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ABSTRACT

Dark matter makes up approximately 85% of total matter in our universe, yet it
has never been directly observed in any laboratory on Earth. The origin of dark
matter is one of the most important questions in contemporary physics, and a
convincing detection of dark matter would be a Nobel-Prize-level breakthrough
in fundamental science. The ABRACADABRA experiment was specifically de-
signed to search for dark matter. Although it has not yet made a discovery, ABRA-
CADABRA has produced several dark matter search results widely endorsed by
the physics community. The experiment generates ultra-long time-series data at a
rate of 10 million samples per second, where the dark matter signal would mani-
fest itself as a sinusoidal oscillation mode within the ultra-long time series. In this
paper, we present the TIDMAD — a comprehensive data release from the ABRA-
CADABRA experiment including three key components: an ultra-long time series
dataset divided into training, validation, and science subsets; a carefully-designed
denoising score for direct model benchmarking; and a complete analysis frame-
work which produces a community-standard dark matter search result suitable for
publication as a physics paper. This data release enables core AI algorithms to
extract the signal and produce real physics results thereby advancing fundamen-
tal science. The data downloading and associated analysis scripts are available at
https://anonymous.4open.science/r/TIDMAD.

1 INTRODUCTION

The quest to uncover the nature of dark matter is one of the biggest challenges in contemporary
physics. Several key observations in astrophysics and cosmology have confirmed the existence of
dark matter, which constitutes approximately 85% of all mass in the universe (Rubin & Ford, 1970;
Tyson et al., 1998; Tegmark & et. al., 2004; Aghanim & et. al., 2020; Adams & et. al., 2023).
However, dark matter has never been detected by any detector on Earth. Because the composition
of dark matter is unknown, theoretical physicists propose various dark matter candidates — hypo-
thetical particles that can be characterized by their physical parameters. Experimental physicists
then design experiments to search for these candidates. A convincing detection of any dark matter
candidate would be a Nobel-Prize-level breakthrough in fundamental science, but even if nothing
is detected, the null results still play a significant role in advancing our understanding of physics
by setting limits within the physical parameter space. This means that a particular experiment has
eliminated the existence of a dark matter candidates within these limits and does not have sufficient
sensitivity to test outside these limits. These limits can be reciprocally used by theoretical physicists
to propose better dark matter candidates, thereby improving our understanding of this mysterious
constituent of our universe.

Attributable to its extremely rare interactions with normal matter, the signal of dark matter is often
submerged in a sea of noise from various sources internal and external to the experimental appara-
tus. While the signal shape is extremely well parameterized, modeling backgrounds with traditional
methods is intractable given they are composed of both transient and persistent noise sources, fre-
quency dependant and independent sources, phase coherent and incoherent noise, and amplifier
dependant and independent noise. Machine learning (ML) offers a promising means to reduce this
noise. Advancements in denoising techniques using ML algorithms have the potential to signifi-
cantly improve dark matter analyses Saleem et al. (2023). These techniques enable the detection
of weaker dark matter signals, or in the case of no observation, the setting of stronger limits. In
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Figure 1: Left to right: ABRA dilution fridge with outer vacuum cans on; Coldest stage of ABRA
fridge above shielded 1T superconducting torroidal magnet; Interior of ABRA magnet including
pickup and calibration loop wires existing the center of the magnet; Effective circuit diagram for
both dark matter and injected signals.

other words, improvements in data denoising directly enhance the scientific reach of dark matter
experiments. In this paper, we present an ultra-long time series dataset produced by a real dark
matter detector: ABRACADABRA (A Broadband/Resonant Approach to Cosmic Axion Detection
with an Amplifying B-field Ring Apparatus, abbrev. ABRA). ABRA is the world leading sub-µeV
dark matter experiment that pioneered the quantum enabled lumped element dark matter detection
technique Ouellet & et. al. (2019a;b); Salemi & et. al. (2021). We operated the ABRA detector
in February 2024 to obtain a special time series dataset for these studies: TIDMAD (TIme series
dataset for discovering Dark Matter with Ai Denoising). It can be partitioned into three parts: (1)
training data, (2) validation data, and (3) science data.

The training data include time series data where a dark matter-like signal is injected by hardware.
If dark matter enters ABRA, it will manifest itself as a sinusoidal oscillation mode within the time
series; therefore, the injected signals are also sinusoidal oscillations at specific frequencies. Both the
detected (noisy) time series and the injected (ground truth, clean) time series are provided with one-
to-one temporal correspondence. This allows the training of machine learning algorithms to denoise
the detector data and recover the injected signal. The validation data is used to produce Benchmark
1: Denoising Score, see Section 4.1. Algorithms that effectively dampen the detector noise while
amplifying the injected signal will achieve a better denoising score. The science data is collected
without the injected signal with an extended duration to produce Benchmark 2: Dark Matter Lim-
its, as discussed in the previous paragraph. The limit generation procedure is detailed in Section
4.2. The scientific data are titled to reflect their use in producing real, community-standard physics
results that are suitable for presentation in scientific journals. Several traditional and deep learning
denoising algorithms are presented in Section 3 and Appendix C, where the resulting denoised data
is benchmarked against the raw, un-denoised detector data.

1.1 AXION DARK MATTER AND ABRACADABRA

In recent years, the axion has emerged as one of the leading dark matter candidates as a result
of its theoretical elegance. Axions interact with normal matter via electromagnetism, which can
be characterized by a physics parameter gaγγ . Arising from its small mass ma < 1eV (10−6

times smaller than electron), axions acts as a classical field oscillating at a frequency fa = ma/2π.
Astrophysical measurements determine that the Earth exists in a bath of dark matter with a known
local density of ρDM de Salas & Widmark (2021).

The latest advancements in quantum detector technology have facilitated new avenues to search
for the axion. ABRA is one of the novel detectors designed to search for axions leveraging these
advancements in quantum technologies Ouellet & et. al. (2019b). ABRA capitalizes on the fact that
we are immersed in a bath of a feebly electromagnetically-interacting, oscillating dark matter field
to detect this elusive particle. Specifically, in the presences of a static magnetic field B0, the axion,
henceforth referred to as dark matter, induces an oscillating magnetic field Ba. Thus, to detect dark
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matter ABRA provides a strong magnetic field B0 = 1T and uses a superconducting pickup loop
to read out the oscillating dark matter signal. Read out by a superconducting quantum interference
device (SQUID), the pickup loop detects the dark matter signal as a time-oscillating current given
by

Jeff = gaγγ
√
2ρDMB0cos(mat) (1)

where the two parameters that define the theory, the coupling gaγγ and mass ma, appear as the
relative strength of the signal and oscillation frequency respectively Ouellet & et. al. (2019a). The
total signal power expected in our detector is given by

A ≡ ⟨|Φa|2⟩ = g2aγγρDMG2V 2B2
max (2)

where G ≈ 0.0217 is a geometric coupling, V ≈ 890cm3 is the magnetic field volume, and
Bmax ≈ 1 T is the maximum static magnetic field Ouellet & et. al. (2019a).

1.2 TIDMAD CONSTRUCTION

In the classical analysis, we use a calibration procedure to determine the end-to-end response of
our system for different signal frequencies. As shown in Figure 1, the ABRA detector contains a
toroidal magnet equipped with both a pickup loop and a calibration loop. During calibration, we
first inject a fake dark matter signal into the calibration loop at a specific frequency. This generates
a sine wave with a known amplitude and frequency, creating a dark matter-like flux with our pickup
loop. Finally, this flux is detected by the SQUID sensor for detector calibration.

The dark matter signal injected into the calibration loop by the signal generator follows the form
prescribed by axion theory, as shown in Equation 1 and derived in Appendix A. We specifically
choose to inject sine waves with frequencies from 1.1 kHz to 4.9 MHz, corresponding to axion
masses ma = [0.005, 17] neV, to target the mass range that our experimental hardware is designed
to detect. The injected signals were all set to an amplitude of 50 mV to ensure a reasonable signal-
to-noise ratio. A total of 309 different frequencies were sequentially stepped through, from 1.1 kHz
to 4.9 MHz, simulating 309 distinct axion masses in our detector hardware.
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Figure 2: 10-millisecond snapshot of the time series in TIDMAD training dataset.

The TIDMAD dataset presented in this work is inspired by this calibration procedure. The ABRA
detector hardware enables us to simultaneously record two types of ultra-long time series: the one
injected into the calibration loop (referred to as the “injected time series”) and the one detected
by the SQUID sensor coupled to the pickup loop (referred to as the “SQUID time series”). As
shown in Figure 2, the injected time series exhibit a clear sinusoidal oscillatory signal, which can
be considered the ground truth. Meanwhile, the SQUID time series contains the same ground truth
submerged within a sea of detector noises. The two time series are exactly aligned at every time
step. This defines the signal recovery task: a model could be applied to the SQUID time series
to reproduce the injected signal in the injected time series. A model trained on this task will be
efficient in rejecting noise of different kinds while retaining the dark-matter-like signal within the
detector. We then collected a science dataset where no fake dark matter signal is injected. The
trained denoising model can then be applied to the SQUID time series of the science dataset. If a
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sinusodial signal is found after denoising, it could potentially be a real dark matter particle entering
the detector.

2 DATASET DESCRIPTION

The data presented in this paper were acquired using the ABRACADABRA detector. The overall
schematics of the data is shown in Figure 3. All data are saved as a series at 10 MS/s (Megasample
per second), where each sample is a 8-bit integer ranging from -128 to 127. These integers can be
converted into a physics units of mV (millivolts) with a scaling factor of 40/128. The procured
datasets are stored at Open Science Data Federation (OSDF) Weitzel et al. (2017) in .hdf5 format
and can be accessed via the download data.py script in the github repository provided.

Figure 3: TIDMAD data flow explaining how data splits (green) result in benchmarks (blue). Rect-
angles correspond to provided scripts. Left to right, top to bottom the scripts are train.py,
inference.py, benchmark.py, process_science_data.py, brazilband.py

Training dataset: The training dataset contains 80.23 Gigasamples of time series data, corre-
sponding to roughly two hours of data collection. For training purposes, we injected a fake dark
matter signal into the hardware as discussed in Section 1.2. The injected signal scans through
dark matter frequencies from 1100 Hz to 5 MHz at two different amplitudes: 50 mV (standard)
and 10 mV (weak). Only the standard injection was considered in the rest of this paper. How-
ever, the weak injection data is also available to download by using the additional -w flag with the
download data.py script, providing a more challenging scenario for signal recovery. All train-
ing data are partitioned into 20 files. Each file contains two channels: the injected time series is
saved in the second channel (CH2), while the SQUID time series is saved in the first channel (CH1).
As discussed in Section 1.2, the training task is to recover the CH2 ground truth time series using
the CH1 noisy time series as input.

Validation dataset: The validation dataset, consisting of 80.23 Gigasamples, has the same format
as the training dataset. The only difference is that the validation dataset was independently col-
lected at a different time using the same detector apparatus, making it an out-of-sample dataset with
slightly altered noise conditions. After training, users can perform model inference by running the
inference.py script to denoise the CH1 time series while preserving the injected signal. The
denoised SQUID time series in CH1 and the injected time series in CH2 are then processed through
the benchmark.py script. To determine the efficacy of the model’s denoising, a benchmarking
score called ‘denoising score’ is calculated, which will be discussed in detail in Section 4.1.

Science dataset: The science dataset comprises 833.82 Gigasamples of time series data collected
over a 24-hour period. This data is distributed across 208 .hdf5 files. Unlike the training and
validation datasets, there are no injected signals, meaning that only the CH1 time series is saved per
file. The inference task for ML models is to denoise the SQUID time series in CH1. The denoised
science data is then analyzed to obtain a dark matter limit, which will be discussed in Section 4.2.
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3 EXPERIMENTS

We experimented five different denoising algorithms including two traditional algorithms and three
deep learning models. The traditional algorithm can be directly applied to the validation dataset
using inference.py, while deep learning models need to be trained first on the training dataset
with train.py. The five algorithms are listed below:

• Moving average: a simple moving average with a window size of 100, implemented using
the numpy convolve function.

• Savitzky-Golay filter: with a window size of 100 and a polynomial order of 11.

• FC net: an autoencoder architecture designed for transforming input data. This model
consists of an encoder and a decoder. The encoder encodes the input data into a low-
dimensional representation, while the decoder reconstructs the original data from this
encoded representation. Both the encoder and decoder are composed of multiple fully-
connected layers and activation layers. FC-Net outputs a single float point number at each
time step, and the training is conducted by minimizing the mean square error between this
float point number and corresponding ground truth time series at every sample.

• PU net: a deep learning architecture based on the UNet architecture Ronneberger et al.
(2015). U-Net uses convolution layers as encoder and deconvolution layers as decoder,
with contracting paths established between each pair of convolutional and deconvolution
layers at the same level. This allows information at different encoding levels to flow to the
decoding part. Positional encoding layers are introduced at all encoder layers to enhance
the model’s ability to understand positions in the time series. Since every sample of the
ground truth time series has to be 8-bit integers ranging from -128 to 127, we require the
model to output a 256-class classification decision at every time step, where each class
corresponds to one possible output value. This effectively redefines the denoising task into
a semantic segmentation task.

• Transformer: the transformer utilizes a self-attention mechanism to capture long-distance
dependencies in sequences Vaswani et al. (2017). After processing by the multi-layer
Transformer encoder, the model effectively extracts features and represents the input se-
quence. Finally, the encoded sequence is mapped to the output dimension through a linear
layer for the same 256-class classification decision as PU-Net. Positional encoding is also
added before the time series is fed into Transformer layers. Both PU-Net and Transformer
are trained using Focal Loss to handle class-imbalanced segmentation labels Lin et al.
(2017).

The benchmarking results of these models are discussed in Section 4. There are two additional
constraints for the deep learning models. First, because of memory constraints, we segment the
ultra-long SQUID and injected time series into smaller segments before feeding them into each
model. The exact segment sizes are outlined in Table 1. Secondly, as a result of the large range
of injected frequencies, training multiple versions of the same model to handle different frequency
ranges is necessary. Both limitations and additional details of the deep learning models are discussed
in Appendix B.

4 EVALUATION METRICS

We developed two benchmarking criteria to evaluate the performance of denoising algorithms.
Benchmark 1: Denoising Score provides a quantitative measure of denoising performance based
on the signal-to-noise ratio. This score is designed to be linear with respect to the noise level and
equal to one when no denoising is applied. While Benchmark 1 offers a quick, straightforward as-
sessment of model performance, it lacks direct relevance to fundamental science. To bridge this gap,
we developed Benchmark 2: Dark Matter Limit, which directly links AI algorithms to community-
standard physics result by automating the entire dark matter analysis on the science dataset. This
benchmark allows AI algorithms to directly improve the physics reach of dark matter detectors.
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4.1 BENCHMARK 1: DENOISING SCORE

The denoising score is a modified signal-to-noise ratio (SNR) of the denoised CH1 SQUID time
series. It is calculated over the validation dataset by first segmenting both the injected and SQUID
time series into one-second segments. Each second of the time series is transformed into a power
spectral density (PSD) using a squared fast Fourier transform. This frequency domain data records
signal power at each frequency – PSD(ν). Since the injected dark matter signal is a clean sinusodial
oscillation, it should appear as a single-bin peak (ν0) in the PSD, while noise in SQUID time series
is distributed across all frequency bins. The location of ν0 is identified by the PSD of the injected
time series (ground truth) as the largest single bin peak relative to its nearest neighbors.

ν0 = argmax
ν

(
PSDInjected(ν)− (PSDInjected(ν − df) + PSDInjected(ν + df))

)
(3)

where df is the sampling frequency of 10−7 Hz. Once ν0 is identified in the injected time series,
the the signal region is defined by selecting nsig = ±1 bins around the signal frequency to account
for spectral leakage. Similarly, the noise region is defined by selecting nbkgd = ±50 bins outside of
the signal region. By taking the ratio of the PSD in the signal region to that in the noise region, we
acquire the SNR for each one-second segment PSD.

SNRi =

(
Psig

Pnoise

)
i

=

ν0+νsig∑
ν=ν0−νsig

PSDi(ν)

/ ν0+νbkg∑
ν=ν0−νbkg

PSDi(ν) (4)

Multiplying by the sampling frequency (df ) turns bin range (nsig,bkg) to frequency range (νsig,bkg).

The hardware setup includes a bandpass filter between the pickups and the digitizer, resulting in a
frequency dependence for the signal magnitude in both the injected and the SQUID time series. To
account for this, we first calculate the normalized injected SNR:

(SNR′
Injected)i =

(SNRInjected)i
max(SNRInjected)

(5)

The SQUID SNR then gets multiplied to the corresponding, normalized SQUID SNR in the the
same one-second segments, and then summed over all one-second segments to produce Λ defined
below:

Λ =

(
1

n

n∑
i=0

(SNRSQUID)i × (SNR′
Injected)i

)
(6)

We examine the validity of Λ to represent denoising efficiency through a study involving added
Gaussian noise. In the ABRA detector, there are a multitude of independent, random noise sources
internal and external to the detector thus the noise in our data follows a Gaussin distribution. In this
study, Gaussian noise is imposed on the injected time series, and Λ are calculated at different levels
of Gaussian noise amplitudes and standard deviations. As shown in Figure 4 (right), Λ exhibits an
exponential decay trend with increased Gaussian noise amplitude. To establish a linear correlation
between the denoising score and noise, we apply a logarithmic transformation to Λ to calculate the
final denoising score:

Denoising Score = log5.27Λ (7)
The base of the logarithm is chosen to be 5.27 so that the denoising score equals 1 for the raw
SQUID time series over the validation dataset (i.e., when no denoising algorithm is applied). We
further examined this denoising score over a range of imposed Gaussian noise amplitude and STD,
and observed a smooth linear response as shown in Figure 4 (left).

This denoising score is implemented in the provided script, benchmark.py, which takes as input
the denoised SQUID time series of the validation dataset produced by model inference. The script
is designed for parallelization and takes about 30 minutes to run on an 8-core CPU node. To further
reduce the time required for calculating the denoising score, we defined this second-by-second scan
as the Fine Score and introduced a new Coarse Score Denoising Score. The Coarse Score is a
tenfold downsample of the full Fine Scan thereby providing a fast benchmarking score that users
can leverage to get a rough estimate of model performance in 10% the computational time.

Table 1 shows the denoising scores for all algorithms discussed in Section 3. The case with no
denoising is shown in the first row, with its fine denoising score calibrated to 1. We observed that
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Figure 4: Left: The color bar represents the denoising score for 20s of raw data with added Gaussian
noise showing that noisier data results in a lower score. Right: Denoising score and Λ for 20s of
raw data with added Gaussian noise of variable noise amplitude. The exponential behavior of Λ can
clearly be seen in contrast to the smooth linearity of the denoising score.

Table 1: Fine and coarse denoising score for raw data, traditional algorithms, and trained ML models

Algorithms Segment Size Parameters Fine Score Coarse Score

None 1.00 1.10

Moving Average 1× 106 window = 100 0.52 0.64

SG Filter 1× 106 window = 100, order = 11 -2.77 -2.35

FC Net 4× 104 See Appendix B 6.43 6.55

PU Net 4× 104 See Appendix B 3.69 3.84

Transformer 2× 104 See Appendix B 3.95 4.18

in all cases, the coarse denoising score is slightly higher than the fine denoising score. Based on the
results, all traditional algorithms decrease the denoising score as time domain averaging erases high-
frequency signals in the region of interest. Meanwhile, all deep learning algorithms efficiently boost
the denoising score. Surprisingly, we observed that the FC Net model achieved the best performance
with a denoising score of 6.43.

4.2 BENCHMARK 2: DARK MATTER LIMIT

The second benchmark empowers algorithm creators with the capability to conduct a community-
standard dark matter search using the science dataset. Following the discussion in the Introduction,
the two physics parameters for the dark matter candidate in this paper are the dark matter mass (ma)
and the dark matter to electromagnetic coupling (gaγγ). Null results from different dark matter ex-
periments place limits within this parameter space expressed by the shaded regions in Figure 5. In
the physics community, a better dark matter limit is represented by pushing towards lower values
of gaγγ at different ma. We provide a comprehensive tool necessary for performing the statistical
analysis to produce dark matter limits in Figure 5. The dark matter mass ma is directly proportional
to frequency, therefore the limit-setting procedure is repeated for 11.1 million independent ma from
0.4 neV (100 kHz) to 8 neV (2 MHz). The dark matter limit at each ma is obtained using a frequen-
tist log-likelihood ratio test statistic (TS), with the results depicted as regions in Figure 5. The detail
of this analysis can be found in Appendix C.

This analysis is performed twice on the SQUID time series of the science dataset: once without any
denoising algorithm which produces the ABRA-TIDMAD Raw limit, and once with FC Net, the
top-performing denoising algorithm, which produces the ABRA-TIDMAD Denoised limit. These
limits can be directly compared to the previous world-leading ABRA Run 3 limit, limits obtained by
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Figure 5: Plotted alongside the present, state-of-the-art axion dark matter limits (grey) are the 2σ
exclusion limits for ABRA Run 3 (pink) Salemi & et. al. (2021), ABRA-TIDMAD Raw limit (red),
and ABRA-TIDMAD Denoised limit from the trained FC net (maroon). Shaded regions correspond
to pairing of dark matter model parameters (ma, gaγγ) that are ruled out by the specified experiment
or observation, and the bright yellow region indicates theoretical predictions (See Appendix D for
details). The plotting script is modified from the public AxionLimits repository O’Hare.

other dark matter experiments, as well as theoretical predictions Salemi & et. al. (2021). While the
ABRA-TIDMAD Denoised limit does not outperform the ABRA Run 3 limit because of hardware
and time constraints, it is evident that denoising algorithms significantly improved the dark matter
limit by 1-2 orders of magnitude across different ma. Although the size of the ABRA-TIDMAD
science dataset is only 1% of the ABRA Run 3 science dataset, the AI denoising algorithm boosted
the ABRA-TIDMAD limit to nearly the same level as ABRA Run 3 and even surpassed the ABRA
Run 3 limits at small ma.

5 LIMITATIONS AND APPLICATIONS

Hardware and datataking period: As illustrated in Figure 5, the baseline models fail to surpass
the results of ABRA Run 3. This is attributed to hardware limitations and changes since the last
data run, including (1) replacing the dark matter pickup cylinder with a pickup loop, consequently
reducing the geometric coupling to the dark matter signal, and (2) reducing the data taking period
to 24 hours from three months. The decision to implement these changes was driven by the aim to
enable ABRA to simultaneously search for dark matter and gravitational waves, thereby enhancing
the scientific scope of the experiment. The shortened data taking duration was necessitated by
operational constraints of the dilution refrigerator. Because the signal-to-noise ratio scales as the
fourth root of integration time, we can increase ABRA’s sensitivity to dark matter by increasing the
data taking period Ouellet & Bogorad (2019). Another more efficacious way to increase this signal-
to-noise ratio is improving our denoising with ML; a doubling of our noise reduction represents a 16x
speed up our data taking time revealing the out-sized return on investment in denoising techniques
when compared to increased detector run time.

Null result vs. potential discovery: In Section 4.2, we discussed how to set a dark matter limit
using the provided analysis scripts. This script assumes a null result as no 5σ dark matter candidates
were identified in this region of parameter space by ABRA Run 3. Therefore, we assume a null
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result for this much shorter (24 hr) data taking. This assumption enables us to establish upper limits
on the coupling parameter gaγγ for every mass point. As shown in Figure 5, the ABRA-TIDMAD
Raw limit without denoising covers a smaller region than ABRA Run 3 Salemi & et. al. (2021).

However, with the denoising algorithm applied to the 24-hour science data, ABRA-TIDMAD could
potentially reach beyond the ABRA Run 3 region, where a discovery of dark matter is possible. In
this paper, we focused on increasing the experimental sensitivity and setting exclusion limits. A
straightforward modification to the interpretation of the TS would unlock the discovery potential of
this analysis framework. Future efforts will focus on employing a more extensive dataset and imple-
menting dark matter discovery analysis code. Given that discovering dark matter would be a Nobel
Prize-level breakthrough, it is crucial to not only claim discovery but also to convince the scientific
community of its validity. If TIDMAD users find any anomalous signals in the science dataset,
please contact the authors for further investigation and understandings of systematic uncertainties.

Generalizability: Axion dark matter is a specific subset of wave-like dark matter candidates, mak-
ing the techniques developed in this paper broadly applicable to a wide range of wave-like dark mat-
ter experiments. Other axion dark matter experiments, including but not limited to ADMX Braine
et al. (2020), HAYSTAC Backes et al. (2021), and CASPEr Budker et al. (2014), also produces
long time series data and search for similar peaks in frequency domain; any AI algorithm developed
upon TIDMAD can be easily adapted and applied to these experiments. Furthermore, time series
denoising algorithms are crucial for extracting wave-like signals in various areas of physics. In as-
trophysics, gravitational wave searches involve detecting chirp signals with durations on the order of
seconds Abbott et al. (2016), often buried within detector noise. In nuclear physics, denoising can
enhance the efficiency of HPGe detectors Anderson et al. (2022) and bolometer detectors Vetter et al.
(2024). Advancements in denoising can be deployed across a suite of these physics experiments.

While the data released in this paper was tailored to our specific problem statement and bench-
marks in physics, these ultra-long time series datasets have the potential to benefit a wide range
of applications beyond physics. Similar to TIDMAD, many other scientific domains involves time
series datasets exhibiting relatively uniform frequency characteristics, with the primary analytical
task focused on extracting signals from these time series. Examples include pulsar timing from ra-
dio observatory data (astronomy)Hobbs et al. (2006), detecting seismic arrivals above background
noise (geology)Webb (2002), identifying sea surface and near-surface temperature anomalies (cli-
mate science)Smith et al. (2008), and recognizing atrial fibrillation among noises and other rhythms
in short-term ECG recordings (health science)Clifford et al. (2017). If a foundation model were
to be developed for general time series analysis in science, our frequency-rich, detector-generated,
long time series data could provide a uniquely abundant source of spectral complexity.

6 CONCLUSIONS AND OTHER WORKS

We present TIDMAD, the first dataset and benchmark designed to yield a community-standard dark
matter search result. TIDMAD includes all necessary inputs and processing to train time series
denoising algorithms and produce a science-level dark matter limit. Through a series of experiments,
we developed three ultra-long time series deep learning algorithms, benchmarked their ability to
recover hardware-injected signals, and set dark matter limits. Clear performance improvements
were demonstrated on both benchmarks. Our future work will focus on enhancing the denoising
algorithm to achieve better dark matter limits, expanding to other nuclear and particle experiments,
and embedding these algorithms onto FPGA chips for real-time denoising during data taking.

The aim of this data release is to enable the ML community to use TIDMAD to develop algorithms
tailored for data with highly coherent embedded signals. This development would not only extend
the experimental reach of dark matter searches, leading to improved dark matter limits, but also allow
the AI/ML community to make direct scientific advancements. This transparency aims to foster
greater collaboration between the ML and particle physics communities, benefiting both fields.
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ETHICS STATEMENT

This research does not involve any human subjects, and all data utilized in this study were collected
exclusively through physics hardware. The experimental data were obtained following rigorous
scientific protocols to ensure accuracy and reliability. We have adhered to ethical standards in data
handling, analysis, and reporting, ensuring the integrity and reproducibility of our findings. No
ethical concerns are associated with the use of the hardware or data collection methods employed in
this research.

REPRODUCABILITY

The information necessary to reproduce all of the results in this paper are thoroughly catalogued
throughout the paper. Reproducing our results can be broken into seven parts (1) collecting data
(2) accessing data (3) training denoising algorithms (4) deriving denoising benchmark (5) evalu-
ating algorithms on denoising benchmark (6) deriving dark matter limit benchmark (7) evaluating
algorithms on dark matter limit benchmark.

To reproduce the ABRACADABRA hardware configurations used in collecting this data, see Ap-
pendix E.3. The data composition, storage, maintenance, and distribution information is presented
in Appendix E with data access described in Section F. To reproduce our trained denoising algo-
rithms, see Section 3. In our code repository is the script train.py which will reproduce the
trained models. To derive the denoising benchmark, please see Section 4.1. The implementa-
tion and calculation of this benchmark is also in our code repository benchmark.py. To eval-
uate the algorithms with the denoising benchmark, the code is provided in our repository using
scripts inference.py and benchmark.py. For a full derivation of our dark matter limits,
please see Appendices A and C. To reproduce our dark matter limits, one can use our scripts
process_science_data.py and brazilband.py. All of these scripts are in our public
repository https://anonymous.4open.science/r/TIDMAD.

For detailed instructions on how to download and process our data to produce all results in this paper
using our provided scripts, please see the README.md in our public repository.
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A DARK MATTER SIGNAL AND SIGNAL INJECTION

Axion dark matter appears in our detector as a time oscillating current with two free model pa-
rameters (ma, gaγγ) described by Equation 1. This signal can be fully derived from axion theory
and is extremely well-defined. While a full derivation of this equation is presented in Reference
Ouellet & Bogorad (2019), schematically, this theoretical prediction for the dark matter signal in
our detection comes from four phenomena – the omnipresent axion field, axion’s interactions with
electromagnetism, the specific geometry of our detector, and the velocity distribution of the dark
matter.

Under certain conditions, axions are created in the early universe via the misalignment mechanism
Dine & Fischler (1983); Preskill et al. (1983). When axions are created they produce a time oscil-
lating omnipresent axion field with an oscillation frequency equal to ma and phase coherence. If
axions are dark matter then the abundance of axions and the strength of this axion field are set by
our astrophysical observations of dark matter density de Salas & Widmark (2021).

The axion field can interact with other physical forces including electromagnetism. If an axion field
collides with an electromagnetic field, some of the axions will be transformed into photons. These
photons produce a secondary electromagnetic field – an axion-induced electromagnetic field. In the
geometry of our detector, the axion-induced electromagnetic field is read out with a pickup wire
which samples the field like a typical radio antenna. This means the time oscillating axion field
turns into a time oscillating current in our detector (i.e. our dark matter signal).

If earth were stationary, sitting in a uniform bath of dark matter, then the dark matter signal frequency
would be exactly the axion field oscillation frequency (i.e. the axion mass) and completely coherent.
However, the earth is moving within the Milky Way galaxy and thus the axion field gains a velocity
with respect to earth at about vDM ∼ 220km/s. Doppler shifting spreads this frequency such
that it is distribution around the original field frequency ∆f = v2DMf Ouellet & Bogorad (2019).
This frequency distribution is six orders of magnitude smaller than the signal frequency, therefore
can be treated a coherent, single frequency sine-wave to good approximation. For signal injection,
this single frequency approximation is used while for the dark matter analysis, we model the full
frequency distribution.

Thus, we have established that the dark matter signal in the ABRA detector is approximately sine-
wave current. The frequency of this oscillating signal is a model parameter meaning if we knew
the axion mass, this frequency would be set. However, theoretical models point to a range of pos-
sible axion masses, not a singular value. Ideally we would create a dark matter detector that could
search the entire range of valid dark matter masses, but experimental constraints such detector size,
configuration, and readout electronics preclude this possibility. Instead, experiments must be tai-
lored to search for smaller areas of the axion mass parameter space with ABRA the detector being
specifically designed to target ma = 0.4− 10 neV Ouellet & et. al. (2019a).

The second free signal parameter is the sine wave amplitude which is proportional to gaγγ , the
strength of the axion’s interactions with electromagnetism. Theoretical calculations constrain this
parameter to gaγγ = Cma where C = [−0.39, 0.22] depending on the theory Shifman et al. (1980);
Dine et al. (1981). Theoretically motivated axion couplings can be seen in Figure 5 as the gold band
in the ma, gaγγ parameter space. Experimentally, the goal is to detect ever smaller signal amplitudes
to reach lower values of gaγγ .

To inject a fake signal into the hardware, we replicate the signal current, given by Equation 1, with
a signal generator. The signal generator is connected to a calibration loop depicted in Figure 1 de-
signed to mimic an axion field incident on the detector. We specifically choose to inject sine waves
with frequencies from 1.1 kHz to 4.9 MHz, ma = [0.005, 17] neV, to contain the masses our experi-
mental hardware was built to target. The injected fake signals we used all have amplitudes of 50 mV
to achieve a reasonable signal-to-noise ratio. While injecting smaller fake signal amplitudes would
effectively simulate dark matter candidates with smaller electromagnetic couplings, fake signals
smaller than 50 mV are difficult to detect with traditional techniques. Though smaller couplings
provide an interesting ML task, our denoising score benchmark is predicated on finding injected
signals with traditional techniques and subsequently we did not use smaller fake signal amplitudes.
However, we did take data injected with signals ranging from 1.1 kHz to 4.9 MHz at a signal am-
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plitude of 10 mV. While this data was not used in our benchmark creation or model training, it is
publicly available (see Datasheet) for an extra challenge.

To summarize, our signal injection scheme involves exciting hardware with a sine wave from a
signal generator. We sequentially step through 309 different frequencies from 1.1 kHz to 4.9 MHz
to simulated 309 different axion masses in our detector hardware all with an amplitude of 50 mV so
that the fake signal is visible above the detector noise floor.

B DETAILS AND LIMITATIONS OF DEEP LEARNING MODEL

There are two special treatments we took to train the three deep learning models:

Training segmentation: To feed the time series data into limited GPU memories, the training time
series are segmented into 4 milliseconds. This imposes a fundamental lower limit on the frequencies
that the models can detect. While this lower limit, approximately 250 Hz given the sampling fre-
quency of 10 MS/s, is relatively small, it does establish a foundational lower threshold for frequency
resolution in the model. The transformer model requires additional memory, therefore we have to
further reduce the segment to 2 millisecond or 500 Hz. Both of these limits are well below the dark
matter search range: 0.4 neV (100 kHz) to 8 neV (2 MHz).

Frequency splitting: Since the injected dark matter signal spans two orders of magnitude in fre-
quency, the observed features in the injected time series significantly vary. During training, we no-
ticed that a single deep learning model to denoise the entire dataset would fail to generalize across
the different injected frequency ranges. To address this issue, we trained four deep learning models
per architecture, each focusing on a specific frequency range: the first covering the low-frequency
regime (training/validation files 0-3), the second covering the mid-low regime (training/validation
files 4-9), the third covering the mid-high regime (training/validation files 10-14), and the fourth
covering the high-frequency regime (training/validation files 15-19). During the benchmark 1 in-
ference, we selected the input validation data corresponding to the frequency range for which each
model was trained and averaged the results of the four models. For the benchmark 2 inference, we
ran all four models on the science data and selected the highest-performing model, as represented
in Figure 5. In future work, we aim to develop a single denoising model generalizable to wide
frequency ranges.

The hyperparameter of FC Net is listed below:

AE(
(encoder): Sequential(
(0): Linear(in_features=40000, out_features=4000, bias=True)
(1): ReLU()
(2): Linear(in_features=4000, out_features=400, bias=True)
(3): ReLU()
(4): Linear(in_features=400, out_features=40, bias=True)

)
(decoder): Sequential(

(0): Linear(in_features=40, out_features=400, bias=True)
(1): ReLU()
(2): Linear(in_features=400, out_features=4000, bias=True)
(3): ReLU()
(4): Linear(in_features=4000, out_features=40000, bias=True)

)
)

The output of FC Net at every time step is a single float point number. An MSE loss is calculated
between the float point number and the ground truth value.

The PU Net model consists of four down layers and four up layers, with contracting paths between
each pair of layers. The down layers include Max Pooling and two convolutional operations, while
the up layers comprise Deconvolution and Convolution. Additionally, positional encoding is added
after each down layer Vaswani et al. (2017). Lastly, the output is fed into a linear layer to produce
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256-dimensional vector at each time step The detailed model hyperparameter could be found within
the network.py script in https://anonymous.4open.science/r/TIDMAD.

The transformer model processes the time series data by using an Embedding layer to encode each
input, converting 8-bit integers in the range of (−128, 127) into a 32-dimensional vector. Posi-
tional encoding is then added to the embedded time series Vaswani et al. (2017). This augmented
data is fed into a Transformer Encoder with two layers, each containing two heads, 128 hidden di-
mensions, and a 0.1 dropout rate. Finally, the output is passed through a linear layer to produce a
256-dimensional vector at each time step.

For both PU Net and Transformer, the output at each time step is a 256-dimensional vector, corre-
sponding to 256 possible output classes. This can be considered as a time series semantic segmen-
tation task where there are 256 possible classes to choose from. We adopted Focal Loss in Object
Detection to address the class imbalance problem in semantic segmentation task Lin et al. (2017).

Figure 6: The denoising performance of FC Net (Left), PU Net (Middle), and Transformer (Right)
at a single injected frequency. The plot is made by Fourier-transform the time series into frequency
space.

The denoising performance of three models at a single injected frequency is illustrated in Figure 6.
In this specific instance, the PU-Net model demonstrates superior denoising performance. However,
when evaluated using the Denoising Score across all frequencies, the FC Net significantly outper-
forms the other two models by a large margin.

C FREQUENTIST LOG-LIKELIHOOD TEST STATISTICS

The detailed analysis flow to produce the dark matter limit is depicted in Figure 7. The first step in-
volves performing a fast Fourier transform on the time series data in 10-second segments to produce
power spectral densities (PSDs). These PSDs are then averaged across the full dataset to generate
our average PSD, reflecting the power in the pickup loop as a function of frequency. Since one of the
physics parameters, dark matter mass (ma), , is directly proportional to the frequency, the analysis
script conducts 11.1 million independent searches for dark matter with varying mass points from 0.4
neV (100 kHz) to 8 neV (2 MHz).

At each mass point, the dark matter limit is obtained using a frequentist log-likelihood ratio test
statistic (TS) Foster et al. (2018). Given the local velocity distribution and density of dark matter
from astrophysical measurements, as well as our choice of dark matter mass, we create a dark matter
signal template for each mass point. These templates are compared to a chunked frequency subset
of the average PSD, constructed using a sliding window whose width scales as δf/f ≈ 5.5 ×
10−6. We use equation 1.1 and calibration data to produce the other physics parameter gaγγ given
detector geometry. By floating the template signal amplitude and allowing the mean background
level of noise to vary within each sliding window, we fit the signal template to the data to construct
a likelihood as a function of gaγγ . We then use the TS to determine the 95% one-sided upper limits
on gaγγ for every mass point Salemi & et. al. (2021); Foster et al. (2018). The resulting limits on
gaγγ as a function of ma (black line) as well as the 1/2σ containment (green, yellow) can be seen
on the dark matter sensitivity plot, i.e. ”Brazil band” in Figure 7.
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Figure 7: This represents the analysis flow for dark matter science data and the detection logic to
build the brazil band limits from time series data (raw or denoised). Key types of data are plotted
corresponding to their step in the analysis chain.

D CURRENT AXION LIMITS

In Figure 5, the TIDMAD dark matter limits, denoised and raw, are presented alongside ABRA’s
previous Run 3 limits and various state-of-the-art axion dark matter experiments and observations.
In gold, the theoretically motivated couplings for dark matter candidates are highlighted as discussed
in Appendix A. In this appendix, a brief summary of the origins of these limits will be provided.

Light-shining-through-walls: In this class of experiments, a high-intensity laser is directed to-
wards a solid barrier. While conventional light cannot traverse the barrier, the interaction with the
wall may cause a fraction of the light to convert into axions. As a result of their weak interaction
with matter, these axions could pass through the wall. On the opposite side, detectors are placed to
identify any reconverted light, which would indicate the presence of axions. Light-shining-through-
walls experiments must both create axions from photons and detect these axions by converting them
back into photons, whereas ABRA only needs to detect axions, not create them.

Cavity Haloscopes: This class of experiments generate a strong magnetic field to stimulate ax-
ions to convert into microwave photons within a resonant cavity-enclosed space. The resonant cavity
is finely tuned to amplify specific frequencies of electromagnetic radiation. Sensitive radio receivers
then measure the power within the cavity to identify any potential photon signals indicative of ax-
ions. While the conversion mechanism is identical to ABRA, the resonant cavity only amplifies
targeted frequencies, while ABRA’s readout chain has broadband amplification of axion induced
signals. ABRA, Cavity Haloscopes, and SHAFT are all examples of Haloscopes – experiments that
search for dark matter axions in our galaxy’s dark matter halo.

SHAFT: The Search for Halo Axions with Ferromagnetic Toroids (SHAFT) experiment is an ax-
ion haloscope with a broadband readout, similar to ABRA in both detection and readout mechanism.
There are two main differences between SHAFT and ABRA (1) SHAFT uses toroidal magnets with
ferromagnetic material in the core to convert the axions (2) SHAFT contains a pairs of stacked
ferromagnetic toroids each of which has a separate pickup coil and SQUID readout.

Astrophysics: There are numerous astrophysical processes that would be altered if the axion
exists. Broadly, this class of exclusions takes astrophysical observations, calculates how these pro-
cesses would change if axions exits, and sets limits on possible axion couplings. These limits in-
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clude the following astrophysical processes. Stellar Cooling. Axions produced in hot astrophysical
plasma can transport energy out of stars. This transport of energy critically affects stellar lifetimes,
thus observations of stellar energy-loss rates can set limits on axion’s couplings to matter. Pho-
ton Flux Large photon fluxes from astrophysical objects like Supernova 1987A traverse the galaxy
before being detected terrestrially. Within the galactic magnetic field, some of these supernova pho-
tons could be converted into axions. By observing the gamma-ray signals from such events, strong
bounds on axions couplings to photons can be derived. Black Hole Superradiance. Light particles,
like axions, affect the gravitational waves emitted by black holes through the superradiance mecha-
nism in which axion fields extract energy and angular momentum from the black hole. Observations
of stellar black hole spin measurements can therefore constrain allowable axion couplings.

CAST: The CERN Axion Solar Telescope (CAST) experiment is a prominent axion helioscope.
In contrast to haloscopes which search for axions created in the early universe within the dark matter
halo surrounding our galaxy, helioscopes search for axions created in our Sun’s heliosphere. CAST
uses a strong, movable superconducting magnet to convert axions produced in the core of our Sun
into into X-ray photons when aligned with the Sun. CAST is equipped with highly sensitive X-ray
detectors at both ends of the magnet, designed to capture these photons. By tracking the Sun and
searching for excess X-rays that correlate with solar axions, CAST aims to detect solar axions.

E DATASHEET

E.1 MOTIVATION

1. For what purpose was the dataset creates? Our datasets were created to train and bench-
mark ultra-long time series denoising frameworks for the discovery of dark matter.

2. Who created the dataset and on behalf of which entity? This dataset is the direct output
of the ABRACADABRA detector on behalf of the researchers on the author list.

3. Who funded the creation of the dataset? This work was generously funded by the Na-
tional Science Foundation under grant numbers NSF-PHY-1658693, NSF-PHY-1806440,
2141064.

E.2 COMPOSITION

1. What do the instances that comprise the dataset represent? Each instance represents
a voltage at a moment in time read out by our detector. For the SQUID data, this voltage
comes from flux on the pickup loop of wire, converted to a voltage by the SQUID detec-
tor, read out by our digitizer. For the SG data, this voltage comes directly from a signal
generator passed through a power splitter.

2. How many instances are there in total? There are 867,260,000,000 voltage instances
total.

3. Does the dataset contain all possible instances or is it a sample of instances from a
larger set? The voltage produced by the SQUID and the SG are continuous. The instances
are sampled from this continuous voltage stream at a constant rate of 10MS/s.

4. What data does each instance consist of? The data each instance consists of is a raw 8-bit
integer from our digitizer. To convert the raw 8-bit integer to a voltage, each bit must be
scaled by the ADC voltage i.e. multiply by 40mV/128.

5. Is there a label or target associated with each instance? Yes, for the calibration data,
each instance of the SQUID data corresponds to a target which is the instance in the SG
data.

6. Is any information missing form individual instances? No.

7. Are relationships between individual instances made explicit? The instances are related
because they come from the same detector just sampled at a different moment in time.

8. Are there recommended data splits? Yes, please see Section 2.l

9. Are there any errors, sources of noise, or redundancies in the dataset? There are no
redundancies. Yes, there are many sources of detector noise.
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10. Is the dataset self-contained, or does it link to or otherwise rely on external resources?
The data is self-contained.

11. Does the dataset contain data that may be considered confidential? No

12. Does the dataset containd ata that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? No.

Table 2: Summary of critical information about this data release. These are the data files used for
training and benchmarking of the baseline algorithms provided.

Training Data Validation Data Science Data

File Name abra training
00{00-19}.h5

abra validation
00{00-19}.h5

abra science
0{000-207}.h5

No. Data Points per File 2.01e9 2.01e9 4.01e9

HDF5 File Size 2.2 GB 2.2 GB 2.7 GB

ch1 Hardware Input SQUID SQUID SQUID

ch2 Hardware Input SG SG

Injected frequencies (Hz) [1100, 1200, ... , 4.8M, 4.9M]

Injected amplitudes (mV) 50

E.3 COLLECTION PROCESS

1. How was the data associated with each instance acquired? The data associated with
each instance is acquired by the ABRACADABRA detector. Full details can be viewed in
Sections 1.1 and 2.

2. What mechanisms or procedures were used to collect the data? Full details can be
viewed in Sections 1.1 and 2 and reference Salemi & et. al. (2021). The hardware necessary
for producing said data include, but are not limited to, an Oxford dilution refrigerator,
1T superconducting magnet, two-stage Magnicon SQUID, superconducting pickup loop,
superconducting calibration loop, signal generator, digitizer, and data acquisition computer.

3. If the dataset is sampled from a larger set, what was the sampling strategy? The
voltage produced by the SQUID and the SG are continuous. The instances are sampled
from this continuous voltage stream at a constant rate of 10MS/s. The sampling strategy is
deteministic and regular.

4. Who was involved in the data collection process and how were they compensated? To
run the ABRACADABRA experiment, one graduate student was needed. This graduate
student was paid via NSF fellowship.

5. Over what timeframe was the data collected? The data were collected from 2/21/24 -
2/23/24.

Table 3: Summary of auxiliary files in this data release. These files provide an interesting challenge
for the user, however were not used in the training or validation of the baseline models.

Aux Training Data Aux Validation Data

File Name abra training 00{20-39}.h5 abra validation 00{20-39}.h5

No. Data Points per File 2.01e9 2.01e9

HDF5 File Size 2.2 GB 2.2 GB

ch1 Hardware Input SQUID SQUID

ch2 Hardware Input SG SG

Injected Frequencies (Hz) [1100, 1200, ... , 4.8M, 4.9M]

Injected Amplitudes (mV) 10
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6. Were any ethical review processes conducted? No. These data do not involve humans.

7. Does this dataset relate to people? No.

E.4 PREPROCESSING/CLEANING/LABELING

1. Was any preprocessing/cleaning/labeling of the data done? No.

E.5 USES

1. Has the dataset been used for any tasks already? No, this dataset has not been used for
any tasks yet.

2. Is there a repository that links to any or all papers or systems that use the dataset?
No. This dataset has yet to be used outside of this paper.

3. What other tasks could the dataset be used for? As discussed in Section ??, these data
can generally be used for training time series algorithms. Due to its high coherence and
extensive length, it is perfect for cross cutting applications.

4. Is there anything about the composition of the dataset or the way it was collected and
preprocessed that might impact future use? No.

5. Are there tasks for which the dataset should not be used? No.

E.6 DISTRIBUTION

1. Will the dataset be distributed to third parties outside of the entity on behalf of which
the dataset was created? Yes, the dataset is open to the public.

2. How will the dataset be distriuted? The dataset is publically available to be downloaded
from the Open Science Data Federation cache. For download instructions, please see Sec-
tion F.

3. When will the dataset be distributed? The dataset is presently available.

4. Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? No.

5. Have any third parties imposed IP-based or other restriction on the data associated
with the instances? No.

6. Do any export controls or other regulatory restrictions apply to the dataset or to indi-
vidual instances? No.

E.7 MAINTENANCE

1. Who will be supporting/hosting/maintaining the dataset? The dataset is hosted at Open
Science Data Federation (OSDF). OSDF also provide distributed cache of the dataset across
its global cache location. For more detail, please refer to OSDF Website1. The paper
authors will be maintaining the dataset.

2. How can the owner/curator/mangager of the dataset be contacted? Please email the
corresponding author on the author list.

3. Is there an erratum? No.

4. Will the dataset be updated? No, the dataset will not be updated.

5. If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances? This dataset does not relate to people.

6. Will older versions of the dataset continue to be supported? Yes, they will continue to
be supported.

7. If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? No. Access to the ABRACADABRA detector is controlled.

1https://osg-htc.org/services/osdf.html
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F DATASET AND CODE ACCESS

The data downloading and associated analysis scripts are available at https://anonymous.
4open.science/r/TIDMAD. All data were uploaded to Open Science Data Federation and
cached using their distributed cache system. The TIDMAD dataset can be downloaded using the
download data.py script provided in this GitHub repository. This script runs without any ex-
ternal dependencies. This script downloads data by generating a series of wget commands and
executing them in a bash environment. download data.py has the following argument:

• --output dir -o: Destination directory where the file will be downloaded, default:
current working directory.

• --cache -c: Which OSDF cache location should be used to download data. Options
include [NY/NorCal/SoCal/Director(default)]:

– NY: New York
– NorCal: Sunnyvale
– SoCal: San Diego
– Director: automatically find the fastest cache location based on user’s location.

* WARNING: Director cache is sometimes unstable. We recommend switching to
a different cache if the download fails.

• --train files -t: Number of training files to download, must be an integer between
0 and 20, default 20.

• --validation files -v: Number of validation files to download, must be an integer
between 0 and 20, default 20.

• --science files -s: Number of science files to download, must be an integer be-
tween 0 and 208, default 208.

• -f, --force: Directly proceed to download without showing the file size and asking
the confirmation question.

• -sk, --skip downloaded: Skip the file that already exists at --output dir.
• -w, --weak: Download the weak signal version of training and validation files. In this

version, the injected signal is 1/5 the amplitude of the normal version. This is a more
challenging denoising task. Note that the normal version has a file range 0000-0019, while
the weak version has a file range of 0020-0039.

• -p, --print: Print out all wget commands instead of actually executing the download
commands.

In the same github repository, we also provided a filelist.dat file which contains line-by-line
wget command to download the entire dataset.An example wget command is given here:

wget https://osdf-director.osg-htc.org/ucsd/physics/ABRACADABRA/
ABRA_aires_validation_data/abra_validation_0009.h5

G CROISSANT METADATA

We created a croissant metadata file TIDMAD croissant.json using protocal presented in
Akhtar et al. (2024).

H AUTHOR STATEMENT

The authors of this paper all bear responsibility in the case of violation of rights. The information
provided in the paper and supplementary material is truthful and accurate. The code from this
paper is hosted, managed, and maintained by the paper’s first author at https://anonymous.
4open.science/r/TIDMAD. The data from this paper is hosted, managed, and maintained by
the paper authors with download instructions in Section F. The dataset is released under the Creative
Commons Attribution (CC BY) license. The code is released under the GNU General Public License
(GPL), version 3.
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