorem 1. In Section C.3, we present the proof of Theorem
2.

C.1 COMPARISON OF CS TO FIXED ϵ-APPROXIMATION

In this section, we present a comparison of our result with the fixed ϵ-approximation. A fixed ϵ-approximation is essentially
when one applies a concentration inequality such as Hoeffding’s or the Chernoff Bound for a fixed number of noisy samples
such that the empirical mean of the evaluated random variable X , which is denoted as X̂ , satisfies that |X̂ − E[X]| ≤ ϵ.
(see also discussion in Section 2).

The fundamental reason this approach is less efficient compared to CS is that we are only interested in determining whether
f(X) is approximately above a threshold or not, not in obtaining a precise approximation. In other words, we don’t need the
guarantee that the |X̂ − EX| ≤ ϵ in Hoeffding’s inequality; instead, we care about whether EX ≥ w. Ideally, we would
approximate f(X) just finely enough to determine if it’s above the threshold or not. However, this isn’t feasible with the
fixed ϵ-approximation, because we don’t have any prior knowledge of how far f(X) is from the threshold. Consequently,
we can’t determine the required number of samples, and the fixed ϵ-approximation approach requires that there be a single
batch of i.i.d. samples, which limits flexibility.

In contrast, CS uses an adaptive sampling approach where samples are iteratively taken one-by-one until an evolving
confidence interval crosses a threshold. The goal of CS is to use fewer samples compared to a fixed ϵ-approximation. While
CS might initially seem similar to fixed ϵ-approximation, there are several critical differences that introduce unique technical
challenges in its development and analysis:

• Fixed ϵ-approximation approaches have a batch of samples in which a single application of a concentration inequality
is applied in order to approximate EX . In contrast, in CS, we apply a concentration inequality after every single sample,
and then take a union bound over all the applications. However, this is challenging because we don’t know how many
samples we will end up taking to approximate the mean value sufficiently well since that depends on the result of the
sampling. So we have to carefully design our confidence intervals.

• Fixed ϵ-approximation approach takes a predetermined number of samples, independent of the sampling results. In
contrast, the CS algorithm dynamically determines the number of samples based on the outcomes of previous samples.
Additionally, CS reuses samples across multiple applications of concentration bounds, enhancing its efficiency.

• In CS, the size of the confidence interval evolves with each additional sample, shrinking as the number of samples
increases (see Theorem 1). Additionally, when applying concentration inequalities, the failure probability is adjusted
dynamically based on how many samples we’ve taken so far (see proof of Lemma 6). The benefit of the varying failure

probability is that the obtained sample complexity 8R2

ϕ2
X

log
(

16R2

ϕ2
X

√
2
δ

)
won’t suffer from small values of ϵ.

• In Theorem 2 and 4, we use a combination of Hoeffding and Chernoff that is well-suited to the threshold algorithms,
rather than using one or the other. This approach improves the sample complexity from O(R2) in Theorem 1 to O(R)

when R is large.

CS is in fact related to adaptive approaches used in the Upper Confidence Bound (UCB) algorithm in multi-armed bandit,
and is distinct from most existing approaches in submodular optimization, with the notable exception of Singla et al. [2016],
which integrates a best-arm identification algorithm into the standard greedy framework.

C.2 ADDITIONAL LEMMAS AND ANALYSIS OF THEOREM 1

In this section, we present the proof of Theorem 2, which provides the theoretical results of sample complexity and
approximation guarantee of the CS algorithm. First of all, we provide the statement of Theorem 1 again.

Theorem 1. For any random variable X that is R-sub-Gaussian, if we define N1 = 2R2/ϵ2 log 4
δ , and Ct = R

√
2
t log

8t2

δ ,
then the algorithm Confident Sample achieves that with probability at least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the minimum between{
2R2

ϵ2
log

(
4

δ

)
,
8R2

ϕ2
X

log

(
16R2

ϕ2
X

√
2

δ

)}

noisy samples, where R is as defined in Section 2, ϕX = ϵ+|w−EX|
2 .

2. If CS returns true, then EX ≥ w − ϵ. If CS returns false, then EX ≤ w + ϵ.

Before we present the detailed proof, here we provide an overview of the proof. In order for CS to correctly determine
whether EX is approximately above or below the threshold w, i.e. the second result of Theorem 1, two random events
must occur during CS. The first event is that at all iterations during the for loop, the confidence regions around the sample
mean (X̂t) contain the true expected value (EX). The second event is that after N1 samples taken by the for loop on Line 2,
we have achieved an ϵ-additive approximation of the expected value. Basically these two events together mean that CS is
correct about the region where EX is throughout the algorithm, and therefore it returns the correct answer to whether EX is
approximately above or below the threshold w. The following Lemma states that on a run of CS, the two events hold with
probability at least 1− δ.

Lemma 6. With probability at least 1− δ, the following two events hold.

1. At any time t ∈ N+, the sample mean X̂t satisfies that |X̂t − EX| ≤ Ct, where Ct := R
√

2
t log

8t2

δ .

2. The sample mean X̂N1
at time N1 := 2R2

ϵ2 log 4
δ satisfies that |X̂N1

− EX| ≤ ϵ.

Proof. First, we apply the Hoeffding’s inequality on X̂N1 and it follows that

P
(
|X̂N1 − EX| ≥ ϵ

)
≤ 2 exp

(
−N1ϵ

2

2R2

)
≤ δ

2
.

Next, by applying the Hoeffding’s inequality for any fixed time t, we have that

P
(
|X̂t − EX| ≥ Ct

)
≤ δ

4t2
.

By taking the union bound for any time t, it follows that

P (∃t s.t. |X̂t − EX| ≥ Ct)

≤
∞∑
t=1

P (|X̂t − EX| ≥ Ct)

≤ δ

4

∞∑
t=1

1

t2
≤ δ

2
.

By taking the union bound again on the two events above, we have that

P (|X̂N1 − EX| ≥ ϵ or ∃t s.t. |X̂t − EX| ≥ Ct)

≤ P
(
|X̂N1

− EX| ≥ ϵ
)
+ P (∃t s.t. |X̂t − EX| ≥ Ct)

≤ δ.

The second lemma required for establishing Theorem 1 concerns the number of samples that CS takes before its approxi-
mation of EX is sufficiently accurate so that it can terminate. The number of samples depends on how far away the true
value of f is from the threshold. In particular, Lemma 7 below states that once the confidence interval goes beneath the
corresponding ϕ value (as defined in Theorem 1), then CS will complete. Lemma 7 and its proof are stated below.

Lemma 7. With probability at least 1− δ, when the confidence interval Ct satisfies that

Ct ≤ ϕX ,

the sampling of X finishes, where ϕX = ϵ+|w−EX|
2 .

Proof. If Ct ≤ ϵ+w−EX
2 , then we have EX ≤ w + ϵ− 2Ct. From Lemma 6, we have that with probability at least 1− δ, it

holds that X̂t − EX ≤ Ct. Therefore,

X̂t + Ct

≤ (X̂t − EX) + EX + Ct

≤ w + ϵ.

Thus the algorithm ends.

Similarly, we consider the case where Ct ≤ ϵ−w+EX
2 . In this case, we have that EX ≥ 2Ct+w− ϵ. Notice that conditioned

on the clean event defined in Lemma 6, we have that X̂t − EX ≥ −Ct. Then

X̂t − Ct ≥ X̂t − EX
+ EX − Ct

≥ −Ct + 2Ct

+ w − ϵ− Ct

= w − ϵ.

Therefore, the algorithm ends.

Now we present the proof of Theorem 1.

Proof. We first prove the result on sample complexity, which is the first result in Theorem 1. From Lemma 7, we have if

Ct ≤ ϕX , (1)

then the Algorithm 1 finishes. Since Ct = R
√

2
t log

8t2

δ , we have the above inequality (1) is equivalent to that

4 log(
√

8
δ t)

t
≤ ϕ2

X

R2
.

Since
√

8
δ t ≥ 2, from Lemma 23, we have when

t ≥ 8R2

ϕ2
X

log(
16R2

ϕ2
X

√
2

δ
),

the above inequality holds and the Algorithm 1 ends. Therefore, the number of samples required is bounded by

min{ 8R
2

ϕ2
X
(log 16R2

ϕ2
X

√
2
δ), N1}.

Next, we prove the second result in Theorem 1. If t = N1 when CS ends, then conditioned on the events in Lemma 6,
|X̂N1

− EX| ≤ ϵ. Thus if the algorithm returns true, EX ≥ X̂t − ϵ ≥ w − ϵ. If the output of the algorithm is false, then
X̂t ≤ w. Similarly we have that EX ≤ X̂t+ ϵ ≤ w+ ϵ. Secondly, let us consider the case where t < N1 when the algorithm
CS ends. Conditioned on the second event in Lemma 6, we have if the algorithm CS returns true, EX ≥ X̂t − Ct ≥ w − ϵ.
If the output is false, EX ≤ X̂t + Ct ≤ w + ϵ.

C.3 PROOF AND ANALYSIS OF THEOREM 2

In this section, we present the omitted proofs of Theorem 2 in Section 3. Theorem 2 provides another result of the
approximation error for the CS algorithm by defining the confidence interval Ct to be Ct =

3R
tα log

(
8t2

δ

)
and the worst-case

sample complexity N1 to be N1 = 3R
ϵα log

(
4
δ

)
. We begin by stating Theorem 2, followed by the proof of the theorem.

Finally, we establish the lemmas crucial to the proof of the theorem.

Theorem 2. For any random variable X that is bounded in the range of [0, R], if we define Ct = 3R
tα log(8t

2

δ), and
N1 = 3R

ϵα log
(
4
δ

)
where α is an additional parameter that controls the multiplicative error rate, the algorithm Confident

Sample achieves that with probability at least 1− δ, the algorithm Confident Sample achieves that with probability
at least 1− δ

1. CS on input (w, ϵ, δ,DX , R) takes at most the minimum between{
3R

ϵα
log

(
4

δ

)
,
12R

αϕ′
X

log

(
12R

αϕ′
X

√
8

δ

)}

noisy samples, ϕ′
X = ϵ−αEX+|w−EX|

2 .

2. If the output is true, then (1 + α)EX ≥ w − ϵ. If the output is false, then (1− α)EX ≤ w + ϵ.

Proof. First of all, we prove the result on the sample complexity as presented in the first result in Theorem 2. From Lemma
9, we have if

Ct ≤ ϕ′
X ,

the algorithm ends. By definition of Ct, we have that the above result is equivalent to that

3R

tα
log(

8t2

δ
) ≤ ϕ′

X .

From Lemma 23, we have that when

t ≥ 12R

αϕ′
X

log
(12R
αϕ′

X

√
8

δ

)
the above inequality holds and thus the algorithm ends. From the description of the algorithm, we have that the number of
samples is also bounded by N1. Therefore, the first result in Theorem 2 is proved.

Next, we prove the second result on the difference of EX and w. If t = N1 when CS ends, then if the algorithm returns true,
we have that with probability at least 1− δ,

(1 + α)EX + ϵ ≥ X̂N1 ≥ w.

where the first inequality follows from Lemma 8. If the algorithm returns false and t = N1 when the algorithm ends, then
with probability at least 1− δ,

(1− α)EX − ϵ ≤ X̂N1
≤ w.

Next, we consider the case where t < N1 when the algorithm ends. Conditioned on the first event in Lemma 8 and from the
stopping condition of CS, we can see if CS returns true, then

(1 + α)EX + ϵ ≥ X̂t − Ct + ϵ ≥ w.

If CS returns false, then

(1− α)EX − ϵ ≤ X̂t + Ct − ϵ ≤ w.

We now present the statement and the proofs of the lemmas used in the proof of Theorem 2. We start by introducing Lemma
8, which defines two "clean events".

Lemma 8. With probability at least 1− δ, the following two events hold.

1. At any time t ∈ N+, the sample average X̂t satisfies that |X̂t − EX| ≤ αEX + Ct, where Ct :=
3R
tα log(8t

2

δ).

2. The sample average X̂N1
at time N1 := 3R

ϵα log
(
4
δ

)
satisfies that |X̂N1

− EX| ≤ αEX + ϵ.

Proof. By applying the Lemma 20, we have that for any fixed time step t,

P
(
|X̂t − EX| > αEX + Ct

)
≤ 2 exp{− tαCt

3R
}

≤ δ

4t2
.

By taking the union bound over all time step t ∈ N+, we have

P
(
|X̂t − EX| > αEX + Ct,∀t

)
≤

∞∑
t=1

P
(
|X̂t − EX| > αEX + Ct

)
≤

∞∑
t=1

δ

4t2
≤ δ

2
.

Therefore the first event in the lemma holds with probability at least 1− δ/2. By applying the Lemma 20 again, we have
that for t = N1,

P
(
|X̂N1

− EX| > αEX + ϵ
)
≤ 2 exp{−N1αϵ

3R
} = δ/2.

It follows that the second event in the lemma holds with probability at least 1 − δ/2. By combining the two results and
applying the union bound again, we know that with probability at least 1− δ, the two events both hold.

Next, we prove another lemma that is used in the proof of the sample complexity result in Theorem 2.

Lemma 9. With probability at least 1− δ, when the confidence interval Ct satisfies that

Ct ≤ ϕ′
X ,

the sampling of X finishes, where ϕ′
X = ϵ−αEX+|w−EX|

2 .

Proof. To prove the lemma, it is equivalent to prove that when Ct ≤ ϵ−αEX+w−EX
2 or Ct ≤ ϵ−αEX−w+EX

2 , the algorithm
ends. First of all, if Ct ≤ ϵ−αEX+w−EX

2 , then (1 +α)EX +2Ct ≤ w+ ϵ. Conditioned on the events in Lemma 8, we have
that with probability at least 1− δ, it follows that

X̂t + Ct ≤ (1 + α)EX + 2Ct ≤ w + ϵ.

Thus the sampling of X ends. Next, if Ct ≤ ϵ−αEX−w+EX
2 , then (1− α)EX − 2Ct ≥ w − ϵ. By Lemma 8,

X̂t − Ct ≥ (1− α)EX − 2Ct ≥ w − ϵ.

Then the algorithm ends.

D APPENDIX FOR SECTION 4

In this section, we present the omitted content in Section 4, which is organized as follows: In Section D.1, we discuss and
compare the theoretical performance of our algorithm, CTG2, with the sampling-before-hand algorithm in the context of
the influence maximization problem. Next, we provide the proof of our main result, Theorem 3, in Section D.2. Theorem
3 gives the theoretical guarantee of the CTG algorithm. Finally, in Section D.3, we provide the brief description of CTG2
algorithm and the detailed proof of Theorem 4.

D.1 COMPARING TO SAMPLING-BEFORE-HAND ALGORITHM

Before we describe the sampling-before-hand algorithm and dive into the comparison of this algorithm and CTG2, first
we present a detailed description of the application of influence maximization. In the influence maximization problem in
large-scale networks, the submodular objective is defined as follows:

Influence aximization Suppose the social graph is described by G = (V,E, w̄), where V is the set of nodes with |V | = n,
E denotes the set of edges, and w̄ is the weight vector defined on the set of edges E. Given a seed set S, let us define f(S;w)
to be the number of nodes reachable from the seed set S under the graph realizations determined by a random weight vector
w. Therefore, f(S;w) is bounded by the number of nodes in the graph, i.e., 0 ≤ f(S;w) ≤ n. The submodular objective is
defined as f(S) = Ew∼D(w̄)f(S;w). Here D(w̄) is the distribution of the weight vector.

The marginal gain can be calculated as

∆f(S, s) = Ew∼D(w̄)∆f(S, s;w)

= Ew∼D(w̄)f(S ∪ {u};w)− Ew∼D(w̄)f(S),

which is also bounded in the range of [0, n].

Next, we describe the sampling-before-hand algorithm, which runs as follows:

1. Sampling: The algorithm begins by sampling N i.i.d graph realizations. For the i-th graph realization, we denote its
weight vector as wi and the corresponding function value for a set S as fi(S) = f(S;wi).

2. Average objective Function: Next, we define the average function f̂ over the sampled graph realizations. This function
is given by f̂(S) =

∑N
i=1 fi(S)

N for any S ⊆ U .

3. Threshold-greedy algorithm: We run Threshold Greedy (TG) with the average function f̂ as the submodular
objective. The output of the threshold-greedy algorithm is returned as the solution set, denoted as S.

D.1.1 Analysis of sampling-before-hand approach

Now we present the analysis of the sampling-before-hand algorithm. From Lemma 20, and by taking the union bound, we
can prove that

P (|f̂(X)− f(X)| ≥ αf(X) + ϵ,∀|X| ≤ κ)

≤ 2nκ exp{−Nαϵ

3n
}.

Therefore, to guarantee that
P (|f̂(X)− f(X)| ≥ αf(X) + ϵ, ∀|X| ≤ κ) ≤ δ,

it is enough to take

N ∈ Ω
(n
αϵ

(κ log n+ log
1

δ
)
)

number of graph realizations. Since TG requires n
α log n

α number of evaluations of f̂ . The total number of evaluations of
noisy realizations of f would be

O
(n2

α2ϵ
log

n

α
(κ log n+ log

1

δ
)
)
.

Next, we prove the approximation guarantee. From the analysis above, we can see that with probability at least 1− δ

f(S) ≥ f̂(S)− ϵ

1 + α

≥ (1− α)f̂(S)− ϵ

≥ (1− 1/e− α)(1− α)f̂(OPT)− ϵ

≥ (1− 1/e− 2α)f̂(OPT)− ϵ

≥ (1− 1/e− 3α)f(OPT)− 2ϵ.

Now we compare the theoretical guarantees of the sampling-based algorithm and CTG2. The theoretical results of CTG2 are
in Theorem 4. Notice that by substituting ϵ with ϵ/k in Theorem 4, we obtain a similar approximation guarantee for CTG2:
f(S) ≥ (1− 1/e−O(α))f(OPT)−O(ϵ), which matches the result achieved by the sampling-based algorithm.

For the sample complexity, each call of CS requires at most the minimum between O(κnϵα log n
δ) and

O(n
αϕ′(S,u) log

n
αϕ′(S,u)δ) number of samples. The first bound is derived by considering the fixed ϵ- approximation of

the marginal gain. If we only consider this bound, then the total number of marginal gains would be O(kn
2

ϵα2 (log
n
α)(log

n
δ)).

In practice, the parameter δ is usually set to be O(Poly(1/n)), such as O(1/n2). Consequently, the sample complexity
of both CTG2 and the sampling-before-hand approach would be O(κnϵα log n). However, it is important to note that CS
employs the adaptive thresholding technique, which often allows the algorithm to terminate much earlier before reaching the
worst-case sample complexity required for fixed-confidence approximation. As a result, CTG2 can be significantly more
sample-efficient in practice.

In comparison to the sampling-before-hand algorithm, CTG2 offers an additional advantage. The sampling-before-hand
algorithm requires obtaining N independent graph realizations and storing all the data at the beginning of the algorithm.
However, this can pose practical challenges. Firstly, in scenarios where both N and the graph are exceedingly large, storing
all the data might be infeasible. Secondly, in certain applications, such as real-world social networks, obtaining an entire
graph realization may not be possible, as we might only be able to sample a portion of the graph at each time.

D.2 PROOF OF THEOREM 3

In this section, we move towards proving one of our main results, Theorem 3 about CTG for the MSMC problem. We state
the theorem again as follows.

Theorem 3. Suppose the noisy marginal gain of any subset S ⊆ U and element s ∈ U is R-sub-Gaussian, then CTG makes
at most n log(κ/α)/α calls of CS. In addition, with probability at least 1− δ, the following statements hold:

• The exact function value of the output solution set S satisfies that f(S) ≥ (1− e−1 − α)f(OPT)− 2κϵ;

• Each call of CS on input (w, ϵ, 2δ
3nh(α) , D(S, u), R) takes at most the minimum between

8R2

ϕ2(S, u)
log

16R2
√

3nh(α)
δ

ϕ2(S, u)

and

2R2

ϵ2
log

(
6nh(α)

δ

)
noisy samples. Here OPT is an optimal solution to the MSMC problem, ϕ(S, u) = ϵ+|w−∆f(S,u)|

2 , and h(α) =
log (κ/α)

α .

To prove the theorem, we first present a series of needed lemmas. In order for the guarantees of Theorem 3 to hold, two
random events must occur during CTG. The first event is that the estimate of the max singleton value of f on Line 4 in CTG
is an ϵ-approximation of its true value. More formally, we have the following lemma.

Lemma 10. With probability at least 1− δ/3, we have maxs∈U f(s)− ϵ ≤ d ≤ maxs∈U f(s) + ϵ.

Proof. For a fix s ∈ U , by Hoeffding’s inequality we would have that

P (|f̂(s)− f(s)| ≥ ϵ) ≤ δ

3n
. (2)

Taking a union bound over all elements we would have that

P (∃s ∈ U, s.t.|f̂(s)− f(s)| ≥ ϵ) ≤ δ

3
.

Then with probability at least 1− δ
3 , |f̂(s)−f(s)| ≤ ϵ for all s ∈ U . It then follows that ∀s ∈ U , f(s)−ϵ ≤ f̂(s) ≤ f(s)+ϵ.

Therefore
max
s∈U

(f(s)− ϵ) ≤ max
s∈U

f̂(s) ≤ max
s∈U

(f(s) + ϵ).

Thus we have

max
s∈U

f(s)− ϵ ≤ d ≤ max
s∈U

f(s) + ϵ.

The second event is that for all calls of CS, the result in Theorem 1 holds, which is stated formally as follows.

Lemma 11. With probability at least 1− 2δ/3, we have that during each call of CS with the solution set S and element u,
the output satisfies that if thre is true, then ∆f(S, u) ≥ w − ϵ. If thre is false, then ∆f(S, u) ≤ w + ϵ.

Proof. First, since each sampling result of the marginal gain is assumed to be R-sub-Gaussian, by applying the result in
Theorem 1, we can prove that for each call of CS during CTG with a fixed solution set S and evaluated element u as input,
and with probability at least 1− 2δ

3nh(α) , if the output of CS is true, then ∆f(S, u) ≥ w − ϵ. Otherwise, ∆f(S, u) ≤ w + ϵ.

Since there are n elements in the universe and the number of iterations in Algorithm 2 is bounded by log κ/α
log(1/(1−α)) ≤ h(α),

there are at most nh(α) number of marginal gains to evaluate in Algorithm 2. Therefore, by taking the union bound we have
that with probability at least 1− 2δ/3, the statement holds.

With the above Lemma 10 and Lemma 11, and by taking the union bound, we have that with probability at least 1− δ, the
two events both hold during the CTG. Our next step is to show that if both of the events occur during CTG, the approximation
guarantees and sample complexity of Theorem 3 hold. To this end, we need the following Lemma 12.

Lemma 12. Assume the events defined in Lemma 10 and Lemma 11 above hold during CTG. Then for any element s that is
added to the solution set S, the following statement holds.

∆f(S, s) ≥ 1− α

κ
(f(OPT)− f(S))− 2ϵ.

Proof. At the first iteration, if an element s is added to the solution set, it holds by Lemma 10 that ∆f(S, s) ≥ w− ϵ. Since
at the first iteration w = d and d ≥ maxs∈U f(s)− ϵ. It follows that ∆f(S, s) ≥ maxs∈U f(s)− 2ϵ. By submodularity we
have that κmaxs∈U f(s) ≥ f(OPT). Therefore, ∆f(S, s) ≥ f(OPT)−f(S)

κ − 2ϵ.

At iteration i where i > 1, if an element o ∈ OPT is not added to the solution set, then it is not added to the solution at
the last iteration, where the threshold is w

1−α . By Lemma 6, we have ∆f(S, o) ≤ w
1−α + ϵ. Since for any element s that is

added to the solution at iteration i, by Lemma 6 it holds that ∆f(S, s) ≥ w − ϵ. Therefore, we have

∆f(S, s) ≥ w − ϵ

≥ (1− α)(∆f(S, o)− ϵ)− ϵ

≥ (1− α)∆f(S, o)− 2ϵ.

By submodularity, it holds that ∆f(S, s) ≥ (1− α) f(OPT)−f(S)
κ − 2ϵ.

We now prove the main result, Theorem 3, which relies on the previous Lemma 10, 11 and 12.

Proof. The events defined in Lemma 10, 11 hold with probability at least 1− δ by combining Lemma 10, 11, and taking the
union bound. Therefore in order to prove Theorem 3, we assume that both the two events have occurred. The proof of the
first result in the theorem depends on the Lemma 12. First, consider the case where the output solution set satisfies |S| = κ.
Denote the solution set S after the i-th element is added as Si. Then by Lemma 12, we have

f(Si+1) ≥
1− α

κ
f(OPT) + (1− 1− α

κ
)f(Si)− 2ϵ.

By induction, we have that

f(Sκ) ≥ (1− (1− 1− α

κ
)k){f(OPT)− 2κϵ

1− α
}

≥ (1− e−1+α){f(OPT)− 2κϵ

1− α
}

≥ (1− e−1 − α){f(OPT)− 2κϵ

1− α
}

≥ (1− e−1 − α)f(OPT)− 2κϵ.

If the size of the output solution set S is smaller than κ, then any element o ∈ OPT that is not added to S at the last iteration
satisfies that ∆f(S, o) ≤ w + ϵ. Since the threshold w in the last iteration satisfies that w ≤ αd

κ , we have

∆f(S, o) ≤ αd

κ
+ ϵ.

It follows that ∑
o∈OPT\S

∆f(S, o) ≤ α(max
s∈S

f(s) + ϵ) + κϵ

≤ αf(OPT) + 2κϵ.

By submodularity and monotonicity of f , we have f(S) ≥ (1− α)f(OPT)− 2κϵ.

D.3 ANALYSIS OF CTG2

In this section, we analyze Theorem 4, which establishes the sample complexity and approximation ratio guarantees for
the solution obtained by Confident Threshold Greedy2 (CTG2). CTG2 is an algorithm for the MSMC problem
where only noisy queries to ∆f are available. The corresponding algorithm description is presented in Algorithm 3.

First of all, we give a brief description of the CTG2 algorithm. CTG2 shares a similar idea with the CTG algorithm presented
in Section 4. Both of the two algorithms utilize CS to determine if the expectation of the evaluated marginal gain is
approximately above a threshold w. However, they differ in their error approximation guarantees on the expectation of
evaluated marginal gain. Specifically, CTG invokes the Confident Sample procedure (CS) with the following inputs:
threshold w, approximation error bound ϵ, error probability 2δ

3nh′(α) where h′(α) = 3 log (3κ/α)
α , random distribution

D(S, u), and upper bound of the noisy marginal gain R as input. Different from the subroutine algorithm CS in CTG, the
worst-case query complexity N1 and confidence interval Ct in CS are defined as in Theorem 2 with the multiplicative input
parameter set to α/3. Therefore, the output of CS in CTG2 satisfies that with high probability, if the output is true, then
(1 + α/3)∆f(S, u) ≥ w − ϵ. If the output is false, then (1− α/3)∆f(S, u) ≤ w + ϵ.

Next, we present the analysis of Theorem 4.

Theorem 4. Suppose the noisy marginal gain of any subset S ⊆ U and element s ∈ U is bounded in [0, R], CTG2 makes
at most 3n log(κ/α)/α calls of CS. In addition, with probability at least 1− δ, the following statements hold:

• The exact function value of the output solution set S satisfies that f(S) ≥ (1− e−1 − α)f(OPT)− 2κϵ;
• Each call of CS on input (w, ϵ, 2δ

3nh′(α) , D(S, u), R) takes at most the minimum between

9R

ϵα
log

(
6nh′(α)

δ

)

Algorithm 3: Confident Threshold Greedy2 (CTG2)

1: Input: ϵ, δ, α
2: N3 ← 9R

ϵα log 6n
δ

3: for all s ∈ U do
4: f̂N3

(s)← sample mean over N3 samples from D(∅, s)
5: end for
6: d := maxs∈U f̂N3

(s),
7: w ← d, S ← ∅
8: while w > αd

3κ do
9: for all u ∈ U do

10: if |S| < κ then
11: thre = Confident Sample (w, ϵ, 2δ

3nh′(α) , D(S, u), R)
12: if thre then
13: S ← S ∪ {u}
14: end if
15: end if
16: end for
17: w = w(1− α/3)
18: end while
19: return S

and

36R

αϕ′(S, u)
log

(
36R

αϕ′(S, u)

√
12nh′(α)

δ

)

noisy samples. Here OPT is an optimal solution to the MSMC problem, ϕ′(S, u) = ϵ−α∆f(S,u)/3+|w−∆f(S,u)|
2 , and

h′(α) = 3
α log (3κα).

Now we present the proof of Theorem 4. The organization of the proof for Theorem 4 is as follows: we begin by presenting
the proof of the Theorem 4. Then the proofs of two lemmas, Lemma 13 and Lemma 14, that are used in the proof of Theorem
4 are presented.

Proof. First, since the number of iterations in the while loop from Line 9 to Line 17 in CTG2 (see Algorithm 3) is upper
bounded by 3

α log 3κ
α , CTG2 makes at most 3n

α log 3κ
α calls of CS. Next, we prove the second result in Theorem 4, which

guarantees the upper bound on the required number of samples. By applying Lemma 13 on the sampling of the noisy
marginal gain of ∆f(S, u), we can see that with probability at least 1− δ, for each call of CS, we have that the number of

noisy queries is bounded by the minimum between 9R
ϵα log

(
6nh′(α)

δ

)
and 36R

αϕ′(S,u) log

(
36R

αϕ′(S,u)

√
12nh′(α)

δ

)
.

Now we prove the first result. Since the proof of the first result is similar to the proof of Theorem 3, here we provide a proof
sketch and omit the details. First of all, by Lemma 14, we have

f(Si+1) ≥
1− α

κ
f(OPT) + (1− 1− α

κ
)f(Si)− 2ϵ.

Let us denote the solution set S after the i-th element is added as Si. Notice that the result in Lemma 12 is the same as
Lemma 14. Therefore, following the same proof as that in Theorem 3, we would get that if |S| = κ, then by induction

f(Sκ) ≥ (1− e−1 − α)f(OPT)− 2κϵ.

If the size of the output solution set S is smaller than κ, then any element o ∈ OPT that is not added to S at the last iteration
satisfies that (1− α/3)∆f(S, o) ≤ w + ϵ. Since at the last iteration w ≤ αd

3κ , and that conditioned on the events in Lemma
13, d ≤ (1 + α/3)maxs∈U f(s) + ϵ, it follows that

(1− α/3)∆f(S, o) ≤ α

3κ
{(1 + α/3)max

s∈U
f(s) + ϵ}+ ϵ

By submodularity and monotonicity of f , we have

f(OPT)− f(S) ≤
∑

o∈OPT

∆f(S, o)

≤ α

3(1− α/3)
{(1 + α/3)max

s∈U
f(s) + ϵ}

+
κϵ

(1− α/3)

≤ αmax
s∈U

f(s) + 2κϵ

≤ αf(OPT) + 2κϵ.

Then we have f(S) ≥ (1− α)f(OPT)− 2κϵ.

The proof of the above Theorem 4 depends on Lemma 14. Before proving Lemma 14, we first prove the Lemma 13.

Lemma 13. With probability at least 1− δ, the following two events hold.

1. (1− α/3)maxs∈U f(s)− ϵ ≤ d ≤ (1 + α/3)maxs∈U f(s) + ϵ.

2. During each call of CS on input (w, ϵ, 2δ
3nh′(α) , D(S, u), R), if the output is true, then (1 + α/3)∆f(S, u) ≥ w − ϵ. If

the output is false, then (1− α/3)∆f(S, u) ≤ w + ϵ. In addition, the number of samples taken by CS is at most the
minimum between

9R

ϵα
log

(
6nh′(α)

δ

)
(3)

and

36R

αϕ′(S, u)
log

(
36R

αϕ′(S, u)

√
12nh′(α)

δ

)
, (4)

where ϕ′(S, u) = ϵ−α∆f(S,u)/3+|w−∆f(S,u)|
2 , and h′(α) = 3

α log (3κα).

Proof. First of all, by applying the inequality in Lemma 20, we have that for fixed element s ∈ U

P
(
|f̂N3

(s)− f(s)| ≥ α

3
f(s) + ϵ

)
≤ δ

3n
.

Taking a union bound over all elements in U , it follows that

P
(
|f̂N3

(s)− f(s)| ≥ α

3
f(s) + ϵ,∀s ∈ U

)
≤ δ

3
,

where N3 = 9R
ϵα log 6n

δ . Therefore, with probability at least 1− δ/3, we have |f̂N3(s)− f(s)| ≤ α
3 f(s) + ϵ for each s ∈ U .

Denote s1 = argmaxs∈U f̂N3
(s) and s2 = argmaxs∈U f(s). It follows that with probability at least 1− δ/3, we have that

d = f̂N3(s1) ≤ (1 + α/3)f(s1) + ϵ ≤ (1 + α/3)f(s2) + ϵ,

and that

d = f̂N3
(s1) ≥ f̂N3

(s2) ≥ (1− α/3)f(s2)− ϵ.

Since d = maxs∈U f̂N3(s) = f̂N3(s1) and f(s2) = maxs∈U f(s), the first result holds with probability at least 1− δ/3.

Next, we prove the second result. For each call of the sampling algorithm CS with fixed input (w, ϵ, 2δ
3nh′(α) , D(S, u), R),

and given that N1 and Ct are defined in accordance with Theorem 2 with the multiplicative error parameter set to α/3, we
can leverage the second result in Theorem 2. Consequently, with probability at least 1− 2δ

3nh′(α) , the following two things
hold:

1. If the output of CS is true, then (1 + α/3)∆f(S, s) ≥ w − ϵ. If the output is false, then (1− α/3)∆f(S, s) ≤ w + ϵ.

2. The number of noisy queries is bounded by the minimum between (3) and (4) in the lemma.

Since there are at most log(3κ/α)

log 1
1−α/3

≤ h′(α) = 3
α log 3κ

α number of iterations in CTG2, there are at most nh′(α) calls of CS.

Therefore, by taking the union bound we have that with probability at least 1− 2δ/3, the two events defined above hold for
all calls to CS during CTG2. By taking the union bound again, we have that with probability at least 1− δ, the two results in
the lemma both hold.

Now we prove the Lemma 14.

Lemma 14. Assume the events defined in Lemma 13 hold during CTG2. Then for any element s that is added to the solution
set S, the following statement holds.

∆f(S, s) ≥ 1− α

κ
(f(OPT)− f(S))− 2ϵ.

Proof. At the first iteration, if an element s is added to the solution set, it holds by Lemma 13 that (1+ α
3)∆f(S, s) ≥ w− ϵ.

Since at the first iteration w = d and d ≥ (1− α/3)maxs∈U f(s)− ϵ. It follows that ∆f(S, s) ≥ 1−α/3
1+α/3 maxs∈U f(s)−

2ϵ
1+α/3 ≥ (1− α)maxs∈U f(s)− 2ϵ. By submodularity we have that κmaxs∈U f(s) ≥ f(OPT). Therefore, ∆f(S, s) ≥
1−α
κ (f(OPT)− f(S))− 2ϵ.

At iteration i where i > 1, if an element o ∈ OPT is not added to the solution set, then it is not added to the solution set at
the last iteration, where the threshold is w

1−α/3 . By Lemma 13, we have (1− α/3)∆f(S, o) ≤ w
1−α/3 + ϵ. For any element

s that is added to the solution at iteration i, by Lemma 13 it holds that (1 + α/3)∆f(S, s) ≥ w − ϵ. Therefore, we have

∆f(S, s) ≥ w − ϵ

1 + α/3

≥ (1− α/3)2∆f(S, o)− (1− α/3)ϵ− ϵ

1 + α/3

≥ (1− α)∆f(S, o)− 2ϵ.

By submodularity, it holds that ∆f(S, s) ≥ (1− α) f(OPT)−f(S)
κ − 2ϵ.

E NON-MONOTONE SUBMODULAR OBJECTIVES

In Section 4 and Section 5, we employ the adaptive sampling algorithm CS as a subroutine in algorithms that share the
same intuition as TG to determine if the marginal gain is approximately above or below the threshold w. In this section, we
demonstrate that CS can also be employed to develop a deterministic algorithm for the Submodular Maximization (USM)
problem, following a similar idea as in Buchbinder et al. [2015]. Here we assume that the sampling of the marginal gain
∆f(S, s) is R-sub-Gaussian for any S ⊆ U and s ∈ U .

We propose the algorithm CDG, which is based upon the deterministic algorithm presented in Buchbinder et al. [2015]
("Double Greedy") for USM in the noise-free setting, with our procedure CS integrated into it in order to deal with the noisy
access to f . Here the parameters N1 and Ct in the subroutine algorithm CS are defined in accordance with Theorem 1. We
denote the sets A and B after the i-th iteration in CDG as Ai and Bi, and the element processed in the i-th iteration as ui.
Pseudocode for CDG is presented in Algorithm 4.

We start by briefly describing the deterministic algorithm in Buchbinder et al. [2015]. In particular, the algorithm of
Buchbinder et al. [2015] maintains two sets A and B as it makes a single pass through the ground set U in the order
u1, ..., un. At each element ui, the algorithm evaluates whether ∆f(Ai−1, ui), the marginal gain of adding the new element
ui, surpasses the loss incurred by removing it from set Bi−1/{ui}, which is −∆f(Bi−1/{ui}, ui). If ∆f(Ai−1, ui) ≥
−∆f(Bi−1/{ui}, ui), then ui is added to the final solution set. Otherwise, it is removed from Bi−1. Our insight is that this
procedure in fact is asking about whether the value of the function ∆f(Ai−1, ui) + ∆f(Bi−1/{ui}, ui) is above or below
the threshold 0.

Algorithm 4: Confident Double Greedy (CDG)

1: Input: ϵ, δ
2: A← ∅, B ← U
3: for all u ∈ U do
4: Define r.v. X = ∆̃f(A, u) + ∆̃f(B/{u}, u),
5: thre = Confident Sample (0, 3ϵ

n , δ
n , DX ,

√
2R)

6: if thre then
7: A← A ∪ {u}
8: else
9: B ← B/{u}

10: end if
11: end for
12: return A

It is important to note that CS cannot be used as a subroutine in the randomized algorithm with a 1/2 approximation guarantee
as presented in Buchbinder et al. [2015]. This is due to a fundamental difference in the requirements of the two algorithms.
The randomized algorithm in Buchbinder et al. [2015] requires knowing the exact ratio of ∆f(Ai−1,ui)

∆f(Ai−1,ui)+∆f(Bi−1/{ui},ui)
,

while CS only guarantees the difference between the mean of a random variable and a threshold value w. Therefore, in the
deterministic algorithm, we can apply CS to find whether the expectation of Xi = ∆̃f(Ai−1, ui) + ∆̃f(Bi−1/{ui}, ui) is
approximately above or below 0.

We now present our theoretical guarantees for CDG below in Theorem 15. The proof of Theorem 15 can be found in the
supplementary material. We note that our algorithm CDG achieves nearly the same approximation guarantee as that of
Buchbinder et al. [2015], but with a small penalty due to the noisy setting.

Theorem 15. CDG makes n calls of CS. In addition, with probability at least 1− δ, the following statements hold:

1. The exact function value of the output solution set S satisfies that f(S) ≥ f(OPT)
3 − ϵ;

2. Each call of CS on input (0, 3ϵ
n , δ

n ,DXi
,
√
2R) takes at most the minimum between{

4n2R2

9ϵ2
log

(
4n

δ

)
,
16R2

ϕ2
i

log

(
32R2

ϕ2
i

√
2n

δ

)}
noisy samples. Here OPT is an optimal solution to the USM problem, and

ϕi :=
3ϵ/n+ |EXi|

2

=
3ϵ/n+ |∆f(Ai−1, ui) + ∆f(Bi−1/{ui}, ui)|

2
.

From Theorem 15, we can see that CDG achieves an approximation guarantee that is arbitrarily close to 1/3, which matches
the result of the deterministic algorithm in Buchbinder et al. [2015].

Now we start to prove the results in Theorem 15. Notice that conditioned on the solution set Ai−1 and Bi−1, the random vari-
ables ∆̃f(Ai−1, ui) and ∆̃f(Bi−1/{ui}, ui) are R-sub-Gaussian. Therefore, Xi := ∆̃f(Ai−1, ui) + ∆̃f(Bi−1/{ui}, ui)
is
√
2R-sub-Gaussian, the second result is implied by applying Theorem 1 immediately. To prove the first result in Theorem

15, we need the following lemma.

Lemma 16. With probability at least 1− δ
n , the i-th call of CS satisfies the following inequality

f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi) ≤

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n
. (5)

where OPTi is the set of all elements from OPT that arrives after the i-th iteration.

Proof. From the statement of the algorithm, we know that the element ui is added to the solution if and only if the output of
CS is true. By applying the results in Theorem 1, we have that for each fixed i, with probability at least 1 − δ/n if ui is

added, then ∆f(Ai−1, ui) ≥ −∆f(Bi−1/{ui}, ui)− 3ϵ
n . Otherwise, ∆f(Ai−1, ui) ≤ −∆f(Bi−1/{ui}, ui) +

3ϵ
n . Let us

denote the above event as Ei, we discuss the following four cases in our analysis

1. If ui ∈ Ai, and ui ∈ OPT , then

f(Ai−1 ∪OPTi−1)−f(Ai ∪OPTi) = 0

Notice that ui ∈ Ai, then conditioned on Ei, we have ∆f(Ai−1, ui) ≥ −∆f(Bi−1/{ui}, ui)− 3ϵ
n . By submodularity,

∆f(Bi−1/{ui}, ui) ≤ ∆f(Ai−1, ui). Then it follows that ∆f(Ai−1, ui) +
3ϵ
2n ≥ 0. Therefore, the term on the

right-hand side of (5) satisfies

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= ∆f(Ai−1, ui) +
3ϵ

n
≥ 0.

2. If ui ∈ Ai, and ui /∈ OPT , then

f(Ai−1 ∪OPTi−1)−f(Ai ∪OPTi)

= −∆f(Ai−1 ∪OPTi, ui)

≤ −∆f(Bi−1/{ui}, ui),

where the inequality is obtained by submodularity. The right-hand side in (5) is

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= ∆f(Ai−1, ui) +
3ϵ

n
.

Notice that ui ∈ Ai, then conditioned on Ei, we have ∆f(Ai−1, ui) ≥ −∆f(Bi/{ui}, ui)− 3ϵ
n . Therefore,

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= ∆f(Ai−1, ui) +
3ϵ

n
≥ −∆f(Bi−1/{ui}, ui).

3. If ui /∈ Ai, and ui /∈ OPT , then

f(Ai−1 ∪OPTi−1)−f(Ai ∪OPTi) = 0.

Similarly as the first case, we have that −∆f(Bi−1/{ui}, ui) ≥ 3ϵ
2n . Since the right-hand side is

−∆f(Bi−1/{ui}, ui) +
3ϵ
n , the inequality holds.

4. If ui /∈ Ai, and ui ∈ OPT , then

f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi)

= ∆f(Ai−1 ∪OPTi, ui) ≤ ∆f(Ai−1, ui),

where the inequality holds by submodularity. Conditioned on the event Ei, it follows that ∆f(Ai−1, ui) ≤
−∆f(Bi/{ui}, ui) +

3ϵ
n . Since the right-hand side is

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n

= −∆f(Bi/{ui}, ui) +
3ϵ

n
,

the result is proved.

Now we prove Theorem 15.

Proof. Define the event

Fi = {f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi) ≤

[f(Ai)− f(Ai−1)] + [f(Bi)− f(Bi−1)] +
3ϵ

n
}.

From Lemma 16 and by taking the union bound, it follows that

P (Fi,∀i ∈ [n]) ≥ 1− δ

Therefore, with probability at least 1− δ, Fi holds for all i. Then by summing over all i, we would get

n∑
i=1

f(Ai−1 ∪OPTi−1)− f(Ai ∪OPTi) ≤

n∑
i=1

{[f(Ai)− f(Ai−1)]

+ [f(Bi)− f(Bi−1)]}+ 3ϵ.

It follows that

f(OPT0)− f(An) ≤
[f(An)− f(A0)] + [f(Bn)− f(B0)]}+ 3ϵ.

Since the submodular function is nonnegative, and that f(An) = f(Bn), OPT0 = OPT , it follows that f(A) ≥
f(OPT)/3− ϵ.

F APPENDIX FOR SECTION 5

In this section, we present supplementary material to Section 5. In particular, we present the comparison of the result
of Confident Continuous Threshold Greedy in Theorem 5 to the Accelerated Continuous Greedy algorithm
(ACG) in Badanidiyuru and Vondrák [2014]. Then in Section F, we provide detailed proof of Theorem 5. In addition, we
provide the psedocode of Confident Continuous Threshold Greedy in Algorithm 5.

F.1 COMPARISON OF CCTG WITH ACCELERATED CONTINUOUS GREEDY ALGORITHM

In this section, we compare the results of Theorem 5 and the Accelerated Continuous Greedy algorithm (ACG) as presented
in Badanidiyuru and Vondrák [2014].

1. First of all, we consider the case where we have exact access to the value oracle. In this case, we can get that ∆̃f(S, s) =
∆f(S, s) ≤ maxs∈S f(s) for any subset S ⊆ U and element s ∈ U . This implies that R can be set to be maxs∈S f(s).
Consequently, from Theorem 5, the output solution set of CCTG satisfies that f(S) ≥ (1 − 1/e − O(ϵ))f(OPT),
which aligns with the approximation ratio presented in Badanidiyuru and Vondrák [2014]. For the result on sample
complexity, notice that each call of CS takes at most min{O(κ

ϵ2 log
n
δϵ), O(κ

ϵϕ′′
X
log n

δϵϕ′′
X
)} number of samples, where

the first result is obtained by considering the worst case sample complexity of a fixed ϵ-approximation. Since there are
at most 3n

ϵ2 log κ
ϵ calls of CS during CCTG, if we only consider the worst-case sample complexity, the total required

sample complexity is at most O(κnϵ3 log2 n
ϵ) for CCTG. This matches the result in Badanidiyuru and Vondrák [2014]. In

this sense, we improve the sample complexity when reduced to the case of assuming an exact oracle to the marginal
gains.

2. On the other hand, from Theorem 5, we can see that even if the access to ∆f is noisy, as long as the upper bound on the
noisy marginal gain R is less than f(OPT), the above analysis on sample complexity and approximation ratio holds.
Hence, we can conclude that compared to access to an exact value oracle, the assumption of access to noisy marginal
gain does not lead to additional sample complexity or a deterioration in the approximation ratio when compared to the
scenario with an exact value oracle.

F.2 PROOF OF THEOREM 5

In this section, we present the detailed proof of Theorem 5 about our algorithm CCTG.

Theorem 5. CCTG makes at most 3n
ϵ2 log 3κ

ϵ calls of CS. In addition, with probability at least 1− δ, the following statements
hold:

• The output fractional solution x achieves the approximation guarantee of F(x) ≥ (1− e−1 − 2ϵ)f(OPT)−Rϵ.

• Each call of CS on input (w, ϵR
2κ , δϵ

2nh′(ϵ) , DX , R) requires at most the minimum between

18κ

ϵ2
log

(
8nh′(ϵ)

δϵ

)
and

36R

ϵϕ′′
X

log

(
144R

ϵϕ′′
X

√
nh′(ϵ)

δϵ

)

noisy queries to the marginal gain. Here OPT is an optimal solution to the MSMM problem, ϕ′′
X =

ϵR
2κ −ϵEX/3+|w−EX|

2 ,
and h′(ϵ) = 3

ϵ log (
3κ
ϵ).

Proof. The second result on the sample complexity of calling the subroutine algorithm CS can be obtained immediately by
applying the second result in (2a) in Lemma 17. Here we prove the first result in the theorem. Let us denote the fractional
solution at time step t as xt. From Lemma 18, it follows that conditioned on the events in Lemma 17, we have

F(xt+1)− F(xt) ≥ ϵ(1− ϵ)f(OPT)

− ϵ(1− ϵ)F(xt+1)− ϵ2R.

It then follows that

F(xt+1) ≥
F(xt) + ϵ(1− ϵ)f(OPT)− ϵ2R

1 + ϵ(1− ϵ)

≥ (1− ϵ)F(xt) + ϵ(1− ϵ)2f(OPT)− ϵ2R

Since there are 1/ϵ iterations in CCTG, the output x satisfies that x = x1/ϵ. By applying induction to the above inequality,
we would get

F(x1/ϵ) ≥ (1− (1− ϵ)1/ϵ){(1− ϵ)2f(OPT)− ϵR}
≥ (1− 1/e){(1− ϵ)2f(OPT)− ϵR}
≥ (1− 1/e− 2ϵ)f(OPT)− ϵR.

Lemma 17. With probability at least 1− δ, the following two events hold.

1. (1− ϵ/3)maxs∈U f(s)− Rϵ
2κ ≤ d ≤ (1 + ϵ/3)maxs∈U f(s) + Rϵ

2κ .

2. During each call of CS on the input (w, ϵR
2κ , δϵ

2nh′(ϵ) , DX , R, ϵ/3) with the evaluated random variable being

X = ∆̃f(S(x + ϵ1B), u) where x is the fractional solution , B is the set of coordinates and u is an element in U , the
results in Theorem 2 holds. I.e.,

(a) CS takes at most the minimum between

18κ

ϵ2
log

(
8nh′(ϵ)

δϵ

)
and

36R

ϵϕ′′
X

log

(
144R

ϵϕ′′
X

√
nh′(ϵ)

δϵ

)
.

Algorithm 5: Confident Continuous Threshold Greedy (CCTG)

1: Input: ϵ, δ,M∈ 2U

2: x← 0
3: for all s ∈ U and s ∈M do
4: f̂(s)← sample mean over 18κ

ϵ2 log 4n
δ samples from D(∅, s)

5: end for
6: d := maxs∈M f̂(s),
7: for t = 1 to 1/ϵ do
8: B ←Decreasing-Threshold Procedure (x, ϵ, δ, d,M)
9: x← x + ϵ · 1B

10: end for
11: return x

Algorithm 6: Decreasing-Threshold Procedure (DTP)

1: Input: x, ϵ, δ, d,M∈ 2U

2: w ← d, B ← ∅
3: while w > ϵd

3κ do
4: for all u ∈ U do
5: if B ∪ {u} ∈ M then
6: X = ∆̃f(S(x + ϵ1B), u)
7: thre = Confident Sample (w, Rϵ

2κ , δϵ
2nh′(ϵ) , DX , R)

8: if thre then
9: B ← B ∪ {u}

10: end if
11: end if
12: end for
13: w = w(1− ϵ/3)
14: end while
15: return B

(b) If the output is true, then

(1 + ϵ/3)E∆̃f(S(x + ϵ1B), u) ≥ w − ϵR

2κ
.

If the output is false, then

(1− ϵ/3)E∆̃f(S(x + ϵ1B), u) ≤ w +
ϵR

2κ
.

Proof. First of all, by applying the inequality in Lemma 20, we have that for each fixed s ∈ U , after taking N4 = 18κ
ϵ2 log 4n

δ
number of samples, it follows that

P
(
|f̂N4

(s)− f(s)| ≥ ϵ

3
f(s) +

Rϵ

2κ

)
≤ δ

2n
.

Taking a union bound over all elements in U , it follows that

P
(
|f̂N4

(s)− f(s)| ≥ ϵ

3
f(s) +

Rϵ

2κ
,∀s ∈ U

)
≤ δ

2
.

Following the similar idea as in the proof of the Lemma 8, we can prove the first result.

Now we start to prove the second result. For each fixed call of CS with input (w, ϵR
2κ , δϵ

2nh′(ϵ) , DX , R, ϵ/3), by applying the
results in Theorem 2, we have that with probability at least 1− δϵ

2nh′(ϵ) , both the statements about the sample complexity in
(2a) and approximation guarantee in (2b) in the lemma holds. Since there are 1/ϵ calls of the Decreasing-Threshold
Procedure and each Decreasing-Threshold Procedure makes at most nh′(ϵ) calls of the CS algorithm, there
are at most nh′(ϵ)/ϵ calls of the CS algorithm. By taking the union bound, we can prove that with probability at least

1− δ/2, the second results hold. By taking the union bound again, we can see that with probability at least 1− δ, all of the
results in the lemma hold.

Lemma 18. Conditioned on the two events defined in Lemma 17, we have that during each implementation of
Decreasing-Threshold Procedure, the output coordinate set B satisfies that

F(x + ϵ1B)− F(x) ≥ ϵ(1− ϵ){f(OPT)− F(x + ϵ1B)}
− ϵ2R.

Proof. Here we denote the output solution set as B = {b1, b2, ..., bκ} where bi is the i-th element that is added to set B.
Here if |B| < κ, then for any i > |B|, bi is defined as a dummy variable. SinceM is a matroid, there exists a permutation
of the optimal solution OPT = {o1, o2, ..., oκ} such that Bi−1 ∪ {oi} ∈ M for each i ∈ [κ]. For notation simplicity, we
also define G(x, u) = E∆̃f(S(x), u). First of all, we prove the following claim: for each i ∈ [κ], we have that

G(x + ϵ1Bi−1 , bi) ≥ (1− ϵ)G(x + ϵ1Bi−1 , oi)−
ϵR

κ

The proof is as follows: if the element bi is added at the first iteration, then from Lemma 17, we have that (1 + ϵ/3)G(x +
ϵ1Bi−1

, bi) ≥ w − ϵR
2κ . Since the threshold at the first iteration is w = d, and d ≥ (1− ϵ/3)maxs∈U f(s)− Rϵ

2κ according
to the first result in Lemma 17, then

(1 + ϵ/3)G(x + ϵ1Bi−1 , bi) ≥ (1− ϵ/3)max
s∈U

f(s)− ϵR

κ
.

Since maxs∈U f(s) ≥ maxo∈OPT f(o) ≥ G(x + ϵ1Bi−1
, oi), ∀i ∈ [κ], it then follows that

G(x + ϵ1Bi−1 , bi) ≥ (1− ϵ)G(x + ϵ1Bi−1 , oi)−
ϵR

κ
.

If bi is not a dummy variable and is not added in the first iteration, we can see that (1 + ϵ/3)G(x + ϵ1Bi−1
, bi) ≥ w − Rϵ

2κ .
Since the element oi is not added to B, it is not added at the last iteration. By the construction of OPT , we have that
Bi−1 ∪ {oi} ∈ M. Therefore,

(1− ϵ/3)G(x + ϵ1Bi−1 , oi) ≤
w

1− ϵ/3
+

Rϵ

2κ
.

Then

G(x + ϵ1Bi−1
, bi) ≥

(1− ϵ/3)2G(x + ϵ1Bi−1 , oi)

1 + ϵ/3

− (1− ϵ/3)ϵR

2(1 + ϵ/3)κ
− Rϵ

2(1 + ϵ/3)κ

≥ (1− ϵ)G(x + ϵ1Bi−1 , oi)−
ϵR

κ
.

Next, we consider the case where bi is a dummy variable. In this case G(x + ϵ1Bi−1
, bi) = 0. Since oi is not added,

(1− ϵ/3)G(x + ϵ1Bi−1
, oi) ≤

ϵd

3κ
+

Rϵ

2κ
.

Since d ≤ (1 + ϵ/3)maxs∈U f(s) + Rϵ
2κ ≤ (1 + ϵ/3)R + Rϵ

2κ . Notice that when ϵ > 0.5, the approximation guarantee in
Theorem 5 is trivial. Therefore, here we can assume ϵ ≤ 0.5, which implies that d ≤ 3R/2. Then we have that

(1− ϵ/3)G(x + ϵ1Bi−1
, oi) ≤ ϵR/κ.

Therefore,

G(x + ϵ1Bi−1
, bi) = 0

≥ (1− ϵ/3)G(x + ϵ1Bi−1
, oi)− ϵR/κ.

With this claim, we can prove the results of the lemma.

F(x + ϵ1B)− F(x) =
κ∑

i=1

F(x + ϵ1Bi
)− F(x + ϵ1Bi−1

)

=

κ∑
i=1

ϵ · ∂F
∂bi

∣∣
x=x+1Bi−1

≥ ϵ

κ∑
i=1

E∆f(S(x + ϵ1Bi−1
), bi)

= ϵ

κ∑
i=1

G(x + ϵ1Bi−1
, bi).

Here the last equality comes from the fact that E∆f(S(x), u) = E∆̃f(S(x), u). By the claim, it follows that

F(x + ϵ1B)− F(x) ≥ ϵ

κ∑
i=1

(1− ϵ)G(x + ϵ1Bi−1 , oi)− ϵ2R

= ϵ(1− ϵ)

κ∑
i=1

E∆f(S(x + ϵ1Bi−1
), oi)

− ϵ2R

≥ ϵ(1− ϵ)

κ∑
i=1

E∆f(S(x + ϵ1B), oi)

− ϵ2R

≥ ϵ(1− ϵ){f(OPT)− F(x + ϵ1B)}
− ϵ2R.

Here the second and third inequality are due to submodularity and monotonicity.

G TECHNICAL LEMMAS

Lemma 19 (Hoeffding’s Inequality). Let X1, ..., XN be independent random variables such that Xi is R-sub-Gaussian
and E[Xi] = µ for all i. Let X = 1

N

∑N
i=1 Xi. Then for any t > 0,

P (|X − µ| ≥ t) ≤ 2 exp{−Nt2

2R2
}.

Lemma 20 (Relative + Additive Chernoff Bound (Lemma 2.3 in Badanidiyuru and Vondrák [2014])). Let X1, ..., XN be
independent random variables such that for each i, Xi ∈ [0, R] and E[Xi] = µ for all i. Let X̂N = 1

N

∑N
i=1 Xi. Then

P (|X̂N − µ| > αµ+ ϵ) ≤ 2 exp{−Nαϵ

3R
}.

Lemma 21. Let X1, ..., XN be independent random variables such that Xi ∈ [0, R] and E[Xi] = µ for all i. Let
X = 1

N

∑N
i=1 Xi. Then for any t > 0 and δ > 0, if

N ≥ R2 ln(1/δ)

t2
,

then P (|X − µ| ≥ t) ≤ δ.

Proof. This result follows easily from Hoeffding’s Inequality.

Lemma 22. Let X1, ..., XN be independent random variables such that Xi ∈ [0, R] and E[Xi] = µ for all i. Let
X = 1

N

∑N
i=1 Xi. Then for any δ > 0, if

c ≥ R

√
ln(2/δ)

2N
, (6)

it is the case that

P (µ ∈ [X − c,X + c]) ≤ δ.

Proof. This result follows easily from Hoeffding’s Inequality.

Lemma 23. Suppose x ∈ R and x ≥ 2, if we have x ≥ 2
a log 2

a , then it holds that

log x

x
≤ a

Proof. Since y = log x
x is decreasing when x ≥ 2, if x > 2

a log 2
a , then we have

log x

x
<

a

2
·
log(2a log 2

a)

log 2
a

≤ a.

H ADDITIONAL EXPERIMENTS

In this section, we present some additional details of our experiments. In particular, we present additional detail about the
experimental setup in Section H.1. Next, we present the additional experimental results in Section H.2.

H.1 ADDITIONAL EXPERIMENTAL SETUP

First of all, we provide details about the two applications used to evaluate our algorithms. The two applications considered
here are noisy data summarization as presented in Section H.1.1 and influence maximization in Section H.1.2.

H.1.1 Noisy data summarization

In data summarization, U is a dataset that we wish to summarize by choosing a subset of U of cardinality at most κ. The
objective function f : 2U → R≥0 takes a subset X ⊆ U to a measure of how well X summarizes the entire dataset U , and
in many cases is monotone and submodular Tschiatschek et al. [2014]. However, in real instances of data summarization, we
may not have access to an exact measure f of the quality of a summary, but instead, we may have authentic human feedback
which is modeled as noisy queries to some underlying monotone and submodular function Singla et al. [2016].

Motivated by this, we run our experiments using instances of noisy data summarization. Our underlying monotone
submodular function f is defined as follows: U is assumed to be a labeled dataset, e.g. images tagged with descriptive words,
and for any X ⊆ U , f takes X to the total number of tags represented by at least one element in X Crawford [2023]. Notice
that this is essentially the instance of set cover.

H.1.2 Influence maximization

Another application is the influence maximization problem in large-scale networks Kempe et al. [2003]. In this application,
the universe is the set of users in the social network, and the objective is to choose a subset of users to seed with a product
to advertise in order to maximize the spread throughout the network. The marginal gain of adding an element s to set
S is defined as ∆f(S, s) := Ew∼D(w̄)∆f(S, s;w), where w is the noisy realization of the graph from some unknown
distribution D(w̄), and ∆f(S, s;w) = f(S ∪{s};w)− f(S;w). In a noisy graph realization with parameter w, f(S;w) is
the number of elements influenced by the set S under some influence cascade model. It is #P-hard to evaluate the objective

in influence maximization Chen et al. [2010]. Many of the previous works Chen et al. [2009] assume the entire graph can be
stored by the algorithm and the influence cascade model is known. The algorithm first samples some graph realizations
to approximate the true objective and run submodular maximization algorithms on the sampled graphs. In contrast, our
setting and algorithm do not assume that a graph is stored or the model of influence is explicitly known, only that we could
simulate it for a subset. Therefore our approach could apply in more general influence maximization settings than the
sampled realization approach.

Next, we describe the details about the three algorithms that we compare to: (i) The fixed ϵ approximation (“EPS-AP”)
algorithm. This is where we essentially run CTG, except instead of using the subroutine CS to adaptively sample in order
to reduce the number of samples, we simply sample down to an ϵ-approximation of every marginal gain. This takes N1

samples for every marginal gain computation, see definition of N1 in Algorithm 1. The element u is added to S if and only
if the empirical estimate ∆̂fN1

(S, u) ≥ w; (ii) The special case of the algorithm ExpGreedy of Singla et al. [2016] that
yields about a (1− 1/e)-approximate solution with high probability, “EXP-GREEDY”, which is described in Section 1.1
and in the appendix. In the detailed description of ExpGreedy found in the appendix in the supplementary material, this is
the case that k′ is set to be 1; (iii) The randomized version of the algorithm of ExpGreedy, “EXP-GREEDY-K”, which
yields about a (1− 1/e)-approximation guarantee in expectation. Since EXP-GREEDY-K is a randomized algorithm, we
average the results for EXP-GREEDY-K over 10 trials. This is the case that k′ = κ.

Then we provide some additional details for experiments on instances of data summarization. The parameter δ for all the
experiments is set to be 0.2, and the approximation precision parameter α is 0.2 for both CTG and EPS-AP. The value of ϵ
of the experiments for different κ are 0.1, 0.2, 0.1 and 0.1 on corel_60, delicious_300, delicious, and corel respectively. The
value of κ for different ϵ are 10, 80, 200 and 100 on corel_60, delicious_300, delicious and corel respectively.

At last, we introduce the experimental setup for influence maximization. We run the four algorithms described above on
the experiments for different values of κ and ϵ. The dataset used here is a sub-graph extracted from the EuAll dataset with
n = 29 Leskovec and Sosič [2016]. The underlying weight of each edge is uniformly sampled from [0, 1] (“euall”). In
our experiments, we simulate the influence maximization under the influence cascade model. We further use the reverse
influence sampling (RIS) Borgs et al. [2014] to enhance the computation efficiency of our algorithm. Here R is the number
of nodes in the graph and is thus 29. The value of κ for different ϵ is 8, and the value of ϵ for different κ is 0.15. The
parameters δ and α are set to be 0.2 for both of the experiments. Since EXP-GREEDY-K is a randomized algorithm, the
experimental results for EXP-GREEDY-K are averaged over 4 trials for different ϵ, and 8 trials for different κ.

H.2 ADDTIONAL EXPERIMENTAL RESULTS

First, we present the result analysis of the experiments where we vary ϵ. It can be seen from Figures 3(a), 3(b), 3(e) and
3(f) that both the total samples and average samples of our algorithm CTG increase less compared with EPS-AP and
EXP-GREEDY as ϵ decreases. This is not surprising, because the theoretical guarantee on the number of samples taken per
marginal gain contribution in EPS-AP is O(1

ϵ2), which would increase rapidly when ϵ decreases. This also makes sense
for EXP-GREEDY, since the theoretical guarantee on the number of queries of each iteration is O(nR

2

ϵ2 log
(
R2kn
δϵ2

)
) if the

difference between elements marginal gains are very small.

Then we present the additional experimental results with respect to the function value f on the instance of data summarization
in the main paper. The results are in Figure 4. The experimental results of f for different κ are in Figure 4(b), 4(h), 4(d)
and 4(f). From the results, one can see that the f values for different algorithms are very almost the same in most cases.
However, when κ increases and becomes large, the f value of EXP-GREEDY-K is smaller than other algorithms, which is
because when κ is large, it allows for more randomness in EXP-GREEDY-K and is less accurate.

Next, we present the experimental results on the instance of influence maximization. The results are plotted in Figure 5.
From the results, we can see that our proposed algorithm CTG outperforms the other three algorithms in terms of the total
number of samples (see Figure 5(a), 5(d)). When κ increases, the average number of samples decreases fast for CTG. This is
because the marginal gain on this instance decreases rapidly when κ increases while the threshold value decreases only by
a factor of 1 − α at the end of each iteration, in many iterations the threshold value w is much higher than the marginal
gain and thus the gap function ϕ(S, s) is large. According to the results of sample complexity in Theorem 3, the number of
required samples decreases fast as κ increases. This is also why the average number of samples of CTG is much smaller than
EXP-GREEDY and EXP-GREEDY-K as is presented in Figure 5(b) and Figure 5(e).

0.10 0.15 0.20
ε

0.00

0.25

0.50

0.75

1.00

f

×103

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(a) delicious_300 f

20 40 60 80
k

0.0

0.3

0.6

0.9

1.2

f

×103

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(b) delicious_300 f

0.05 0.10 0.15
ε

0

10

20

30

40

f

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(c) corel_60 f

5 10 15 20
k

0

20

40

60

80

f

CTG
EPS-AP
EXP-GREEDY
EXP-GREEDY-K

(d) corel_60 f

0.02 0.04 0.06 0.08
ε

0

80

160

240

320

f

CTG
EPS-AP

(e) corel f

10 20 30 40
k

0

50

100

150

200

f

CTG
EPS-AP

(f) corel f

0.05 0.10 0.15 0.20
ε

0.0

0.8

1.6

2.4

f

×103

CTG
EPS-AP

(g) delicious f

50 100 150 200 250
k

0.0

0.8

1.6

2.4

3.2

f

×103

CTG
EPS-AP

(h) delicious f

Figure 4: The experimental results of f of running different algorithms on instances of data summarization on the delicious
URL dataset ("delicious", "delicious_300") and Corel5k dataset ("corel", "corel_60").

0.10 0.15 0.20
ε

0.0

0.6

1.2

1.8

2.4

sa
m
pl
es

×108

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(a) euall samples

0.10 0.15 0.20
ε

0

2

4

6

av
er

ag
e

sa
m

pl
es

×105

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(b) euall average samples

0.10 0.15 0.20
ε

0

6

12

18

24

f

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(c) euall f

2 4 6 8
k

2

4

6

8

sa
m
pl
es

×107

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(d) euall samples

2 4 6 8
k

0.8

1.6

2.4

3.2

av
er

ag
e

sa
m

pl
es

×105

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(e) euall average samples

2 4 6 8
k

0

4

8

12

16

f

CTG
EPS-AP
EXP-GREEDY-K
EXP-GREEDY

(f) euall f

Figure 5: The experimental results of running different algorithms on the instance of influence maximization on the EuAll
dataset ("euall").

	Introduction
	Related work

	Preliminary Definitions and Notations
	Confident Sampling Algorithm
	Monotone Submodular Maximization
	Algorithm description of CTG
	Theoretical guarantees and analysis

	Continuous Threshold Greedy with Noisy Queries
	Applications and Experiments
	Experimental setup
	Experimental results

	Acknowledgements
	Additional Related Work
	Other noisy model

	Comparison with ExpGreedy
	Appendix for Section 3
	Comparison of CS to fixed -approximation
	Additional lemmas and analysis of Theorem 1
	Proof and analysis of Theorem 2

	Appendix for Section 4
	Comparing to sampling-before-hand algorithm
	Analysis of sampling-before-hand approach

	Proof of Theorem 3
	Analysis of CTG2

	Non-monotone Submodular Objectives
	Appendix for Section 5
	Comparison of CCTG with Accelerated Continuous Greedy algorithm
	Proof of Theorem 5

	Technical Lemmas
	Additional Experiments
	Additional experimental setup
	Noisy data summarization
	Influence maximization

	Addtional experimental results

