ManiTaskGen: A Comprehensive Task and Benchmark Generator for
Vision-Language Models in Long-Horizon Embodied Planning
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Figure 1: Framework Overview. ManiTaskGen is a universal tool that, given information from any interactive
scene, can generate a comprehensive set of plausible long-horizon manipulation tasks and automatically construct
benchmarks to evaluate perception, reasoning and planning capabilities of Vision-Language Models.

Abstract

Long-horizon manipulation task planning (e.g.,
object rearrangement) using vision-language
models (VLMs) is a critical research direction
in embodied Al. Although numerous recent
works have proposed specific algorithms and
models, their evaluations typically rely on man-
ually selected scenes and a limited set of anno-
tated tasks. We contend that such evaluation
methods are neither comprehensive nor fair,
and require significant manual annotation. In
this paper, we introduce an automated method
for task generation and benchmark construc-
tion: given any interactive scene, our approach
can generate a comprehensive set of plausible
long-horizon manipulation tasks and automati-
cally build a benchmark for evaluating vision-
language planning models. Moreover, by ap-
plying our method to off-the-shelf interactive
scenes in simulators, we provide a thorough
evaluation and analysis of the performance of
existing VLMs on these long-horizon planning
tasks. We will open-source our code, offering
a universal tool for generating tasks and bench-
marks to evaluate VLMs for long-horizon em-
bodied planning.

1 Introduction

Long-horizon manipulation task planning—such as
complex object rearrangement—is a fundamental
challenge in embodied Al (Durante et al., 2024;
Szot et al., 2022; Weihs et al., 2021; Gan et al.,
2021). To effectively execute such tasks, embod-
ied agents must understand the underlying logic,
decompose tasks into sequential subtasks like navi-
gation, object grasping, and placement (Szot et al.,
2021; Anderson et al., 2018). Additionally, they
need to perceive the scene layout to navigate, and
accurately interpret object configurations and spa-
tial relationships to ensure precise execution of
pick-and-place operations (Gu et al., 2022; Liu
et al., 2024), demanding comprehensive perceptual
and reasoning abilities.

In recent years, various approaches have been
proposed to tackle these challenges, including skill-
chaining methods (Gu et al., 2022; Lee et al., 2021)
and large model-based planning (Liang et al., 2023;
Song et al., 2023). The use of vision-language
models (VLMs) for task planning (Yang et al.,
2024; Zhang et al., 2023; Skreta et al., 2024) has
emerged as a particularly promising direction, es-



pecially for open-world applications. Despite sig-
nificant methodological advancements, the evalua-
tion of these approaches still suffers from a lack of
comprehensive benchmarks. Most existing eval-
uations (Liu et al., 2024; Szot et al., 2021; Gu
et al., 2022) rely on manually selected scenes and
a limited set of predefined tasks, which introduce
two major limitations: (1) Limited Task Diver-
sity: Since tasks are manually designed, their quan-
tity and diversity are inherently limited, resulting
in an incomplete assessment of model capabili-
ties across diverse conditions. (2) Limited Scene
Coverage: Scene selection and task annotation are
time-consuming and labor-intensive. Consequently,
studies often focus on specific scenes of interest,
leading to inconsistent evaluation protocols and
hindering fair comparisons across different works.

To address the first limitation, we begin by pos-
ing the question: Given a mobile robot equipped
with robust low-level pick-and-place skills, how
many possible tasks could it theoretically execute in
an interactive scene? Intuitively, the answer seems
infinite. However, as illustrated in Fig. 2, we char-
acterize the robot’s execution loop within the scene
and consequently posit that all possible tasks can
be logically categorized into two types: process-
based tasks and outcome-based tasks. Building on
this insight, we introduce an automated task gener-
ation method that ensures logical comprehensive-
ness. Specifically, we construct a scene graph that
encodes object spatial relationships and free-space
information, allowing us to systematically generate
all feasible process-based tasks. Additionally, we
curate a template dataset, ManiTaskOT-1K, and em-
ploy a VLM-based voting mechanism to generate
outcome-based tasks tailored to any given scene.

Building on this task generation method, we fur-
ther develop an automated benchmarking frame-
work. For any interactive scene, this framework
enables an agent to execute abstracted interac-
tions—such as navigation and pick-and-place ac-
tions—to complete the tasks, followed by an auto-
mated evaluation of task performance. This scene-
agnostic benchmark generation method can be ap-
plied to a wide range of interactive scenes, includ-
ing both simulated environments and real-world
scenes (provided the objects are interactive and
their information—such as pose, bounding box, or
interior layers—is available), thereby addressing
the second limitation mentioned above.

To validate our approach, we apply it to Repli-
caCAD (Szot et al., 2021), a dataset of interactive

simulated environments, to generate a task set and
automatically construct benchmarks. Our experi-
mental results demonstrate the validity and diver-
sity of the generated tasks. Additionally, by testing
existing VLMs on our benchmark, we identify their
limitations in handling long-horizon manipulation
tasks, highlighting key failure cases and providing
insights for future model improvements.

In summary, this paper includes following con-
tributions: (1) We propose ManiTaskGen, an auto-
mated framework for generating logically compre-
hensive long-horizon manipulation tasks and con-
structing benchmarks. (2) We apply ManiTaskGen
to ReplicaCAD, generating a large-scale bench-
mark and conducting an in-depth evaluation that
uncovers the limitations of current VLMs in long-
horizon task planning. (3) We provide the com-
munity with a universal tool for task and bench-
mark generation, enabling standardized evaluation
of vision-language planning models across diverse
interactive environments.

2 Related Work

Benchmarks for Embodied Long-horizon Plan-
ning. In recent years, numerous benchmarks have
emerged to evaluate embodied agents in long-
horizon task planning (Li et al., 2023; Szot et al.,
2021; Shridhar et al., 2020a,b), including bench-
marks specific for VLM-based agents (Liu et al.,
2024; Yang et al., 2025). However, these bench-
marks typically rely on manually designed and an-
notated tasks and are limited to a small number
of predefined scenes. In contrast, our method can
be applied to any given interactive scene, generat-
ing plausible and comprehensive tasks that cover a
wide range of scenarios. Furthermore, it automati-
cally constructs benchmarks for evaluation, signifi-
cantly expanding the diversity of test scenarios and
tasks.

Task Generation for Embodied Agents. Re-
cent research has explored task and environment
generation for training Reinforcement Learning
(RL) agents(Fang et al., 2020; Cobbe et al., 2020;
Raileanu and Rocktédschel, 2020), as well as aug-
menting diverse tabletop manipulation tasks(Wang
et al., 2023) and instruction-finetuning LLM-based
agents (Hu et al., 2024). In this work, we focus on
scene-level task generation for long-horizon ma-
nipulation tasks. Additionally, we combined task
generation with autumated benchmark construction
to evaluate VLM-based embodied agents.
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Figure 2: Execution Loop. This loop provides a com-
prehensive depiction of how an embodied agent exe-
cutes a manipulation task within a scene. Based on
this framework, we categorize all tasks into two distinct
types: process-based tasks and outcome-based tasks.

3 Comprehensive Task Generation

3.1 Premise

Considering a mobile robot with comprehensive
pick-and-place capabilities—able to grasp any
movable object and place it on any surface that can
accommodate it—we seek to answer the follow-
ing fundamental question: How many long-horizon
manipulation tasks can the robot execute within a
given scene?

To systematically address the question, we
formalize the problem as follows. Let O =
{01, 02,03, ...} denote the set of all objects in the
scene, where each o; may include the object’s raw
information such as mesh model or extracted in-
formation like its bounding box and interior layers.
We define the scene status as S = {so, 51, S2, ... }»
where s; represents the state of object o;, including
its position p,, and rotation r,,. Next, we define a
set of atomic actions as: A = {ag, a1, as,...}. An
atomic action a € A corresponds to transitioning
an object from its current state s; to a new state
s;. Given the agent’s capabilities are constrained to
pick-and-place actions, changes in S are restricted
to object positions. Thus, the set A consists of
actions of the form: “move object o from p to p’”
where p/ is a valid placement position for o.

This formalization underpins the execution loop
depicted in Fig. 2. At each step, given the cur-
rent scene state S, the robot selects an action a
from A and executes it. The execution modifies S,
updating A accordingly, and the process iterates.
This loop encapsulates how the robot iteratively
executes pick-and-place tasks in a given scene. Fol-
lowing this execution model, we posit that all pick-
and-place task instructions into two fundamental
types: process-based tasks and outcome-based
tasks.

Process-based tasks explicitly specify one or a
sequence of atomic actions drawn from 4. For
instance:

“I' need the robot to pick up object o; from

location p,, and place it at p], ”

Note that, in natural language, the same command
can be expressed in various ways while keeping the
same meaning. In addition, atomic actions sampled
from sequential execution loops can be chained.

In contrast, Outcome-based tasks define a de-
sired final scene status S without specifying the
intermediate actions. For example:

“I need the robot to clear the tabletop.”

Here the tabletop may initially contain multiple
objects {01,02,03,...} C O.

Building on this conceptual categorization, we
propose a systematic task generation methodology
leveraging the iterative execution loop. Specifically,
we first construct a 3D scene graph encoding ob-
ject spatial relationships and placement constraints
(Sec. 3.2). This enables us to derive a complete set
of atomic actions .4 and establish a comprehensive
execution loop. In Sec. 3.3, we detail how we gen-
erate both process-based and outcome-based tasks
by utilizing the execution loop model.

Algorithm 1 Construct 3D Scene Graph Tree

Input: object set O, scene state S.
Output: 3D Scene graph S = (V, €)
Definition:
V = {v;} is the vertex set of scene graph tree;
E = {e;} is the edge set of scene graph tree;
function INIT_SCENE_GRAPH_TREE(O, S)
for 0, in O do
v; < init_vertex(o;, s;)
v;.surface <+ o0;.get_surface()
end for
& + cal_contact(V)
Sinit < build_tree(V,&)
return S;,,;;
: end function
: function CAL_FREE_SPACE(v)
for each p in v. surface do
Vp < p.get_objects()
for each v. on p do
ve.cal_freespace(p,V), — v.)
end for
end for
. end function
: S <~ INIT_SCENE_GRAPH_TREE(O, S)
: forvinV do
CAL_FREE_SPACE(v)
: end for
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Free-space segmentation
of a surface supporting objects.

Free-space segmentation
of an empty surface.

Figure 3: Visualizations of receptacle segmentation.
By calculating the relative poses of objects, we partition
receptacles into grids based on objects or empty sur-
faces and compute their sizes, thereby enabling efficient
retrieval of all receptacles within the scene.

3.2 Receptacle-Aware 3D Scene Graph

Given a set of objects O and the scene status S, our
goal is to automatically construct a 3D scene graph
S. This graph encodes object locations and indexes
all available receptacles (free spaces) along with
their sizes. The algorithm is outlined in Alg. 1.

We first build an object spatial distribution tree
based on each object’s position, rotation, bounding
box, and interior layer information (in any). The
root node represents Ground, while all other nodes
correspond to scene objects. Parent-child relation-
ships are determined by spatial containment—an
object is assigned as a child of another if it rests
on one of its outer or interior surfaces. For solid
objects, the default supporting surface is their top
surface, while for multi-level receptacles (e.g., cabi-
nets, shelves), we record the specific surface where
each child object is placed.

Once the tree structure is established, we com-
pute relative positions and distances between ob-
jects sharing the same supporting surface. We
segment the space around each object’s bounding
box into eight directional free space regions, with
boundaries extending until they encounter another
object. For unoccupied surfaces, we default to a
3x3 grid segmentation. We visualize our segmen-
tation of free spaces in Fig. 3. This representation
enables efficient retrieval of any receptacle in the
scene by querying an object or surface. Notably,
a single receptacle may be indexed by multiple
objects, such as an intermediate plane between ad-
jacent objects. Additionally, adjacent receptacles
can be merged into a larger receptacle if necessary.
In the end, we obtain a 3D scene graph S that en-
codes the location, structure, and relationships of
every object and every receptacle within the scene.

3.3 Generating Tasks

Based on the scene graph S, next we derive a com-
plete set of atomic actions A = {ag, a1, az,... }.
Each atomic action a takes the form of "move ob-
ject o from p, to pl", where p/, must be a valid
placement location for o. We extract all feasible
pl, values from S for each object. Using A and S,
we then generate both process-based and outcome-

based tasks.

Process-based Tasks. As defined in Sec. 3.1,
process-based tasks describe the execution of one
or more actions from the atomic action set .A within
a single or multiple execution loops. A task can be
as simple as executing a single action a sampled
from A. Alternatively, if executing a updates the
scene state S—resulting in a new atomic action set
A’—and another action o’ is subsequently selected
from A’, then the sequence (a + a’) also forms
a longer process-based task. Here, “+” may rep-
resent various logical connectors, such as THEN,
and OR, corresponding to “execute a followed by
a'” “execute a or a'.’ respectively. By iteratively
sampling atomic actions across one or multiple ex-
ecution loops, we generate a comprehensive set
of process-based tasks, with task complexity con-
trolled by limiting the number of loops.

To enhance task diversity, we describe the des-
tination p’ in each sampled atomic action "move
object o from p to p'" using four distinct strategies
based on scene graph information: (1) Move to
a surface by specifying its name; (2) Move to a
location around a specific object on a surface; (3)
Move to a position in a relative direction of a spe-
cific object on a surface; and (4) Move to a location
between two objects on a surface. Additionally, we
offer an option to leverage a large language model
(LLM) to rephrase these descriptions while pre-
serving their original semantics, further increasing
linguistic variation.

Outcome-based Tasks. Unlike process-based
tasks, generating outcome-based tasks is more chal-
lenging as it requires an abstract description of
the scene state S (Sec. 3.1). A straightforward
approach would be to input the scene graph S
into a vision-language model (VLM) or large lan-
guage model (LLM) to predict possible scene status
changes. However, due to the limitations and in-
stability of large models in understanding complex
3D scene graphs, this method often generates im-
practical tasks, leading to a long-tail distribution
that reduces overall utility. We further discuss this



issue in Sec. 5.1.

To address this, we introduce ManiTaskOT-1K,
a manually curated outcome-based task template
dataset. We first collected scene images from both
real-world environments and simulators, then lever-
aged Amazon Mechanical Turk (Amazon, 2024)
to gather human-written instructions describing
high-level scene transformations. From these, we
extracted 1,000 structured templates, forming the
ManiTaskOT-1K dataset. Details are provided in
the Appendix, and examples of representative tem-
plates include:

"Create a tidy arrangement on [OB-
JECTO]."

"Disorganize the top of [OBJECTO] to
make it messy."

"Sort all [SUB-OBJECTSO00] on [OB-
JECTO] by material type."

Given a scene, we instantiate ManiTaskOT-1K
templates by populating them with scene-specific
objects. To ensure task feasibility, we further em-
ploy multiple VLMs to vote on each generated
instruction, filtering out non-executable tasks and
refining the final set of outcome-based tasks.

4 Automated Benchmark Construction

In Sec. 3, we introduced a method for generating
a comprehensive set of tasks based on scene infor-
mation. However, task generation alone is insuffi-
cient—we also need to test these tasks. Given the
quantity and diversity of the generated tasks, man-
ually constructing testing environments becomes
impractical. To address this, we propose an auto-
mated benchmark construction framework: Given
any scene, we first generate all tasks and classify
them by difficulty (Sec.4.1). Next, leveraging the
scene graph, we partition the scene space to com-
pute reachable positions and enable abstracted ma-
nipulation operations for each object, forming an
automated test flow to evaluate agent performance
(Sec.4.2).

Due to the lack of robust low-level manipulation
algorithms capable of reliably executing primitive
skills (e.g., picking and placing objects) (Suoma-
lainen et al., 2022), our benchmark primarily fo-
cuses on high-level vision-language planning, with
low-level manipulations abstracted and assumed
to be executed in a *'magic’ manner when running
testflows. If more advanced low-level manipulation

skills become available in the future, our method
can seamlessly integrate with these improvements.

4.1 Task Difficulty Levels

We classify the generated process-based and
outcome-based tasks into four levels, based on their
perception and planning difficulty:

* Level 1: Single-step pick-and-place tasks.
These are process-based tasks sampled from
a single execution loop, such as "move ob-
ject o from p to p'". Additionally, the object
involved is unique on its supporting surface.

* Level 2: Similar to Level 1, but the target
object is not uniquely identifiable without ad-
ditional context. For instance, a Level 2 task
may require to move a teacup from a table
containing multiple teacups. In this case, the
agent must disambiguate the correct object
using additional task-provided descriptions or
images.

* Level 3: Multi-step pick-and-place tasks, gen-
erated by sampling from multiple execution
loops and concatenating atomic actions using
logical connector "THEN".

* Level 4: All outcome-based tasks, represent-
ing the highest difficulty level due to their
complex and abstracted task descriptions.

4.2 Benchmark Test Flow

We present a visualization of our benchmark test
flow in Fig. 4, which illustrates a sequence of inter-
actions within a simulated environment.

Action Space. Building on the scene graph con-
structed in Sec. 3.2, we first automatically com-
pute and label free spaces surrounding each ground
object as walkable areas for the agent. These ar-
eas are incorporated into the agent’s action space
as go_to_location at every time step. Since
a ground object may have multiple walkable ar-
eas around it, we provide an additional action
change_view to allow the agent to switch between
different walkable areas when needed. When the
agent reaches a ground object, it receives rendered
observation images with tagged objects, allowing
it to select a pick action and choose the tag for
any movable object. Next, the agent can place the
object in hand into a free space on a platform that
can accommodate it. We provide two placement op-
tions: (i) place_r: placing the object in a randomly



é Task: Move the cup from kitchen_counter to shelf layer4, and put it to right of the box;
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Figure 4: Visualization of the automated test flow for a Level 3 task example. The agent is equipped with

abstracted navigation (go_to,

selected suitable location on the platform, or (ii)
place_s: placing the object by selecting a tagged
free space attached to a specified object chosen by
the agent. When the agent invokes call_end ac-
tion, the benchmark automatically verifies whether
the task was successfully completed. Additionally,
we set a time step limit for each test episode to
prevent indefinite execution.

Evaluation. For Level 1, 2, and 3 tasks (all process-
based tasks), the expected scene graph is precisely
defined, enabling direct success verification by
comparing the initial and final scene graphs. Ad-
ditionally, our benchmark provides intermediate
performance metrics for each task by tracking the
number of completed subtasks—such as navigat-
ing to the correct object or picking up the correct
object—during a testing episode. For Level 4 tasks,
considering that these tasks involve abstract de-
scriptions of scene changes (e.g., making a desk
"tidy"), it is challenging to define an unbiased and
precise success-state scene graph. Possible evalua-
tion methods include human verification or leverag-
ing VLMs to vote on whether the final scene status
satisfies the task requirements.

5 Experiments

We apply ManiTaskGen to the ReplicaCAD
dataset (Szot et al., 2021), a collection of interac-

change_view), grasping (pick) and placing (place_s,
marks indicate the walkable locations involved in the task.

place_r) skills. Blue

tive simulated environments. The simulator we use
is SAPIEN (Xiang et al., 2020). The ReplicaCAD
dataset contains 111 distinct scenes, including 6
FRL_apartment scenes and 105 variation scenes
with different object layouts derived from these
apartments. All objects in these scenes are fully in-
teractive and come with mesh models. We use the
6 F'RL_apartment scenes to generate tasks and
automatically construct benchmarks, referred to as
ManiTaskGen-FRL. In total, we generate 199,109
task instructions, including 45,041 Level 1 tasks,
56,680 Level 2 tasks, 60,000 Level 3 tasks (we
constrain the execution loop to be executed for two
rounds, and progessively generated 10,000 tasks for
each scene), and 37,388 Level 4 tasks. For Level
4 tasks, we employ three VLMs (GPT-40 (Achiam
et al., 2024), Gemini-1.5-pro (Team et al., 2024),
Claude-3.5-sonnet (Anthropic, 2024)) to vote on
whether a task—generated using ManiTaskOT-1K
templates—is executable.

We compare ManiTaskGen-FRL with exist-
ing long-horizon manipulation benchmarks in
Tab. 1. Notably, despite using only 6 scenes,
ManiTaskGen-FRL contains significantly more
tasks than other benchmarks. Furthermore, our
method is scene-agnostic, meaning it can be ap-
plied to any given scene, allowing for the incorpo-
ration of additional scene data sources to further



GPT-TaskGen

ManiTaskGen (ours)

Figure 5: The "lightmap''s which show the diversity of generated tasks. Each time an object or location is
mentioned in a task, we add a highlight at the corresponding position. By analyzing the brightness intensity and
distribution of highlights, it becomes evident that our method generates tasks that cover more objects and locations.

Benchmark Scene Number Instruction Number

GenSim (Wang et al., 2023) - 100

A (Jaafar et al., 2025) 20 521
M3Bench (Zhang et al., 2024) 119 31,050
Language Rearrangement (Szot et al., 2023) 1 1,000
Embodied Agent Interface (Li et al., 2025) 2 438
EmbodiedBench (Yang et al., 2025) 4 1128
ManiTaskGen-FRL (Ours) 6 199,109

Table 1: Comparison between ManiTaskGen-FRL and
other existing benchmarks for long-horizon manipula-
tion tasks.

expand the task set in practical applications.

In the following sections, we present experimen-
tal results and analyses from two key aspects: In
Sec. 5.1, we assess the validity and diversity of the
generated tasks; In Sec. 5.2, we present a direct
downstream application of our generated bench-
mark by evaluating the performance of state-of-the-
art vision-language models on ManiTaskGen-FRL,
and analyzing the underlying failures causes.

Task Validity Rate Level 1 Level2 Level3 Level4
GPT-TaskGen 40.1% 394% 187%  44.3%
ManiTaskGen (Ours) 93.8% 984 % 92.3% 74.1%

Table 2: Human-Verified Task Validity Rate for our
method and baseline method.

5.1 Task Validity and Diversity

For a fair comparison, we implement a GPT-based
task generation approach as a baseline, referred to
as GPT-TaskGen. Specifically, we provide each
scene’s scene graph along with images covering
all objects to GPT-40 (Achiam et al., 2024), in-
structing it to generate the tasks. We apply this
baseline method to the same 6 F'RL_apartment

scenes to generate 1,000 process-based tasks (cor-
responding to Level 1, Level 2, and Level 3 tasks
in ManiTaskGen) and 1,000 outcome-based tasks.
We refer to these generated tasks as GPT-TaskGen-
FRL. These task sets serve as a direct comparison
to evaluate the validity and diversity of the tasks
produced by our method.

Validity Assessment. We first evaluate the valid-
ity of the generated tasks by conducting human
verification on samples from ManiTaskGen-FRL
and GPT-TaskGen-FRL, with the results reported
in Tab. 2. For Level 1, 2, and 3 tasks, although our
generation process ensures that the target location
has sufficient space to accommodate the moved
object, some tasks may still be infeasible due to oc-
clusions, obstacles, or restricted visibility, making
the target position difficult to reach or observe. For
Level 4 tasks (outcome-based tasks), the validity
rate is expectedly lower compared to process-based
tasks, as it relies on a VLM-based voting mecha-
nism.

Nevertheless, our results show that most tasks

are valid, with significantly higher validity rates
compared to the baseline method.
Diversity Assessment. After evaluating the valid-
ity of the generated task set, we proceed to assess
its diversity, which reflects how well the tasks cover
various scenarios to enable comprehensive testing
of vision-language planning models.

To compare task diversity, we sample
100 human-verified tasks from one same
FRL_apartment scene from ManiTaskGen-FRL
and GPT-TaskGen-FRL. Fig. 5 presents two
“lightmap”s that visualizes the distribution of
involved objects and locations. Specifically, we



Level 1 Level 2 Level 3 Avg

P SR (%) IP SR (%) IP SR (%) P SR (%)
Human 91 65 90 61 90 60 90 62
Random 0.4 0 0.4 0 0.4 0 0.4 0
GPT-40(Achiam et al., 2024) 42 13 16 4 23 2 27 6
GPT-40-mini(Achiam et al., 2024) 16 2 7 2 12 0 12 1
Gemini-2.0-flash (Team et al., 2024) 42 12 19 4 30 1 30 6
Gemini-1.5-flash(Team et al., 2024) 47 23 18 9 29 3 31 12
Gemini-1.5-pro (Team et al., 2024) 41 16 21 8 32 2 31 9
Claude-3.5-sonnet (Anthropic, 2024) 52 16 23 8 39 3 38 9
Claude-3.5-haiku (Anthropic, 2024) 36 4 16 2 26 0 26 2
Qwen2-VL-72B-Ins (Wangetal,,2024) ~ ~ 8§ ~ ~ ~ 0 ~ ~ 8 T~ T2 T 7377770 T "6 T 17
Llama-3.2-11B-Vision-Ins (Meta, 2024) 1 0 2 2 2 0 2 1
Llama-3.2-90B-Vision-Ins (Meta, 2024) 26 6 9 6 20 1 18 4

Table 3: Evaluation results on 10 VLMs, covering both proprietary (upper part) and open-source models (lower
part). Here, IP refers to Intermediate Points, and SR refers to success rate.
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Figure 6: Success and failure cases in Level 1 evaluation
experiments from Claude-3.5-sonnet . From left to right,
we show a breakdown of the long-tail failure modes of
each of the components.
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light up the centroid of an object or location
whenever it appears in a task, with light intensity
accumulating when the same area is repeatedly
referenced. The figure clearly demonstrates that
our method generates a wider range of tasks,
covering more objects and locations compared to
the baseline.

5.2 Benchmarking Existing VLMs

As a direct downstream application of our gener-
ated tasks and benchmarks, we evaluate existing
VLMs on ManiTaskGen-FRL and analyze their per-
formance. Specifically, we randomly sample 100
tasks (from Level 1, 2, and 3, respectively ) for each
of the six F'RL_apartment scenes. For each test
episode, we set a time step limit of 15 steps. We use
two metrics for evaluation: (1) Success Rate (SR):
An episode is considered successful only if the
agent executes the call_end action and the final
scene graph matches the expected scene graph; (2)
Intermediate Points (IP): For Level 1 and Level 2
tasks, a successful episode should include the fol-
lowing four substeps, each contributing 25 points:

Navigate to the correct starting location. Pick up
the correct object. Navigate to the correct destina-
tion location. Place the object successfully. For
Level 3 tasks, we compute the average points from
the two sequential one-step tasks.

Tab. 3 presents the benchmarking results for the
evaluated VLMs. We also provide human perfor-
mance and random-choice performance for refer-
ence. Our evaluation indicates that most models
achieve an average success rate under 10%, which
is significantly below human-level performance.
And even the best-performing model, Claude-3.5-
sonnet, attains only 52 intermediate points, high-
lighting the substantial challenge posed by the gen-
erated tasks. To further analyze the failure cases,
we present a Sankey Diagram of mistakes in Fig. 6,
illustrating the distribution of Intermediate Points
(IP). As wrong item picking and wrong placement
account for the largest proportion of mistakes, this
suggests that VLMs’ perception and spatial under-
standing capabilities may serve as the bottleneck
for long-horizon manipulation task planning.

6 Conclusion

In this paper, we introduce ManiTaskGen, an au-
tomated method for task generation and bench-
mark construction for any interactive scene. Mani-
TaskGen can generate a comprehensive set of long-
horizon manipulation tasks, covering both process-
based and outcome-based tasks, thereby provid-
ing a diverse set of testing scenarios for vision-
language planning agents. Our experiments demon-
strate the validity and diversity of the generated
tasks, while also showcasing its practical usabil-
ity by benchmarking existing VLMs and revealing
their limitations.



Limitations

Our method effectively generates long-horizon ma-
nipulation tasks and supports automated bench-
marking, but it has some limitations: (1) Lower
Validity for Level 4 Tasks: While process-based
tasks achieve over 90% validity, Level 4 outcome-
based tasks have only around 70%. This is because
some templates in the ManiTaskOT-1K dataset are
scene-dependent, and determining suitability re-
quires strong perception and reasoning. Automated
success evaluation for these tasks also remains chal-
lenging. (2) Less-than-Perfect Validity for Level
1-3 Tasks: For Level 1-3 tasks, although our al-
gorithm ensures adequate space for object place-
ment, it doesn’t guarantee visibility or accessibility.
We plan to introduce a learning-based method to
improve target feasibility assessment. (3) Simpli-
fied Low-Level Manipulation: Our benchmark
abstracts low-level manipulation, focusing on high-
level perception, reasoning, and planning. We aim
to extend it to include low-level tasks to evaluate
more models like Vision-Langugae-Action models
(VLAs).
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A Appendix

A.1 Details of ManiTaskOT-1K.

The ManiTaskOT-1K dataset contains 1,000 tem-
plates for outcome-based tasks. We first col-
lected scene images from real-world and simulated
datasets, including Habitat (Szot et al., 2021), Scan-
Net (Dai et al., 2017). Next, we used Amazon Me-
chanical Turk (AMT) (Amazon, 2024) to gather
natural language instructions from human annota-
tors. Finally, we manually filtered the instructions
for quality and removed specific object names to
create task templates.

We provide more template examples as follows:

"Design a symmetrical display of [SUB-
OBJECTSO00] on [OBJECTO]."

"Design an aesthetic display of [SUB-
OBJECTS00] on [OBJECTO]."

"Group all the scattered [SUB-
OBJECTSO00] on [OBJECTO] by size,
and stack the largest ones vertically on
the left side of the [OBJECTO]."

"Construct a mini obstacle course using
small objects on the [OBJECTO]."

"Align all [SUB-OBJECTSO00] on [OB-
JECTO] into a symmetrical arrange-
ment."

"Arrange the objects on [OBJECTO] into
an interactive display that showcases
their use and function."

"Create a "kaleidoscope" on top of [OB-
JECTO] by arranging objects in a color-
ful, symmetrical pattern."

"Create a "city" on [OBJECTO] by ar-
ranging the objects to resemble buildings,
roads, and parks."

"Transform [OBJECTO] into a "garden"
by arranging the surface objects to resem-
ble flowers, trees, and paths."

"For the collection of small electronic
devices on [OBJECTO], use principles of
proportion and balance to group them."

"Organize the contents of [OBJECTO]
into a streamlined and functional layout,
and group similar items."

We plan to release the dataset to benefit the com-
munity once the paper is public.
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A.2 Benchmark Test Flow Sample

Below we display an entire history of a successful
episode of the benchmark test flow, achieved by
Gemini-2.0-flash.

In the text boxes starting on the next page, we
provide the text transcripts. For the images up-
loaded to the VLM during the conversation, we
have organized them in Fig. 7. The blue paragraphs
in the text indicate parts related to the images, and
the numbers preceding the text correspond to the
image numbers in Fig. 7.

Note that in practical applications, we may pro-
vide photos of an object or location taken from
slightly different angles to help the VLM agent ob-
tain a more comprehensive observation when the
scene is partially occluded.

[1]

[2]

[3]

[4]

[S]

[6]

Figure 7: History of images provided to the VLM agent.



Success Episode by Gemini-2.0-flash

System Message:

Suppose you are an expert home robot. You’re now in a room, and are given tasks which mainly
involves puttings some thing from one place to another. I want you to act like a robot, interact with
the scene and try your best to finish the tasks. In the scene you will like running in an automaton.
In each state, all the actions you can do can be described with an action space.

Note: 1: As we’ve guaranteed that the space you need to put item on must be somehow available
at the beginning, if you think there’s not enough space for you to put down the item, you can either
try moving away obstacles(probably involved by your wrong move), or change your standing
position. 2: The system will let you try until reach a maximum time step count. Try your best to
finish the task with the least steps of interaction!

Let’s get started!

Please process task 5483:

"Move frl_apartment_kitchen_utensil_09_73 to frl_apartment_rack_01_76_platform_2’s front
part".

Task Initial Information:

frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
And The destination platform is frl_apartment_rack_01_76_platform_2.

[1] We also provide images of involved objects, the first image I upload to you is about
frl_apartment_kitchen_utensil_09_73, marked with a grey shadowed cube.

User Message:

Now you’re preparing to get in to the scene. Remember the task is: "Move
frl_apartment_kitchen_utensil_09_73 to frl_apartment_rack_01_76_platform_2’s front part".
Please note that you have a time limit. There are a total timelimit of 15 timesteps, and you
have already used O timesteps.

Task Initial Information:

frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
The destination platform is frl_apartment_rack_01_76_platform_2.

Now you have these actions to choose, and you need to select a key as an action from this current
action space dict:

’0’: ’call_end’, ”11’: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’12°: ’go to platform 2:
frl_apartment_sofa_10_platform_1’, ’13’: *go to platform 3: frl_apartment_sofa_10_platform_2’,

14 ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’15°:
’go to  platform 5 frl_apartment_chair_04_47_platform_0’, ’16°: ’go
to platform 6: frl_apartment_chair_05_7_platform_0’, 17°: ’go to
platform  7: frl_apartment_chair_05_8_platform_0’, ’18°: g0 to  plat-
form  8: frl_apartment_stool_02_18_platform_0’, ’19°: g0 to  plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’110°: ’go to plat-
form  10: frl_apartment_rack_01_76_platform_0’, 111°: g0 to  plat-
form 11: frl_apartment_rack_01_76_platform_1", 1127 ’go to plat-
form  12: frl_apartment_rack_01_76_platform_2’, '113°: g0 to  plat-
form 13: kitchen_counter_1_body_platform_0°, ’114’: ’go  to platform 14:

kitchen_counter_1_body_platform_1’, ’115’: ’go to platform 15: fridge_0_body_platform_0’,
’116°: ’go to platform 16: fridge 0_body_platform_1’, ’117°: ’go to platform 17:
fridge_0_body_platform_2’, ’118’: ’go to platform 18: fridge_0_body_platform_3’, ’119’: *go to
platform 19: fridge_0_body_platform_4’, ’120’: *go to platform 20: fridge_0_body_platform_5’,
121°: ’go to platform 21: fridge 0_body_platform_6’, ’122’: ’go to platform 22:
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fridge_0_body_platform_7’, ’123’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
124’ ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’I125’: ’go to

platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’126’: g0 to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1°, ’127’: g0 to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2°, ’128’: g0 to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’129’: g0 to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4°, ’130’: g0 to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5’, ’131°: g0 to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6°, ’132’: g0 to plat-
form  32: frl_apartment_table_03_14_platform_0’, ’133°: g0 to  plat-
form  33: frl_apartment_table_03_14_platform_1°, ’134°: g0 to  plat-
form 34: frl_apartment_table_01_48_platform_0’, ’I135’: g0 to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’136°: ’go to plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’137’: ’go  to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’138’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’139’: ’go to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’140’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’141’: ’go to plat-
form 41: frl_apartment_wall_cabinet_02_21_platform_6’, 142’ ’go to
platform  42: frl_apartment_chair_01_15_platform_0°,  ’143’: ’go  to plat-
form 43: frl_apartment_chair_01_15_platform_1", ’144’: ’go  to platform
44. frl_apartment_chair_01_16_platform_0’, ’145°: ’go to platform  45:
frl_apartment_chair_01_16_platform_1’, ’146’: ’go to platform 46:  chestOfDraw-

ers_01_2_body_platform_0’, ’147’: *go to platform 47: chestOfDrawers_01_2_body_platform_1",
’148°:  ’go to platform 48:  chestOfDrawers_01_2_body_platform_2’, ’149’:  ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’150’: ’go  to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’151’: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’152’: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’153°: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’154°: ’go to platform 54: frl_apartment_table_02_40_platform_1’, °’155’: ’go to
platform 55:  frl_apartment_table_02_40_platform_2’, ’156’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’157’: *go to platform 57: cabinet_3_body_platform_0’,
’158’: *go to platform 58: cabinet_3_body_platform_1".

Note: Please output only the corresponding action key (e.g., 110) without any additional output.
Only output one current action. Outputting extra characters or using an incorrect character format
will directly cause the entire task to fail.

User Message:

Now you may see the objects on the platform kitchen_counter_1_body_platform_1. Or you
may not see them clearly due to bad starting direction. Remember the task is: "Move
frl_apartment_kitchen_utensil_09_73 to frl_apartment_rack_01_76_platform_2’s front part".
Please note that you have a time limit. There are a total timelimit of 15 timesteps, and you
have already used 1 timesteps.

Task Initial Information: frl_apartment_kitchen_utensil_09_73 belong_to_platform:
kitchen_counter_1_body_platform_1. The destination platform is
frl_apartment_rack_01_76_platform_2.
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[2] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. Now you can call_end, rotate clockwisely to another
freespace, go to another platform or choose to pick up one item here.

Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you, the
robot. In case there’s no any other freespace, you’ll stay in the same position.", ’0’: ’call_end’,
’ol’: ’pick up object 1°, ’02’: ’pick up object 2°, *03’: ’pick up object 3’, *04’: ’pick up object 4°,
’05’: ’pick up object 5°, *06’: ’pick up object 6°, *07’: ’pick up object 7°, *08’: ’pick up object
8’,709’: "pick up object 9, 010’: ’pick up object 10’, *011’: ’pick up object 11°, *012’: ’pick
up object 12°, *013’: *pick up object 13°, *014’: ’pick up object 14’, *015’: ’pick up object 15°,
’016’: ’pick up object 16°, *017’: ’pick up object 17°, *018’: ’pick up object 18’, 019’: ’pick
up object 19°, *020’: ’pick up object 20’, *021’: *pick up object 21°, *022’: ’pick up object 22°,
’023’: pick up object 23’, *024’: *pick up object 24°, *025’: ’pick up object 25°, *026’: ’pick up
object 26, ’11°: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’12°: *go to platform 2:
frl_apartment_sofa_10_platform_1’, ’13’: *go to platform 3: frl_apartment_sofa_10_platform_2’,

’14°: ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’15°:
’go to  platform  5: frl_apartment_chair_04_47_platform_0’, ’16°: ’g0
to platform 6: frl_apartment_chair_05_7_platform_0’, 17 ’go to
platform  7: frl_apartment_chair_05_8_platform_0’, ’18°: g0 to  plat-
form 8: frl_apartment_stool_02_18_platform_0’, ’19°: ’go to plat-
form  9: frl_apartment_stool_02_6_platform_0’, '110°: g0 to  plat-
form 10: frl_apartment_rack_01_76_platform_0’, 111°: ’go to plat-
form 11: frl_apartment_rack_01_76_platform_1", 1127 ’go to plat-
form  12: frl_apartment_rack_01_76_platform_2’, '113°: g0 to  plat-
form 13: kitchen_counter_1_body_platform_0°, ’114’: ’go  to platform 14:

kitchen_counter_1_body_platform_1’, ’115’: ’go to platform 15: fridge_0_body_platform_0’,
’116°: ’go to platform 16: fridge 0_body_platform_1’, ’117°: ’go to platform 17:
fridge_0_body_platform_2’, ’118’: ’go to platform 18: fridge_0_body_platform_3’, ’119’: *go to
platform 19: fridge_0_body_platform_4’, ’120’: *go to platform 20: fridge_0_body_platform_5’,
121°: ’go to platform 21: fridge 0_body_platform_6’, ’122’: ’go to platform 22:
fridge_0_body_platform_7’, ’123’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
124°: ’go to platform 24:  frl_apartment_bin_03_3_platform_0’, ’125’: ’go to

platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’126’: g0 to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1°, ’127’: g0 to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2’, ’128’: g0 to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3°, ’129’: g0 to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4’, ’130’: g0 to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5°, ’131’: g0 to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6°, ’132’: g0 to plat-
form 32: frl_apartment_table_03_14_platform_0’, ’133°: ’go to plat-
form  33: frl_apartment_table_03_14_platform_1°, ’134°: g0 to  plat-
form 34: frl_apartment_table_01_48_platform_0’, ’135°: ’go  to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’136°: g0 to  plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’137’: ’go  to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’138’: ’go  to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’139’: ’go to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’140’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’141’: ’go  to plat-
form  41: frl_apartment_wall_cabinet_02_21_platform_6’, ’142°: g0 to
platform  42: frl_apartment_chair_01_15_platform_0’,  ’143’: ’go  to plat-
form 43: frl_apartment_chair_01_15_platform_1", ’144°: ’go  to platform
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44 frl_apartment_chair_01_16_platform_0’, ’145°: g0 to platform  45:
frl_apartment_chair_01_16_platform_1°, ’146’: ’go to platform 46: chestOfDraw-
ers_01_2_body_platform_0’, ’147’: *go to platform 47: chestOfDrawers_01_2_body_platform_1",
’148’: ’go to platform 48: chestOfDrawers_01_2_body_platform_2’, ’149’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’150’: ’go  to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’151°: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5°, °’152°: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’153’: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’154°:  ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’155’: ’go to
platform 55: frl_apartment_table_02_40_platform_2’, ’156’: g0 to platform 56:
frl_apartment_tvstand_89_platform_0’, ’157’: ’go to platform 57: cabinet_3_body_platform_0’,
’158’: ’go to platform 58: cabinet_3_body_platform_1’You need to select an action from this
current action space. Note: Please output only the corresponding action key (e.g., 110) without
any additional output. Only output one current action. Outputting extra characters or using an
incorrect character format will directly cause the entire task to fail.

User Message:

Now you are standing at kitchen_counter_1_body_platform_1 with  object
frl_apartment_kitchen_utensil_09_73 in hand.Or you may not see the platform clearly
due to bad starting direction.Now you have the following choices and corresponding outputs:-1:
switch clockwisely to the next free space of the platform 0: call_end 11-58: go to platform i
startplace: place the object in hand.

Remember the  task is: "Move  frl_apartment_kitchen_utensil_09_73  to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time
limit. There are a total timelimit of 15 timesteps, and you have already used 2 timesteps.

Task Initial Information:

frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
The destination platform is frl_apartment_rack_01_76_platform_2.

[3] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. The item you’ve just picked up should disappear. Now
you can call_end, rotate clockwisely to another freespace, go to another platform or start placing
the item on your hand here.

The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.

Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you,
the robot. In case there’s no any other freespace, you’ll stay in the same position.", *0’:
’call_end’,’11°: ’go to platform 1: frl_apartment_sofa_10_platform_0’, ’12’: ’go to platform 2:
frl_apartment_sofa_10_platform_1’, ’13’: *go to platform 3: frl_apartment_sofa_10_platform_2’,

’14°: ’go to platform  4: frl_apartment_chair_04_46_platform_0’, '15°:
g0 to  platform 5 frl_apartment_chair_04_47_platform_0’, ’16°: ’20
to platform 6: frl_apartment_chair_05_7_platform_0’, 177 ’go to
platform  7: frl_apartment_chair_05_8_platform_0’, ’18’: g0 to  plat-
form 8: frl_apartment_stool_02_18_platform_0’, ’19°: ’go to plat-
form  9: frl_apartment_stool_02_6_platform_0’, '110°: g0 to  plat-
form 10: frl_apartment_rack_01_76_platform_0’, 111°: ’go to plat-
form  11: frl_apartment_rack_01_76_platform_1’, 112°: g0 to  plat-
form 12: frl_apartment_rack_01_76_platform_2’, 1137 ’go to plat-
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form 13: kitchen_counter_1_body_platform_0°, ’114’: ’go  to platform 14:
kitchen_counter_1_body_platform_1’, ’115’: ’go to platform 15: fridge_0_body_platform_0’,
’116’: ’go to platform 16: fridge 0_body_platform_1’, ’117°: ’go to platform 17:
fridge_0_body_platform_2’, ’118’: ’go to platform 18: fridge_0_body_platform_3’, ’119’: *go to
platform 19: fridge_0_body_platform_4’, ’120’: ’go to platform 20: fridge_0_body_platform_5’,
121°: ’go to platform 21: fridge O_body_platform_6’, ’122°: ’go to platform 22:
fridge_0_body_platform_7’, ’123’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
124°: ’go to platform 24:  frl_apartment bin_03_3_platform_0’, ’125’: ’go to

platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’126’: ’go  to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1°, ’127’: g0 to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2°, ’128’: g0 to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’129’: g0 to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4°, ’130’: g0 to plat-
form  30: frl_apartment_wall_cabinet_01_4_platform_5°, ’131’: g0 to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6°, ’132’: g0 to plat-
form  32: frl_apartment_table_03_14_platform_0’, ’133°: g0 to  plat-
form 33: frl_apartment_table_03_14_platform_1°, 134 ’go to plat-
form  34: frl_apartment_table_01_48_platform_0’, ’I135’: g0 to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’136°: ’go to plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’137’: ’go  to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’138’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’139’: ’go  to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’140’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’141’: ’go  to plat-
form  41: frl_apartment_wall_cabinet_02_21_platform_6’, 142’ g0 to
platform  42: frl_apartment_chair_01_15_platform_0’, ’143°: ’go to  plat-
form 43: frl_apartment_chair_01_15_platform_1", ’144°: ’go to platform
44 frl_apartment_chair_01_16_platform_0’, ’145°: ’go to platform  45:
frl_apartment_chair_01_16_platform_1°, ’146’: ’go to platform 46:  chestOfDraw-

ers_01_2_body_platform_0’, ’147’: *go to platform 47: chestOfDrawers_01_2_body_platform_1",
’148°:  ’go to platform 48:  chestOfDrawers_01_2_body_platform_2°, ’149’:  ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’150’: ’go  to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’151°: ’go to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’I52’: ’go to platform 52: chestOfDraw-
ers_01_2_body_platform_6’, ’153°: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’154’:  ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’155’: ’go to
platform 55: frl_apartment_table_02_40_platform_2’, ’I156’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’157’: ’go to platform 57: cabinet_3_body_platform_0’,
158’ ’go to platform 58: cabinet_3_body_platform_1’: ’go to platform 58: cabi-
net_3_body_platform_1’, ’startplace’: ’place the object in hand to the current platform’ You need
to select an action from this current action space. Note: Please output only the corresponding
action key (e.g., 110) without any additional output. Only output one current action. Outputting
extra characters or using an incorrect character format will directly cause the entire task to fail.

User Message:

Now you are standing at frl_apartment_rack 01_76_platform_2.with  object
frl_apartment_kitchen_utensil_09_73 in hand. Or you may not see the platform clearly
due to bad starting direction.Now you have the following choices and corresponding outputs:-1:
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switch clockwisely to the next free space of the platform 0: call_end 11-58: go to platform i
startplace: place the object in hand.

Remember the  task  is: "Move  frl_apartment_kitchen_utensil_09_73  to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time
limit. There are a total timelimit of 15 timesteps, and you have already used 3 timesteps.

Task Initial Information: frl_apartment_kitchen_utensil_09_73 belong_to_platform:
kitchen_counter_1_body_platform_1. The destination platform is
frl_apartment_rack_01_76_platform_2.

[4] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. Now you can call_end, rotate to another freespace, go
to another platform or start placing the item on your hand here.

The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.

Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you,
the robot. In case there’s no any other freespace, you’ll stay in the same position.", *0’:
’call_end’, ’11°: *go to platform 1: frl_apartment_sofa_10_platform_0’, ’12’: ’go to platform 2:
frl_apartment_sofa_10_platform_1°, ’13’: *go to platform 3: frl_apartment_sofa_10_platform_2’,

14 ’go to platform 4: frl_apartment_chair_04_46_platform_0’, ’15°:
’go to  platform 5 frl_apartment_chair_04_47_platform_0’, ’16°: ’go
to platform 6: frl_apartment_chair_05_7_platform_0’, 17°: ’go to
platform  7: frl_apartment_chair_05_8_platform_0’, ’18°: g0 to  plat-
form  8: frl_apartment_stool_02_18_platform_0’, ’19°: g0 to  plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’110°: ’go to plat-
form  10: frl_apartment_rack_01_76_platform_0’, 111°: g0 to  plat-
form 11: frl_apartment_rack_01_76_platform_1", 1127 ’go to plat-
form  12: frl_apartment_rack_01_76_platform_2’, '113°: g0 to  plat-
form 13: kitchen_counter_1_body_platform_0°, ’114’: ’go  to platform 14:

kitchen_counter_1_body_platform_1’, ’115’: ’go to platform 15: fridge_0_body_platform_0’,
’116°: ’go to platform 16: fridge O_body_platform_1°, ’117°: ’go to platform 17:
fridge_0_body_platform_2’, ’118’: ’go to platform 18: fridge_0_body_platform_3’, ’119’: *go to
platform 19: fridge_0_body_platform_4’, ’120’: *go to platform 20: fridge_0_body_platform_5’,
121°: ’go to platform 21: fridge_0_body_platform_6°, ’122’: ’go to platform 22:
fridge_0_body_platform_7’, ’123’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
124’ ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’I125’: ’go  to

platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’126’: g0 to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1°, ’127’: g0 to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2°, ’128’: g0 to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’129’: g0 to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4’, ’130’: g0 to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5’, ’131°: g0 to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6°, ’132’: g0 to plat-
form  32: frl_apartment_table_03_14_platform_0’, ’133°: g0 to  plat-
form  33: frl_apartment_table_03_14_platform_1°, ’134°: g0 to  plat-
form 34: frl_apartment_table_01_48_platform_0’, ’135’: g0 to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’136°: ’go to plat-
form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’137’: ’go  to plat-
form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’138’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’139’: ’go  to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’140’: ’go to plat-
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form  40: frl_apartment_wall_cabinet_02_21_platform_5’, ’141’: ’go to plat-

form  41: frl_apartment_wall_cabinet_02_21_platform_6’, 142’ g0 to
platform  42: frl_apartment_chair_01_15_platform_0’,  ’143’: ’go  to plat-
form 43: frl_apartment_chair_01_15_platform_1", ’144°: ’go  to platform
44 frl_apartment_chair_01_16_platform_0’, ’145°: g0 to platform  45:

frl_apartment_chair_01_16_platform_1°, ’146’: ’go to platform 46: chestOfDraw-
ers_01_2_body_platform_0’, ’147’: *go to platform 47: chestOfDrawers_01_2_body_platform_1",
’148°: ’go to platform 48: chestOfDrawers_01_2_body_platform_2’, ’149’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’150’: ’go  to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’151’: ’go  to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’152’: ’go to platform 52:  chestOfDraw-
ers_01_2_body_platform_6’, ’153’: "go to platform 53: frl_apartment_table_02_40_platform_0’,
154’:  ’go to platform 54: frl_apartment_table_02_40_platform_1’, ’155’: ’go to
platform 55:  frl_apartment_table_02_40_platform_2’, ’156’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’157’: ’go to platform 57: cabinet_3_body_platform_0’,
’158’: *go to platform 58: cabinet_3_body_platform_1’, ’startplace’: ’place the object in hand to
the current platform’You need to select an action from this current action space. Note: Please
output only the corresponding action key (e.g., 110) without any additional output. Only output
one current action. Outputting extra characters or using an incorrect character format will directly
cause the entire task to fail.

User Message:

Now you are standing at an empty platform. You have the following choices and corresponding
outputs: 0: call_end 1-9: place the object in hand on the ith 9-grid of the platform. There are
images with each place’s number marked using colorful rectangles and circled numbers, and each
of these images also have a copy without marks.

999: place the object in hand around the platform, system will help you find an arbi-
trary fitable place Remember the task is: "Move frl_apartment_kitchen_utensil_09_73 to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time limit.
There are a total timelimit of 15 timesteps, and you have already used 4 timesteps.

Task Initial Information:

frl_apartment_kitchen_utensil_09_73 belong_to_platform: kitchen_counter_1_body_platform_1.
The destination platform is frl_apartment_rack_01_76_platform_2.

[5] We also provide an image from your view, with the 9-grid of the platform marked with colorful
rectangles and circled numbers. Now you can call_end, place the object in one part of the grid, or
just put it down regardless of the direction. You’ll be told if the item is too big to fit in the place
you choose.

The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.

Action space description:’0’: ’call_end’, ’1°: ’place the object in the corresponding grid 1°, ’2’:
"place the object in the corresponding grid 2°, °3’: ’place the object in the corresponding grid 3°, °4’:
"place the object in the corresponding grid 4°, °5’: *place the object in the corresponding grid 5°, ’6’:
"place the object in the corresponding grid 6°, *7’: ’place the object in the corresponding grid 7°, °8’:
’place the object in the corresponding grid 8°, 9’: ’place the object in the corresponding grid 9°,
’999’: ’place the object around the platform’You need to select an action from this current action
space. Note: Please output only the corresponding action key (e.g., 110) without any additional
output. Only output one current action. Outputting extra characters or using an incorrect character
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format will directly cause the entire task to fail.

User Message: Now you may see the objects on the platform
frl_apartment_rack_01_76_platform_2.0r you may not see them clearly due to bad
starting direction.Remember the task is: "Move frl_apartment_kitchen_utensil_09_73 to
frl_apartment_rack_01_76_platform_2’s front part". Please note that you have a time limit. There
are a total timelimit of 15 timesteps, and you have already used 5 timesteps.

Task Initial Information: frl_apartment_kitchen_utensil_09_73 belong_to_platform:
kitchen_counter_1_body_platform_1. The destination platform is
frl_apartment_rack_01_76_platform_2.

[6] We also provide an image from your view, with all objects you may pick up are marked with
grey shadowed cube and circled numbers. Now you can call_end, rotate clockwisely to another
freespace, go to another platform or choose to pick up one item here.

The current Action space description is as below. It is in the form of a dictionary, where the key
represents an executable action, and the value describes the details of that action.

Action space description:’-1’: "rotate clockwisely to the nearest freespace that can fit you, the robot.
In case there’s no any other freespace, you’ll stay in the same position.", ’0’: *call_end’, *01’: ’pick
up object 1°, ’11’: *go to platform 1: frl_apartment_sofa_10_platform_0’, ’12’: ’go to platform 2:
frl_apartment_sofa_10_platform_1°, ’13’: *go to platform 3: frl_apartment_sofa_10_platform_2’,

147 ’go to platform  4: frl_apartment_chair_04_46_platform_0’, ’157:
’go to platform 5 frl_apartment_chair_04_47_platform_0’, ’16°: ’go
to platform  6: frl_apartment_chair_05_7_platform_0’, 177 g0 to
platform  7: frl_apartment_chair_05_8_platform_0’, ’18’: g0 to  plat-
form  8: frl_apartment_stool_02_18_platform_0’, ’19°: g0 to  plat-
form 9: frl_apartment_stool_02_6_platform_0’, ’110°: ’go to plat-
form  10: frl_apartment_rack_01_76_platform_0’, 111 g0 to  plat-
form 11: frl_apartment_rack 01_76_platform_1’, 1127 ’go to plat-
form  12: frl_apartment_rack_01_76_platform_2’, 113°: ’go to  plat-
form 13: kitchen_counter_1_body_platform_0°, ’114’: ’go  to platform 14:

kitchen_counter_1_body_platform_1’, ’115’: ’go to platform 15: fridge_0_body_platform_0’,
’116’:  ’go to platform 16: fridge 0_body_platform_1’, ’117°: ’go to platform 17:
fridge_0_body_platform_2’, ’118: ’go to platform 18: fridge_0_body_platform_3’, ’119’: *go to
platform 19: fridge_0_body_platform_4’, ’120’: ’go to platform 20: fridge_0_body_platform_5,
121°: ’go to platform 21: fridge 0_body_platform_6’, ’122’: ’go to platform 22:
fridge_0_body_platform_7’, ’123’: ’go to platform 23: frl_apartment_bin_02_2_platform_0’,
124’ ’go to platform 24: frl_apartment_bin_03_3_platform_0’, ’125’: ’go to

platform 25: frl_apartment_wall_cabinet_01_4_platform_0’, ’126’: ’go  to plat-
form 26: frl_apartment_wall_cabinet_01_4_platform_1", 127 g0 to plat-
form 27: frl_apartment_wall_cabinet_01_4_platform_2°, ’128’: g0 to plat-
form 28: frl_apartment_wall_cabinet_01_4_platform_3’, ’129’: g0 to plat-
form 29: frl_apartment_wall_cabinet_01_4_platform_4°, ’130’: g0 to plat-
form 30: frl_apartment_wall_cabinet_01_4_platform_5°, ’131’: g0 to plat-
form 31: frl_apartment_wall_cabinet_01_4_platform_6°, ’132’: g0 to plat-
form  32: frl_apartment_table_03_14_platform_0’, ’133°: g0 to  plat-
form  33: frl_apartment_table_03_14_platform_1°, ’134°: g0 to  plat-
form 34: frl_apartment_table_01_48_platform_0’, ’I135’: g0 to platform
35: frl_apartment_wall_cabinet_02_21_platform_0’, ’136°: ’go to plat-
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form 36: frl_apartment_wall_cabinet_02_21_platform_1’, ’137’: ’go to plat-

form 37: frl_apartment_wall_cabinet_02_21_platform_2’, ’138’: ’go to plat-
form 38: frl_apartment_wall_cabinet_02_21_platform_3’, ’139’: ’go  to plat-
form 39: frl_apartment_wall_cabinet_02_21_platform_4’, ’140’: ’go to plat-
form 40: frl_apartment_wall_cabinet_02_21_platform_5’, ’141’: ’go to plat-
form 41: frl_apartment_wall_cabinet_02_21_platform_6’, 142’ ’go to
platform  42: frl_apartment_chair_01_15_platform_0’,  ’143’: ’go  to plat-
form 43: frl_apartment_chair_01_15_platform_1", ’144°: ’go  to platform
44 frl_apartment_chair_01_16_platform_0’, ’145°: ’go to platform  45:
frl_apartment_chair_01_16_platform_1", ’146’: ’go to platform 46: chestOfDraw-

ers_01_2_body_platform_0’, ’147’: *go to platform 47: chestOfDrawers_01_2_body_platform_1",
’148’:  ’go to platform 48:  chestOfDrawers_01_2_body_platform_2’, ’149’: ’go
to platform 49: chestOfDrawers_01_2_body_platform_3’, ’150’: ’go  to plat-
form 50: chestOfDrawers_01_2_body_platform_4’, ’151’: ’go  to platform 51:
chestOfDrawers_01_2_body_platform_5’, ’152’: ’go to platform 52:  chestOfDraw-
ers_01_2_body_platform_6’, ’153’: ’go to platform 53: frl_apartment_table_02_40_platform_0’,
’154°: ’go to platform 54: frl_apartment_table_02_40_platform_1’, °’155’: ’go to
platform 55:  frl_apartment_table_02_40_platform_2’, ’156’: ’go to platform 56:
frl_apartment_tvstand_89_platform_0’, ’157’: *go to platform 57: cabinet_3_body_platform_0’,
’158’: ’go to platform 58: cabinet_3_body_platform_1’You need to select an action from this
current action space. Note: Please output only the corresponding action key (e.g., 110) without
any additional output. Only output one current action. Outputting extra characters or using an
incorrect character format will directly cause the entire task to fail.

(call_ended)
Checker Information: Target object placed in correct direction. Task_status:Success
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