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Abstract

In many multi-agent spatiotemporal systems, agents operate under the influence of1

shared, unobserved variables (e.g., the play a team is executing in a game of bas-2

ketball). As a result, the trajectories of the agents are often statistically dependent3

at any given time step; however, almost universally, multi-agent models implicitly4

assume the agents’ trajectories are statistically independent at each time step. In5

this paper, we introduce baller2vec++1, a multi-entity Transformer that can effec-6

tively model coordinated agents. Specifically, baller2vec++ applies a specially7

designed self-attention mask to a mixture of location and “look-ahead” trajectory8

sequences to learn the distributions of statistically dependent agent trajectories. We9

show that, unlike baller2vec (baller2vec++’s predecessor), baller2vec++10

can learn to emulate the behavior of perfectly coordinated agents in a simulated11

toy dataset. Additionally, when modeling the trajectories of professional basketball12

players, baller2vec++ outperforms baller2vec by a wide margin.13

1 Introduction and Related Work14

Whether it is a team executing a play in a game of basketball, a family navigating to an attraction in a15

theme park, or friends posting about a birthday party on a social media platform, humans frequently16

coordinate their behavior in response to shared information. When this coordinating information is17

unobserved (which is often the case in many machine learning datasets), the individuals’ observed18

behaviors become correlated, i.e., the behavior of one individual at a specific moment contains19

information about the behavior of another individual at the same time. In the context of modeling20

agent trajectories in multi-agent spatiotemporal systems, this property translates to the trajectories21

being statistically dependent at each time step. However, nearly all multi-agent spatiotemporal models22

(e.g., [1–6]) implicitly (through their loss functions) assume the trajectories of the agents at each time23

step are statistically independent given the agents’ previous locations (Figure 1).24

Zhan et al. [7] explicitly focused on modeling coordinated multi-agent trajectories, using “macro-25

intents” [8] that are shared across agents to do so. The macro-intents are generated from a26

separately trained recurrent neural network (RNN) that learns to predict a future, coarse, “sta-27

tionary” location for each agent at each time step. The macro-intents for all of the agents at28

a specific time step are concatenated together to form a single, shared, macro-intent variable,29

which is then provided as input to the trajectories-generating model at that time step. However,30

similar to the previously mentioned multi-agent trajectory models, the macro-intents model im-31

1All data and code for the paper are available at: <anonymized>.
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plicitly assumes the macro-intents for the agents at each time step are statistically independent,32

i.e., the macro-intent for one agent does not depend on the macro-intents of the other agents.233

Figure 1: Left: most multi-agent systems implicitly as-
sume the trajectories of the agents at each time step
(∆xt,k) are conditionally independent given the agents’ pre-
vious locations (x1:t,k). Right: however, the various de-
compositions of the joint probability of the trajectories,
e.g., p(∆xt,1)p(∆xt,2|∆xt,1)p(∆xt,3|∆xt,1∆xt,2) (note,
we omit the conditional x1:t,k terms for brevity), suggest
more complex statistical dependencies between the agents’
trajectories can exist (i.e., the independence assumption is
an extremely strong one). Indeed, there are often shared un-
observed variables influencing the spatiotemporal behaviors
of agents—such as the play that the players on a basketball
team are executing, or events occurring in a pedestrian envi-
ronment—which suggests statistical dependencies between
the agents’ trajectories are likely.

Further, the trajectories-generating34

model still implicitly assumes the tra-35

jectories of the agents at each time36

step are independent, which is only37

true if the shared macro-intent vari-38

able perfectly captures all of the unob-39

served information that could cause40

the agents’ trajectories to be corre-41

lated.42

Notably, Social-BiGAT [9] does par-43

tially account for trajectory correla-44

tions through a global adversarial loss.45

Specifically, the trajectories for each46

agent are separately passed through47

an encoder RNN, and the final hid-48

den states for each agent are then pro-49

cessed with a graph attention network50

(GAT) [10]. The output of the GAT51

is then used as an input to a discrim-52

inator that classifies whether or not53

the input trajectories are real or gen-54

erated. This global adversarial loss,55

however, is only a single component56

of the full Social-BiGAT loss func-57

tion, and other components of the loss58

function do implicitly make the inde-59

pendence assumption. Further, inter-60

estingly, adding the global discriminator to a baseline model only improved the model’s performance61

for one out of six pedestrian datasets.62

In this paper, we describe a novel multi-agent spatiotemporal model that integrates information about63

concurrent actions of agents to predict statistically dependent distributions of trajectories. Specifically,64

we extend the recently introduced multi-entity Transformer baller2vec [6] by: (1) augmenting its65

input with a parallel sequence of “look-ahead” agent trajectories and (2) using a specially designed66

self-attention mask, which allows our model to exploit the chain rule of probability (Section 3). We67

find that:68

1. baller2vec++ is an effective learning algorithm for modeling coordinated agents. Unlike69

baller2vec, baller2vec++ can learn to emulate perfectly coordinated agents from a70

simulated toy dataset (Section 5.1). Further, baller2vec++ outperforms baller2vec by71

a wide margin (8.9%) when modeling the trajectories of professional basketball players72

(Section 5.1).73

2. baller2vec++ makes better predictions when conditioned on concurrent trajectory infor-74

mation from other agents, supporting our proposition that the commonly used independence75

assumption for agent trajectories is overly strong (Section 5.2).76

3. Lastly, the joint probability assigned to a sequence by baller2vec++ is approximately77

permutation invariant with respect to the order of the agents, i.e., baller2vec++ respects78

the properties of the chain rule (Section 5.3).79

2See the authors’ implementation here: https://github.com/ezhan94/
multiagent-programmatic-supervision/blob/a1d9152d4c8a287474953cba093c28fef2a05979/
models/macro_vrnn.py#L101.
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2 Background80

2.1 Multi-agent trajectory modelling81

Our problem description closely follows Alcorn and Nguyen [6], whom we quote here:82

Let A = {1, 2, . . . , B} be a set indexing B agents and P = {p1, p2, . . . , pK} ⊂83

A be the K agents involved in a particular sequence. [Let] Ct =84

{(xt,1, yt,1), (xt,2, yt,2), . . . , (xt,K , yt,K)} [be] an unordered set of K coordinate85

pairs such that (xt,k, yt,k) are the coordinates for agent pk at time step t. The86

ordered sequence of sets of coordinates C = (C1, C2, . . . , CT ), together with P ,87

thus defines the trajectories for the K agents over T time steps.88

In multi-agent trajectory modeling, the goal is to model a joint probability of the form:89

p(∆xt,1,∆xt,2, . . . ,∆xt,K |x1:t,1, x1:t,2, . . . , x1:t,K)

i.e., the joint probability of the K agents’ trajectories ∆xt,k at time step t given the agents’ location90

histories x1:t,k. We note here that the common practice of simultaneously predicting the trajectories91

for all of the agents at a specific time step is not required by theory. Using the chain rule of probability,92

the joint probability of the agents’ trajectories can be factorized as, e.g.:93

p(∆xt,1,∆xt,2, . . . ,∆xt,K) = p(∆xt,1)p(∆xt,2|∆xt,1) . . . p(∆xt,K |∆xt,1,∆xt,2, . . . ,∆xt,K−1)

where we omit the conditional historical trajectories for brevity. As a result, it is perfectly acceptable to94

generate trajectories agent-wise, using the previously generated trajectories as additional conditioning95

information when generating the trajectories for later agents (see Figure 2).96

Figure 2: At inference time, a model is not required to simultaneously generate the trajectories for
all of the agents at a specific time step. An alternative strategy is to allow the model to generate the
agents’ trajectories one at a time, and let the model use the previously generated trajectories to inform
the trajectories it generates for the remaining agents.

2.2 baller2vec is a (conditional) generative model.97

baller2vec is a recently described multi-entity Transformer that can model sequences of sets98

(the underlying data structure for multi-agent spatiotemporal systems), as opposed to sequences99

of individual inputs (like words in a sentence). When used to model the game of basketball, the100

input at each time step for baller2vec is a set of feature vectors where each feature vector contains101

information about the identity and location of a player on the court. baller2vec maps each input102

feature vector to an output feature vector, which is then used to “classify” the binned trajectory for103

that specific player at that specific time step.104

Here, we provide a probabilistic interpretation of baller2vec, which establishes the theoret-105

ical grounds for using the chain rule to generate trajectories agent-wise at each time step in106

baller2vec++. Without loss of generality, we only consider one-dimensional trajectories for107

a single agent here. To briefly summarize, the outputs of the softmax function over the n binned108
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trajectories in baller2vec can be interpreted as mixture proportions for a mixture of uniform distri-109

butions with predetermined bounds that partition the Euclidean trajectory space. Further, because110

xt+1 = xt + ∆xt, baller2vec is in fact a conditional generative model that assigns a probability111

to a sequence of trajectories given the initial position of the agent, i.e., p(∆x1,∆x2, . . . ,∆xT |x1).112

Using the chain rule, we decompose the joint probability of the trajectories as:113

p(∆x1,∆x2, . . . ,∆xT ) = p(∆x1)p(∆x2|∆x1) . . . p(∆xT |∆x1,∆x2, . . . ,∆xT−1)

to reflect their temporal structure (we omit the conditional initial position term for brevity). Therefore,114

new trajectories can be generated from baller2vec with the following procedure (see Figure 3):115

1. First, sample one of the n different mixture components using the mixture proportions116

output from the classifier f (i.e., baller2vec) conditioned on the agent’s current position,117

i.e., i ∼ Categorical(π1, π2, . . . , πn) where [π1, π2, . . . , πn] = f(xt).118

2. Next, sample a trajectory from the uniform distribution associated with the sampled compo-119

nent, i.e., ∆xt ∼ U(ai, bi).120

3. Finally, add the sampled trajectory to the agent’s input position to generate the agent’s121

position at the start of the next time step, i.e., xt+1 = xt + ∆xt.122

Let [∆xmin,∆xmax) be an interval on the real line such that any trajectory ∆x <123

∆xmin or ∆x ≥ ∆xmax has zero density (i.e., such trajectories are humanly impossible).124

Figure 3: baller2vec can be viewed as a condi-
tional generative model that assigns a probability
to a sequence of trajectories given the initial po-
sitions of the agents. Here, we show a graphical
model depiction of a baller2vec model that gen-
erates a sequence of one-dimensional trajectories
for a single agent. Given the initial position of the
agent (the circle containing x1), one of n different
uniform distributions (the square containing i1) is
sampled using the mixture proportions (πi) output
by baller2vec (f ). The agent’s trajectory (the di-
amond containing ∆x1) is then sampled from the
selected uniform distribution, which has bounds
−∞ < ai < bi < ∞. At the start of the next
time step, the agent’s position is x2 = x1 + ∆x1.
Maximizing the likelihood of baller2vec as a
classifier over the binned trajectories is thus equiv-
alent to maximizing its likelihood when assuming
the trajectories are generated from a mixture of
uniform distributions that partition the Euclidean
trajectory space (see Section 2.2 for details).

Let {[ai, bi)}ni=1 be a set of n intervals that par-125

tition the interval [∆xmin,∆xmax) into n bins,126

i.e., ∪ni=1[ai, bi) = [∆xmin,∆xmax) and i 6=127

j =⇒ [ai, bi) ∩ [aj , bj) = ∅. Recall that the128

probability density function (PDF) for a uniform129

distribution with bounds −∞ < a < b <∞ is:130

p(∆x) =

{
1

b−a for ∆x ∈ [a, b)

0 otherwise

Letting ci = 1
bi−ai

, the PDF for a mixture of131

uniforms with these bounds is thus:132

p(∆x) =

n∑
i=1

πiU(∆x; ai, bi) =

n∑
i=1

πici (1)

where p(∆x) is the density assigned to ∆x133

by the mixture, πi is the mixture proportion134

for the mixture component indexed by i (i.e.,135

0 ≤ πi ≤ 1 and
∑
πi = 1), and U(∆x; ai, bi)136

is the density assigned to ∆x by the uniform dis-137

tribution with bounds −∞ < ai < bi < ∞.138

Because the bounds of the uniform distribu-139

tions partition [∆xmin,∆xmax), Equation (1)140

reduces to:141

p(∆x) = πi′ci′

where ∆x ∈ [ai′ , bi′) (because the other uni-142

form distributions will assign a density of zero to143

∆x). The likelihood for data D (with |D| = N )144

is then:145

L(D) =

N∏
j=1

p(∆xj) =

N∏
j=1

πj,i′cj,i′
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where πj,i′ is the mixture proportion assigned to the component with ∆xj ∈ [ai′ , bi′) and cj,i′ is the146

associated density. Taking the negative logarithm of the likelihood gives:147

− ln(L(D)) = −
N∑
j=1

ln(πj,i′)−
N∑
j=1

ln(cj,i′) (2)

Because the bounds are fixed, the second summation is a constant, and Equation (2) becomes:148

− ln(L(D)) = −
N∑
j=1

ln(πj,i′) + C

where C = −
∑N

j=1 ln(cj,i′). Therefore, minimizing the loss of baller2vec as a classifier of149

binned trajectories is equivalent to minimizing the loss of the model when assuming the trajectories150

are generated from a mixture of uniform distributions as specified in Equation (1).151

3 Model Architecture152

= attention
= information path

baller2vec look-ahead maskballer2vec mask

= additional layers

Figure 4: A naive strategy for learning to predict statistically dependent agent trajectories is to adapt
the baller2vec self-attention mask so that baller2vec can “look ahead” at future positions of
agents whose trajectories are generated prior to the agent being processed in the current time step.
However, this look-ahead self-attention mask cannot be used with multi-layer Transformers because
doing so necessitates “seeing the future”. For example, after the model attends to the blue agent’s
position at time step t+1 when processing the yellow agent at time step t, the yellow agent’s resultant
feature vector contains information about the blue agent’s future position. As a result, when the
model attends to the yellow agent while processing the blue agent at the next level, the model is
seeing the future.

We motivate our baller2vec++ architecture by first highlighting an issue that arises in baller2vec153

when trying to model agent trajectories using the chain rule. The baller2vec self-attention mask154

can be adapted so that baller2vec “looks ahead” at the future positions of agents whose trajectories155

are generated prior to the agent being processed in the current time step (Figure 4). However, this156

look-ahead self-attention mask can only be used with the final layer of the Transformer; otherwise,157

the model needs to see the future (Figure 4). As a result, baller2vec is severely limited in the158

conditional distribution functions it can learn.159

baller2vec++ (Figure 5) overcomes this limitation by: (1) augmenting the baller2vec input with160

two other sets of feature vectors and (2) using a specially designed self-attention mask. The three sets161

of feature vectors in baller2vec++ take the following forms:162

1. zt,k = gz([e(pk), xt,k, yt,k, ht,k]) (current location information)163

2. ut,k = gu([e(pk), xt+1,k, yt+1,k, ht,k,∆xt,k,∆yt,k]) (“look-ahead” information)164

3. rk = gr([e(pk), x1,k, y1,k, h1,k]) (initial location information)165
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Figure 5: To learn statistically dependent agent trajectories, baller2vec++ uses a specially designed
self-attention mask to simultaneously process three different sets of features vectors in a single
Transformer. The three sets of feature vectors consist of location feature vectors like those found in
baller2vec (zt,k), look-ahead trajectory feature vectors (ut,k), and starting location feature vectors
(rk; not shown). As can be seen in these partial depictions of baller2vec++ and the baller2vec++
self-attention mask, this design allows the model to integrate information about concurrent agent
trajectories through multiple Transformer layers without seeing the future.

where gz , gu, and gr are multilayer perceptrons (MLPs), e is an agent embedding layer, and ht,k is a166

vector of optional contextual features for agent pk at time step t. zt,k is the same location feature167

vector used in baller2vec and contains information about a specific agent’s identity and the agent’s168

location at time step t. ut,k is a “look-ahead” trajectory feature vector that contains information about169

a specific agent’s identity, the agent’s location at the next time step t+ 1, and the agent’s trajectory170

at time step t, i.e., (xt+1,k − xt,k, yt+1,k − yt,k). Lastly, rk is a starting location feature vector that171

contains information about a specific agent’s identity and the agent’s location at time step t = 1.172

The rk feature vectors are necessary so that baller2vec++ can “see” the initial locations of all the173

agents when processing the agents agent-wise in the first time step.174

These three sets of feature vectors are combined to form a (K + 2TK) × F matrix Z such that175

the first K rows consist of the K rk feature vectors, and the remaining 2TK rows consist of the176

TK zt,k and TK ut,k feature vectors interleaved with one another, i.e., each zt,k is followed by its177

corresponding ut,k in the matrix. This matrix is passed into the Transformer along with the specially178

designed self-attention mask, which encodes the following dependencies (see Figure 5):179

1. When processing rk1
, baller2vec++ is exclusively allowed to “look” at each rk2

(i.e.,180

baller2vec++ cannot look at any location or look-ahead feature vectors when processing181

rk1
).182

2. When processing zt2,k2
, baller2vec++ is allowed to “look” at: (i) each rk1

, (ii) any zt1,k1
183

where (a) t1 < t2 or (b) t1 = t2 and k1 ≤ k2, and (iii) any ut1,k1
where (a) t1 < t2 or (b)184

t1 = t2 and k1 < k2.185

3. When processing ut2,k2 , baller2vec++ is allowed to “look” at: (i) each rk1 , (ii) any zt1,k1186

where (a) t1 < t2 or (b) t1 = t2 and k1 ≤ k2, and (iii) any ut1,k1 where (a) t1 < t2 or (b)187

t1 = t2 and k1 ≤ k2.188

Each processed zt,k feature vector is then passed through a linear layer that is followed by a softmax,189

which gives a probability distribution over the trajectory bins for agent pk at time step t. Similar to190

baller2vec, the loss for each sample is:191

L =

T∑
t=1

K∑
k=1

− ln(f(Z)t,2k−1[vt,k]) (3)

where f(Z)t,2k−1[vt,k] is the probability assigned to the trajectory bin vt,k (where vt,k =192

Bin(∆xt,k,∆yt,k) is an integer from one to n2) by f , i.e., Equation (3) is the negative log-likelihood193

(NLL) of the data according to the model.194
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Because any ordering of a chain rule decomposition of a joint probability produces the same value,195

e.g.:196

p(∆xt,1)p(∆xt,2|∆xt,1)p(∆xt,3|∆xt,1∆xt,2) = p(∆xt,3)p(∆xt,2|∆xt,3)p(∆xt,1|∆xt,3∆xt,2)

like [11], we shuffled the order of the agents in each training sequence to encourage the model to197

learn joint probabilities of the agent trajectories that are approximately permutation invariant with198

respect to the ordering of the agents.199

4 Experiments200

We tested baller2vec++ on two different datasets. To highlight the pathological behavior of models201

that assume agent trajectories are statistically independent at each time step, we trained scaled down202

versions of baller2vec++ and baller2vec on a toy dataset consisting of simulated trajectories203

for two perfectly coordinated agents. Additionally, to demonstrate the efficacy of baller2vec++204

in real world settings, we trained baller2vec++ and baller2vec on a dataset of trajectories for205

professional basketball players.206

4.1 Toy dataset207

Each training sample was initialized with the agents starting at (−1, 0) and (1, 0) on a grid in random208

order (i.e., the first agent could be placed to either the left or the right of the origin). At each time209

step, one of nine actions (corresponding to the 3×3 grid surrounding the agent) was sampled from a210

uniform distribution, and each of the agents was translated along this trajectory. This process was211

repeated for 20 time steps (see Figure 6(a) for a sample).212

4.2 Basketball dataset213

We used the same National Basketball Association (NBA) dataset3 employed by Alcorn and Nguyen214

[6], whom we paraphrase here:215

The NBA dataset consists of trajectories from 631 games from the 2015-2016216

season, which were split into 569/30/32 training/validation/test games, respectively.217

During training, each sequence was sampled using the following procedure: (1)218

randomly select a training game, (2) randomly select a starting time from the game,219

(3) take the following four seconds of data and downsample it to 5 Hz from the220

original 25 Hz, and then (4) randomly (with a probability of 0.5) rotate the court221

180◦. This sampling procedure gave us access to on the order of ∼82 million222

different (albeit overlapping) training sequences. For both the validation and test223

sets, ∼1,000 different, non-overlapping sequences were selected for evaluation by224

dividing each game into d 1,000N e non-overlapping chunks (where N is the number225

of games), and using the starting four seconds from each chunk as the evaluation226

sequence.227

4.3 Model228

Our baller2vec++ and baller2vec models for the basketball dataset closely followed [6], and so229

largely resemble the original Transformer architecture [12]. Specifically, the Transformer settings230

were: dmodel = 512 (the dimension of the input and output of each Transformer layer), eight attention231

heads, dff = 2048 (the dimension of the inner feedforward layers), six layers, no dropout, and no232

positional encoding. Each MLP (i.e., gz , gu, and gr) had 128, 256, and 512 nodes in its three layers,233

respectively, and a ReLU nonlinearity following each of the first two layers. The player embeddings234

[13] had 20 dimensions, and ht,k was a binary variable indicating the side of the frontcourt for235

player pk (i.e., the direction of his team’s hoop) at time step t. Lastly, the 11 ft× 11 ft 2D Euclidean236

trajectory space was binned into 121 1 ft× 1 ft squares.237

We used the Adam optimizer [14] with an initial learning rate of 10−6, β1 = 0.9, β2 = 0.999, and238

ε = 10−9 to update the model parameters, of which there were ∼19 million. The learning rate was239

3https://github.com/linouk23/NBA-Player-Movements
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reduced to 10−7 after 20 epochs of the validation loss not improving. Models were implemented in240

PyTorch and trained on a single NVIDIA GTX 1080 Ti GPU for ∼650 epochs (seven days) where241

each epoch consisted of 20,000 training samples, and the validation set was used for early stopping.242

For the toy dataset, we used scaled down versions of the basketball models with dmodel = 128, four243

attention heads, dff = 512, and two layers in the Transformer. Additionally, each MLP had two layers244

with 64 and 128 nodes, respectively. The models were trained for 50 epochs of 500 samples per245

epoch (∼10.5 minutes) using a single learning rate of 10−5.246

5 Results247

5.1 baller2vec++ can effectively model coordinated agents in both simulated and real248

settings249

For the toy dataset, the training loss for baller2vec converged to ∼2.2 ≈ − ln( 1
9 ), i.e., the model250

was simply independently guessing the trajectories for both agents at every time step. In contrast,251

the training loss for baller2vec++ converged to ∼1.1 ≈ − ln( 1
9 )÷ 2, which is the expected loss252

for a model that perfectly learns the deterministic relationship between the agents’ trajectories253

(because the prediction for the second agent will always contribute − ln(1.0) = 0 to the loss).254

(a) Training sample. (b) baller2vec. (c) baller2vec++.

Figure 6: When trained on a dataset of perfectly coordinated agent tra-
jectories (a), the trajectories generated by baller2vec are completely
uncoordinated (b) while the trajectories generated by baller2vec++
are perfectly coordinated (c). Animated versions can be found in the
code repository.

When generating trajecto-255

ries with baller2vec, the256

agents are completely unco-257

ordinated, with each agent258

following an independent259

random walk around the260

grid (Figure 6(b)). In con-261

trast, trajectories generated262

by baller2vec++ display263

the same coordinated agent264

behavior as the training data265

(Figure 6(c)).266

For the basketball dataset,267

baller2vec++ achieved268

an average NLL of 0.472269

on the test set, 8.9% better270

than the average NLL for271

baller2vec (0.518) (see Figure S1 for trajectories generated by baller2vec++ and baller2vec).272

As was observed in [6], the trajectory bin distributions for baller2vec become much more certain273

after observing a portion of the sequence (Figure 7), which suggests baller2vec may be inferring274

some of the shared hidden variables (e.g., plays) influencing the players. If that hypothesis was true,275

the performance gap between baller2vec++ and baller2vec should be largest at the beginning276

of the sequence (before any shared hidden variables can be inferred by baller2vec). Indeed, the277

average NLL for baller2vec++ in the first time step of each test set sequence (1.567) is 16.1%278

better than the average NLL for baller2vec (1.869), while the average NLL for baller2vec++ in279

the last time step of each test set sequence (0.420) is only 9.7% better than the average NLL for280

baller2vec (0.465) (see Figure 7).281

5.2 baller2vec++ makes better predictions when conditioned on concurrent trajectory282

information from other agents283

Implicit in much of our discussion has been the intuition that providing a model with additional284

(relevant) information will improve its performance. To empirically test this conjecture, we compared285

the performance of baller2vec++ when predicting the trajectory of a specific basketball player286

placed in the first position of the player order (i.e., when k = 1) vs. predicting the trajectory for that287

same player placed in the last position (i.e., when k = 10). Specifically, for each player in each test288

sequence, we calculated the NLL of the player’s trajectory in the first time step4 with the player in the289

4Because, as previously discussed, the benefits of baller2vec++ were most pronounced in the first time
step.
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16.1%

9.7%

ρ = 0.997

Figure 7: Left: when modeling the trajectories of professional basketball players, the performance gap
between baller2vec++ and baller2vec is largest at the beginning of the sequence, before shared
unobserved variables can be inferred by baller2vec. Each bar indicates a model’s average NLL
over the entire test set for that particular time step. For full sequences, baller2vec++ outperforms
baller2vec by 8.9%. Right: the joint probability assigned to a sequence by baller2vec++ is
approximately permutation invariant with respect to the order of the agents. For each point, its x
value indicates baller2vec++’s average NLL for a test set sequence using the original order of
the agents in the sequence, while its y value indicates baller2vec++’s average NLL for the same
sequence with the order of the agents shuffled. The shuffled average NLLs are highly correlated with
their corresponding unshuffled average NLLs.

first position of the player order. Next, we moved the player to the last position of the player order,290

and then randomly shuffled the remaining nine players 10 times, calculating the NLL for the player291

in the last position each time. Finally, we calculated the average percent change in the last position292

NLLs relative to their corresponding first position NLLs. On average, moving a player from the first293

to the last position improved the NLL for the player’s trajectory by 14.6%.294

5.3 The joint probability assigned to a sequence by baller2vec++ is approximately295

permutation invariant with respect to the order of the agents296

To determine whether or not baller2vec++ respects the fact that any ordering of a chain rule297

decomposition of a joint probability produces the same value, we measured how much the average298

NLL for each test sequence in the basketball dataset varied when the order of the agents changed.299

Specifically, for each test set sequence, we shuffled the order of the agents 10 times. Then, for each300

permuted sequence, we calculated the percent error5 in the average NLL relative to the original,301

unshuffled sequence. Across all test sequences, the average percent error was only ±1.5%. Further,302

as can be seen in Figure 7, the shuffled average NLLs are highly correlated with their corresponding303

unshuffled average NLLs (Pearson correlation coefficient = 0.997), i.e., the joint probability assigned304

to a sequence by baller2vec++ is approximately permutation invariant with respect to the order of305

the agents.306

6 Conclusion and Future Work307

In this paper, we have shown how the commonly used independence assumption of many multi-agent308

spatiotemporal models can severely limit their ability to learn to emulate coordinated agents. By309

relaxing this independence assumption in baller2vec, baller2vec++ was able to more accurately310

model the trajectories of professional basketball players. Models for other multi-agent spatiotemporal311

environments, such as pedestrian traffic (see [15] for a survey) and vehicle traffic (e.g., [16–19]), may312

also benefit from the look-ahead approach used by baller2vec++. Additionally, the interleaved313

input design of baller2vec++ could be useful when modeling other systems involving many entities314

interacting through time, such as social media platforms (e.g., [20, 21]). However, confronting the315

quadratic complexity of the Transformer attention mechanism as the number of entities grows large316

in these datasets is an open problem, but recent work in sparse Transformers (e.g., [22–27]) shows317

encouraging progress.318

5See: https://en.wikipedia.org/wiki/Approximation_error#Formal_Definition.
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