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Abstract

Diffusion models have demonstrated their effectiveness in addressing the inherent
uncertainty and indeterminacy in monocular 3D human pose estimation (HPE).
Despite their strengths, the need for large search spaces and the corresponding
demand for substantial training data make these models prone to generating biome-
chanically unrealistic poses. This challenge is particularly noticeable in occlusion
scenarios, where the complexity of inferring 3D structures from 2D images in-
tensifies. In response to these limitations, we introduce the Discrete Diffusion
Pose (Di2Pose), a novel framework designed for occluded 3D HPE that capitalizes
on the benefits of a discrete diffusion model. Specifically, Di2Pose employs a
two-stage process: it first converts 3D poses into a discrete representation through
a pose quantization step, which is subsequently modeled in latent space through a
discrete diffusion process. This methodological innovation restrictively confines
the search space towards physically viable configurations and enhances the model’s
capability to comprehend how occlusions affect human pose within the latent space.
Extensive evaluations conducted on various benchmarks (e.g., Human3.6M, 3DPW,
and 3DPW-Occ) have demonstrated its effectiveness.

1 Introduction

3D Human Pose Estimation (HPE) from monocular images remains a challenging yet pivotal research
in the realm of computer vision, boasting a wide range of applications including human-machine in-
teraction, autonomous driving, and animations [57, 81, 5, 70]. Generally, the mainstream approaches,
including Direct Estimation [68, 43, 47] and 2D-to-3D Lifting [87, 51, 86], aim to perform 3D HPE
by either directly predicting 3D poses from 2D images or lifting detected 2D poses into 3D space.
These approaches aim to address the inherent 2D-3D ambiguity in 3D HPE tasks by learning mapping
from training data. Despite significant advancements, accurately estimating 3D poses from monocular
images remains a formidable challenge, particularly when humans are partially occluded [39]. Such
occlusions introduce considerable uncertainty and indeterminacy into the estimation process.

Existing 3D HPE methods try to handle the occlusion challenges with pose priors/constraints [58, 62]
or data augmentation strategies (e.g., annotations augmentation [61], pose transformation [35], and
differentiable operations [82]). However, due to the inherent discreteness of 3D poses (primarily
defined by discrete anatomical landmarks), these methods tend to represent poses using coordinate
vectors or heatmap embeddings, treating joints as independent units and overlooking the interdepen-
dencies among body joints. Recent research [21] has introduced a compositional pose representation
that captures the dependencies among joints by converting a pose into multiple tokens, enabling the
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Figure 1: (a) Results of DiffPose [22] and Di2Pose in Human3.6M [72] dataset (with MPJPE metric),
across varying proportions of training samples. (b) Prediction results of two methods under occlusion.

use of mutual context between joints. This approach, which learns from real pose datasets, results in
each learned token corresponding to a physically realistic prototype. Nevertheless, Geng et al. [21]
casts HPE to a classification task, where the system simply classifies tokens based on prototype poses.
Unfortunately, such scheme does not account for the effects of occlusions in the estimation process,
potentially leading to inaccuracies due to unresolved uncertainty and indeterminacy.

Recent studies have shown marked progress in 3D HPE via generative models [2, 84, 19, 27].
Notably, diffusion models [25] have demonstrated effectiveness in handling complex and uncertain
data distributions, making them suitable for handling uncertainty and indeterminacy in 3D HPE
tasks [19, 91, 66, 27, 37]. They excel at generating samples that conform to a target data distribution
by iteratively removing noise through a series of diffusion steps, ultimately predicting more accurate
3D poses. However, these diffusion-based 3D HPE methods initialize the 3D pose from random noise
at the begining of the diffusion process, where each joint can be sampled from the continuous 3D
space. Since the continuous 3D space has an infinite number of points, training such diffusion-based
models requires a large amount of 3D pose data to achieve optimal outcomes [23, 75, 3]. This demand
implies a substantial need for training data, presenting a stark contradiction to the limited availability
of 3D human pose datasets. As illustrated in Figure 1(a), the predictive performance of DiffPose [22]
declines more rapidly as the proportion of training data decreases. Given the scarcity of 3D pose
training data, previous diffusion models may generate physically implausible configurations that do
not adhere to human biomechanics, leading to inaccurate human pose estimations, particularly in
occluded scenes (c.f., Figure 1(b) with DiffPose).

In this paper, we propose a novel framework for 3D HPE with occlusions: Discrete Diffusion Pose
(Di2Pose), drawing on compositional pose representation and diffusion model to achieve the best of
two worlds. Specifically, Di2Pose employs a two-stage approach: a pose quantization step followed
by a discrete diffusion process. The pose quantization step leverages the discrete nature of 3D poses
and represents them as quantized tokens by capturing the local interactions between joints. This
step effectively confines the search space to physically plausible configurations by learning from
real 3D human poses. Subsequently, the discrete diffusion process models the quantized pose tokens
in the latent space through a conditional diffusion model. By integrating the forward and reverse
processes, our framework adeptly simulates the transition of a 3D pose from occluded to recovered.
By modeling occlusion implicitly within the latent space, Di2Pose enhances its understanding of how
occlusions affect human poses, providing valuable insights during the training phase.

For the pose quantization step, we devise a pose quantization step inspired by VQ-VAE [71],
consisting of a pose encoder, a quantization process, and a pose decoder. To effectively capture
local interactions between 3D joints, we introduce the Local-MLP block for both pose encoder and
decoder. Within each Local-MLP block, a simple Joint Shift operation integrates information from
different joints. The pose encoder utilizes several Local-MLP blocks to convert a 3D pose into
multiple rich token features, each representing a sub-structure of the overall pose. These tokens
are quantized using a shared codebook, yielding corresponding discrete indices. Additionally, we
implement the finite scalar quantization (FSQ) [49] to address the codebook collapse issue observed
in traditional VQ-VAE methods [59, 89, 56, 42]. This strategy ensures that the generated codewords
are meaningful, a crucial aspect for the subsequent success of the discrete diffusion process.
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For the discrete diffusion process, during the training phase, we introduce occlude and replace
strategies to model the quantized pose tokens, enabling the discrete diffusion model to predict
occluded tokens and update potential tokens. The occluded token represents the occlusion of the
corresponding sub-structure of the 3D pose. The token replacement mechanism is designed to
enhance the diversity of potential sub-structures, reflecting the indeterminacy in occluded parts.
During the inference phase, pose tokens are either occluded or initialized randomly. The denoising
diffusion process estimates the probability density of pose tokens step-by-step based on the input
2D image until the tokens are completely reconstructed. Each step leverages contextual information
from all tokens of the entire pose as predicted in the previous step, facilitating the estimation of a
new probability density distribution and the prediction of the current step’s tokens. This sequential
approach ensures a detailed and accurate reconstruction of 3D poses from occluded scenes.

We extensively evaluate our approach in 3D HPE on three challenging benchmarks (Human3.6M [34],
3DPW [72] and 3DPW-Occ). Di2Pose consistently yields lower errors compared to state-of-the-art
methods. In particular, it achieves significantly better results when evaluated on occluded scenarios,
verifying its advantages of occlusion-handling capability. Our contributions are threefold:

• We propose the Di2Pose framework, which integrates the inherent discreteness of 3D pose data
into the diffusion model, offering a new paradigm for addressing 3D HPE under occlusions.

• The designed pose quantization step represents 3D poses in a compositional manner, effectively
capturing local correlations between joints and confining search space to reasonable configurations.

• The constructed discrete diffusion process simulates the complete process of a 3D pose transitioning
from occluded to recovered, which introduces the impact of occlusions into pose estimation process.

2 Related Work

Monocular 3D HPE. Existing approaches can generally be classified into frame-based and video-
based methodologies. Frame-based methods predict the 3D pose from a single RGB image,
employing different networks in various studies [18, 20, 52, 54, 55] to directly output the human
pose from the 2D image. Alternatively, a significant number of studies [48, 77, 85, 88] initially
determine the 2D pose, which subsequently forms the foundation for inferring the 3D pose. In
contrast, video-based methods leverage temporal relationships across video frames. Such methods
predominantly [9, 11, 15, 31, 65, 73, 76] commence with the extraction of 2D pose sequences using
a 2D pose detector from the video clips, aiming to harness the essential spatio-temporal data for
3D pose estimation. To validate the efficacy of our approach, we evaluate our Di2Pose on the more
challenging frame-based setting, wherein the 3D human pose is directly inferred from a 2D image.

Occluded 3D HPE. Occlusions significantly challenge 3D HPE. As evidenced by research [76, 58,
62], pose priors and constraints have been proven crucial for mitigating such issue. Approaches typi-
cally involve statistical models to deduce occluded parts from visible cues [76, 41, 44] or pre-defined
rules to constraint poses [61, 1]. Moreover, due to the scarcity of 3D pose data, data augmentation,
including synthetic occlusions [7, 38, 60, 64, 13] and pose transformations [35, 82], remains vital for
enhancing model robustness. Diverging from these aforementioned methods, our method innovatively
introduces occlusion in the latent space without extra priors or explicit augmentations, providing a
deeper feature-based understanding of occlusion’s effects on pose estimation.

Diffusion Models for 3D HPE. Recent advancements have shown that diffusion models are capable
of managing complex and uncertain data distributions [25, 26, 17, 4, 32, 8, 10, 80, 40, 36, 74, 78],
which is particularly beneficial for 3D HPE. Typically, these models predict 3D poses by progressively
refining the pose distribution from high to low uncertainty [22, 14, 19, 91, 63]. Other approaches
use diffusion models to generate multiple pose hypotheses from a single 2D observation [66, 27].
These 3D pose estimators effectively reduce uncertainty and indeterminacy throughout the estimation
process. Moreover, discrete diffusion models have also gained attention in various domains [30, 40,
24, 33]. Inspired by these advancements, our work introduces a discrete diffusion model for occluded
3D HPE, which aligns more closely with the inherent discreteness of 3D pose data and effectively
incorporates occlusion into the estimation process, providing a novel perspective in the field.
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Figure 2: Overview of our two-stage Di2Pose framework. In the stage 1, we train a pose quantization
step that transforms a 3D pose P into multiple discrete tokens k, each token representing the indices
of implied codebook C. In the stage 2, we model k in the discrete space by discrete diffusion
process. In the forward process, each token is probabilistically occluded with Occ token or replaced
with another available token. In the reverse process, the model leverages an independent image
encoder and a pose denoiser to reconstruct all the tokens based on the condition 2D image. These
reconstructed tokens are finally decoded by the pose decoder, resulting in the recovered 3D pose.
Notably, we only update the parameters of pose denoiser, pose decoder and image encoder are frozen.

3 Di2Pose

Given an 2D image I ∈ RH×W×3, the goal of 3D HPE is to predict P̂ ∈ RJ×3, which represents the
3D coordinates of all the J joints of the human body. In this paper, we construct occluded 3D HPE
task as a two-stage framework including the pose quantization step and the discrete diffusion process.

As shown in Figure 2, in the training phase, Stage 1 learns a pose quantization step by a VQ-VAE
like structure (Sec. 3.1), which is able to encode a 3D pose into multiple quantized tokens. Stage 2
models quantized pose tokens in the latent space by the forward and reverse process of a conditional
diffusion model (Sec. 3.2). In the inference phase, we only use the reverse process of Stage 2
and the pre-trained pose decoder of Stage 1 to recover 3D pose from the 2D image. Notably, pose
tokens are either occluded or initialized randomly at the beginning of the inference phase. The model
reconstructs all the tokens based on the condition 2D image step-by-step. These reconstructed tokens
are finally decoded by the pre-trained pose decoder, resulting in the recovered 3D pose.

3.1 Pose Quantization Step

As depicted in Figure 2, a pose quantization step comprises a pose encoder, the quantization process,
and a pose decoder. Initially, for a real 3D pose P ∈ RJ×3, the pose encoder fPE(·) converts P to
token features F. During the quantization process, we utilize FSQ to quantize F = (f1, f2, · · · , fN )
(fi ∈ RD) into tokens T = (t1, t2, · · · , tN ) (ti ∈ RD) . Finally, the quantized tokens T are decoded
by the pose decoder fPD(·) to reconstruct 3D pose P̂.

Pose Encoder. Considering the interdependencies among human body joints, our goal is to represent
3D poses in a compositional manner, moving away from reliance on coordinates vectors or heatmap
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embeddings. The VQ-VAE architecture, incorporating MLP-Mixer blocks [69] within its encoder
and decoder, has been proven effective in decomposing a pose into multiple token features, each
corresponding to a sub-structure of the pose [21]. However, the MLP-Mixer block is designed to
extract global information across all joints, which can not adequately capture the local relationships
between joints within individual sub-structure.

In response to aforementioned limitation, we design Local-MLP block to capture the local interactions
between 3D joints. The pose encoder fPE(·), comprising several Local-MLP blocks, converts P to
N token features:

F = (f1, f2, · · · , fN ) = fPE(femb(P)), (1)

where femb(·) embeds P to Pemb ∈ RJ×D by a linear layer.

D

J

𝐽1

𝐽1

𝐽1

𝐽2

𝐽2

𝐽2

𝐽3

𝐽3

𝐽3

𝐽4

𝐽4

𝐽4

𝐽2

𝐽1

𝐽3

𝐽2

𝐽1

𝐽4

𝐽3

𝐽2

𝐽4

𝐽3

𝐽1

𝐽4

𝐽2

𝐽1

𝐽3

𝐽2

𝐽1

𝐽4

𝐽3

𝐽2

𝐽4

𝐽3

(a) (b)

Linear Proj.

Joint Shift

Linear Proj.

Channel MLP

LayerNorm

JS-Block

LayerNorm

Figure 3: (a) depicts the structure of the Local-
MLP block; (b) shows the Joint Shift operation,
where the arrows indicate the steps, and different
subscript numbers represent the features of differ-
ent joints. The gray blocks indicate zero padding.

As shown in Figure 3(a), a Local-MLP block
is composed of a Layer Normalization layer, a
Joint Shift block (JS-Block), a Channel MLP,
and a residual connection. The JS-Block is
specifically designed to capture local interac-
tions among X joints. It extracts features by
linear projection, and the Joint Shift operation
enables feature translation along joint connec-
tion directions. As shown in Figure 3(b), with
the input P⊤

emb ∈ RD×J , the feature is evenly
divided into X segments (X = 3 in the exam-
ple), each segment being shifted incrementally
by units from −⌊X/2⌋ to ⌊X/2⌋. The central
segment remains stationary, while the segments
to the left and right are symmetrically shifted
away from the center by up to ±⌊X/2⌋ units.
Zero padding is used to maintain dimensionality.
Features highlighted within the dashed box are
selected for further linear projection. Finally, the
Channel MLP processes these features channel-
wise to facilitate information integration.

Quantization Process. During this process, we
exploit FSQ [49] to enhance the utilization of codewords. FSQ quantizes token features F as
corresponding token indices:

k = (k1, k2, · · · , kN ) = FSQ(fproj(F)), (2)

where fproj(·) projects each fi ∈ RD of F to qi ∈ Rd, and each ki of k denotes the entries of
implied codebook C. For each qi, FSQ employs a bounding function fbnd : qi 7→ ⌊L/2⌋ · tanh(qi)
to constrain each channel of d. As a result, each channel in q̂i = round(fbnd(qi)) takes one of L
unique values. This procedure yields q̂i ∈ C, where the total number of unique codebook entries
is |C| =

∏d
i=1 Li (mapping the i-th channel to Li values). The vectors in C can be enumerated,

establishing a bijective mapping from any q̂i to an integer within {1, . . . , |C|}. In addition, the
corresponding codeword of ki, which is denoted as ti ∈ RD, represents the quantized result of fi.
Thereby, using FSQ, the token features F are quantized as T = (t1, t2, · · · , tN ).

Pose Decoder. The pose decoder fPD(·) is designed to recover 3D pose P̂ from T. fPD(·) adopts a
structure similar to the pose encoder but in reverse, utilizing a reduced number of Local-MLP blocks.

Loss. The pose quantization step, including the pose encoder, quantization process, and pose decoder,
is jointly optimized by minimizing L1 loss LPQ = ||P − P̂ ||1 across the training dataset.

3.2 Discrete Diffusion Process

After training the pose quantization step, we can acquire N quantized tokens k from the original
3D pose P. The next step in Di2Pose pipeline is to model k in the latent space by the discrete
diffusion process. In the following, we first briefly introduce the diffusion models and clarify the
basic principles of the discrete diffusion model. Then we explain the details of discrete diffusion
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process, including the designed transition matrix and loss function. Eventually, we illustrate the
architecture and training and inference process.

Discrete Diffusion Model. Our discrete diffusion model is characterized by two distinct processes:
1) Forward process: It progresses through discrete steps s ∈ {0, 1, 2, ..., S}, gradually transforming
the initial tokens k0 (the quantized token k) into a noise-infused latent representation kS . 2) Reverse
process: It is tasked with reconstructing the original data k0 from the latent kS , following a reverse
temporal sequence s ∈ {S, S − 1, ..., 1, 0}.
Followed previous studies [67, 3, 28], we use a transition probability matrix [Ms]ij = q(ks =

i|ks−1 = j) ∈ R|C|×|C| elucidate the likelihood of transitioning from ks−1 to ks. Then the forward
process for the entire sequence of tokens is expressed as:

q(ks|ks−1) = c⊤(ks)Msc(ks−1), (3)

where c(·) symbolizes a function capable of converting a scalar into a one-hot column vector.
The distribution of ks follows a categorical distribution, determined by the vector Msc(ks−1).
Leveraging the Markov chain property, it is feasible to bypass intermediate stages, directly computing
the probability of ks from k0 for any given step as:

q(ks|k0) = c⊤(ks)Msc(k0),with Ms = Ms . . .M1 (4)

Moreover, the posterior of the reverse process, q(ks−1|ks,k0), can be ascertained as:

q(ks−1|ks,k0) =
q(ks|ks−1,k0)q(ks−1|k0)

q(ks|k0)
=

(
c⊤(ks)Msc(ks−1)

)(
c⊤(ks−1)Ms−1c(k0)

)
c⊤(ks)Msc(k0)

. (5)

Occlude and Replace Transition Matrix. Notably, a suitable design for transition probability matrix
Ms is significant to train the discrete diffusion process. As illustrated in Section 3.1, through pre-
trained pose encoder and FSQ, P can be converted to k = (k1, k2, · · · , kN ), each ki corresponding
to a sub-structure of the overall pose. With this foundation, we specifically devise the occlude
and replace scheme, which is inspired by [24], for tackling the challenges of occluded 3D HPE.
In occlusion scenes, the human body is always occluded in various situations (self-occlusions,
object or people-to-person occlusions), and the typical manifestation is that some sub-structures
of the pose are invisible. Consequently, we design the occlude scheme simulating the occlusion
of corresponding joints, which introduces occlusion impact in the training process. Additionally,
recognizing the inherent uncertainty in occlusion scenarios where a single occluded region may
correspond to multiple potential 3D human poses, we develop the replace strategy to update
certain token with another available token.

In practice, each quantized token ki has a probability of γs to transition to the Occ token. Moreover,
ki is also subject to a probability of |C|βs to be uniformly resampled across all |C| categories.
Furthermore, ki retains a probability of αs = 1 − |C|βs − γs to remain unchanged. Then, the
transition matrix Ms ∈ R(|C|+1)×(|C|+1) is defined as:

Ms =


αs + βs βs · · · 0

βs αs + βs · · · 0
...

...
. . .

...
γs γs · · · 1

 , (6)

where αs, βs ∈ [0, 1]. The prior distribution of step S can be derived as: p(kS) = [βS , βS , · · · , γS ],
where αS =

∏S
i=1 αi, γS = 1 −

∏S
i=1(1 − γi) and βS = (1 − αS − γS)/|C|. In this study, we

adapt the linear schedule [25] as noise schedule to pre-define the value of transition matrices (αS ,
βS , and γS). Subsequently, we can calculate q(ks|k0) according to Eq. (4). However, when the
number of categories |C| and time step S is too large, it can quickly become impractical to store all
of the transition matrices Ms in memory, as the memory usage grows like O(|C|2S). Actually, it is
unnecessary to store all of the transition matrices. Instead we only store all of αs and βs in advance,
since we can calculate q(ks|k0) according to following formula (refer to Appendix for proofs):

Msc(k0) = αsc(k0) + (γs − βs)c(|C|+ 1) + βs. (7)

Training Objectives. We train a network fθ(ks−1|ks,y) to estimate q(ks−1|ks,k0) in the reverse
process. The network is trained to minimize the variational lower bound (VLB):

Lvlb = DKL(q(kS |k0)||p(kS)) +
∑S−1

s=1

{
DKL[q(ks−1|ks,k0)||fθ(ks−1|ks,y)]

}
, (8)
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In addition, we follow [50, 24] to utilize the reparameterization trick, which lets Di2Pose predict the
noiseless token distribution fθ(k̂0|ks,y) at each reverse step, and then compute fθ(ks−1|ks,y) as:

fθ(ks−1|ks,y) =
∑H

k̂0=1q(ks−1|ks, k̂0)fθ(k̂0|ks,y). (9)

Based on the Eq. (9), an auxiliary denoising objective loss is introduced, which encourages the
network to predict fθ(k̂0|ks,y):

Lk0
= − log fθ(k̂0|ks,y). (10)

Our final loss function is defined as:

L = λLk0
+ Lvlb, (11)

where λ is a hyper-parameter to control the weight of the auxiliary loss Lk0
.

Diffusion Architecture. As depicted in Figure 2, our discrete diffusion model consists of three
main components: an image encoder, a pose denoiser, and a pose decoder. The pre-trained image
encoder processes the 2D image to produce a conditional feature sequence. The pose denoiser,
receiving the quantized pose tokens ks and and step S, predicts the distribution of noiseless tokens
fθ(k̂0|ks,y). This component is equipped with several transformer blocks, each featuring an
AdaLNorm operator [6], multi-head attention blocks that combine the image feature information with
ks, and layer normalization and linear layers. At the end of the reverse process, all recovered tokens
are obtained, and the final prediction of 3D pose is decoded by the well-trained pose decoder.

Training and Inference Process. In the training process, as for step s, we sample ks from q(ks|k0)
based on Eq. (7) in the forward process. We then estimate fθ(ks−1|ks,y) in the reverse process.
The final loss will be calculated according to Eq. (11). In the inference process, all pose tokens are
either masked or initialized randomly. Subsequently, we predict fθ(ks−1|ks,y) step by step until
the tokens are completely recovered. Finally, reconstructed tokens are decoded by the pose decoder,
resulting in the recovered 3D pose. The complete algorithms are summarized in Appendix.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. Human3.6M [34] is the most extensive benchmark for 3D HPE, consisting of 3.6 million
images. We follow [22] with same protocol, which involves training on subjects S1, S5, S6, S7,
and S8, and testing on subjects S9 and S11. 3DPW [72] is the first dataset in the wild that includes
video footage taken from a moving phone camera. We also evaluate our method on this dataset to
measure the robustness and generalization. Additionally, to further verify the occlusion-robustness,
we evaluate Di2Pose on the 3DPW-Occ [83], which is a subset of the 3DPW.

Evaluation Metrics. For Human3.6M and 3DPW, we follow the standard protocols. Mean per
joint position error (MPJPE) calculates the mean Euclidean distance between the root-aligned
reconstructed poses and ground truth joint coordinates. PA-MPJPE employs a Procrustes alignment
between the poses before calculating the MPJPE. In addition, to further evaluate the effectiveness
of our method under occlusion scenes, we devise an adversarial protocol, termed 3DPW-AdvOcc,
following the previous research [84]. We apply occlusion patches to the input image to identify the
most challenging predictions. This process involves assessing the relative performance degradation
on the visible joints. Similar to [84], we utilize textured patches generated by randomly cropping
texture maps from the DTD [16]. We employ two square patch sizes: 40 and 80 relative to a 256 ×
192 image, denoted as Occ@40 and Occ@80 respectively, with a stride of 10.

4.2 Implementation Details

Pose Quantization Step. The pose encoder is constructed with four Local-MLP blocks, while the
pose decoder incorporates a single block. Within these Local-MLP blocks, the embedding dimensions
D for the pose encoder and decoder are configured to 2048 and 512, respectively. For the quantization
process, the projected vector qi features the channel d = 5. The levels per channel, denoted as
[L1, · · · , Ld], are specified as [7, 5, 5, 5, 5]. The number of quantized tokens N is set to 100.
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Table 1: Results on Human3.6M in millimeters under MPJPE. The best results are in bold, and the
second-best ones are underlined.

Methods Dir Disc Eat Gr. Phon. Phot. Pose Pur. Sit SitD. Sm. Wait W.D. Walk W.T. Avg

Pavlakos et al. [54] CVPR’17 67.4 71.9 66.7 69.1 72.0 77.0 65.0 68.3 83.7 96.5 71.7 65.8 74.9 59.1 63.2 71.9
Martinez et al. [48] ICCV’17 51.8 56.2 58.1 59.0 69.5 78.4 55.2 58.1 74.0 94.6 62.3 59.1 65.1 49.5 52.4 62.9
Hossain et al. [29] ECCV’18 48.4 50.7 57.2 55.2 63.1 72.6 53.0 51.7 66.1 80.9 59.0 57.3 62.4 46.6 49.6 58.3

Zhao et al. [85] CVPR’19 48.2 60.8 51.8 64.0 64.6 53.6 51.1 67.4 88.7 57.7 73.2 65.6 48.9 64.8 51.9 60.8
Liu et al. [45] ECCV’18 46.3 52.2 47.3 50.7 55.5 67.1 49.2 46.0 60.4 71.1 51.5 50.1 54.5 40.3 43.7 52.4
Xu et al. [77] CVPR’21 45.2 49.9 47.5 50.9 54.9 66.1 48.5 46.3 59.7 71.5 51.4 48.6 53.9 39.9 44.1 51.9

Zhao et al. [88] CVPR’22 45.2 50.8 48.0 50.0 54.9 65.0 48.2 47.1 60.2 70.0 51.6 48.7 54.1 39.7 43.1 51.8
Geng et al. [21] CVPR’23 — — — — — — — — — — — — — — — 50.8
Choi et al. [14] IROS’23 44.3 51.6 46.3 51.1 50.3 54.3 49.4 45.9 57.7 71.6 48.6 49.1 52.1 44.0 44.4 50.7

Zhang et al. [82]TPAMI’23 — — — — — — — — — — — — — — — 50.2
Gong et al. [22] CVPR’23 42.8 49.1 45.2 48.7 52.1 63.5 46.3 45.2 58.6 66.3 50.4 47.6 52.0 37.6 40.2 49.7

Di2Pose (Ours) 41.9 47.8 45.0 49.0 51.5 62.2 45.7 45.6 57.6 67.1 50.1 45.3 51.4 37.3 40.9 49.2

Table 2: Evaluation on 3DPW, 3DPW-Occ, and 3DPW-AdvOcc. The number 40 and 80 after 3DPW-
AdvOcc denote the occluder size. * denotes the results from our implementation. The best results are
in bold, and the second-best ones are underlined.

Methods 3DPW [72] 3DPW-Occ [83] 3DPW-AdvOcc@40 3DPW-AdvOcc@80

MPJPE ↓PA-MPJPE ↓MPJPE ↓PA-MPJPE ↓MPJPE ↓PA-MPJPE ↓MPJPE ↓PA-MPJPE ↓
Cai et al. [9] ICCV’19 112.9 69.6 115.8 72.3 241.1 101.4 355.9 116.3

Pavllo et al. [55] CVPR’19 101.8 63.0 106.7 67.1 221.6 99.4 334.3 112.9
Cheng et al. [12] AAAI’21 — 64.2 — 85.7 279.4 113.2 371.4 119.8
Zheng et al. [90] ICCV’21 118.2 73.1 132.8 80.5 247.9 106.2 359.6 115.5
Zhang et al. [82]TPAMI’23 91.1 54.3 94.6 56.7 142.5 73.8 251.8 103.9
Geng et al. ∗ [21] CVPR’23 83.1 53.9 82.8 53.7 127.2 71.9 192.5 92.1
Gong et al. ∗ [22] CVPR’23 82.7 53.8 82.1 53.5 121.4 70.9 189.3 92.4

Di2Pose (Ours) 79.3 50.1 79.6 50.7 108.4 59.8 153.6 78.7

Discrete Diffusion Process. For the occlude and replace transition matrix, we linearly increase βs
and γs from 0 to 0.1 and 0.9, respectively, and decrease αs from 1 to 0. For the discrete diffusion
model, we use off-the-shelf image encoder [79] to extract feature sequence of conditional 2D image.
As for the pose denoiser, we build a 21-layer 16-head transformer with the dimension of 1024. We
set steps S as 100 and loss weight λ is set to 5e-4. Please refer to Appendix for more details.

4.3 Comparsion with State-of-the-Arts

Human3.6M. To explore the effectiveness of Di2Pose, we evaluate its performance in the challenging
context of frame-based 3D pose estimation. Specifically, within the discrete diffusion process, context
information is extracted from a single input frame using the image encoder. As shown in Table 1,
we benchmark Di2Pose against SOTA 3D HPE methods on the Human3.6M. Our Di2Pose achieves
49.2mm in average MPJPE, surpassing the performance of the SOTA diffusion model [22] by 0.5mm,
which indicates that Di2Pose is able to enhance monocular 3D HPE in indoor scenes.

3DPW. Beyond indoor settings, we evaluate the performance of Di2Pose on the in-the-wild 3DPW
dataset. As Table 2 shows, Di2Pose achieves the SOTA performance, and outperforms the SOTA
method [22] by 3.4mm in MPJPE and 3.7mm in PA-MPJPE. On the occlusion-centric 3DPW-Occ,
Di2Pose maintains its superiority. When assessed under the 3DPW-AdvOcc protocol, all methods
exhibit performance drops—MPJPE surges by up to 129% and PA-MPJPE by up to 72%. Despite
this, Di2Pose remains markedly robust, leading the SOTA by significant margins in both MPJPE and
PA-MPJPE, underscoring its effectiveness in handling occlusions.

Qualitative Results. Figure 4 presents the qualitative results of DiffPose [22] in comparison with our
Di2Pose across two datasets. It can be observed that our method yields more accurate predictions than
compared diffusion model (DiffPose), especially under various occlusion scenarios (self-occlusion
and object occlusion). This demonstrates the superior occlusion-robustness of our Di2Pose.
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Image DiffPose Di2Pose Image DiffPose Di2Pose

Figure 4: Qualitative results on two datasets. The black lines represent the ground truth poses and the
blue lines are prediction results.

Table 3: Ablations on Human3.6M. P-1 and P-2 represent MPJPE and PA-MPJPE, respectively.

Loc. Num. P-1 P-2

1 14.5 13.0

3 13.6 12.5

5 14.1 12.8

(a) Different local joint
number X of Joint Shift
operations in JS-Block.

Levels P-1 P-2

[8, 5, 5, 5] 15.2 15.9

[7, 5, 5, 5, 5] 13.6 12.5

[8, 8, 8, 6, 5] 13.8 12.7

(b) Different levels per
channel [L1, · · · , Ld] of
quantization process FSQ.

Occ. Rate P-1 P-2

0 50.4 39.3
0.3 50.7 39.3
0.6 49.5 39.1
0.9 49.2 39.0
1.0 51.0 39.5

(c) Different final occlude
rate γS for the occlude and
replace transition matrix.

In
fe

re
nc

e
St

ep
s

Training Steps

25 50 100

25 51.7 51.1 50.3

50 — 50.6 49.9

100 — — 49.2

(d) Different number of
training and inference
steps S. P-1 are reported.

4.4 Ablation Study

Table 4: Different representa-
tion methods for 3D HPE.

Pose Repr. MPJPE PA-MPJPE

PCT [21] 15.2 15.9
Ours 13.6 12.5

Effectiveness of Pose Quantization Step. Our pose quantization
step, which consists of Local-MLP blocks, is designed for repre-
senting 3D human pose by capturing the local interactions between
3D joints. Table 4 displays the MPJPE metrics comparing the orig-
inal 3D poses with those reconstructed via various methods. The
results show that our pose quantization step reconstructs 3D poses
with lower errors compared to previous method [21], which uses
an MLP-Mixer for global joint information extraction. It indicates
that our model learns a more accurate representation of 3D poses. In addition, we conducted other
ablation studies to investigate different local joint numbers X and levels per channel [L1, · · · , Ld]
within pose quantization step, as shown in Table 3a and Table 3b. As to different X , note that when
X = 1, we only extract feature of individual joint, and when X > 1, JS-Block is able to capture local
interactions of different joints. Experimental results indicate that X = 3 reaches lowest reconstruct
error. As for [L1, · · · , Ld], the best level of FSQ for pose quantization is [7, 5, 5, 5, 5].

Table 5: Different transition
matrices for discrete diffusion
model.

Matrices MPJPE PA-MPJPE

Occlude 51.0 39.5
Replace 50.4 39.3

Both 49.2 39.0

Impact of Different Transition Matrices. To demonstrate the effec-
tiveness of the specifically designed occlude and replace transition
matrix, we constructed three transition matrices for discrete diffusion
process: occlude transition matrix, replace transition matrix, and
occlude and replace transition matrix. Table 5 illustrates that the
optimal results are achieved when utilizing the occlude and replace
transition matrix. The suboptimal performance observed when exclu-
sively employing the other two transition matrices can be attributed
to the following reasons: Utilizing solely the replace transition ma-
trix introduces the challenge of random, irrelevant sub-structures,
complicating the learning of the reverse process; Conversely, relying exclusively on the occlude
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Image GT Ours Image GT Ours

Figure 5: Failure cases of our Di2Pose for 3D HPE. These instances primarily occur in scenarios
with severe occlusions, as compared against ground truth (GT) poses. The content encircled by the
dashed line indicates the parts where differences exist.

transition matrix causes the model to overly focus on the occluded portions, neglecting the contextual
information from other visible parts. These clarifications can be verified in Table 3c, where we
investigate the impact of different γS . When γS = 0, the occlude and replace transition matrix can
be seen as the replace transition matrix, and when γS = 1, the occlude and replace transition matrix
can be seen as the occlude transition matrix. The best performance is obtained when γS = 0.9.

In addition, we conducted an ablation study to investigate the impact of S on the training and inference
processes, as shown in Table 3d. We observed that using larger numbers of steps during both training
and inference stages improves performance but also increases time complexity. Moreover, the results
indicate that performance remains satisfactory even when the number of inference steps is reduced
by 75% (e.g., from 100 steps during training to 25 steps during inference). This finding suggests a
viable strategy for enhancing generation speed without significantly compromising quality.

5 Limitations

Figure 5 illustrates several results of 3D human pose estimation. When substantial occlusions cover
the human body—obscuring the exact pose to the extent that it confounds even human observers—the
predictions made by Di2Pose may deviate from GT 3D pose. This deviation primarily stems from the
inherent limitation of inferring 3D poses directly from 2D images, which lack critical spatial depth
information. Such limitations introduce uncertainty and indeterminacy in the predictions.

Despite these challenges, Di2Pose manages occlusions effectively by producing physically plausible
outcomes. This capability is attributed to the integration of a pose quantization step within Di2Pose,
which constrains the model’s search space to physically reasonable configurations. Note that the
pose quantization step is trained on real 3D human pose data, enhancing its reliability under severe
occlusions.

Currently, Di2Pose is primarily designed for frame-based 3D HPE and does not utilize interframe
data from videos. Future enhancements will focus on incorporating interframe information to refine
the accuracy of 3D pose predictions further within the Di2Pose framework.

6 Conclusion

This paper presents Di2Pose, a novel diffusion-based framework that tackles occluded 3D HPE in
discrete space. Di2Pose first captures the local interactions of joints and represents a 3D pose by
multiple quantized tokens. Then, the discrete diffusion process models the discrete tokens in latent
space through a conditional diffusion model, which implicitly introduces occlusion into the modeling
process for more reliable 3D HPE with occlusions. Experimental results show that our method
surpasses the state-of-the-art approaches on three widely used benchmarks.
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Appendix

In this Appendix, we provide relevant preliminary knowledge, mathematical proofs, complete training
and inference algorithms, additional experimental results, more implementation details about our
Di2Pose and broader impacts.

A Preliminary: Continuous Diffusion Model

The continuous diffusion model consists of two primary processes: the forward process and the
reverse process. The forward process methodically corrupts the original data x0 into a noisy latent
variable xS , which converges to a stationary distribution (e.g., a Gaussian distribution). Conversely,
the reverse process aims to reconstruct the original data x0 from xS , utilizing learned parameters.

Forward Process Starting with x0 drawn from the distribution q(x0), the forward process incremen-
tally corrupts x0 through a sequence of latent variables x1:S = (x1,x2, . . . ,xS), where each xs

retains the same dimensionality as x0. This transformation is modeled as a fixed Markov chain:

q(x1:S |x0) =

S∏
s=1

q(xs|xs−1). (12)

where each transition q(xs|xs−1) is defined by a Gaussian distribution:

q(xs|xs−1) = N (xs;
√
1− ηsxs−1, ηsI) (13)

Here, ηs is a small positive constant that follows a predefined schedule (η1, η2, . . . , ηS), allowing
the data to progressively approach an isotropic Gaussian distribution, N (0, I), as s increases. The
overall transition from x0 to xs can thus be expressed as:

q(xs|x0) = N (xs;

√
ζsx0, (1− ζs)I) (14)

where ζs = 1− ηs and ζs =
∏s

i=1 ζi.

Reverse Process In the reverse process, the model aims to convert the latent variable xS , which
is assumed to follow the distribution N (0, I), back into the original data x0. The joint probability
distribution is given by:

pθ(x0:S) = p(xS)

S∏
s=1

pθ(xs−1|xs) (15)

The conditional distributions involved are inferred using Bayes rule as follows:

q(xs−1|xs,x0) =
q(xs|xs−1,x0)q(xs−1|x0)

q(xs|x0)
(16)

To optimize the generative model pθ(x0) for fitting the data distribution q(x0), we minimize a
variational upper bound on the negative log-likelihood:

Lvb = Eq(x0)

[
DKL[q(xS |x0)||p(xS)] +

S∑
s=1

Eq(xs|x0)

[
DKL[q(xs−1|xs,x0)||pθ(xs−1|xs)]

]]
. (17)

However, continuous diffusion models are not applicable in discrete spaces, such as quantized token
indices k = (k1, k2, . . . , kN ) where each ki assumes one of |C| discrete values. This limitation arises
because Gaussian noise cannot corrupt discrete elements in a meaningful way. Thus, modeling in
discrete spaces necessitates the development of discrete diffusion processes.

B Mathematical Proofs

In this section, we provide a detailed mathematical proofs for Eq. (6), which can quickly calculate
q(ks|k0) according to Eq. (2).
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Concretely, we use mathematical induction to prove Eq. (6). At first, we have following conditional
information:

αs, βs ∈ [0, 1], αs = 1− |C|βs − γs,

αs =

s∏
i=1

αs, γs = 1−
s∏

i=1

(1− γs), βs = (1− αs − γs)/|C|.
(18)

Now we want to prove that Msc(k0) = αsc(k0) + (γs − βs)c(|C|+ 1) + βs. Firstly, when s = 1,
we have:

M1c(k0) =

 α1 + β1, k = k0

β1, k ̸= k0 and k ̸= |C|+ 1
γ1, k = |C|+ 1

(19)

which is clearly hold. Suppose the Eq. (6) holds at step s, then for s = s+ 1, we have:

Ms+1c(k0) = Mk+1Mtc(k0). (20)

Now we consider three conditions:
(1) when k = k0 in step s+ 1, we have:

Ms+1c(k0)(k) = βsβs+1(|C| − 1) + (αs+1 + βs+1)(αs + βs)

= βs(|C|βs+1 + αs+1) + αs(αs+1 + βs+1)

=
1

|C|
(βs(1− γs+1) + αsβs+1 − βs+1) ∗ |C|+ αs+1 + βs+1

=
1

|C|
[(1− αs − γs)(1− γs+1) + |C|αsβs+1 − (1− αs+1 − γs+1)] + αs+1 + βs+1

=
1

|C|
[(1− γs+1)− αs(1− γs+1 −Kβs+1)− (1− γs+1) + αs+1] + αs+1 + βs+1

= αs+1 + βs+1.

(21)

(2) when k = |C|+ 1 in step s+ 1, we have:

Ms+1c(k0)(k) = γs + (1− γs)γs+1 = 1− (1− γs+1) = γs+1. (22)

(3) when k ̸= k0 and k ̸= |C|+ 1 in step s+ 1, we have:

Ms+1c(k0)(k) = βs(αs+1 + βs+1) + βsβs+1(|C| − 1) + αsβs+1

= βs(αs+1 + |C|βs+1) + αsβs+1

=
1− αs − γs

|C|
∗ (1− γs+1) + αsβs+1

=
1

|C|
(1− γs+1) + αs(βs+1 −

1− γs+1

|C|
)

= βs+1.

(23)

The proof of Eq. (6) is completed. Notably, according to Eq. (6), the computation cost of q(ks|k0)
can be reduced from O(|C|2S) to O(|C|).

C Algorithms for Discrete Diffusion Process

In this section, we provide complete training and inference algorithms for discrete diffusion process.

C.1 Training Procedure

The discrete diffusion process aims to model quantized 3D pose tokens in a discrete space. This
involves utilizing a 2D image I and its corresponding 3D human pose P as inputs. The image I
serves as a contextual condition, while P is converted into discrete tokens for modeling.
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Algorithm 1 Training Algorithm for the discrete diffusion process.

Require:
A transition matrix Ms, the number of steps S, parameters of pose denoiser θ, training epoch
T , pose dataset D (including 2D image I and 3D human pose P), and the well-learned pose
encoder fPE(·).

1: for i = 1 to T do
2: for (I,P) in D do
3: k0 = FSQ(fPE(P)), y =ImageEncoder(I);
4: sample s from Uniform{1, 2, ..., S − 1, S};
5: calculate q(ks|k0) based on Eq. (6);
6: estimate fθ(ks−1|ks,y);
7: calculate loss according to Eq. (10);
8: update θ;
9: end for

10: end for
11: return θ.

Algorithm 2 Inference Algorithm for the discrete diffusion process.

Require:
The number of steps S, input 2D image I , the pose decoder fPD(·), parameters of pose denoiser
θ, stationary distribution p(kS);

1: s = S, y = ImageEncoder(I);
2: sample ks from p(kS);
3: while s > 0 do
4: ks ← sample from pθ(ks−1|ks,y)
5: s← (s− 1)
6: end while
7: return fPD(ks).

Firstly, the 3D human pose P is encoded by fPE(·) and subsequently quantized using the FSQ
technique, resulting in multiple discrete tokens. Concurrently, a pre-trained Image Encoder extracts
contextual features from I , producing a conditional feature sequence y. During the forward process,
we sample s from a uniform distribution {1, 2, ..., S − 1, S} and compute q(ks|k0) based on Eq. (6).
In the reverse process, the pose denoiser fθ(ks−1|ks,y) is trained to estimate q(ks−1|ks,k0). Finally,
the overall loss is calculated according to Eq. (10), and the parameters of the pose denoiser θ are
updated accordingly.

The complete training algorithm for the discrete diffusion process is presented in Algorithm 1.

C.2 Inference Procedure

In the inference process, our objective is to recover the 3D human pose P̂ from an input 2D image
and discrete tokens.

Initially, all pose tokens are either masked or initialized randomly, which is achieved by sampling
from the stationary distribution p(kS). The 2D image I is encoded using the pre-trained Image
Encoder. Subsequently, we predict fθ(ks−1|ks,y) step by step until the pose tokens are fully
recovered. Finally, the reconstructed tokens are decoded using the pose decoder fPE(·), yielding the
recovered 3D pose P̂.

The complete inference algorithm for the discrete diffusion process is presented in Algorithm 2.

D Additional Implementation Details

All experiments are carried out on one NVIDIA A100 PCIe GPU. The proposed Di2Pose is completely
implemented in PyTorch [53]. In this section, we provide the detailed training settings for the pose
quantization step and the discrete diffusion process.
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Table 6: Results on Human3.6M in millimeters under PA-MPJPE. The best results are in bold, and
the second-best ones are underlined.

Methods Dir Disc Eat Greet Phone Photo Pose Pur Sit SitD Smoke Wait WalkD Walk WalkT Avg

Martinez et al. [48] ICCV’17 39.5 43.2 46.4 47.0 51.0 56.0 41.4 40.6 56.5 69.4 49.2 45.0 49.5 38.0 43.1 47.7
Pavlakos et al. [54] CVPR’17 34.7 39.8 41.8 38.6 42.5 47.5 38.0 36.6 50.7 56.8 42.6 39.6 43.9 32.1 36.5 41.8

Liu et al. [45] ECCV’18 35.9 40.0 38.0 41.5 42.5 51.4 37.8 36.0 48.6 56.6 41.8 38.3 42.7 31.7 36.2 41.2
Zhang et al. [82]TPAMI’23 — — — — — — — — — — — — — — — 39.1

Choi et al. [14] IROS’23 36.7 41.1 37.6 42.2 40.5 44.1 37.8 36.3 47.0 60.5 39.8 38.9 42.7 33.7 35.1 40.9
Gong et al. [22] CVPR’23 33.9 38.2 36.0 39.2 40.2 46.5 35.8 34.8 48.0 52.5 41.2 36.5 40.9 30.3 33.8 39.2

Di2Pose (Ours) 34.5 38.4 35.1 40.8 39.8 47.0 34.9 34.7 47.1 52.3 40.4 36.1 42.9 30.0 33.4 39.0

For the pose quantization step, we employ the AdamW [46] optimizer with β1 = 0.9 and β2 = 0.999,
adhering to a base learning rate of 1e-3 and a weight decay parameter of 0.15. The training process is
configured with a batch size of 256 across a total of 20 epochs.

For the discrete diffusion process, we still utilize the the AdamW optimizer with β1 = 0.9 and
β2 = 0.96, adhering to a base learning rate of 5.5e-4 and a weight decay parameter of 4.5e-2. The
training process is configured with a batch size of 64 across a total of 50 epochs.

E Additional Experimental Results

We exhibit more experimental results to verify the effectiveness of our Di2Pose.

E.1 Quantitative Results

As shown in Table 6, we benchmark Di2Pose against SOTA 3D HPE methods on the Human3.6M
under PA-MPJPE protocol. Our Di2Pose achieves 39.0mm in average PA-MPJPE, surpassing the
performance of the compared SOTA 3D HPE methods, which indicates that Di2Pose is able to
enhance monocular 3D HPE in indoor scenes.

E.2 Qualitative Results

In this part, we present additional qualitative results on the Human3.6M and 3DPW datasets. As
illustrated in Figure 6, our Di2Pose model demonstrates the ability to accurately recover 3D human
poses in both indoor and in-the-wild scenarios. Particularly noteworthy is its performance under
various occlusion conditions, including self-occlusion and object occlusion. Even in these challenging
situations, Di2Pose consistently produces reasonable 3D pose estimations, highlighting its robustness
to occlusions.

F Broader Impacts

This research focuses on estimating physically valid 3D human poses from monocular frames, espe-
cially under occlusion scenes. Such a method can be positively used for sports analysis, surveillance,
healthcare, autonomous driving, etc. where clear, unobstructed views of the subject may not always
be available. It can also lead to malicious use cases, such as illegal surveillance and video synthesis.
Thus, it is essential to deploy these algorithms with care and make sure that the extracted human
poses are with consent and not misused. Moreover, the diffusion-based model has a longer runtime
compared to other CNN or GCN-based methods, causing more computational resources and energy
consumption.
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(a) Human3.6M (b) 3DPW 

Image GT Ours Image GT Ours

Figure 6: Qualitative results on two datasets. Joints on the right side are marked in green, while other
joints are highlighted in blue.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Refer to the Abstract and Sec.1.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Refer to Sec.5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: Refer to Sec.3 and Sec.B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Refer to Sec.4.1, Sec.4.2 and Sec.D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: We will release code upon paper acceptance.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Refer to Sec.4.2 and Sec.D.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Refer to Sec.4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Refer to Sec.D in the Appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We make sure to conduct this paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Refer to Sec.F in the Appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
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generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All used datasets and models in this paper are explicitly mentioned and properly
cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
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Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not involve this issue.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We use publicly available 3D human pose datasets in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve this issue.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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