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Abstract
This paper introduces E(n) Equivariant Message
Passing Cellular Networks (EMPCNs), an exten-
sion of E(n) Equivariant Graph Neural Networks
to CW-complexes. Our approach addresses two
aspects of geometric message passing networks:
1) enhancing their expressiveness by incorporat-
ing arbitrary cells, and 2) achieving this in a com-
putationally efficient way with a decoupled EM-
PCNs technique. We demonstrate that EMPCNs
achieve close to state-of-the-art performance on
multiple tasks without the need for steerability,
including many-body predictions and motion cap-
ture. Moreover, ablation studies confirm that de-
coupled EMPCNs exhibit stronger generalization
capabilities than their non-topologically informed
counterparts. These findings show that EMPCNs
can be used as a scalable and expressive frame-
work for higher-order message passing in geomet-
ric and topological graphs.

1. Introduction
Graph Neural Networks (GNNs) are a type of neural net-
work designed to operate on graph-structured data, captur-
ing relationships and interconnections between data points.
They are particularly useful in domains where data is nat-
urally represented as relations, such as social networks,
molecular structures, and recommendation systems. The
most common type of GNNs is a Message Passing Neural
Network (MPNN), in which the representation of nodes are
updated by aggregating information in their 1-hop neighbor-
hoods. While GNNs have shown notable success in applica-
tions such as graph classification (Kipf & Welling, 2017),
link prediction (Zhang & Chen, 2018), and algorithmic rea-
soning (Veličković & Blundell, 2021), their expressiveness
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is inherently limited by their design to capture only pair-
wise interactions. Some examples where modeling multi-
body relationships is crucial include protein-protein inter-
action networks (Koyutürk et al., 2004; Girvan & Newman,
2002), which require the identification of protein complexes
through group interactions, and social networks (Jiang et al.,
2010), where the dynamics of group behavior provide es-
sential insights.

This limitation of GNNs is formally discussed by Xu et al.
(2019) and Morris et al. (2019), where they showed that
the local neighborhood aggregation used by GNNs is at
most as powerful as the Weisfeiler-Lehman (WL) test in
distinguishing non-isomorphic graphs (Weisfeiler & Leman,
1968). Several studies have underscored the importance of
distinguishing graphs that are indistinguishable by the 1-WL
test, pointing out that, for example in molecular structures,
distinct local structures around atoms should correspond
to distinct representations (Maron et al., 2019; Chen et al.,
2019; Dwivedi et al., 2023). One approach to overcome this
problem of recognizing higher-dimensional graph features
like cliques or cycles, is by generalizing MPNNs to more
elaborate topological space, i.e. to take into account these
features explicitly. In Bodnar et al. (2021b), MPNNs are
extended to operate on the clique complex of the graph – i.e.
assigning simplices to each clique in the graph – resulting in
an architecture that is provably more powerful than the WL
test by creating more complex neighborhood relationships.
However, as simplicial complexes have a rigid combinatorial
structure that restricts the range of lifting transformations,
this work was later extended to CW-complexes – assigning
features to arbitrary cells in the graph – defining a strictly
more expressive MPNN again (Bodnar et al., 2021a), prov-
ably not less powerful than the 3-WL test.

A generalized version of the Weisfeiler-Lehman framework
has been proposed for geometric graphs, where the nodes
correspond to points in Euclidean space. This framework
accounts for a stronger notion of geometric isomorphism,
considering spatial symmetries (Joshi et al., 2023). This
so-called Geometric Weisfeiler-Leman (GWL) is used to
qualify the expressivity of MPNNs with augmented dis-
criminative capabilities of GNNs beyond the 1-WL test by
integrating geometric information of the data, e.g. as done
by Satorras et al. (2021) and Brandstetter et al. (2021). For
instance, Satorras et al. (2021) proposed E(n) Equivariant
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Graph Neural Networks (EGNN), in which the messages
passed in the MPNN are conditioned on the distance be-
tween the nodes, making the model equivariant to rotations,
reflections, and translations. This kind of approaches have
shown to be highly effective in many domains (Weiler et al.,
2018; Gasteiger et al., 2021; Bekkers et al., 2024).

Recently, multiple approaches to combining geometric and
topological information have been proposed (Eijkelboom
et al., 2023; Liu et al., 2024; Anh Trang et al., 2024). In
Eijkelboom et al. (2023), E(n) Equivariant Message Pass-
ing Simplicial Networks (EMPSNs) are proposed, a method
that combines simplicial message passing with geometric
attributes invariant information such as angles, volume, and
area, which cannot be captured when focusing only on pair-
wise interactions. Although this method achieved state-
of-the-art results, it presents two main drawbacks. Firstly,
even though the use of simplicial complexes adds higher-
order topological information to the model, these structures
are not the most elaborate forms available. More sophisti-
cated structures such as CW complexes can offer a more
nuanced representation of topological features, which could
be especially beneficial in fields like molecular chemistry
where specific topological configurations are crucial. This
is specifically the case in R3, because due to the construc-
tion of EMPSNs, the highest-dimensional object will be
a tetrahedron, i.e., a 4-body interaction. Secondly, the ap-
proach involves increased computational complexity due to
the higher-dimensional message passing required in each
layer. The authors use Vietoris-Rips complexes – a higher-
dimensional analogue to a radius graph – and as such intro-
duce a typically infeasible amount of extra features due to
the combinatorial nature of such complexes, making this
approach hard to use for processing large graphs or datasets
where real-time performance is crucial.

In this work, we propose E(n) Equivariant Message Pass-
ing Cellular Networks (EMPCNs), a generalization of E(n)
Equivariant Message Passing Simplicial Networks to cellu-
lar complexes. Our contributions are the following:

• Targetting the limited expressivity of EMPSNs, EM-
PCNs operate on CW-complexes, hence enabling the
identification of a more general set of geometric in-
variants across a broader range of topological objects,
making them strictly more expressive than their simpli-
cial counterparts.

• Addressing the increased computational costs of
higher-order message passing, we introduce an effi-
cient method to integrate higher-order topological in-
formation in geometric datasets inspired by EMPCNs.
These decoupled EMPCNs provide a simple, cellular
add-on to existing MPNNs without increasing compu-
tational complexity.

• We show that EMPCNs achieve close to state-of-the-art
performance on two tasks, outperforming many elab-
orate, steerable methods. Moreover, we demonstrate
that the decoupled EMPCN model provides improved
performance without additional computational costs
and leads to stronger generalization, providing a step
towards scalable higher-order message passing.

2. Background
Symmetry-Informed Deep Learning Considering the
intrinsic structure of data – specifically in terms of symme-
tries – is a key design principle in Geometric Deep Learning
(Bronstein et al., 2021), which has led to many successes in
recent years (Zitnik et al., 2018; Gligorijević et al., 2021).
Symmetries are mathematically described by groups, and a
function respects such a symmetry – formally: is equivariant
with respect to the relevant group – if it commutes with its
group action, i.e. if

f(g · x) = g · f(x) for all g ∈ G. (1)

Intuitively, this means that first applying a transformation
g ∈ G and then evaluating the function is equivalent to
first applying the function and then performing the trans-
formation. A function that produces the same result when
applied to both transformed and untransformed elements
is referred to as group invariant. In the setting of graph
prediction, many different forms of symmetry come into
play, e.g. permutations of the graphs, rotations of the graph
in space (if it is embedded in some geometric space), or
topological features such as rings.

Message Passing Neural Networks Message Passing
Neural Networks (MPNNs) have emerged as a popular class
of models for graph representation learning (Gilmer et al.,
2017). MPNNs update node representations through the
their respective 1-hop neighborhoods, i.e.

hℓ+1
i = MPNN(hℓ

i , {{hℓ
j}}j∼i), (2)

where {{hℓ
j}}j∼i denotes the multi-set of neighbours of

node i, and ℓ denotes the layer. An MPNN-layer can be
decomposed into two main steps:

1. First, a message function Mes(hi, hj) =: mij com-
putes the messages from nodes j to nodes i, which are
then aggregated in a permutation invariant manner to
find the aggregated message to i, i.e. mi := Agg

j∼i
mij .

2. An update function Update(hi,mi) =: h′
i which up-

dates the representation hi based on the aggregated
message.

As mentioned in Section 1, there are two major ways to
augment MPNNs: (1) by using the underlying geometry of
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the space in which the graph is embedded (e.g., the coordi-
nates of atoms in a molecule), and (2) by using topological
or structural information of the graph. We refer to these
approaches as Geometric MPNNs and Topological MPNNs,
respectively.

Geometric MPNNs If the relevant graph is embedded
in some geometric space, such as when each node is as-
sociated with coordinates xi ∈ Rn, one can leverage the
underlying geometry in the predictions, as discussed by Du-
val et al. (2024). Importantly, it is now possible to utilize
more symmetries since rotating, translating, or flipping the
graph leads to predictable changes. Arguably, the simplest
approach to do this is E(n) Equivariant Graph Neural Net-
works (EGNNs), where the geometric information is added
in the message function by conditioning it on the distance
between two nodes, i.e. E(n) invariant information:

mij = Mes(hi, hj , ||xi − xj ||22). (3)

Note that indeed distance is preserved by applying any sym-
metry of the Euclidean group.

Topological MPNNs Topological MPNNs mitigate the
issue of MPNNs not being able to learn higher-order struc-
tures directly by learning features on a more elaborate topo-
logical space. Two such topological spaces are simplicial
and cellular complexes.

A simplex is the generalization of a triangle to arbitary di-
mension, i.e. a k-dimensional simplex is defined by a set
of k + 1 fully connected points. As such, a graph con-
sists of 0-dimensional simplices (nodes) and 1-dimensional
simplices (edges), but can be trivially lifted by assigning a k-
dimensional simplex of each clique of k+1 nodes. Though
useful, in many domains graphs are not best understood in
terms of simplices, e.g. in molecular prediction tasks where
triangles are much less common than rings. A generaliza-
tion of simplicial complexes is given by CW complexes,
which considers arbitrary cells in the graphs, hence strictly
generalizing simplicial complexes.

More precisely, a CW complex is built from cells of various
dimensions. A cell is a space homeomorphic to an open
n-dimensional disk, which informally one can understand
as any object obtainable from continuously transforming
an n-sphere. The construction of the complex involves a
hierarchical glueing process:

1. Start with a set of vertices (0-cells).

2. Attach edges (1-cells) by gluing endpoints of line seg-
ments to these vertices.

3. Attach higher-dimensional cells by mapping the bound-
ary of each n-cell, Sn−1, to the (n− 1)-dimensional

skeleton X(n−1) via a continuous map ϕ : Sn−1 →
X(n−1).

(a) (b)

(c)

Figure 1. Visualization of a graph (a), a simplicial complex (b),
and a cellular complex (c). As observed, a simplicial complex
cannot represent arbitrary polygons.

This allows for the inclusion of complex structures, such as
rings, in molecular graphs as it can be seen in Figure 1.

To learn features on these topological spaces, a more elabo-
rate set of messages are sent as introduced by Bodnar et al.
(2021a;b). Let σ ≺ τ denote that σ is a boundary of τ , such
as a node of an edge or an edge of a ring. With this notation,
one can differentiate four types of relationships:

1. B(σ) = {τ | τ ≺ σ}, i.e. all boundaries of σ, called
the boundaries.

2. C(σ) = {τ | σ ≺ τ}, i.e. all cells σ is a boundary of,
called the co-boundaries.

3. N↓(σ) = {τ | ∃δ s.t. δ ≺ σ and δ ≺ τ}, i.e. the
set of cells that share a boundary σ, called the lower
adjacencies.

4. N↑(σ) = {τ | ∃δ s.t. σ ≺ δ and τ ≺ δ}, i.e. the set
of cells that share a co-boundary σ, called the upper
adjacencies.

The complex adjacencies defined above equip CW networks
with a message passing scheme encompassing such higher-
order topological features, such as vertices (0-cells), edges
(1-cells), and cycles (2-cells). Consequently, updates incor-
porate not merely a single message, but four distinct types.
However, Bodnar et al. (2021a) demonstrated that retaining
only boundary and upper adjacencies achieves equivalent
expressivity, and hence the typical messages considered are:

mB(σ) = Agg
τ∈B(σ)

MesB(hσ, hτ ) (4)

m↑(σ) = Agg
τ∈N↑(σ),
δ∈C(σ,τ)

Mes↑(hσ, hτ , hδ) (5)

Taking molecules as an example, the first type of commu-
nication outlines how atoms communicate with bonds, and
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how bonds communicate with rings, whereas the second
type describes interactions between atoms connected by a
bond, and bonds that form a ring.

Similar to the standard message passing framework, the
update step considers the incoming messages and updates
the features through a more elaborate function:

h′
σ = Update(hσ,mB(σ),m↑(σ)). (6)

Geometric & Topological MPNNs Recently, Eijkelboom
et al. (2023) combined geometric and topological GNNs
by realizing that there is a direct relationship between the
two: a geometric space allows one to define higher-order
topological objects geometrically – e.g. through a Vietoris-
Rips complex –, while higher-order topological objects en-
able multi-body geometry in MPNNs. They propose E(n)
Equivariant Message Passing Simplicial Networks, essen-
tially combining EGNNs with simplicial message passing
by defining geometric features on simplicial complexes,
specifically volumes, angles, and distances, i.e. E(n) in-
variant information. This work was later extended to the
steerable case by Liu et al. (2024), which defines steerable
simplicial message passing using clifford algebras.

3. Methodology
Building upon the E(n) Equivariant Message Passing Sim-
plicial Networks, we propose E(n) Equivariant Message
Passing Cellular Networks (EMPCNs), the generalized
counterpart to EMPSNs of cellular complexes. With EM-
PCNs, we achieve the following two things:

1. Enhanced Expressivity: Similar to how normal and
simplicial message passing were made geometrically
equivariant through conditioning on E(n) invariant in-
formation, we extend these invariants to the cellular
case. Since CW complexes strictly generalize simpli-
cial complexes, this defines a more expressive MPNN.

2. Improved Scalability: Higher-order message pass-
ing networks often struggle with scalability due to the
complexity of higher-order lifting, such as EMPSNs
using Vietoris-Rips complexes to construct simplices.
We address this by introducing a simplified version
of EMPCNs, called decoupled EMPCNs, that explic-
itly learn this topological information without added
computational complexity.

3.1. E(n) Equivariant Cellular Message Passing

As our method serves as a generalization of E(n) Equiv-
ariant Simplicial Message Passing, our primary focus is on
making the topological objects and invariants used more

expressive, rather than introducing a new method of condi-
tioning. That is, e.g. for the boundary update

mB(σ) = Agg
τ∈B(σ)

MesB(hσ, hτ , Inv(σ, τ)),

our aim is to generalize Inv(σ, τ), denoting the geometric
invariants.

3.1.1. INVARIANTS

Barycentric Subdivision Crucially, we make the obser-
vation that we can understand the cells in a CW complex as
a set of simplices glued together. Formally, we can define
all their geometric invariants using them. To explain this,
we refer to Barycentric subdivision (Davis & Okun, 2004),
a technique typically employed to decompose a simplex
into smaller simplices, which can also be applied to CW
complexes. Specifically, a regular CW complex can be sub-
divided into a simplicial complex, resulting in a structure
where the simplices are efficiently combined into closed
cells, as shown in Figure 2.

(a) (b) (c)

Figure 2. Change of invariants after position updates: a) Initial
graph with arrows indicating the future displacement of the respec-
tive nodes. b) Displaced graph showing the updated positions of
the nodes. c) Cell decomposition into two simplices.

This is key to our approach, as it allows us to directly gen-
eralize our existing invariants in EMPSN to the cellular
case.

Generalized Volume and Area In the context of graphs
embedded within an n-dimensional Euclidean space, the
convex hull of some set S is defined as the smallest convex
set containing all the points in S. This set – and its volume
– are typically obtained through the Quickhull algorithm
(Barber et al., 1996), an efficient method in computational
geometry that relies on decomposing the hull into simplices,
as their volumes are easy to compute, and then summing
these subvolumes. For a n-simplex ξ defined by vertices
ξ = (x0, x1, . . . , xn), the volume is given by:

Vol(ξ) =
1

n!

∣∣det (x1 − x0 · · · xn − x0

)∣∣
As the total volume of the hull is the sum of the volumes
of all the simplices, note that we trivially obtain the vol-
ume of a single simplex through this method, hence strictly
generalizing EMPSNs.
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Following a similar argument, the surface area of the hull is
computed by dividing its area into (n− 1)-simplices, and
again the total surface area is obtained by summing the areas
of all (n − 1) simplices forming the hull’s surface. Note
that again we trivially obtain the simplicial case from here.

Other Invariants For all other types of message passing,
one could use the invariants introduced by Eijkelboom et al.
(2023), which range from distances between two nodes to
calculating the dihedral angles for edge-to-edge communi-
cation, as these are not affected by a change in topological
space. A detailed list of invariants for each experiment can
be found in Appendix B.

Scalable Convex Hull Estimation Computing the convex
hull and its invariants during training can be computation-
ally intensive, especially when nodes are moving and their
positions are constantly updated, requiring re-calculation of
invariants in every iteration. To address this, we can approx-
imate these invariants by assuming the radius of the ring to
be half of the maximum pairwise distance between nodes in
the ring. By doing so, we are essentially taking the radius
of a sphere in R3 that includes all the points in the ring.
This simplification allows for faster invariant calculations,
making it more feasible to track changes in invariants due
to node movement.

3.1.2. GEOMETRIC WEISFEILER-LEHMAN

As introduced in Section 1, the Geometric Weisfeiler-Leman
framework can be used to compare the expressivity of dif-
ferent geometric MPNNs. The three axes of the plot are the
body order, tensor order, and depth, which corresponds to
whether equivariant layers are being used. Using this frame-
work as a reference, we position our proposed method, EM-
PCNs, at least as high as EGNNs (Satorras et al., 2021) and
PaiNN (Schütt et al., 2021), given that our features transform
equivariantly within the Cartesian system. However, our in-
creased expressiveness comes from the axis corresponding
to body order, which denotes the number of nodes needed
to compute the geometric invariant information. Since our
method calculates the n-dimensional volume, it requires
n+1 points and thus can be placed arbitrarily high in terms
of body order. Even when restricting ourselves to R3, our
method remains more expressive than EGNN, demonstrat-
ing its ability to capture complex geometric information.

3.2. Decoupled EMPCNs

As mentioned in Section 1, the most straightforward ap-
proach when dealing with geometric graphs is to intercon-
nect all nodes. This allows the network to identify relevant
edges on its own, similar to a Graph Transformer architec-
ture (Rampášek et al., 2022; Kreuzer et al., 2021; Dwivedi
& Bresson, 2021). Clearly, the number of cells in a graph

grows combinatorially with more edges, meaning that EM-
PCNs cannot be applied in a feasible way.

To this end, we propose a scalable cellular message passing
framework called decoupled EMPCNs, which essentialy
serves as an add-on to existing fully connected geometric
MPNNs. Decoupled EMPCNs operate on 1) a node graph
facilitating direct node communication and 2) a cellular
lifted graph derived from the input graph, enabling higher-
order message passing based on the input’s graph topology.
The decoupling procedure can be seen in Figure 3.

Input Graph

Cellular Lifting

Fully Connected

EMPCN

EGNN

Figure 3. Pipeline of Decoupled EMPCNs. The input graph is split
into two: the cellular lifted graph for higher-order message passing
and the fully connected graph for direct node communication.

In a fully connected setting – which is the typical setting
for such tasks – the number of message sent is O(|V|2). To
obtain an equal computation complexity, we introduce a
new type of cellular adjacency:

P(σ) := {τ | τ ⊂ σ and |τ | = 1}, (7)

i.e. all vertices that make up σ. Clearly, in the typical case
of e.g. molecular prediction tasks, the number of rings |R|
is much smaller than the number of nodes in the graph. If
we therefore only perform message passing over the fully
connected adjacency for the nodes and over P(σ) for the
highest-order features we want to learn, the amount of mes-
sage sent is:

O(|V|2 + |R| · |V|) = O(|V|2) if |R| < |V|. (8)

For example, in molecular prediction tasks, this adjacency
allows the model to directly propagate information between
rings and their adjacent nodes. By incorporating this addi-
tional information, which is further enhanced by geometric
invariants such as volumes, the model can better understand
how adjacent nodes influence ring properties and vice versa.
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Since functional groups attached to rings – e.g. hydroxyl,
methyl, nitro groups for molecules – can significantly affect
ring geometry, calculating these geometric properties could
provide a better insights into the complex interactions and
structural variations around the rings.

Note that our proposed method is not limited to cellular
lifting methods and ring structures. Instead, it allows for
the definition of any type of higher-order structure as a tem-
plate, followed by the calculation of its geometric invariants.
This method serves as a general framework that combines
geometric GNNs with additional explicit topological in-
formation, offering scalability and flexibility in including
various higher-order structures.

4. Related Works
Higher-Order Networks: Recent works have expanded
Graph Neural Networks (GNNs) to include simplicial and
cellular complexes (Papillon et al., 2024), where especially
the work by Hajij et al. (2021) and Bodnar et al. (2021a) are
closely related to this work. To our knowledge, Eijkelboom
et al. (2023) is the first work explicitly integrating topolog-
ical and geometric MPNNs and as such form the basis of
our approach. A similar approach was later proposed to
integrate mesh face geometric information into E(3) Equiv-
ariant GNNs by altering the update function (Anh Trang
et al., 2024). Furthermore, more geometrically complex
architectures utilizing Clifford algebras for simplicial com-
plexes have been introduced (Liu et al., 2024). However,
here, the improvement in performance comes at a signifi-
cantly high computational cost.

Efficient Higher-Order Networks: Addressing the com-
putational complexity inherent in higher-order message pass-
ing, recent studies have sought ways to enhance efficiency.
Notably, SaNN (Gurugubelli & Chepuri, 2023) introduced a
method to integrate simplicial inductive bias into networks
efficiently, maintaining constant training time and mem-
ory requirements. This was achieved by enhancing neural
models with pre-aggregated features of simplices across dif-
ferent orders. A different direction was taken by Topo-MLP
(Ramamurthy et al., 2023), where they learn representa-
tions for simplices across multiple dimensions through the
adoption of a higher-order neighborhood contrastive loss,
thereby moving away from the traditional message passing
framework.

5. Experiments & Results
For all experiments, the implementation and experimental
details are provided in Appendix A and B respectively.

5.1. N-Body System

As introduced by Kipf et al. (2018), the N-body system
experiment involves tracking the trajectories of five charged
particles in three-dimensional space over time. The objec-
tive is to predict the positions of all particles after 1,000 time
steps, starting from their initial positions and velocities. To
ensure a consistent comparison, we adopted the experimen-
tal setup as described by Satorras et al. (2021). While the
system operates according to physics, with particles being
attracted or repelled based on their charges, the task remains
E(n) equivariant, maintaining these symmetries throughout
the entire trajectory. This means that the predictions are con-
sistent under Euclidean transformations, such as rotations
and translations, ensuring the model respects these inherent
physical symmetries.

Table 1. Mean Squared Error for the N-body system experiment.
Model MSE (↓)
TFN (Thomas et al., 2018) 0.0155
PONITA (Bekkers et al., 2024) 0.0043
SEGNN (Brandstetter et al., 2021) 0.0043
CGENN(Ruhe et al., 2023) 0.0039
EMPSN (Eijkelboom et al., 2023) 0.0063
EGNN (Satorras et al., 2021) 0.0071
EGNN + CIN 0.0057± 0.0002
EMPCN 0.0046± 0.00005

While our method can be applied to E(n) equivariant scenar-
ios, for this experimental setup, we work with E(3) equiv-
ariance. As seen in Table 1, our performance is close to on
par with state-of-the-art approaches.

To evaluate the significance of geometric invariants in
higher-order message passing, we conducted an additional
experiment with a modified version of Cellular Message
Passing (CIN) (Bodnar et al., 2021a). In this setup, the
node-to-node communication (0-cell to 0-cell) included the
distance norm, transforming it into EGNN. However, the
higher-order message passing layers did not include any
geometric invariants, distinguishing it from our proposed
EMPCNs. As shown in Table 1, while this approach outper-
forms EGNN alone, it falls short by 20% in performance
compared to EMPCNs, highlighting the important role of
geometric invariants in the higher order message passing
layers. It is worth noting that the number of parameters has
been kept similar to EGNN in all of our experiments.

5.2. QM9

The QM9 dataset, first introduced by Ramakrishnan et al.
(2014) and subsequently studied by Gilmer et al. (2017)
and Wu et al. (2018), comprises approximately 130,000
graphs, each consisting of around 18 nodes. In this dataset,
the graphs represent molecules, with the nodes representing
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Table 2. QM9 MAE (↓) Results. Relative improvement with respect to EGNNs (gain) is provided for comparison.
Task α ∆ε εHOMO εLUMO µ Cv G H R2 U U0 ZPVE
Units (bohr3) (meV) (meV) (meV) (D) (cal/mol K) (meV) (meV) (bohr3) (meV) (meV) (meV)
NMP .092 69 43 38 .030 .040 19 17 .180 20 20 1.50

SchNet .235 63 41 34 .033 .033 14 14 .073 19 14 1.70
Cormorant .085 61 34 38 .038 .026 20 21 .961 21 22 2.02

TFN .223 58 40 38 .064 .101 - - - - - -
SE(3)-Tr. .142 53 35 33 .051 .054 - - - - - -

DimeNet++ .043 32 24 19 .029 .023 7 6 .331 6 6 1.21
SphereNet .046 32 23 18 .026 .021 8 6 .292 7 6 1.21

PaiNN .045 45 27 20 .012 .024 7 6 .066 5 5 1.12
SEGNN .060 42 24 21 .023 .031 15 16 .660 12 15 1.62
MPSN .266 153 89 77 .101 .122 31 32 .887 33 33 3.02

EMPSN .066 37 25 20 .023 .024 6 9 .101 7 10 1.37
EGNN .071 48 29 25 .029 .031 12 12 .106 12 12 1.55

Decoupled EMPCN .063 40 27 22 .026 .027 10 10 .104 10 11 1.51
Gain 11% 17% 7% 12% 10% 13% 17% 17% 2% 17% 9% 3%

atoms, and edges representing various types of bonds be-
tween these atoms. The objective of analyzing this dataset
is to predict quantum chemical properties.

For this experiment, we followed the same setting as EGNN
(Satorras et al., 2021). We applied our proposed method as
introduced in Section 3.2, called decoupled EMPCNs, using
EGNN for the fully connected node-to-node communication,
while employing EMPCNs for the higher-order message
passing. As discussed in Section 3.2, different adjacencies
and geometric invariants can be used. For this task, we
specifically chose only the ring-to-node communication and
its respective invariants, including the distance from each
node to the ring’s midpoint, the ring’s length, volume and
area.

Note that, given the data consists of small molecules – where
cells are not present much – it is crucial to optimize parame-
ter usage to avoid unnecessary computations. We hence opt
to allocate 75% of the parameters to node-to-node and 25%
to ring-to-node message passing, such that the majority of
parameters are allocated to the main architecture, which, in
our case, is EGNN.

As indicated in Table 2, incorporating this additional ring
information yielded an average improvement of approxi-
mately 10% over the baseline EGNN model. While one
could potentially generate additional rings via the Radius-
Graph or Vietoris-Rips complex, our experiment demon-
strates that even with the initial graph’s topology, we can
achieve significant performance gain without extra com-
putational complexity. The reason for not applying the
traditional EMPCNs in this experiment is because, in the
fully connected setting, the number of rings becomes ex-
tremely large, and calculating the respective invariants is
computationally infeasible.

5.3. CMU Motion Capture

In this experiment, we evaluated our decoupled EMPCN
model using the CMU Motion Capture Database (Gross &
Shi, 2001), which tracks the trajectories of human motion
in various scenarios. The dataset’s graphs are composed
of 31 connected nodes, each corresponding to a specific
position on the human body during walking. Our goal is
to forecast the node positions 30 timesteps into the future
based on the positions from a randomly chosen frame. We
adopted a similar framework to Kipf & Welling (2017);
Huang et al. (2022); Liu et al. (2024), concentrating on the
walking motion of a single subject (subject #35) over 23
trials.

Table 3. Comparison of different methods based on MSE (10−2)
for the CMU Motion Capture Dataset.

Method MSE (↓)
TFN (Thomas et al., 2018) 66.9
SE(3)-Tr (Fuchs et al., 2020) 60.9
GNN (Gilmer et al., 2017) 67.3
GMN (200K) (Huang et al., 2022) 17.7
EMPSN (200K) (Eijkelboom et al., 2023) 15.1
CGENN (200K) (Ruhe et al., 2023) 9.41
CSMPN (200K) (Liu et al., 2024) 7.55
EGNN (200K) (Satorras et al., 2021) 31.7
Decoupled-EMPCN (200K) 9.26 ± 0.11

To construct our dataset, we followed a similar approach as
outlined in Section 5.2. For node-to-node communication,
we employed a traditional EGNN architecture, where all
nodes are interconnected. However, for cellular lifting, due
to the absence of obvious rings, we adopted a methodology
similar to that introduced by Liu et al. (2024). We manually
connected nodes in our input graph that we believe will
provide additional information. Specifically, in addition to
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connecting elbow joint nodes with shoulder and palm nodes
to create edges and triangles, and linking hip, knee, and heel
nodes to form another set of edges and triangles as proposed,
we introduced rings of length four. These rings connect the
two elbows with the two knees, two arms with two wrists,
two knees with the two feet, and two knees with the feet and
the hip. While rings of varying lengths and structures could
be utilized, the ultimate goal is to connect nodes that may be
significant for the downstream task. Once these ring struc-
tures are constructed, cellular lifting is performed, which is
then efficiently utilized by our decoupled EMPCNs as dis-
cussed in Section 3.2. Similar to the experiment described
in Section 5.2, we used node-to-node and ring-to-node.

As shown in Table 3, our proposed model achieves scores
that are nearly state-of-the-art without relying on highly
computationally intensive techniques such as steerable meth-
ods or Clifford algebra methods. This demonstrates that our
approach, which simply adds an extra message passing layer
to learn topological features of the graph combined with
the corresponding geometric invariants, can significantly
improve the performance of GNNs on geometric datasets.

5.4. Ablation Study

In our ablation study, we compared the performance of
EGNN and decoupled EMPCN under varying conditions of
data availability and model complexity. We evaluated both
models in a small-data regime to test generalizability and in
a small-model regime to assess parameter efficiency. The
results are summarized in Figure 4.

Figure 4. Ablation study on the α property of QM9, comparing
decoupled EMPCN (red) and EGNN (blue). Both models were
trained with 100% data (solid lines) and 5% data (dashed lines),
and evaluated on MAE (↓) across different numbers of layers.

First, we notice that as the number of layers decreases –
i.e. a simpler model is considered – the EGNN baselines
perform worse than their cellular counterparts, and this per-
formance gap increases as the number of layers decreases.
However, when a large enough model and enough data are
used, this gap can be almost closed. That being said, when

given access to only 5% of the data, EGNN is consistently
outperformed, even in large-model settings. This indicates
that the cellular counterpart is not only more data-efficient
but also has significantly stronger generalization capabili-
ties.

These findings highlight the robustness and efficiency of
decoupled EMPCNs, illustrating that they are a more re-
liable choice for scenarios where data and computational
resources are limited as is typical in real-life settings. Ro-
bustness and efficiency here refer to maintaining higher
performance than EGNN across different data regimes and
model complexities.

6. Conclusion
In this study, we introduced E(n) Equivariant Message Pass-
ing Cellular Networks (EMPCNs), extending the capabili-
ties of EMPSNs by transitioning from simplicial to cellular
complexes. This transition allows for a more flexible repre-
sentation of topological structures, enabling the inclusion of
complex features such as rings in molecular graphs. Con-
sequently, EMPCNs can define geometric invariants over a
broader range of objects, enhancing the expressiveness of
the model.

We also proposed a method to efficiently integrate topologi-
cal information into geometric graphs that allow for a fully
connected backbone in the standard message-passing phase.
By decoupling the input graph into a fully connected graph
for direct node-to-node communication and a cellular lifted
graph for higher-order message passing, we combined the
benefits of both approaches. This technique maintains the
original graph’s topology while utilizing any MPNN archi-
tecture for direct communication, thereby improving both
performance and expressivity.

In summary, decoupled EMPCNs provide a scalable and
expressive framework for higher-order message passing in
geometric and topological graphs. Although this method
is proposed for cellular complexes, the same techniques
could be adapted to other higher-order path message pass-
ing methods, potentially enhancing the expressiveness by
incorporating various structures beneficial for specific tasks.
We believe that exploring the intersection between geomet-
ric and topological MPNNs is a crucial aspect of developing
efficient and strongly generalizing models, especially in
low-data settings.

Limitations and Future Work The main limitation of
EMPCNs is the computational cost associated with the cal-
culation of the introduced geometric invariants. Although
it is possible to retain only those invariants relevant to a
specific downstream task, an interesting direction for future
research would be to pre-aggregate cell representations and
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compute the geometric invariants solely for key structures
essential to the task. However, it is worth mentioning that
these invariants are significantly cheaper to compute than
the ones in methods using e.g. Clifford algebras.

For the decoupled EMPCNs, the primary limitation is that in
geometric graphs, initial connectivity may not be available,
and only a point cloud may be provided. While pre-domain
knowledge, as discussed in Section 5.3, can be used to iden-
tify important higher-order structures, a promising research
direction would be to develop methods to autonomously
identify these structures based on the downstream task. In
addition, as we just showed with the decoupled EMPCNs a
generic template that can combine geometric and topologi-
cal approaches, our goal was to beat the performance of the
main architecture being used, which was EGNN in our case.
Further experiments with more advanced architectures like
SEGNN (Brandstetter et al., 2021) should be tested. Finally,
although our method is proposed for cellular complexes,
the same technique could be applied to higher-order path
message passing, potentially resulting in a more expressive
framework by incorporating different types of structures that
are known to be useful for a particular downstream task.
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A. Implementation Details
This section describes the implementation of EMPCNs. After a cellular lifting is performed, we have : 1) a set of features
for each cell 2) adjacency relationships between these cells 3) positional information of the nodes {xi}, and 4) optionally,
initial velocities of the nodes {vi}. The learnable functions are as follows:

• Feature Initialization: Initial features are embedded using a linear embedding process. For each dimension n, we apply
a separate embedder:

{Initial Featuren → {LinearLayern} → Embedded Featuren}

• Message Passing: For an adjacency A from τ to σ, we learn a message function. Using the input [hσ ⊕ hτ ⊕ Inv(σ, τ)],
where ⊕ denotes concatenation, the message function is defined as follows:

{[hσ ⊕ hτ ⊕ Inv(σ, τ)] → LinearLayer → Swish → LinearLayer → Swish → mA
σ,τ}

• Edge Inference: For each message, we compute the edge importance similar to Satorras et al. (2021):

{mA
σ,τ → LinearLayer → Sigmoid} → eAσ,τ

• Cell Update: For each cell, an update is learned through the different adjacency communications:

[hσ, {mA
σ,τ}, {eAσ,τ}] → {hσ ⊕

⊕
Aσ,τ

eAσ,τ ·mA
σ,τ

→ LinearLayer → Swish → LinearLayer} → h′
σ

• Readout: To get the final prediction, a pre-readout and readout phase take place:

{h′n
σ } → LinearLayer → Swish → LinearLayer →

⊕
n

(∑
i

h′n
i

)
→ LinearLayer → Swish

→ LinearLayer → Prediction

This architecture design is related to the E(n) Equivariant Cellular Message Passing Cellular Networks introduced in Section
3.1. In the decoupled EGNN discussed in Section 3.2, only 0-cells (nodes) and 2-cells (rings) are used in the experiment
described in 5.2. The message passing and update rules are adapted to handle the interactions directly between these two
types of cells.

In the experiments of N-Body and CMU Motion from Sections 5.1 and 5.3 respectively, where the final prediction is the
displaced position in the next timestep, and the velocity of each node is used within the prediction, the equations for the
position update are similar to the ones introduced by Satorras et al. (2021):

• Velocity Update:
vi = ϕv(hi)v

init
i + C

∑
j ̸=i

(xi − xj)ϕx(mij)

• Position Update:
x′
i = xi + vi

B. Experimental Details
B.1. N-Body System

We used the same setup as in Satorras et al. (2021), i.e. 3,000 training trajectories, 2,000 validation trajectories, and 2,000
test trajectories. Each trajectory contains 1,000 time steps. We used a 4-layer EMPCN of dimension 2 for our experiments,
setting the initial number of hidden features to 66, resulting in a total of 200k parameters in total. Additionally, a dropout
layer with a probability of 0.2 was used for every single update and message passing. The invariant features are embedded
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E(n) Equivariant Message Passing Cellular Networks

using Gaussian Fourier features as introduced in Tancik et al. (2020). The optimization is done using the Adam optimizer,
with a constant learning rate of η = 5× 10−4, a batch size of 100, and weight decay of 10−12. The loss minimized is the
Mean Squared Error (MSE) in the predicted position.

Both the upper and lower adjacencies, as well as the boundaries, were considered for the message passing. The different cell
communications that are considered are the following: 0-cell (node) to 0-cell (node), 0-cell (node) to 1-cell (edge), 1-cell
(edge) to 0-cell (node), 1-cell (edge) to 1-cell (edge), 1-cell (edge) to 2-cell (ring), and 2-cell (ring) to 1-cell (edge).

The invariants used for message passing are the following: 0-cell to 0-cell: node distance; 0-cell to 1-cell (and vice versa):
length of edge; 1-cell to 1-cell: length of sending edge, length of receiving edge, distance from the midpoints of sending and
receiving edge; 1-cell to 2-cell (and vice versa): ring approximated radius, ring length, edge length.

B.2. QM9

For the QM9 dataset, we utilized the common split of 100,000 molecules for training, 10,000 molecules for testing, and the
remaining molecules for validation. All predicted properties were normalized by subtracting the mean of the target values in
the training set and then dividing by the mean absolute deviation (MAD) in the training set to stabilize training.

The models were trained for 1000 epochs each, with the final number of parameters set to one million. For the decoupled
EMPCN model, the parameters were divided 75:25 between the EGNN and the ring-to-node EMPCN components,
respectively. To match the one million parameter target, the number of hidden features in the higher-order message passing
was reduced to 44, while the number of layers remained equal to 7. For the node-to-node communication, which is handled
by the EGNN, only the norm of the distance was used as an invariant. For the ring-to-node communication, the invariants
used were the convex hull volume and area, the norm of the distance between the ring midpoint and each node within the
ring, and the ring length. Although one could also use the representations of rings in the final readout, we chose to use only
the representations of nodes to ensure a fair comparison with the EGNN model.

The models were optimized using the Adam optimizer with an initial learning rate of 5× 10−2 and a Cosine Annealing
learning rate scheduler. The Mean Absolute Error (MAE) was used as the loss function for optimization. We used a batch
size of 96 molecules and applied a weight decay of 10−12. Additionally, dropout layers were included in each message and
update layer.

B.3. CMU Motion Capture

As discussed in Section 5.3, for this task the goal is to forecast the node positions 30 timesteps into the future based on the
positions from a randomly chosen frame. We adopted a similar framework to Kipf & Welling (2017); Huang et al. (2022);
Liu et al. (2024), concentrating on the walking motion of a single subject (subject #35) over 23 trials.

As there are no rings present we use the extra topological information from connecting elbow joint nodes with shoulder and
palm nodes to create edges and triangles. Additionally, we link hip, knee, and heel nodes to form another set of edges and
triangles as firstly introduced by Liu et al. (2024). As mentioned in Section 5.3, we also introduce rings of length four and
five. These rings connect the two elbows with the two knees, the two arms with the two wrists, the two knees with the two
feet, and the two knees with the feet and the hip. The specific connections are as follows: [0, 3, 8], [6, 7, 8], [1, 2, 3], [24,
25, 26], [21, 22, 23], [7, 8, 2, 3], [24, 26, 17, 19], [25, 7, 18, 2], and [6, 7, 8, 1, 2, 3].

The models were trained for 5000 epochs each, with the final number of parameters set to 200K. For the decoupled EMPCN
model, the parameters were divided 80:20 between the EGNN and the ring-to-node EMPCN components, respectively. To
achieve the 200K parameter target, the number of hidden features in the higher-order message passing was reduced to 33 in
comparison to 66 that was for the node to node communication, while the number of layers was set to 4. Similar to the
experimental details for the QM9 dataset mentioned in Section 5.2 and Appendix B.2, for the final readout we used only the
representations of nodes.

The models were optimized using the Adam optimizer with an initial learning rate of 5× 10−2 and a Cosine Annealing
learning rate scheduler. The loss minimized was the Mean Squared Error (MSE) in the predicted position. A batch size of
100 was used, along with a weight decay of 10−8. Additionally, dropout layers with a probability of 15% were included
in each message and update layer. Finally, the invariants used for the ring-to-node communication were the norm of the
distance for node-to-node communication, the ring length, and the norm of the distance from each point to the midpoint of
the respective ring.
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