
ManiTaskGen: A Comprehensive Task and Benchmark Generator for
Vision-Language Models in Long-Horizon Embodied Planning

Anonymous ACL submission

Figure 1: Framework Overview. ManiTaskGen is a universal tool that, given information from any interactive
scene, can generate a comprehensive set of plausible long-horizon manipulation tasks and automatically construct
benchmarks to evaluate perception, reasoning and planning capabilities of Vision-Language Models.

Abstract

Long-horizon manipulation task planning (e.g.,001
object rearrangement) using vision-language002
models (VLMs) is a critical research direction003
in embodied AI. Although numerous recent004
works have proposed specific algorithms and005
models, their evaluations typically rely on man-006
ually selected scenes and a limited set of anno-007
tated tasks. We contend that such evaluation008
methods are neither comprehensive nor fair,009
and require significant manual annotation. In010
this paper, we introduce an automated method011
for task generation and benchmark construc-012
tion: given any interactive scene, our approach013
can generate a comprehensive set of plausible014
long-horizon manipulation tasks and automati-015
cally build a benchmark for evaluating vision-016
language planning models. Moreover, by ap-017
plying our method to off-the-shelf interactive018
scenes in simulators, we provide a thorough019
evaluation and analysis of the performance of020
existing VLMs on these long-horizon planning021
tasks. We will open-source our code, offering022
a universal tool for generating tasks and bench-023
marks to evaluate VLMs for long-horizon em-024
bodied planning.025

1 Introduction 026

Long-horizon manipulation task planning—such as 027

complex object rearrangement—is a fundamental 028

challenge in embodied AI (Durante et al., 2024; 029

Szot et al., 2022; Weihs et al., 2021; Gan et al., 030

2021). To effectively execute such tasks, embod- 031

ied agents must understand the underlying logic, 032

decompose tasks into sequential subtasks like navi- 033

gation, object grasping, and placement (Szot et al., 034

2021; Anderson et al., 2018). Additionally, they 035

need to perceive the scene layout to navigate, and 036

accurately interpret object configurations and spa- 037

tial relationships to ensure precise execution of 038

pick-and-place operations (Gu et al., 2022; Liu 039

et al., 2024), demanding comprehensive perceptual 040

and reasoning abilities. 041

In recent years, various approaches have been 042

proposed to tackle these challenges, including skill- 043

chaining methods (Gu et al., 2022; Lee et al., 2021) 044

and large model-based planning (Liang et al., 2023; 045

Song et al., 2023). The use of vision-language 046

models (VLMs) for task planning (Yang et al., 047

2024; Zhang et al., 2023; Skreta et al., 2024) has 048

emerged as a particularly promising direction, es- 049

1



pecially for open-world applications. Despite sig-050

nificant methodological advancements, the evalua-051

tion of these approaches still suffers from a lack of052

comprehensive benchmarks. Most existing eval-053

uations (Liu et al., 2024; Szot et al., 2021; Gu054

et al., 2022) rely on manually selected scenes and055

a limited set of predefined tasks, which introduce056

two major limitations: (1) Limited Task Diver-057

sity: Since tasks are manually designed, their quan-058

tity and diversity are inherently limited, resulting059

in an incomplete assessment of model capabili-060

ties across diverse conditions. (2) Limited Scene061

Coverage: Scene selection and task annotation are062

time-consuming and labor-intensive. Consequently,063

studies often focus on specific scenes of interest,064

leading to inconsistent evaluation protocols and065

hindering fair comparisons across different works.066

To address the first limitation, we begin by pos-067

ing the question: Given a mobile robot equipped068

with robust low-level pick-and-place skills, how069

many possible tasks could it theoretically execute in070

an interactive scene? Intuitively, the answer seems071

infinite. However, as illustrated in Fig. 2, we char-072

acterize the robot’s execution loop within the scene073

and consequently posit that all possible tasks can074

be logically categorized into two types: process-075

based tasks and outcome-based tasks. Building on076

this insight, we introduce an automated task gener-077

ation method that ensures logical comprehensive-078

ness. Specifically, we construct a scene graph that079

encodes object spatial relationships and free-space080

information, allowing us to systematically generate081

all feasible process-based tasks. Additionally, we082

curate a template dataset, ManiTaskOT-1K, and em-083

ploy a VLM-based voting mechanism to generate084

outcome-based tasks tailored to any given scene.085

Building on this task generation method, we fur-086

ther develop an automated benchmarking frame-087

work. For any interactive scene, this framework088

enables an agent to execute abstracted interac-089

tions—such as navigation and pick-and-place ac-090

tions—to complete the tasks, followed by an auto-091

mated evaluation of task performance. This scene-092

agnostic benchmark generation method can be ap-093

plied to a wide range of interactive scenes, includ-094

ing both simulated environments and real-world095

scenes (provided the objects are interactive and096

their information—such as pose, bounding box, or097

interior layers—is available), thereby addressing098

the second limitation mentioned above.099

To validate our approach, we apply it to Repli-100

caCAD (Szot et al., 2021), a dataset of interactive101

simulated environments, to generate a task set and 102

automatically construct benchmarks. Our experi- 103

mental results demonstrate the validity and diver- 104

sity of the generated tasks. Additionally, by testing 105

existing VLMs on our benchmark, we identify their 106

limitations in handling long-horizon manipulation 107

tasks, highlighting key failure cases and providing 108

insights for future model improvements. 109

In summary, this paper includes following con- 110

tributions: (1) We propose ManiTaskGen, an auto- 111

mated framework for generating logically compre- 112

hensive long-horizon manipulation tasks and con- 113

structing benchmarks. (2) We apply ManiTaskGen 114

to ReplicaCAD, generating a large-scale bench- 115

mark and conducting an in-depth evaluation that 116

uncovers the limitations of current VLMs in long- 117

horizon task planning. (3) We provide the com- 118

munity with a universal tool for task and bench- 119

mark generation, enabling standardized evaluation 120

of vision-language planning models across diverse 121

interactive environments. 122

2 Related Work 123

Benchmarks for Embodied Long-horizon Plan- 124

ning. In recent years, numerous benchmarks have 125

emerged to evaluate embodied agents in long- 126

horizon task planning (Li et al., 2023; Szot et al., 127

2021; Shridhar et al., 2020a,b), including bench- 128

marks specific for VLM-based agents (Liu et al., 129

2024; Yang et al., 2025). However, these bench- 130

marks typically rely on manually designed and an- 131

notated tasks and are limited to a small number 132

of predefined scenes. In contrast, our method can 133

be applied to any given interactive scene, generat- 134

ing plausible and comprehensive tasks that cover a 135

wide range of scenarios. Furthermore, it automati- 136

cally constructs benchmarks for evaluation, signifi- 137

cantly expanding the diversity of test scenarios and 138

tasks. 139

Task Generation for Embodied Agents. Re- 140

cent research has explored task and environment 141

generation for training Reinforcement Learning 142

(RL) agents(Fang et al., 2020; Cobbe et al., 2020; 143

Raileanu and Rocktäschel, 2020), as well as aug- 144

menting diverse tabletop manipulation tasks(Wang 145

et al., 2023) and instruction-finetuning LLM-based 146

agents (Hu et al., 2024). In this work, we focus on 147

scene-level task generation for long-horizon ma- 148

nipulation tasks. Additionally, we combined task 149

generation with autumated benchmark construction 150

to evaluate VLM-based embodied agents. 151

2



Figure 2: Execution Loop. This loop provides a com-
prehensive depiction of how an embodied agent exe-
cutes a manipulation task within a scene. Based on
this framework, we categorize all tasks into two distinct
types: process-based tasks and outcome-based tasks.

3 Comprehensive Task Generation152

3.1 Premise153

Considering a mobile robot with comprehensive154

pick-and-place capabilities—able to grasp any155

movable object and place it on any surface that can156

accommodate it—we seek to answer the follow-157

ing fundamental question: How many long-horizon158

manipulation tasks can the robot execute within a159

given scene?160

To systematically address the question, we161

formalize the problem as follows. Let O =162

{o1, o2, o3, . . . } denote the set of all objects in the163

scene, where each oi may include the object’s raw164

information such as mesh model or extracted in-165

formation like its bounding box and interior layers.166

We define the scene status as S = {s0, s1, s2, . . . },167

where si represents the state of object oi, including168

its position poi and rotation roi . Next, we define a169

set of atomic actions as: A = {a0, a1, a2, . . . }. An170

atomic action a ∈ A corresponds to transitioning171

an object from its current state si to a new state172

s′i. Given the agent’s capabilities are constrained to173

pick-and-place actions, changes in S are restricted174

to object positions. Thus, the set A consists of175

actions of the form: “move object o from p to p′”176

where p′ is a valid placement position for o.177

This formalization underpins the execution loop178

depicted in Fig. 2. At each step, given the cur-179

rent scene state S, the robot selects an action a180

from A and executes it. The execution modifies S ,181

updating A accordingly, and the process iterates.182

This loop encapsulates how the robot iteratively183

executes pick-and-place tasks in a given scene. Fol-184

lowing this execution model, we posit that all pick-185

and-place task instructions into two fundamental186

types: process-based tasks and outcome-based187

tasks.188

Process-based tasks explicitly specify one or a189

sequence of atomic actions drawn from A. For190

instance:191

“I need the robot to pick up object oi from 192

location poi and place it at p′oi” 193

Note that, in natural language, the same command 194

can be expressed in various ways while keeping the 195

same meaning. In addition, atomic actions sampled 196

from sequential execution loops can be chained. 197

In contrast, Outcome-based tasks define a de- 198

sired final scene status S without specifying the 199

intermediate actions. For example: 200

“I need the robot to clear the tabletop.” 201

Here the tabletop may initially contain multiple 202

objects {o1, o2, o3, . . . } ⊆ O. 203

Building on this conceptual categorization, we 204

propose a systematic task generation methodology 205

leveraging the iterative execution loop. Specifically, 206

we first construct a 3D scene graph encoding ob- 207

ject spatial relationships and placement constraints 208

(Sec. 3.2). This enables us to derive a complete set 209

of atomic actions A and establish a comprehensive 210

execution loop. In Sec. 3.3, we detail how we gen- 211

erate both process-based and outcome-based tasks 212

by utilizing the execution loop model. 213

Algorithm 1 Construct 3D Scene Graph Tree

1: Input: object set O, scene state S.
2: Output: 3D Scene graph S = (V, E)
3: Definition:
4: V = {vi} is the vertex set of scene graph tree;
5: E = {ei} is the edge set of scene graph tree;
6: function INIT_SCENE_GRAPH_TREE(O, S)
7: for oi in O do
8: vi← init_vertex(oi, si)
9: vi.surface← oi.get_surface()

10: end for
11: E ← cal_contact(V)
12: Sinit← build_tree(V ,E)
13: return Sinit
14: end function
15: function CAL_FREE_SPACE(v)
16: for each p in v.surface do
17: Vp← p.get_objects()
18: for each vc on p do
19: vc.cal_freespace(p,Vp − vc)
20: end for
21: end for
22: end function
23: S← INIT_SCENE_GRAPH_TREE(O, S)
24: for v in V do
25: CAL_FREE_SPACE(v)
26: end for

3



Figure 3: Visualizations of receptacle segmentation.
By calculating the relative poses of objects, we partition
receptacles into grids based on objects or empty sur-
faces and compute their sizes, thereby enabling efficient
retrieval of all receptacles within the scene.

3.2 Receptacle-Aware 3D Scene Graph214

Given a set of objectsO and the scene status S , our215

goal is to automatically construct a 3D scene graph216

S. This graph encodes object locations and indexes217

all available receptacles (free spaces) along with218

their sizes. The algorithm is outlined in Alg. 1.219

We first build an object spatial distribution tree220

based on each object’s position, rotation, bounding221

box, and interior layer information (in any). The222

root node represents Ground, while all other nodes223

correspond to scene objects. Parent-child relation-224

ships are determined by spatial containment—an225

object is assigned as a child of another if it rests226

on one of its outer or interior surfaces. For solid227

objects, the default supporting surface is their top228

surface, while for multi-level receptacles (e.g., cabi-229

nets, shelves), we record the specific surface where230

each child object is placed.231

Once the tree structure is established, we com-232

pute relative positions and distances between ob-233

jects sharing the same supporting surface. We234

segment the space around each object’s bounding235

box into eight directional free space regions, with236

boundaries extending until they encounter another237

object. For unoccupied surfaces, we default to a238

3×3 grid segmentation. We visualize our segmen-239

tation of free spaces in Fig. 3. This representation240

enables efficient retrieval of any receptacle in the241

scene by querying an object or surface. Notably,242

a single receptacle may be indexed by multiple243

objects, such as an intermediate plane between ad-244

jacent objects. Additionally, adjacent receptacles245

can be merged into a larger receptacle if necessary.246

In the end, we obtain a 3D scene graph S that en-247

codes the location, structure, and relationships of248

every object and every receptacle within the scene.249

3.3 Generating Tasks 250

Based on the scene graph S, next we derive a com- 251

plete set of atomic actions A = {a0, a1, a2, . . . }. 252

Each atomic action a takes the form of "move ob- 253

ject o from po to p′o", where p′o must be a valid 254

placement location for o. We extract all feasible 255

p′o values from S for each object. Using A and S, 256

we then generate both process-based and outcome- 257

based tasks. 258

Process-based Tasks. As defined in Sec. 3.1, 259

process-based tasks describe the execution of one 260

or more actions from the atomic action setAwithin 261

a single or multiple execution loops. A task can be 262

as simple as executing a single action a sampled 263

from A. Alternatively, if executing a updates the 264

scene state S—resulting in a new atomic action set 265

A′—and another action a′ is subsequently selected 266

from A′, then the sequence (a + a′) also forms 267

a longer process-based task. Here, “+” may rep- 268

resent various logical connectors, such as THEN, 269

and OR, corresponding to “execute a followed by 270

a′.” “execute a or a′.” respectively. By iteratively 271

sampling atomic actions across one or multiple ex- 272

ecution loops, we generate a comprehensive set 273

of process-based tasks, with task complexity con- 274

trolled by limiting the number of loops. 275

To enhance task diversity, we describe the des- 276

tination p′ in each sampled atomic action "move 277

object o from p to p′" using four distinct strategies 278

based on scene graph information: (1) Move to 279

a surface by specifying its name; (2) Move to a 280

location around a specific object on a surface; (3) 281

Move to a position in a relative direction of a spe- 282

cific object on a surface; and (4) Move to a location 283

between two objects on a surface. Additionally, we 284

offer an option to leverage a large language model 285

(LLM) to rephrase these descriptions while pre- 286

serving their original semantics, further increasing 287

linguistic variation. 288

Outcome-based Tasks. Unlike process-based 289

tasks, generating outcome-based tasks is more chal- 290

lenging as it requires an abstract description of 291

the scene state S (Sec. 3.1). A straightforward 292

approach would be to input the scene graph S 293

into a vision-language model (VLM) or large lan- 294

guage model (LLM) to predict possible scene status 295

changes. However, due to the limitations and in- 296

stability of large models in understanding complex 297

3D scene graphs, this method often generates im- 298

practical tasks, leading to a long-tail distribution 299

that reduces overall utility. We further discuss this 300

4



issue in Sec. 5.1.301

To address this, we introduce ManiTaskOT-1K,302

a manually curated outcome-based task template303

dataset. We first collected scene images from both304

real-world environments and simulators, then lever-305

aged Amazon Mechanical Turk (Amazon, 2024)306

to gather human-written instructions describing307

high-level scene transformations. From these, we308

extracted 1,000 structured templates, forming the309

ManiTaskOT-1K dataset. Details are provided in310

the Appendix, and examples of representative tem-311

plates include:312

"Create a tidy arrangement on [OB-313

JECT0]."314

"Disorganize the top of [OBJECT0] to315

make it messy."316

"Sort all [SUB-OBJECTS00] on [OB-317

JECT0] by material type."318

Given a scene, we instantiate ManiTaskOT-1K319

templates by populating them with scene-specific320

objects. To ensure task feasibility, we further em-321

ploy multiple VLMs to vote on each generated322

instruction, filtering out non-executable tasks and323

refining the final set of outcome-based tasks.324

4 Automated Benchmark Construction325

In Sec. 3, we introduced a method for generating326

a comprehensive set of tasks based on scene infor-327

mation. However, task generation alone is insuffi-328

cient—we also need to test these tasks. Given the329

quantity and diversity of the generated tasks, man-330

ually constructing testing environments becomes331

impractical. To address this, we propose an auto-332

mated benchmark construction framework: Given333

any scene, we first generate all tasks and classify334

them by difficulty (Sec.4.1). Next, leveraging the335

scene graph, we partition the scene space to com-336

pute reachable positions and enable abstracted ma-337

nipulation operations for each object, forming an338

automated test flow to evaluate agent performance339

(Sec.4.2).340

Due to the lack of robust low-level manipulation341

algorithms capable of reliably executing primitive342

skills (e.g., picking and placing objects) (Suoma-343

lainen et al., 2022), our benchmark primarily fo-344

cuses on high-level vision-language planning, with345

low-level manipulations abstracted and assumed346

to be executed in a ’magic’ manner when running347

testflows. If more advanced low-level manipulation348

skills become available in the future, our method 349

can seamlessly integrate with these improvements. 350

4.1 Task Difficulty Levels 351

We classify the generated process-based and 352

outcome-based tasks into four levels, based on their 353

perception and planning difficulty: 354

• Level 1: Single-step pick-and-place tasks. 355

These are process-based tasks sampled from 356

a single execution loop, such as "move ob- 357

ject o from p to p′". Additionally, the object 358

involved is unique on its supporting surface. 359

• Level 2: Similar to Level 1, but the target 360

object is not uniquely identifiable without ad- 361

ditional context. For instance, a Level 2 task 362

may require to move a teacup from a table 363

containing multiple teacups. In this case, the 364

agent must disambiguate the correct object 365

using additional task-provided descriptions or 366

images. 367

• Level 3: Multi-step pick-and-place tasks, gen- 368

erated by sampling from multiple execution 369

loops and concatenating atomic actions using 370

logical connector "THEN". 371

• Level 4: All outcome-based tasks, represent- 372

ing the highest difficulty level due to their 373

complex and abstracted task descriptions. 374

4.2 Benchmark Test Flow 375

We present a visualization of our benchmark test 376

flow in Fig. 4, which illustrates a sequence of inter- 377

actions within a simulated environment. 378

Action Space. Building on the scene graph con- 379

structed in Sec. 3.2, we first automatically com- 380

pute and label free spaces surrounding each ground 381

object as walkable areas for the agent. These ar- 382

eas are incorporated into the agent’s action space 383

as go_to_location at every time step. Since 384

a ground object may have multiple walkable ar- 385

eas around it, we provide an additional action 386

change_view to allow the agent to switch between 387

different walkable areas when needed. When the 388

agent reaches a ground object, it receives rendered 389

observation images with tagged objects, allowing 390

it to select a pick action and choose the tag for 391

any movable object. Next, the agent can place the 392

object in hand into a free space on a platform that 393

can accommodate it. We provide two placement op- 394

tions: (i) place_r: placing the object in a randomly 395

5



Figure 4: Visualization of the automated test flow for a Level 3 task example. The agent is equipped with
abstracted navigation (go_to, change_view), grasping (pick) and placing (place_s, place_r) skills. Blue
marks indicate the walkable locations involved in the task.

selected suitable location on the platform, or (ii)396

place_s: placing the object by selecting a tagged397

free space attached to a specified object chosen by398

the agent. When the agent invokes call_end ac-399

tion, the benchmark automatically verifies whether400

the task was successfully completed. Additionally,401

we set a time step limit for each test episode to402

prevent indefinite execution.403

Evaluation. For Level 1, 2, and 3 tasks (all process-404

based tasks), the expected scene graph is precisely405

defined, enabling direct success verification by406

comparing the initial and final scene graphs. Ad-407

ditionally, our benchmark provides intermediate408

performance metrics for each task by tracking the409

number of completed subtasks—such as navigat-410

ing to the correct object or picking up the correct411

object—during a testing episode. For Level 4 tasks,412

considering that these tasks involve abstract de-413

scriptions of scene changes (e.g., making a desk414

"tidy"), it is challenging to define an unbiased and415

precise success-state scene graph. Possible evalua-416

tion methods include human verification or leverag-417

ing VLMs to vote on whether the final scene status418

satisfies the task requirements.419

5 Experiments420

We apply ManiTaskGen to the ReplicaCAD421

dataset (Szot et al., 2021), a collection of interac-422

tive simulated environments. The simulator we use 423

is SAPIEN (Xiang et al., 2020). The ReplicaCAD 424

dataset contains 111 distinct scenes, including 6 425

FRL_apartment scenes and 105 variation scenes 426

with different object layouts derived from these 427

apartments. All objects in these scenes are fully in- 428

teractive and come with mesh models. We use the 429

6 FRL_apartment scenes to generate tasks and 430

automatically construct benchmarks, referred to as 431

ManiTaskGen-FRL. In total, we generate 199,109 432

task instructions, including 45,041 Level 1 tasks, 433

56,680 Level 2 tasks, 60,000 Level 3 tasks (we 434

constrain the execution loop to be executed for two 435

rounds, and progessively generated 10,000 tasks for 436

each scene), and 37,388 Level 4 tasks. For Level 437

4 tasks, we employ three VLMs (GPT-4o (Achiam 438

et al., 2024), Gemini-1.5-pro (Team et al., 2024), 439

Claude-3.5-sonnet (Anthropic, 2024)) to vote on 440

whether a task—generated using ManiTaskOT-1K 441

templates—is executable. 442

We compare ManiTaskGen-FRL with exist- 443

ing long-horizon manipulation benchmarks in 444

Tab. 1. Notably, despite using only 6 scenes, 445

ManiTaskGen-FRL contains significantly more 446

tasks than other benchmarks. Furthermore, our 447

method is scene-agnostic, meaning it can be ap- 448

plied to any given scene, allowing for the incorpo- 449

ration of additional scene data sources to further 450

6



Figure 5: The "lightmap"s which show the diversity of generated tasks. Each time an object or location is
mentioned in a task, we add a highlight at the corresponding position. By analyzing the brightness intensity and
distribution of highlights, it becomes evident that our method generates tasks that cover more objects and locations.

Benchmark Scene Number Instruction Number

GenSim (Wang et al., 2023) - 100
λ (Jaafar et al., 2025) 20 521
M3Bench (Zhang et al., 2024) 119 31,050
Language Rearrangement (Szot et al., 2023) 1 1,000
Embodied Agent Interface (Li et al., 2025) 2 438
EmbodiedBench (Yang et al., 2025) 4 1128

ManiTaskGen-FRL (Ours) 6 199,109

Table 1: Comparison between ManiTaskGen-FRL and
other existing benchmarks for long-horizon manipula-
tion tasks.

expand the task set in practical applications.451

In the following sections, we present experimen-452

tal results and analyses from two key aspects: In453

Sec. 5.1, we assess the validity and diversity of the454

generated tasks; In Sec. 5.2, we present a direct455

downstream application of our generated bench-456

mark by evaluating the performance of state-of-the-457

art vision-language models on ManiTaskGen-FRL,458

and analyzing the underlying failures causes.459

Task Validity Rate Level 1 Level 2 Level 3 Level 4

GPT-TaskGen 40.1% 39.4 % 18.7% 44.3%
ManiTaskGen (Ours) 93.8% 98.4 % 92.3% 74.1%

Table 2: Human-Verified Task Validity Rate for our
method and baseline method.

5.1 Task Validity and Diversity460

For a fair comparison, we implement a GPT-based461

task generation approach as a baseline, referred to462

as GPT-TaskGen. Specifically, we provide each463

scene’s scene graph along with images covering464

all objects to GPT-4o (Achiam et al., 2024), in-465

structing it to generate the tasks. We apply this466

baseline method to the same 6 FRL_apartment467

scenes to generate 1,000 process-based tasks (cor- 468

responding to Level 1, Level 2, and Level 3 tasks 469

in ManiTaskGen) and 1,000 outcome-based tasks. 470

We refer to these generated tasks as GPT-TaskGen- 471

FRL. These task sets serve as a direct comparison 472

to evaluate the validity and diversity of the tasks 473

produced by our method. 474

Validity Assessment. We first evaluate the valid- 475

ity of the generated tasks by conducting human 476

verification on samples from ManiTaskGen-FRL 477

and GPT-TaskGen-FRL, with the results reported 478

in Tab. 2. For Level 1, 2, and 3 tasks, although our 479

generation process ensures that the target location 480

has sufficient space to accommodate the moved 481

object, some tasks may still be infeasible due to oc- 482

clusions, obstacles, or restricted visibility, making 483

the target position difficult to reach or observe. For 484

Level 4 tasks (outcome-based tasks), the validity 485

rate is expectedly lower compared to process-based 486

tasks, as it relies on a VLM-based voting mecha- 487

nism. 488

Nevertheless, our results show that most tasks 489

are valid, with significantly higher validity rates 490

compared to the baseline method. 491

Diversity Assessment. After evaluating the valid- 492

ity of the generated task set, we proceed to assess 493

its diversity, which reflects how well the tasks cover 494

various scenarios to enable comprehensive testing 495

of vision-language planning models. 496

To compare task diversity, we sample 497

100 human-verified tasks from one same 498

FRL_apartment scene from ManiTaskGen-FRL 499

and GPT-TaskGen-FRL. Fig. 5 presents two 500

“lightmap”s that visualizes the distribution of 501

involved objects and locations. Specifically, we 502

7



Level 1 Level 2 Level 3 Avg

IP SR (%) IP SR (%) IP SR (%) IP SR (%)

Human 91 65 90 61 90 60 90 62
Random 0.4 0 0.4 0 0.4 0 0.4 0

GPT-4o(Achiam et al., 2024) 42 13 16 4 23 2 27 6
GPT-4o-mini(Achiam et al., 2024) 16 2 7 2 12 0 12 1
Gemini-2.0-flash (Team et al., 2024) 42 12 19 4 30 1 30 6
Gemini-1.5-flash(Team et al., 2024) 47 23 18 9 29 3 31 12
Gemini-1.5-pro (Team et al., 2024) 41 16 21 8 32 2 31 9
Claude-3.5-sonnet (Anthropic, 2024) 52 16 23 8 39 3 38 9
Claude-3.5-haiku (Anthropic, 2024) 36 4 16 2 26 0 26 2
Qwen2-VL-72B-Ins (Wang et al., 2024) 8 0 8 2 3 0 6 1
Llama-3.2-11B-Vision-Ins (Meta, 2024) 1 0 2 2 2 0 2 1
Llama-3.2-90B-Vision-Ins (Meta, 2024) 26 6 9 6 20 1 18 4

Table 3: Evaluation results on 10 VLMs, covering both proprietary (upper part) and open-source models (lower
part). Here, IP refers to Intermediate Points, and SR refers to success rate.

Figure 6: Success and failure cases in Level 1 evaluation
experiments from Claude-3.5-sonnet . From left to right,
we show a breakdown of the long-tail failure modes of
each of the components.

light up the centroid of an object or location503

whenever it appears in a task, with light intensity504

accumulating when the same area is repeatedly505

referenced. The figure clearly demonstrates that506

our method generates a wider range of tasks,507

covering more objects and locations compared to508

the baseline.509

5.2 Benchmarking Existing VLMs510

As a direct downstream application of our gener-511

ated tasks and benchmarks, we evaluate existing512

VLMs on ManiTaskGen-FRL and analyze their per-513

formance. Specifically, we randomly sample 100514

tasks (from Level 1, 2, and 3, respectively ) for each515

of the six FRL_apartment scenes. For each test516

episode, we set a time step limit of 15 steps. We use517

two metrics for evaluation: (1) Success Rate (SR):518

An episode is considered successful only if the519

agent executes the call_end action and the final520

scene graph matches the expected scene graph; (2)521

Intermediate Points (IP): For Level 1 and Level 2522

tasks, a successful episode should include the fol-523

lowing four substeps, each contributing 25 points:524

Navigate to the correct starting location. Pick up 525

the correct object. Navigate to the correct destina- 526

tion location. Place the object successfully. For 527

Level 3 tasks, we compute the average points from 528

the two sequential one-step tasks. 529

Tab. 3 presents the benchmarking results for the 530

evaluated VLMs. We also provide human perfor- 531

mance and random-choice performance for refer- 532

ence. Our evaluation indicates that most models 533

achieve an average success rate under 10%, which 534

is significantly below human-level performance. 535

And even the best-performing model, Claude-3.5- 536

sonnet, attains only 52 intermediate points, high- 537

lighting the substantial challenge posed by the gen- 538

erated tasks. To further analyze the failure cases, 539

we present a Sankey Diagram of mistakes in Fig. 6, 540

illustrating the distribution of Intermediate Points 541

(IP). As wrong item picking and wrong placement 542

account for the largest proportion of mistakes, this 543

suggests that VLMs’ perception and spatial under- 544

standing capabilities may serve as the bottleneck 545

for long-horizon manipulation task planning. 546

6 Conclusion 547

In this paper, we introduce ManiTaskGen, an au- 548

tomated method for task generation and bench- 549

mark construction for any interactive scene. Mani- 550

TaskGen can generate a comprehensive set of long- 551

horizon manipulation tasks, covering both process- 552

based and outcome-based tasks, thereby provid- 553

ing a diverse set of testing scenarios for vision- 554

language planning agents. Our experiments demon- 555

strate the validity and diversity of the generated 556

tasks, while also showcasing its practical usabil- 557

ity by benchmarking existing VLMs and revealing 558

their limitations. 559

8



Limitations560

Our method effectively generates long-horizon ma-561

nipulation tasks and supports automated bench-562

marking, but it has some limitations: (1) Lower563

Validity for Level 4 Tasks: While process-based564

tasks achieve over 90% validity, Level 4 outcome-565

based tasks have only around 70%. This is because566

some templates in the ManiTaskOT-1K dataset are567

scene-dependent, and determining suitability re-568

quires strong perception and reasoning. Automated569

success evaluation for these tasks also remains chal-570

lenging. (2) Less-than-Perfect Validity for Level571

1–3 Tasks: For Level 1–3 tasks, although our al-572

gorithm ensures adequate space for object place-573

ment, it doesn’t guarantee visibility or accessibility.574

We plan to introduce a learning-based method to575

improve target feasibility assessment. (3) Simpli-576

fied Low-Level Manipulation: Our benchmark577

abstracts low-level manipulation, focusing on high-578

level perception, reasoning, and planning. We aim579

to extend it to include low-level tasks to evaluate580

more models like Vision-Langugae-Action models581

(VLAs).582

References583

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama584
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,585
Diogo Almeida, Janko Altenschmidt, Sam Altman,586
and Shyamal Anadkat et al. 2024. Gpt-4 technical587
report. Preprint, arXiv:2303.08774.588

Amazon. 2024. Amazon mechanical turk. https://589
www.mturk.com/.590

Peter Anderson, Angel Chang, Devendra Singh Chap-591
lot, Alexey Dosovitskiy, Saurabh Gupta, Vladlen592
Koltun, Jana Kosecka, Jitendra Malik, Roozbeh593
Mottaghi, Manolis Savva, et al. 2018. On evalua-594
tion of embodied navigation agents. arXiv preprint595
arXiv:1807.06757.596

Anthropic. 2024. About claude models.597
https://docs.anthropic.com/en/docs/598
about-claude/models. Accessed: 2024-09-599
03.600

Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schul-601
man. 2020. Leveraging procedural generation to602
benchmark reinforcement learning. In International603
conference on machine learning, pages 2048–2056.604
PMLR.605

Angela Dai, Angel X Chang, Manolis Savva, Maciej606
Halber, Thomas Funkhouser, and Matthias Nießner.607
2017. Scannet: Richly-annotated 3d reconstructions608
of indoor scenes. In Proceedings of the IEEE con-609
ference on computer vision and pattern recognition,610
pages 5828–5839.611

Zane Durante, Qiuyuan Huang, Naoki Wake, Ran Gong, 612
Jae Sung Park, Bidipta Sarkar, Rohan Taori, Yusuke 613
Noda, Demetri Terzopoulos, Yejin Choi, et al. 2024. 614
Agent ai: Surveying the horizons of multimodal in- 615
teraction. arXiv preprint arXiv:2401.03568. 616

Kuan Fang, Yuke Zhu, Silvio Savarese, and Li Fei- 617
Fei. 2020. Adaptive procedural task generation 618
for hard-exploration problems. arXiv preprint 619
arXiv:2007.00350. 620

Chuang Gan, Siyuan Zhou, Jeremy Schwartz, Seth Alter, 621
Abhishek Bhandwaldar, Dan Gutfreund, Daniel LK 622
Yamins, James J DiCarlo, Josh McDermott, Anto- 623
nio Torralba, et al. 2021. The threedworld transport 624
challenge: A visually guided task-and-motion plan- 625
ning benchmark for physically realistic embodied ai. 626
arXiv preprint arXiv:2103.14025. 627

Jiayuan Gu, Devendra Singh Chaplot, Hao Su, and 628
Jitendra Malik. 2022. Multi-skill mobile manip- 629
ulation for object rearrangement. arXiv preprint 630
arXiv:2209.02778. 631

Mengkang Hu, Pu Zhao, Can Xu, Qingfeng Sun, Jian- 632
guang Lou, Qingwei Lin, Ping Luo, Saravan Rajmo- 633
han, and Dongmei Zhang. 2024. Agentgen: Enhanc- 634
ing planning abilities for large language model based 635
agent via environment and task generation. arXiv 636
preprint arXiv:2408.00764. 637

Ahmed Jaafar, Shreyas Sundara Raman, Yichen Wei, 638
Sudarshan Harithas, Sofia Juliani, Anneke Werner- 639
felt, Benedict Quartey, Ifrah Idrees, Jason Xinyu Liu, 640
and Stefanie Tellex. 2025. λ: A benchmark for data- 641
efficiency in long-horizon indoor mobile manipula- 642
tion robotics. Preprint, arXiv:2412.05313. 643

Youngwoon Lee, Joseph J Lim, Anima Anandkumar, 644
and Yuke Zhu. 2021. Adversarial skill chaining for 645
long-horizon robot manipulation via terminal state 646
regularization. arXiv preprint arXiv:2111.07999. 647

Chengshu Li, Ruohan Zhang, Josiah Wong, Cem Gok- 648
men, Sanjana Srivastava, Roberto Martín-Martín, 649
Chen Wang, Gabrael Levine, Michael Lingelbach, 650
Jiankai Sun, et al. 2023. Behavior-1k: A benchmark 651
for embodied ai with 1,000 everyday activities and re- 652
alistic simulation. In Conference on Robot Learning, 653
pages 80–93. PMLR. 654

Manling Li, Shiyu Zhao, Qineng Wang, Kangrui Wang, 655
Yu Zhou, Sanjana Srivastava, Cem Gokmen, Tony 656
Lee, Erran Li Li, Ruohan Zhang, et al. 2025. Embod- 657
ied agent interface: Benchmarking llms for embodied 658
decision making. Advances in Neural Information 659
Processing Systems, 37:100428–100534. 660

Jacky Liang, Wenlong Huang, Fei Xia, Peng Xu, Karol 661
Hausman, Brian Ichter, Pete Florence, and Andy 662
Zeng. 2023. Code as policies: Language model 663
programs for embodied control. In 2023 IEEE In- 664
ternational Conference on Robotics and Automation 665
(ICRA), pages 9493–9500. IEEE. 666

9

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://www.mturk.com/
https://www.mturk.com/
https://www.mturk.com/
https://docs.anthropic.com/en/docs/about-claude/models
https://docs.anthropic.com/en/docs/about-claude/models
https://docs.anthropic.com/en/docs/about-claude/models
https://arxiv.org/abs/2412.05313
https://arxiv.org/abs/2412.05313
https://arxiv.org/abs/2412.05313
https://arxiv.org/abs/2412.05313
https://arxiv.org/abs/2412.05313


Xiao Liu, Tianjie Zhang, Yu Gu, Iat Long Iong, Yifan667
Xu, Xixuan Song, Shudan Zhang, Hanyu Lai, Xinyi668
Liu, Hanlin Zhao, et al. 2024. Visualagentbench: To-669
wards large multimodal models as visual foundation670
agents. arXiv preprint arXiv:2408.06327.671

Meta. 2024. Llama 3.2: Revolutionizing edge ai and672
vision with open, customizable models. Accessed:673
2025-02-15.674

Roberta Raileanu and Tim Rocktäschel. 2020.675
Ride: Rewarding impact-driven exploration for676
procedurally-generated environments. arXiv preprint677
arXiv:2002.12292.678

Mohit Shridhar, Jesse Thomason, Daniel Gordon,679
Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke680
Zettlemoyer, and Dieter Fox. 2020a. Alfred: A681
benchmark for interpreting grounded instructions for682
everyday tasks. In Proceedings of the IEEE/CVF con-683
ference on computer vision and pattern recognition,684
pages 10740–10749.685

Mohit Shridhar, Xingdi Yuan, Marc-Alexandre Côté,686
Yonatan Bisk, Adam Trischler, and Matthew687
Hausknecht. 2020b. Alfworld: Aligning text and em-688
bodied environments for interactive learning. arXiv689
preprint arXiv:2010.03768.690

Marta Skreta, Zihan Zhou, Jia Lin Yuan, Kourosh691
Darvish, Alán Aspuru-Guzik, and Animesh Garg.692
2024. Replan: Robotic replanning with per-693
ception and language models. arXiv preprint694
arXiv:2401.04157.695

Chan Hee Song, Jiaman Wu, Clayton Washington,696
Brian M Sadler, Wei-Lun Chao, and Yu Su. 2023.697
Llm-planner: Few-shot grounded planning for em-698
bodied agents with large language models. In Pro-699
ceedings of the IEEE/CVF International Conference700
on Computer Vision, pages 2998–3009.701

Markku Suomalainen, Yiannis Karayiannidis, and Ville702
Kyrki. 2022. A survey of robot manipulation703
in contact. Robotics and Autonomous Systems,704
156:104224.705

Andrew Szot, Alex Clegg, Eric Undersander, Erik706
Wijmans, Yili Zhao, John Turner, Noah Maestre,707
Mustafa Mukadam, Devendra Chaplot, Oleksandr708
Maksymets, Aaron Gokaslan, Vladimir Vondrus,709
Sameer Dharur, Franziska Meier, Wojciech Galuba,710
Angel Chang, Zsolt Kira, Vladlen Koltun, Jitendra711
Malik, Manolis Savva, and Dhruv Batra. 2021. Habi-712
tat 2.0: Training home assistants to rearrange their713
habitat. In Advances in Neural Information Process-714
ing Systems (NeurIPS).715

Andrew Szot, Max Schwarzer, Harsh Agrawal, Bog-716
dan Mazoure, Rin Metcalf, Walter Talbott, Natalie717
Mackraz, R Devon Hjelm, and Alexander T Toshev.718
2023. Large language models as generalizable poli-719
cies for embodied tasks. In The Twelfth International720
Conference on Learning Representations.721

Andrew Szot, Karmesh Yadav, Alex Clegg, Vincent- 722
Pierre Berges, Aaron Gokaslan, Angel Chang, Mano- 723
lis Savva, Zsolt Kira, and Dhruv Batra. 2022. 724
Habitat rearrangement challenge 2022. https:// 725
aihabitat.org/challenge/2022_rearrange. 726

Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean- 727
Baptiste Alayrac, Jiahui Yu, Radu Soricut, Johan 728
Schalkwyk, Andrew M. Dai, and et al. Anja Hauth. 729
2024. Gemini: A family of highly capable multi- 730
modal models. Preprint, arXiv:2312.11805. 731

Lirui Wang, Yiyang Ling, Zhecheng Yuan, Mohit Shrid- 732
har, Chen Bao, Yuzhe Qin, Bailin Wang, Huazhe 733
Xu, and Xiaolong Wang. 2023. Gensim: Generating 734
robotic simulation tasks via large language models. 735
arXiv preprint arXiv:2310.01361. 736

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi- 737
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin 738
Wang, Wenbin Ge, et al. 2024. Qwen2-vl: Enhanc- 739
ing vision-language model’s perception of the world 740
at any resolution. arXiv preprint arXiv:2409.12191. 741

Luca Weihs, Matt Deitke, Aniruddha Kembhavi, and 742
Roozbeh Mottaghi. 2021. Visual room rearrange- 743
ment. In Proceedings of the IEEE/CVF Conference 744
on Computer Vision and Pattern Recognition (CVPR), 745
pages 5922–5931. 746

Fanbo Xiang, Yuzhe Qin, Kaichun Mo, Yikuan Xia, Hao 747
Zhu, Fangchen Liu, Minghua Liu, Hanxiao Jiang, 748
Yifu Yuan, He Wang, et al. 2020. Sapien: A simu- 749
lated part-based interactive environment. In Proceed- 750
ings of the IEEE/CVF conference on computer vision 751
and pattern recognition, pages 11097–11107. 752

Rui Yang, Hanyang Chen, Junyu Zhang, Mark 753
Zhao, Cheng Qian, Kangrui Wang, Qineng Wang, 754
Teja Venkat Koripella, Marziyeh Movahedi, Manling 755
Li, Heng Ji, Huan Zhang, and Tong Zhang. 2025. 756
Embodiedbench: Comprehensive benchmarking 757
multi-modal large language models for vision-driven 758
embodied agents. Preprint, arXiv:2502.09560. 759

Zhutian Yang, Caelan Garrett, Dieter Fox, Tomás 760
Lozano-Pérez, and Leslie Pack Kaelbling. 2024. 761
Guiding long-horizon task and motion planning 762
with vision language models. arXiv preprint 763
arXiv:2410.02193. 764

Xiaohan Zhang, Yan Ding, Saeid Amiri, Hao Yang, 765
Andy Kaminski, Chad Esselink, and Shiqi Zhang. 766
2023. Grounding classical task planners via vision- 767
language models. arXiv preprint arXiv:2304.08587. 768

Zeyu Zhang, Sixu Yan, Muzhi Han, Zaijin Wang, Xing- 769
gang Wang, Song-Chun Zhu, and Hangxin Liu. 2024. 770
M3bench: Benchmarking whole-body motion gen- 771
eration for mobile manipulation in 3d scenes. arXiv 772
preprint arXiv:2410.06678. 773

10

https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://ai.meta.com/blog/llama-3-2-connect-2024-vision-edge-mobile-devices/
https://aihabitat.org/challenge/2022_rearrange
https://aihabitat.org/challenge/2022_rearrange
https://aihabitat.org/challenge/2022_rearrange
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2502.09560
https://arxiv.org/abs/2502.09560
https://arxiv.org/abs/2502.09560
https://arxiv.org/abs/2502.09560
https://arxiv.org/abs/2502.09560


A Appendix774

A.1 Details of ManiTaskOT-1K.775

The ManiTaskOT-1K dataset contains 1,000 tem-776

plates for outcome-based tasks. We first col-777

lected scene images from real-world and simulated778

datasets, including Habitat (Szot et al., 2021), Scan-779

Net (Dai et al., 2017). Next, we used Amazon Me-780

chanical Turk (AMT) (Amazon, 2024) to gather781

natural language instructions from human annota-782

tors. Finally, we manually filtered the instructions783

for quality and removed specific object names to784

create task templates.785

We provide more template examples as follows:786

"Design a symmetrical display of [SUB-787

OBJECTS00] on [OBJECT0]."788

"Design an aesthetic display of [SUB-789

OBJECTS00] on [OBJECT0]."790

"Group all the scattered [SUB-791

OBJECTS00] on [OBJECT0] by size,792

and stack the largest ones vertically on793

the left side of the [OBJECT0]."794

"Construct a mini obstacle course using795

small objects on the [OBJECT0]."796

"Align all [SUB-OBJECTS00] on [OB-797

JECT0] into a symmetrical arrange-798

ment."799

"Arrange the objects on [OBJECT0] into800

an interactive display that showcases801

their use and function."802

"Create a "kaleidoscope" on top of [OB-803

JECT0] by arranging objects in a color-804

ful, symmetrical pattern."805

"Create a "city" on [OBJECT0] by ar-806

ranging the objects to resemble buildings,807

roads, and parks."808

"Transform [OBJECT0] into a "garden"809

by arranging the surface objects to resem-810

ble flowers, trees, and paths."811

"For the collection of small electronic812

devices on [OBJECT0], use principles of813

proportion and balance to group them."814

"Organize the contents of [OBJECT0]815

into a streamlined and functional layout,816

and group similar items."817

We plan to release the dataset to benefit the com-818

munity once the paper is public.819

A.2 Benchmark Test Flow Sample 820

Below we display an entire history of a successful 821

episode of the benchmark test flow, achieved by 822

Gemini-2.0-flash. 823

In the text boxes starting on the next page, we 824

provide the text transcripts. For the images up- 825

loaded to the VLM during the conversation, we 826

have organized them in Fig. 7. The blue paragraphs 827

in the text indicate parts related to the images, and 828

the numbers preceding the text correspond to the 829

image numbers in Fig. 7. 830

Note that in practical applications, we may pro- 831

vide photos of an object or location taken from 832

slightly different angles to help the VLM agent ob- 833

tain a more comprehensive observation when the 834

scene is partially occluded. 835

Figure 7: History of images provided to the VLM agent.

11



Success Episode by Gemini-2.0-flash

System Message:
Suppose you are an expert home robot. You’re now in a room, and are given tasks which mainly
involves puttings some thing from one place to another. I want you to act like a robot, interact with
the scene and try your best to finish the tasks. In the scene you will like running in an automaton.
In each state, all the actions you can do can be described with an action space.
Note: 1: As we’ve guaranteed that the space you need to put item on must be somehow available
at the beginning, if you think there’s not enough space for you to put down the item, you can either
try moving away obstacles(probably involved by your wrong move), or change your standing
position. 2: The system will let you try until reach a maximum time step count. Try your best to
finish the task with the least steps of interaction!
Let’s get started!
Please process task 5483:
"Move frl_apartment_kitchen_utensil_09_73 to frl_apartment_rack_01_76_platform_2’s front
part".
Task Initial Information:
frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
And The destination platform is frl_apartment_rack_01_76_platform_2.

[1] We also provide images of involved objects, the first image I upload to you is about
frl_apartment_kitchen_utensil_09_73, marked with a grey shadowed cube.

User Message:
Now you’re preparing to get in to the scene. Remember the task is: "Move
frl_apartment_kitchen_utensil_09_73 to frl_apartment_rack_01_76_platform_2’s front part".
Please note that you have a time limit. There are a total timelimit of 15 timesteps, and you
have already used 0 timesteps.
Task Initial Information:
frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
The destination platform is frl_apartment_rack_01_76_platform_2.
Now you have these actions to choose, and you need to select a key as an action from this current
action space dict:
’0’: ’call_end’, ”l1’: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’l2’: ’go to platform 2:
frl_apartment_sofa_10_platform_1’, ’l3’: ’go to platform 3: frl_apartment_sofa_10_platform_2’,
’l4’: ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’l5’:
’go to platform 5: frl_apartment_chair_04_47_platform_0’, ’l6’: ’go
to platform 6: frl_apartment_chair_05_7_platform_0’, ’l7’: ’go to
platform 7: frl_apartment_chair_05_8_platform_0’, ’l8’: ’go to plat-
form 8: frl_apartment_stool_02_18_platform_0’, ’l9’: ’go to plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’l10’: ’go to plat-
form 10: frl_apartment_rack_01_76_platform_0’, ’l11’: ’go to plat-
form 11: frl_apartment_rack_01_76_platform_1’, ’l12’: ’go to plat-
form 12: frl_apartment_rack_01_76_platform_2’, ’l13’: ’go to plat-
form 13: kitchen_counter_1_body_platform_0’, ’l14’: ’go to platform 14:
kitchen_counter_1_body_platform_1’, ’l15’: ’go to platform 15: fridge_0_body_platform_0’,
’l16’: ’go to platform 16: fridge_0_body_platform_1’, ’l17’: ’go to platform 17:
fridge_0_body_platform_2’, ’l18’: ’go to platform 18: fridge_0_body_platform_3’, ’l19’: ’go to
platform 19: fridge_0_body_platform_4’, ’l20’: ’go to platform 20: fridge_0_body_platform_5’,
’l21’: ’go to platform 21: fridge_0_body_platform_6’, ’l22’: ’go to platform 22:

836

12



fridge_0_body_platform_7’, ’l23’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
’l24’: ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’l25’: ’go to
platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’l26’: ’go to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1’, ’l27’: ’go to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2’, ’l28’: ’go to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’l29’: ’go to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4’, ’l30’: ’go to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5’, ’l31’: ’go to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6’, ’l32’: ’go to plat-
form 32: frl_apartment_table_03_14_platform_0’, ’l33’: ’go to plat-
form 33: frl_apartment_table_03_14_platform_1’, ’l34’: ’go to plat-
form 34: frl_apartment_table_01_48_platform_0’, ’l35’: ’go to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’l36’: ’go to plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’l37’: ’go to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’l38’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’l39’: ’go to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’l40’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’l41’: ’go to plat-
form 41: frl_apartment_wall_cabinet_02_21_platform_6’, ’l42’: ’go to
platform 42: frl_apartment_chair_01_15_platform_0’, ’l43’: ’go to plat-
form 43: frl_apartment_chair_01_15_platform_1’, ’l44’: ’go to platform
44: frl_apartment_chair_01_16_platform_0’, ’l45’: ’go to platform 45:
frl_apartment_chair_01_16_platform_1’, ’l46’: ’go to platform 46: chestOfDraw-
ers_01_2_body_platform_0’, ’l47’: ’go to platform 47: chestOfDrawers_01_2_body_platform_1’,
’l48’: ’go to platform 48: chestOfDrawers_01_2_body_platform_2’, ’l49’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’l50’: ’go to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’l51’: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’l52’: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’l53’: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’l54’: ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’l55’: ’go to
platform 55: frl_apartment_table_02_40_platform_2’, ’l56’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’l57’: ’go to platform 57: cabinet_3_body_platform_0’,
’l58’: ’go to platform 58: cabinet_3_body_platform_1’.

Note: Please output only the corresponding action key (e.g., l10) without any additional output.
Only output one current action. Outputting extra characters or using an incorrect character format
will directly cause the entire task to fail.

VLM response: l14

User Message:
Now you may see the objects on the platform kitchen_counter_1_body_platform_1. Or you
may not see them clearly due to bad starting direction. Remember the task is: "Move
frl_apartment_kitchen_utensil_09_73 to frl_apartment_rack_01_76_platform_2’s front part".
Please note that you have a time limit. There are a total timelimit of 15 timesteps, and you
have already used 1 timesteps.
Task Initial Information: frl_apartment_kitchen_utensil_09_73 belong_to_platform:
kitchen_counter_1_body_platform_1. The destination platform is
frl_apartment_rack_01_76_platform_2.

837

13



[2] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. Now you can call_end, rotate clockwisely to another
freespace, go to another platform or choose to pick up one item here.
Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you, the
robot. In case there’s no any other freespace, you’ll stay in the same position.", ’0’: ’call_end’,
’o1’: ’pick up object 1’, ’o2’: ’pick up object 2’, ’o3’: ’pick up object 3’, ’o4’: ’pick up object 4’,
’o5’: ’pick up object 5’, ’o6’: ’pick up object 6’, ’o7’: ’pick up object 7’, ’o8’: ’pick up object
8’, ’o9’: ’pick up object 9’, ’o10’: ’pick up object 10’, ’o11’: ’pick up object 11’, ’o12’: ’pick
up object 12’, ’o13’: ’pick up object 13’, ’o14’: ’pick up object 14’, ’o15’: ’pick up object 15’,
’o16’: ’pick up object 16’, ’o17’: ’pick up object 17’, ’o18’: ’pick up object 18’, ’o19’: ’pick
up object 19’, ’o20’: ’pick up object 20’, ’o21’: ’pick up object 21’, ’o22’: ’pick up object 22’,
’o23’: ’pick up object 23’, ’o24’: ’pick up object 24’, ’o25’: ’pick up object 25’, ’o26’: ’pick up
object 26’, ’l1’: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’l2’: ’go to platform 2:
frl_apartment_sofa_10_platform_1’, ’l3’: ’go to platform 3: frl_apartment_sofa_10_platform_2’,
’l4’: ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’l5’:
’go to platform 5: frl_apartment_chair_04_47_platform_0’, ’l6’: ’go
to platform 6: frl_apartment_chair_05_7_platform_0’, ’l7’: ’go to
platform 7: frl_apartment_chair_05_8_platform_0’, ’l8’: ’go to plat-
form 8: frl_apartment_stool_02_18_platform_0’, ’l9’: ’go to plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’l10’: ’go to plat-
form 10: frl_apartment_rack_01_76_platform_0’, ’l11’: ’go to plat-
form 11: frl_apartment_rack_01_76_platform_1’, ’l12’: ’go to plat-
form 12: frl_apartment_rack_01_76_platform_2’, ’l13’: ’go to plat-
form 13: kitchen_counter_1_body_platform_0’, ’l14’: ’go to platform 14:
kitchen_counter_1_body_platform_1’, ’l15’: ’go to platform 15: fridge_0_body_platform_0’,
’l16’: ’go to platform 16: fridge_0_body_platform_1’, ’l17’: ’go to platform 17:
fridge_0_body_platform_2’, ’l18’: ’go to platform 18: fridge_0_body_platform_3’, ’l19’: ’go to
platform 19: fridge_0_body_platform_4’, ’l20’: ’go to platform 20: fridge_0_body_platform_5’,
’l21’: ’go to platform 21: fridge_0_body_platform_6’, ’l22’: ’go to platform 22:
fridge_0_body_platform_7’, ’l23’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
’l24’: ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’l25’: ’go to
platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’l26’: ’go to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1’, ’l27’: ’go to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2’, ’l28’: ’go to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’l29’: ’go to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4’, ’l30’: ’go to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5’, ’l31’: ’go to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6’, ’l32’: ’go to plat-
form 32: frl_apartment_table_03_14_platform_0’, ’l33’: ’go to plat-
form 33: frl_apartment_table_03_14_platform_1’, ’l34’: ’go to plat-
form 34: frl_apartment_table_01_48_platform_0’, ’l35’: ’go to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’l36’: ’go to plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’l37’: ’go to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’l38’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’l39’: ’go to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’l40’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’l41’: ’go to plat-
form 41: frl_apartment_wall_cabinet_02_21_platform_6’, ’l42’: ’go to
platform 42: frl_apartment_chair_01_15_platform_0’, ’l43’: ’go to plat-
form 43: frl_apartment_chair_01_15_platform_1’, ’l44’: ’go to platform

838

14



44: frl_apartment_chair_01_16_platform_0’, ’l45’: ’go to platform 45:
frl_apartment_chair_01_16_platform_1’, ’l46’: ’go to platform 46: chestOfDraw-
ers_01_2_body_platform_0’, ’l47’: ’go to platform 47: chestOfDrawers_01_2_body_platform_1’,
’l48’: ’go to platform 48: chestOfDrawers_01_2_body_platform_2’, ’l49’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’l50’: ’go to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’l51’: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’l52’: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’l53’: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’l54’: ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’l55’: ’go to
platform 55: frl_apartment_table_02_40_platform_2’, ’l56’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’l57’: ’go to platform 57: cabinet_3_body_platform_0’,
’l58’: ’go to platform 58: cabinet_3_body_platform_1’You need to select an action from this
current action space. Note: Please output only the corresponding action key (e.g., l10) without
any additional output. Only output one current action. Outputting extra characters or using an
incorrect character format will directly cause the entire task to fail.

VLM response: o9

User Message:
Now you are standing at kitchen_counter_1_body_platform_1 with object
frl_apartment_kitchen_utensil_09_73 in hand.Or you may not see the platform clearly
due to bad starting direction.Now you have the following choices and corresponding outputs:-1:
switch clockwisely to the next free space of the platform 0: call_end l1-58: go to platform i
startplace: place the object in hand.
Remember the task is: "Move frl_apartment_kitchen_utensil_09_73 to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time
limit. There are a total timelimit of 15 timesteps, and you have already used 2 timesteps.
Task Initial Information:
frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
The destination platform is frl_apartment_rack_01_76_platform_2.

[3] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. The item you’ve just picked up should disappear. Now
you can call_end, rotate clockwisely to another freespace, go to another platform or start placing
the item on your hand here.
The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.
Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you,
the robot. In case there’s no any other freespace, you’ll stay in the same position.", ’0’:
’call_end’,’l1’: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’l2’: ’go to platform 2:
frl_apartment_sofa_10_platform_1’, ’l3’: ’go to platform 3: frl_apartment_sofa_10_platform_2’,
’l4’: ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’l5’:
’go to platform 5: frl_apartment_chair_04_47_platform_0’, ’l6’: ’go
to platform 6: frl_apartment_chair_05_7_platform_0’, ’l7’: ’go to
platform 7: frl_apartment_chair_05_8_platform_0’, ’l8’: ’go to plat-
form 8: frl_apartment_stool_02_18_platform_0’, ’l9’: ’go to plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’l10’: ’go to plat-
form 10: frl_apartment_rack_01_76_platform_0’, ’l11’: ’go to plat-
form 11: frl_apartment_rack_01_76_platform_1’, ’l12’: ’go to plat-
form 12: frl_apartment_rack_01_76_platform_2’, ’l13’: ’go to plat-

839

15



form 13: kitchen_counter_1_body_platform_0’, ’l14’: ’go to platform 14:
kitchen_counter_1_body_platform_1’, ’l15’: ’go to platform 15: fridge_0_body_platform_0’,
’l16’: ’go to platform 16: fridge_0_body_platform_1’, ’l17’: ’go to platform 17:
fridge_0_body_platform_2’, ’l18’: ’go to platform 18: fridge_0_body_platform_3’, ’l19’: ’go to
platform 19: fridge_0_body_platform_4’, ’l20’: ’go to platform 20: fridge_0_body_platform_5’,
’l21’: ’go to platform 21: fridge_0_body_platform_6’, ’l22’: ’go to platform 22:
fridge_0_body_platform_7’, ’l23’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
’l24’: ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’l25’: ’go to
platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’l26’: ’go to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1’, ’l27’: ’go to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2’, ’l28’: ’go to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’l29’: ’go to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4’, ’l30’: ’go to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5’, ’l31’: ’go to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6’, ’l32’: ’go to plat-
form 32: frl_apartment_table_03_14_platform_0’, ’l33’: ’go to plat-
form 33: frl_apartment_table_03_14_platform_1’, ’l34’: ’go to plat-
form 34: frl_apartment_table_01_48_platform_0’, ’l35’: ’go to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’l36’: ’go to plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’l37’: ’go to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’l38’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’l39’: ’go to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’l40’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’l41’: ’go to plat-
form 41: frl_apartment_wall_cabinet_02_21_platform_6’, ’l42’: ’go to
platform 42: frl_apartment_chair_01_15_platform_0’, ’l43’: ’go to plat-
form 43: frl_apartment_chair_01_15_platform_1’, ’l44’: ’go to platform
44: frl_apartment_chair_01_16_platform_0’, ’l45’: ’go to platform 45:
frl_apartment_chair_01_16_platform_1’, ’l46’: ’go to platform 46: chestOfDraw-
ers_01_2_body_platform_0’, ’l47’: ’go to platform 47: chestOfDrawers_01_2_body_platform_1’,
’l48’: ’go to platform 48: chestOfDrawers_01_2_body_platform_2’, ’l49’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’l50’: ’go to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’l51’: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’l52’: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’l53’: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’l54’: ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’l55’: ’go to
platform 55: frl_apartment_table_02_40_platform_2’, ’l56’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’l57’: ’go to platform 57: cabinet_3_body_platform_0’,
’l58’: ’go to platform 58: cabinet_3_body_platform_1’: ’go to platform 58: cabi-
net_3_body_platform_1’, ’startplace’: ’place the object in hand to the current platform’You need
to select an action from this current action space. Note: Please output only the corresponding
action key (e.g., l10) without any additional output. Only output one current action. Outputting
extra characters or using an incorrect character format will directly cause the entire task to fail.

VLM response: l12

User Message:
Now you are standing at frl_apartment_rack_01_76_platform_2.with object
frl_apartment_kitchen_utensil_09_73 in hand. Or you may not see the platform clearly
due to bad starting direction.Now you have the following choices and corresponding outputs:-1:

840

16



switch clockwisely to the next free space of the platform 0: call_end l1-58: go to platform i
startplace: place the object in hand.
Remember the task is: "Move frl_apartment_kitchen_utensil_09_73 to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time
limit. There are a total timelimit of 15 timesteps, and you have already used 3 timesteps.
Task Initial Information: frl_apartment_kitchen_utensil_09_73 belong_to_platform:
kitchen_counter_1_body_platform_1. The destination platform is
frl_apartment_rack_01_76_platform_2.

[4] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. Now you can call_end, rotate to another freespace, go
to another platform or start placing the item on your hand here.
The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.
Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you,
the robot. In case there’s no any other freespace, you’ll stay in the same position.", ’0’:
’call_end’, ’l1’: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’l2’: ’go to platform 2:
frl_apartment_sofa_10_platform_1’, ’l3’: ’go to platform 3: frl_apartment_sofa_10_platform_2’,
’l4’: ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’l5’:
’go to platform 5: frl_apartment_chair_04_47_platform_0’, ’l6’: ’go
to platform 6: frl_apartment_chair_05_7_platform_0’, ’l7’: ’go to
platform 7: frl_apartment_chair_05_8_platform_0’, ’l8’: ’go to plat-
form 8: frl_apartment_stool_02_18_platform_0’, ’l9’: ’go to plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’l10’: ’go to plat-
form 10: frl_apartment_rack_01_76_platform_0’, ’l11’: ’go to plat-
form 11: frl_apartment_rack_01_76_platform_1’, ’l12’: ’go to plat-
form 12: frl_apartment_rack_01_76_platform_2’, ’l13’: ’go to plat-
form 13: kitchen_counter_1_body_platform_0’, ’l14’: ’go to platform 14:
kitchen_counter_1_body_platform_1’, ’l15’: ’go to platform 15: fridge_0_body_platform_0’,
’l16’: ’go to platform 16: fridge_0_body_platform_1’, ’l17’: ’go to platform 17:
fridge_0_body_platform_2’, ’l18’: ’go to platform 18: fridge_0_body_platform_3’, ’l19’: ’go to
platform 19: fridge_0_body_platform_4’, ’l20’: ’go to platform 20: fridge_0_body_platform_5’,
’l21’: ’go to platform 21: fridge_0_body_platform_6’, ’l22’: ’go to platform 22:
fridge_0_body_platform_7’, ’l23’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
’l24’: ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’l25’: ’go to
platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’l26’: ’go to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1’, ’l27’: ’go to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2’, ’l28’: ’go to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’l29’: ’go to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4’, ’l30’: ’go to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5’, ’l31’: ’go to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6’, ’l32’: ’go to plat-
form 32: frl_apartment_table_03_14_platform_0’, ’l33’: ’go to plat-
form 33: frl_apartment_table_03_14_platform_1’, ’l34’: ’go to plat-
form 34: frl_apartment_table_01_48_platform_0’, ’l35’: ’go to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’l36’: ’go to plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’l37’: ’go to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’l38’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’l39’: ’go to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’l40’: ’go to plat-

841

17



form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’l41’: ’go to plat-
form 41: frl_apartment_wall_cabinet_02_21_platform_6’, ’l42’: ’go to
platform 42: frl_apartment_chair_01_15_platform_0’, ’l43’: ’go to plat-
form 43: frl_apartment_chair_01_15_platform_1’, ’l44’: ’go to platform
44: frl_apartment_chair_01_16_platform_0’, ’l45’: ’go to platform 45:
frl_apartment_chair_01_16_platform_1’, ’l46’: ’go to platform 46: chestOfDraw-
ers_01_2_body_platform_0’, ’l47’: ’go to platform 47: chestOfDrawers_01_2_body_platform_1’,
’l48’: ’go to platform 48: chestOfDrawers_01_2_body_platform_2’, ’l49’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’l50’: ’go to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’l51’: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’l52’: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’l53’: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’l54’: ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’l55’: ’go to
platform 55: frl_apartment_table_02_40_platform_2’, ’l56’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’l57’: ’go to platform 57: cabinet_3_body_platform_0’,
’l58’: ’go to platform 58: cabinet_3_body_platform_1’, ’startplace’: ’place the object in hand to
the current platform’You need to select an action from this current action space. Note: Please
output only the corresponding action key (e.g., l10) without any additional output. Only output
one current action. Outputting extra characters or using an incorrect character format will directly
cause the entire task to fail.

VLM response: startplace

User Message:
Now you are standing at an empty platform. You have the following choices and corresponding
outputs: 0: call_end 1-9: place the object in hand on the ith 9-grid of the platform. There are
images with each place’s number marked using colorful rectangles and circled numbers, and each
of these images also have a copy without marks.
999: place the object in hand around the platform, system will help you find an arbi-
trary fitable place Remember the task is: "Move frl_apartment_kitchen_utensil_09_73 to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time limit.
There are a total timelimit of 15 timesteps, and you have already used 4 timesteps.
Task Initial Information:
frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
The destination platform is frl_apartment_rack_01_76_platform_2.

[5] We also provide an image from your view, with the 9-grid of the platform marked with colorful
rectangles and circled numbers. Now you can call_end, place the object in one part of the grid, or
just put it down regardless of the direction. You’ll be told if the item is too big to fit in the place
you choose.
The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.
Action space description:’0’: ’call_end’, ’1’: ’place the object in the corresponding grid 1’, ’2’:
’place the object in the corresponding grid 2’, ’3’: ’place the object in the corresponding grid 3’, ’4’:
’place the object in the corresponding grid 4’, ’5’: ’place the object in the corresponding grid 5’, ’6’:
’place the object in the corresponding grid 6’, ’7’: ’place the object in the corresponding grid 7’, ’8’:
’place the object in the corresponding grid 8’, ’9’: ’place the object in the corresponding grid 9’,
’999’: ’place the object around the platform’You need to select an action from this current action
space. Note: Please output only the corresponding action key (e.g., l10) without any additional
output. Only output one current action. Outputting extra characters or using an incorrect character

842

18



format will directly cause the entire task to fail.

VLM response: 5

User Message: Now you may see the objects on the platform
frl_apartment_rack_01_76_platform_2.Or you may not see them clearly due to bad
starting direction.Remember the task is: "Move frl_apartment_kitchen_utensil_09_73 to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time limit. There
are a total timelimit of 15 timesteps, and you have already used 5 timesteps.
Task Initial Information: frl_apartment_kitchen_utensil_09_73 belong_to_platform:
kitchen_counter_1_body_platform_1. The destination platform is
frl_apartment_rack_01_76_platform_2.

[6] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. Now you can call_end, rotate clockwisely to another
freespace, go to another platform or choose to pick up one item here.
The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.
Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you, the robot.
In case there’s no any other freespace, you’ll stay in the same position.", ’0’: ’call_end’, ’o1’: ’pick
up object 1’, ’l1’: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’l2’: ’go to platform 2:
frl_apartment_sofa_10_platform_1’, ’l3’: ’go to platform 3: frl_apartment_sofa_10_platform_2’,
’l4’: ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’l5’:
’go to platform 5: frl_apartment_chair_04_47_platform_0’, ’l6’: ’go
to platform 6: frl_apartment_chair_05_7_platform_0’, ’l7’: ’go to
platform 7: frl_apartment_chair_05_8_platform_0’, ’l8’: ’go to plat-
form 8: frl_apartment_stool_02_18_platform_0’, ’l9’: ’go to plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’l10’: ’go to plat-
form 10: frl_apartment_rack_01_76_platform_0’, ’l11’: ’go to plat-
form 11: frl_apartment_rack_01_76_platform_1’, ’l12’: ’go to plat-
form 12: frl_apartment_rack_01_76_platform_2’, ’l13’: ’go to plat-
form 13: kitchen_counter_1_body_platform_0’, ’l14’: ’go to platform 14:
kitchen_counter_1_body_platform_1’, ’l15’: ’go to platform 15: fridge_0_body_platform_0’,
’l16’: ’go to platform 16: fridge_0_body_platform_1’, ’l17’: ’go to platform 17:
fridge_0_body_platform_2’, ’l18’: ’go to platform 18: fridge_0_body_platform_3’, ’l19’: ’go to
platform 19: fridge_0_body_platform_4’, ’l20’: ’go to platform 20: fridge_0_body_platform_5’,
’l21’: ’go to platform 21: fridge_0_body_platform_6’, ’l22’: ’go to platform 22:
fridge_0_body_platform_7’, ’l23’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
’l24’: ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’l25’: ’go to
platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’l26’: ’go to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1’, ’l27’: ’go to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2’, ’l28’: ’go to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’l29’: ’go to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4’, ’l30’: ’go to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5’, ’l31’: ’go to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6’, ’l32’: ’go to plat-
form 32: frl_apartment_table_03_14_platform_0’, ’l33’: ’go to plat-
form 33: frl_apartment_table_03_14_platform_1’, ’l34’: ’go to plat-
form 34: frl_apartment_table_01_48_platform_0’, ’l35’: ’go to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’l36’: ’go to plat-

843

19



form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’l37’: ’go to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’l38’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’l39’: ’go to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’l40’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’l41’: ’go to plat-
form 41: frl_apartment_wall_cabinet_02_21_platform_6’, ’l42’: ’go to
platform 42: frl_apartment_chair_01_15_platform_0’, ’l43’: ’go to plat-
form 43: frl_apartment_chair_01_15_platform_1’, ’l44’: ’go to platform
44: frl_apartment_chair_01_16_platform_0’, ’l45’: ’go to platform 45:
frl_apartment_chair_01_16_platform_1’, ’l46’: ’go to platform 46: chestOfDraw-
ers_01_2_body_platform_0’, ’l47’: ’go to platform 47: chestOfDrawers_01_2_body_platform_1’,
’l48’: ’go to platform 48: chestOfDrawers_01_2_body_platform_2’, ’l49’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’l50’: ’go to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’l51’: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’l52’: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’l53’: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’l54’: ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’l55’: ’go to
platform 55: frl_apartment_table_02_40_platform_2’, ’l56’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’l57’: ’go to platform 57: cabinet_3_body_platform_0’,
’l58’: ’go to platform 58: cabinet_3_body_platform_1’You need to select an action from this
current action space. Note: Please output only the corresponding action key (e.g., l10) without
any additional output. Only output one current action. Outputting extra characters or using an
incorrect character format will directly cause the entire task to fail.

VLM response: 0

(call_ended)
Checker Information: Target object placed in correct direction. Task_status:Success

844

20


	Introduction
	Related Work
	Comprehensive Task Generation
	Premise
	Receptacle-Aware 3D Scene Graph
	Generating Tasks

	Automated Benchmark Construction
	Task Difficulty Levels
	Benchmark Test Flow

	Experiments
	Task Validity and Diversity
	Benchmarking Existing VLMs

	Conclusion
	Appendix
	Details of ManiTaskOT-1K.
	Benchmark Test Flow Sample


