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Abstract

The integration of machine learning models in
various real-world applications is becoming more
prevalent to assist humans in their daily decision-
making tasks as a result of recent advancements
in this field. However, it has been discovered
that there is a tradeoff between the accuracy and
fairness of these decision-making tasks. In some
cases, these AI systems can be unfair by exhibit-
ing bias or discrimination against certain social
groups, which can have severe consequences in
real life. Inspired by one of the most well-known
human learning skills called grouping, we address
this issue by proposing a novel machine learning
(ML) framework where the ML model learns to
group a diverse set of problems into distinct sub-
groups to solve each subgroup using its specific
sub-model. Our proposed framework involves
three stages of learning, which are formulated
as a three-level optimization problem: 1) group-
ing problems into subgroups, 2) learning group-
specific sub-models for problem-solving, and 3)
updating group assignments of training examples
by minimizing validation loss. These three learn-
ing stages are performed end-to-end in a joint
manner using gradient descent. To improve fair-
ness and accuracy, we develop an efficient opti-
mization algorithm to solve this three-level opti-
mization problem. To further decrease the risk
of overfitting in small datasets using our LBG
method, we incorporate domain adaptation tech-
niques in the second stage of training. We further
apply our method to differentiable neural architec-
ture search (NAS) methods. The LBG implemen-
tation can be found in the Skillearn repository at
here.
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1. Introduction
Learning by grouping is an outstanding human learning skill
aiming to organize a set of given problems into different sub-
groups and domains where each subgroup contains similar
problems that can be solved independently and efficiently.
In this paper, we formulate Learning by Grouping (LBG) as
an optimization problem and investigate its effectiveness in
ML. Our proposed framework contains two types of model:
1) Group Assignment Model (GAM); and 2) Group-Specific
Classification Models (GSCM). The GAM model takes a
data example as input and predicts the subgroup it belongs
to – a K-way classification problem, where K is the num-
ber of GSCM models (i.e., experts). For each subgroup k,
a GSCM model performs the supervised learning on the
target task. We then apply the GAM and the K GSCM
models to improve the existing machine learning models’
fairness and accuracy. Additionally, we extend our LBG
formulation to the neural architecture search to obtain the
most suitable task-specific GSCM models. We depict the
high-level learning process in Fig 1.

We formulate LBG as a three-stage optimization problem.
First, we learn the Group-Assignment Model (GAM); then,
we train Group-Specific Classification Models (GSCMs);
finally, we apply the GAM and the GSCMs to the validation
set to learn the subgroups for subgroup assignment and the
learnable architecture. We develop a gradient-based method
to solve this three-level optimization problem. In previous
related works, mixture-of-expert methods learn the experts
– analogous to GSCMs; and the gating network – similar
to GAM. The mixture-of-experts (MoE) methods learn the
gating network and the experts jointly on the training data,
which has a high risk of overfitting the gating network to
the training data. We address this problem of overfitting
by MoE methods by formulating a three-stage optimization
framework that learns the subgroups for the subgroup as-
signment tasks on the validation set instead of the training
examples.

Currently, the majority of state-of-the-art neural network
performance is achieved through architectures that are man-
ually designed by humans. However, this process of design-
ing and evaluating neural network architectures by human
experts is both time-consuming and may not end with the
most suitable task-specific architecture. In recent years,
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Figure 1. Illustration of Learning by Grouping (LBG) with three
subgroups (i.e., K = 3). As shown, we update our Group Assign-
ment Model (GAM) for the training examples by validating the
performance of the validation set, which contrasts LBG method
with the existing MoE approaches.

there has been a growing interest in automating this manual
process, referred to as neural architecture search (NAS). On
the other hand, humans possess powerful learning skills that
have been developed through evolution. This study also
examines the potential of using a human-based learning
technique, known as learning by grouping, in differentiable
NAS approaches.

The major contributions of this paper include:

• Drawing inspirations from the human learning tech-
nique of Learning by Grouping (LBG), we propose a
new machine learning framework that utilizes group-
ing to divide a set of diverse problems into distinct
subgroups. The proposed framework groups similar
problems together within each subgroup and subse-
quently develops a group-specific solution for each
subgroup.

• We propose a three-level optimization framework to
formulate LBG. We provide a solution to solve the
optimization problem jointly end-to-end via gradient
descent: 1) learning to group problems into different
subgroups; 2) learning group-specific sub-models; 3)
learning group-assignments of training examples by
minimizing the validation loss.

• We also propose domain adaptive LBG (DALBG) to
mitigate the risk of overfitting within our LBG frame-
work by utilizing domain adaption techniques.

• We extend the above formulation to the challenging
neural architecture search (NAS) problem, and we
show that LBG/DALBG can be applied to any dif-
ferentiable NAS approach for further improvements.

• We perform experiments on CelebA, ISIC-18, CIFAR-
10, CIFAR-100, and ImageNet datasets to showcase
the effectiveness of our proposed method in both fair-
ness and accuracy aspects. Additionally, we apply our

proposed LBG to language understanding tasks by con-
ducting experiments on GLUE datasets, which can be
found in the Supplements.

2. Related Works
2.1. Mixture of Experts
Lately, a wide variety of works (Shazeer et al., 2017; Zhang
et al., 2019; Wang et al., 2020) have proposed applying
the mixture-of-experts (MoE) approach, which was initially
proposed by (Jacobs et al., 1991), to varied deep learning
tasks. Generally, deep learning MoE frameworks consist
of expert networks and a gating function, where the gat-
ing function assigns each expert a subset of training data.
The methods assume a set of latent experts where each ex-
pert performs a classification or regression task. A gating
function assigns the given data example to an expert. Then
this example is classified using the classification model spe-
cific to this expert. The MoE has been an active research
area aiming to improve the vanilla ML approaches, such
as (Shazeer et al., 2017; Zhang et al., 2019; Wang et al.,
2020). (Shazeer et al., 2017) introduces a trainable gat-
ing function to assign the experts’ sparse combinations for
the given data. DeepMOE (Wang et al., 2020) proposes a
deep convolutional network including a shallow embedding
network and a multi-headed sparse gating network, where
the multi-headed sparse gating network uses the mixture
weights computed by the shallow embedding network to se-
lect and re-weight gates in each layer. In MGE-CNN(Zhang
et al., 2019), experts are learned with the extra knowledge of
their previous experts along with a Kullback-Leibler (KL)
divergence constraint to improve the diversity of the experts.
Recently, (Riquelme et al., 2021) proposed the Vision Trans-
former MoE (V-MoE) that can successfully reach state-of-
the-art on ImageNet with approximately half of the required
resources.

In the existing MoE methods, which are based on single-
level optimization, the gating function and expert-specific
Classification Models are learned jointly by minimizing
the training loss. Hence, there is a high risk of the gating
function overfitting the training data, which can lead to
unfair and inaccurate decision-making. In our method, we
address this issue via learning the group assignments of
training examples by minimizing the validation loss instead
and developing a multi-stage optimization problem rather
than joint training. The results show the efficacy of our
method.

2.2. Domain Adaptation
Domain adaptation (DA) is a technique in machine learning
that aims to enhance the performance of models trained on
one domain, known as the source domain, on a different yet
related domain, referred to as the target domain. The objec-
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tive is to transfer the knowledge acquired from the source
domain to the target domain, where the input features and/or
output labels may vary. This approach is particularly valu-
able in scenarios where the amount of labeled data in the
target domain is scarce, but a large amount of labeled data
is available in the source domain. Different methods for do-
main adaptation (Gretton et al., 2009; Gopalan et al., 2011;
Pan et al., 2011; Jhuo et al., 2012) can be classified into
three main categories: instance-based, feature-based, and
adversarial-based approaches. These methods mostly fo-
cus on measuring and minimizing the distance between the
source and target domains. Some well-established distance
measuring approaches include Maximum Mean Discrep-
ancy (MMD) (Long et al., 2015; Gretton et al., 2008), Cor-
relation Alignment (CORAL) (Sun et al., 2017), Kullback-
Leibler (KL) divergence (Kullback & Leibler, 1951), and
Contrastive Domain Discrepancy (CDD) (Kang et al., 2019).

2.3. Multi-Level Optimization

In the past few years, Bi-Level Optimization (BLO)
and Multi-Level Optimization (MLO) (Vicente & Cala-
mai, 1994) techniques have been applied to Meta-
Learning (Feurer et al., 2015; Finn et al., 2017), and Au-
tomated Machine Learning (AutoML) tasks such as neural
architecture search (Cai et al., 2019; Liu et al., 2018b; Xie
et al., 2019; Xu et al., 2020; Liang et al., 2019; Hosseini
et al., 2021) and hyperparameter optimization (Feurer et al.,
2015; Baydin et al., 2017) to learn the meta parameters au-
tomatically and reduce the required resources and reliance
on humans for designing such methods. Lately, inspired
by humans’ learning skills (Xie et al., 2020), several ex-
isting works (Hosseini & Xie, 2022a; Chitnis et al., 2022;
Hosseini & Xie, 2020; Garg et al., 2021; Du et al., 2020;
Hosseini & Xie, 2022b; Sheth et al., 2021; Du & Xie, 2020;
Zhu et al., 2022) have borrowed these skills from humans
and extended them to ML problems in MLO frameworks to
study whether these techniques can assist the ML models in
learning better.

2.4. Neural Architecture Search

Recently, Neural Architecture Search (NAS) has attracted
the researchers’ attention to assist them in finding high-
performance neural architectures for different deep learn-
ing applications. In the early stages, most of the proposed
NAS methods were based on reinforcement learning (RL)
(Zoph & Le, 2016; Pham et al., 2018; Zoph et al., 2018) and
evolutionary learning (Liu et al., 2018a; Real et al., 2019).
Reinforcement learning approaches use a policy network to
generate architectures by maximizing the accuracy of the
validation set, which is used as a reward. In evolutionary
learning methods, architectures describe the individuals of
a population, and the validation accuracy of the individu-
als is used as fitness scores. Replacing low fitness scores

individuals with higher fitness scores individuals leads to
enhanced performance. Reinforcement learning and evolu-
tionary learning approaches are computationally expensive.
To solve for the high computational cost by the RL and evo-
lutionary learning-based methods, the research community
introduced differentiable search methods (Cai et al., 2019;
Liu et al., 2018b; Xie et al., 2019), which are extremely
efficient compared to the previous methods since they use
the weight-sharing techniques and perform the searching
process using gradient descent. Differentiable NAS was
first proposed by DARTS (Liu et al., 2018b). Lately, many
following works (Chen et al., 2019; Xu et al., 2020; Liang
et al., 2019) have worked on enhancing the search results
and reducing the computational cost of differentiable NAS
even further. For instance, P-DARTS (Chen et al., 2019)
increases the depth of architectures progressively during
the search. PC-DARTS (Xu et al., 2020) reduces the redun-
dancy by evaluating only a subset of channels in the search
process.

3. Methods
Our method consists of a Group-Assignment Model (GAM)
and K Group-Specific Classification Models (GSCMs). The
GAM model predicts and assigns the training samples to
their corresponding GSCM expert model. Then the GSCM
models predict the classes of the inputs. Lastly, we apply the
GAM and the GSCMs to the validation set and minimize the
validation loss to learn the assignments of training samples.
The illustration of our proposed method is shown in Fig
2. In Section 3.1, we first begin with defining the three-
level optimization framework to formulate LBG (Section
3.1.1), and then we integrate domain adaptation techniques
to our proposed LBG to mitigate the risk of overfitting
(Section 3.1.2). Afterward, we extend the LBG to the Neural
Architecture Search problem in Section 3.1.3. Finally, in
Section 3.2, we develop an efficient optimization algorithm
to address the three-level optimization problem.

3.1. Three-Level Optimization Framework

Our framework is composed of two types of models: the
Group-Assignment Model (GAM) and the Group-Specific
Classification Models (GSCM). The GAM model takes a
data example as input and assigns it to one of the subgroups,
which is a K-way classification problem, where K is the
number of GSCM models (i.e., experts). We propose an
end-to-end three-stage optimization problem where: First,
the Group-Assignment Model (GAM) is learned; then, the
Group-Specific Classification Models (GSCMs) are trained;
finally, the GAM and the GSCMs are applied to the valida-
tion set to determine the group assignments and the learn-
able architecture. As shown in Fig 1, the Group-Assignment
Model (GAM) is updated for training examples by vali-
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Figure 2. Overview of our proposed three-level optimization frame-
work (Learning by Grouping).

dating the performance on the validation set, which distin-
guishes LBG from existing MoE approaches. As discussed
in Section 3.1.1, the group assignments from GAM are con-
tinuous values Cnk ∈ [0, 1]. Therefore, to convert these
probability distributions to one-hot encoded format (similar
to Fig 1) we can compute the top-k and obtain the k-hot
encoded matrix, where k is one in this case.

3.1.1. LEARNING BY GROUPING (LBG)

We assume there are K latent subgroups. Let C be a matrix
denoting the learnable ‘ground-truth’ grouping of the train-
ing samples. The size of C is N×K where N is the number
of training examples - row n represents the grouping of the
n-th training example. We relax the values in each row from
a one-hot encoding to continuous values in order to perform
gradient descent, so that Cnk ∈ [0, 1] denotes the probabil-
ity that the n-th training example belongs to the k-th latent
subgroup. Subgroups C are initialized randomly. The latent
subgroup labels for subgroups are permutation-invariant.
We then assign the n-th training example to subgroup jn
such that jn = argmaxe Cne, and let Gn = Cnjn be the
probability of grouping the sample xn to subgroup jn. Let
the GAM be represented by f(xn;T ) with SoftMax out-
put, which takes a data example xn as input and predicts
which subgroup xn should be assigned to. T is the weights
parameter of this network. The output of f(xn;T ) is a
K-dimensional vector, where the k-th element fk(xn;T )
denotes the probability that xn should be assigned to the
k-th subgroup. The sum of elements in f(xn;T ) is one. Let
ĵn = argmaxe fe(xn;T ), and let En = fĵn(xn;T ) be the
confidence of the GAM in assigning xn the subgroup ĵn.
We then have a GSCM classifier f(xn;Sĵn

) for each latent
subgroup ĵn ∈ {1 . . .K}, which predicts the class label for
a data example xn that has been assigned ĵn as its GSCM
by the GAM: f(xn;T ). Sĵn

are the network weights of this

GSCM classifier.

Stage I. In the first stage, we optimize the GAM: f(x;T )
given C by solving the following ‘relaxed’ negative log-
likelihood optimization problem:

T ∗(C) = argmin
T

∑N
n=1−Gn(C) log fjn(xn;T ) (1)

Note that we do not update the ‘ground-truth’ subgroups C
in this stage.

Stage II. In the second stage, we learn the K GSCM mod-
els. For each latent subgroup k, there is a GSCM classifier
f(x;Sk) with parameters Sk, which predicts the class la-
bel for a data example x assigned k as its subgroup by the
GAM. Let Dn = {xn} denote the subset of training data
examples assigned subgroup k by GAM. We want to learn
Sk by minimizing the following loss:

∑
xn∈Dn

ℓ(f(xn;Sk), yn) (2)

where yn is the class label of xn . l(·, ·) is the cross-entropy
loss. In addition, we take into account the confidence of
the GAM in assigning the training example xn to its corre-
sponding GSCM ĵn. So we relax the above equation, and
summarize the total loss of all GSCM models and objective
of this stage as:

{S∗
k(T

∗(C))}Kk=1 = argmin
{Sk}K

k=1

∑N
n=1 En (xn;T

∗(C)) ℓ(f(xn;Sĵn
), yn) (3)

where S∗
k(T

∗(C)) for k ∈ {1 . . .K} denotes the optimal
solution set for the K GSCM classifiers.

Stage III. Given T ∗(C) and S∗
k(T

∗(C)), we apply them
to make predictions on the validation examples and update
the ‘ground-truth’ matrix C. The validation loss is:

min
C

∑M
i=1 ℓ

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(T ∗(C))

)
, yi

)
(4)

where ĵi = argmaxe fe(xi;T
∗(C)) and M is the number

of validation examples. yi is the class label of xi. We update
C by minimizing this validation loss.

Putting these pieces together, we have the following opti-
mization problem:

min
C

∑M
i=1 ℓ

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(T ∗(C))

)
, yi

)

s.t.{S∗
k(T

∗(C))}Kk=1 = argmin
{Sk}K

k=1

∑N
n=1 En (xn;T

∗(C)) ℓ(f(xn;Sĵn
), yn) (5)

T ∗(C) = argmin
T

∑N
n=1−Gn(C) log fjn(xn;T )
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3.1.2. DOMAIN ADAPTIVE LBG

In our proposed Learing by Grouping (LBG) from Sec-
tion 3.1.1, the N training examples are divided into K
subgroups. As a result, each subgroup has approximately
N/K training examples. The reduced number of training
examples in small datasets can potentially lead to higher
risk of overfitting for each subgroup. To address this prob-
lem, we propose domain-adaptive LBG (DALBG) where we
treat each subgroup as a domain. During the second stage
of our framework, when we are training a group-specific
classifier for a subgroup k, we perform domain adaptation
to adapt examples from other subgroups into subgroup k
and use these adapted examples as additional training data
for subgroup k. For the sake of simplicity, our proposed
framework employs the MMD-based (Long et al., 2015)
domain adaptation approach. However, it should be noted
that other domain adaptation techniques can also be incorpo-
rated within our framework. For a specific subgroup, k, let
{xk

i }
Nk

i=k represent the examples assigned to this subgroup
and {x−k

j }
N−Nk
j=1 represent the examples not assigned to

this subgroup. In order to adapt {x−k
j }

N−Nk
j=1 into subgroup

k, we minimize the Maximum Mean Discrepancy (MMD)
loss as follows:

Mk =
∥∥∥ 1
Nk

∑Nk

i=1 ϕ
(
xk
i ;Sk

)
− 1

N−Nk

∑N−Nk

j=1 ϕ
(
x−k
j ;Sk

)∥∥∥2
2

(6)

where ϕ
(
xk
i ;Sk

)
denotes the embedding of xk

i extracted by
Sk. This loss can be relaxed to:

Mk =
∥∥∥ 1
N

∑N
n=1 fk (xn;T

∗(A))ϕ (xn;Sk)− 1
N

∑N
n=1 (1− fk (xn;T

∗(A)))ϕ (xn;Sk)
∥∥∥2
2

(7)

Thus, by adding Mk to our second stage Eq. (3) we define
the following domain adaptive LBG (DALBG) problem:

min
C

∑M
i=1 ℓ

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(T ∗(C))

)
, yi

)
s.t.{S∗

k(T
∗(C))}Kk=1 = argmin

{Sk}K
k=1

∑N
n=1 En (xn;T

∗(C)) ℓ(f(xn;Sĵn
), yn) + λMk (8)

T ∗(C) = argmin
T

∑N
n=1−Gn(C) log fjn(xn;T )

where λ is a tradeoff parameter. Note that our proposed
LBG in Eq. (5) method is a special case of DALBG in Eq.
(8) with λ = 0. For the sake of simplicity, we refer to both
Learning by Grouping with/without domain adaptation as
(DA)LBG.

3.1.3. NEURAL ARCHITECTURE SEARCH APPLICATION

In this section, we extend the formulation in Eq. (5) to be
applicable to neural architecture search. Similar to (Liu
et al., 2018b), the k-th GSCM has a differentiable archi-
tecture Ak. The search space of Ak is composed of large
number of building blocks, where the output of each block is
associated with a weight a indicating the importance of the
block. After learning, the block whose weight a is among

the largest are retained to form the final architecture. To this
end, architecture search amounts to optimizing the set of
architecture weights Ak = {a}.

Stage I and Stage II have the same procedure as Eq. (1) and
Eq. (7). In the second stage, the network weights Sk of the
expert model are a function of its architecture Ak. We keep
the architecture fixed at this stage, and learn the weights
Sk(Ak). However, Stage III does not precisely follow Eq.
(4). Given T ∗(C) and S∗

k(Ak, T
∗(C)), we apply them to

make predictions on the validation examples and update
the ‘ground-truth’ matrix C, as well as the architectures Ak

based on the validation loss, where k ∈ {1 . . .K} . Hence,
we update Eq. (4) as follows:

min
C,{Ak}K

k=1

∑M
i=1 ℓ

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
(9)

Thus, the overall optimization problem with learnable archi-
tecture is as follows:

min
C,{Ak}K

k=1

∑M
i=1 ℓ

(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)

s.t.{S∗
k(Ak, T

∗(C))}Kk=1 = argmin
{Sk}K

k=1

∑N
n=1 En (xn;T

∗(C)) ℓ(f(xn;Sĵn
(Aĵn

), yn) + λMk (10)

T ∗(C) = argmin
T

∑N
n=1−Gn(C) log fjn(xn;T )

Our framework is orthogonal to existing differentiable NAS
methods, and hence can be applied on top of any like
DARTS (Liu et al., 2018b), P-DARTS (Chen et al., 2019),
PC-DARTS (Xu et al., 2020), and DARTS− (Chu et al.,
2020) among the others.

3.2. Optimization Algorithm

We promote an efficient algorithm to solve the LBG,
DALBG, and LBG-NAS problems described in Eq. (5),
Eq. (8), and Eq. (10), respectively. We utilize a fairly simi-
lar procedure as (Liu et al., 2018b) to calculate the gradient
of Eq. (1) w.r.t T and approximately update T ∗(C) via one-
step gradient descent. Then since DALBG in Eq. (8) is the
generalized version of LBG in Eq. (5), we plug the approxi-
mation T

′
(C) into the Eq. (7) to get an OSk

, which denotes
the approximated objective of Sk. Similarly to the previous
step, we approximate S∗

k(T
′
(C)) using a one-step gradient

descent update of Sk based on the gradient of the approxi-
mated objective. Note that in LBG-NAS, we approximate
S∗
k(Ak, T

∗(C)), which is also a function of architecture Ak.
Finally, we plug the approximations T

′
(C) and S

′

k(T
′
(C))

into the third stage equations to get the third approximate
objective denoted by OC . C can be updated using gradient
descent on OC . In LBG-NAS, we update the architectures
{Ak}Kk=1, as well. Thus, use the same approach to find the
approximate objective of the architectures {Ak} : O{Ak}
for each k ∈ {1 . . .K}, and we update it using gradient
descent. We do these steps until convergence.
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4. Experiments
In this section, we investigate the effectiveness of our
proposed (DA)LBG framework with both fixed human-
designed GSCMs and searchable GSCMs. The differen-
tiable NAS approach consists of architecture search and
evaluation stages, where the optimal cell obtained from the
search stage is stacked several times into a larger composite
network. We then train the resultant composite network
from scratch in the evaluation stage. Please refer to the
appendix (supplements) for information on adapting our
method for language understanding tasks.

4.1. Datasets

Various experiments are conducted on four datasets: ISIC-
18, CelebA, CIFAR-10, CIFAR-100, and ImageNet (Deng
et al., 2009) for image classification. The CelebA dataset,
consisting of 200k images of human faces with 40 features
per image (Liu et al., 2015), is used in this study. From the
dataset, we select a sample of 10,000 images, with 70% al-
located for training, 15% for validation, and 15% for testing.
The Skin ISIC 2018 dataset (Codella et al., 2019; Tschandl
et al., 2018) consists of a total of 11,720 dermatological
images, specifically curated for the purpose of 7-class skin
cancer classification. In this research paper, we have identi-
fied gender (male and female) as the sensitive attribute that
may introduce bias. To mitigate this potential bias, we have
performed a partitioning of the dataset into training, vali-
dation, and testing sets. The training set comprises 10,015
images, the validation set contains 1,512 images, and the
testing set consists of 193 images, collectively representing
the entirety of the dataset. The CIFAR-10 dataset contains
of 10 distinct classes, while the CIFAR-100 dataset encom-
passes 100 classes. Each dataset holds 60K images. For
each of the datasets, during grouping and architecture search
processes, we use 25K images as the training set, 25K im-
ages as the validation set, and the rest of the 10K images as
the test set. During grouping and architecture evaluations,
the combination of the above training and validation set is
used as the training set of size 50k images. ImageNet carries
1.2M training images and 50K test images with 1000 classes.
Due to extensive amount of images in ImageNet, the archi-
tecture search can be pretty costly. Thus, following (Xu
et al., 2020), we randomly choose 10%, and 2.5% of the
1.2M images to create a new training set and validation set,
respectively, for the architecture search phase. Then, we
utilize all the 1.2M images through the evaluation.

4.2. Experimental Settings

We compare the (DA)LBG image classification tasks with
fixed architectures to the following MoE baselines: ResNet
(He et al., 2016), Swin-T (Liu et al., 2021), T2T-ViT (Yuan
et al., 2021), DeepMOE (Wang et al., 2020), and MGE-

Table 1. Results on CelebA with the target label of ”attrac-
tive” and sensitive attribute of ”gender”.

Methods Error (%) DP DEO Architecture
ResNet18 17.57 0.5023 0.5683 Manual
LBG-ResNet18 (ours) 17.02 0.2173 0.0596 Manual
DALBG-ResNet18 (ours) 16.84 0.2116 0.0835 Manual
DARTS 16.39 0.4571 0.3606 NAS
LBG-DARTS (ours) 15.91 0.2149 0.0535 NAS
DALBG-DARTS (ours) 15.22 0.2185 0.0891 NAS

CNN (Zhang et al., 2019). Next, we compare LBG-NAS on
image classification with DARTS-based methods including
DARTS (Liu et al., 2018b), P-DARTS (Chen et al., 2019),
and PC-DARTS (Xu et al., 2020). To ensure the training
costs of our methods with K GSCM models are similar to
those of baselines, we reduce the parameter number of each
expert to 1/K of the parameter number of the baseline mod-
els by reducing the number of layers in each GSCM model.
In this way, the total size of our methods are comparable
to the baselines. In addition, we train each group-specific
sub-model only using examples assigned to its correspond-
ing subgroup, rather than using all training examples. So
the computation cost is O(N) rather than O(NK), where
N is the number of training examples and K is the number
of latent subgroups. In each iteration of the algorithm, we
use minibatches of training examples to update sub-models,
which further reduces computation cost. We utilize the Betty
library (Choe et al., 2022) for the implementation of our
multilevel optimization tasks.

Table 2. Results of ISIC when the sensitive attribute is ”gen-
der”.

Methods Error(%) SPD EOD AOD
ResNet18 14.3 0.114 0.143 0.170
LBG-ResNet18 (ours) 12.8 0.051 0.088 0.074
DARTS 10.2 0.121 0.139 0.154
LBG-DARTS (ours) 8.4 0.048 0.065 0.069

Human-Designed GSCMs. For experiments on CIFAR-
10/100 and ImageNet datasets, we use ResNet (He et al.,
2016), Swin-T (Liu et al., 2021), and T2T-ViT (Yuan et al.,
2021) models as our base GSCM models in the conducted
experiments. For consistency and a fair comparison, we
apply K = 2 latent subgroups to our four image classi-
fication datasets. To train our models, first we apply our
proposed LBG training, where we use half of training im-
ages as the training set and the other half as the validation
set, for 100 epochs with early stopping technique to obtain
the optimal subgroups. Then, we use the obtained subgroups
to fine-tune our GSCM models using the standard training
settings with SGD optimizer for 200 epochs on the entire
training examples. The initial learning rate is set to 0.1 with
momentum 0.9 and will be reduced using a cosine decay
scheduler with the weight decay of 3e-4. The batch size for
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Table 3. Test errors comparison of vanilla (base) models,
baselines and LBG on CIFAR-10, CIFAR-100, and Ima-
geNet.

Dataset Model Error(%)
CIFAR-10 ResNet56 (vanilla) 6.55
CIFAR-10 DeepMOE-ResNet56 6.03
CIFAR-10 MGE-CNN-ResNet56 5.91
CIFAR-10 LBG-ResNet56 (ours) 5.53
CIFAR-10 DALBG-ResNet56 (ours) 5.47
CIFAR-100 ResNet56 (vanilla) 31.46
CIFAR-100 DeepMOE-ResNet56 29.77
CIFAR-100 MGE-CNN-ResNet56 29.82
CIFAR-100 LBG-ResNet56 (ours) 27.96
CIFAR-100 DALBG-ResNet56 (ours) 27.95
ImageNet ResNet18 (vanilla) 30.24
ImageNet DeepMOE-ResNet18 29.05
ImageNet MGE-CNN-ResNet18 29.30
ImageNet LBG-ResNet18 (ours) 28.21
ImageNet DALBG-ResNet18 (ours) 28.08
ImageNet T2T-ViT-14 (vanilla) 17.16
ImageNet LBG-T2T-ViT-14 (ours) 15.50
ImageNet DALBG-T2T-ViT-14 (ours) 15.47
ImageNet Swin-T (vanilla) 18.70
ImageNet LBG-Swin-T (ours) 16.81
ImageNet DALBG-Swin-T (ours) 16.64

CIFAR-10 and CIFAR-100 is set to 128, while for ImageNet
we use the batch size of 1024. The rest of hyperparameter
settings follows as (Gururangan et al., 2020). In all DALBG
experiments we use λ = 0.1. In this study, the Adam opti-
mizer has been employed to train all models on the CelebA
dataset, utilizing a learning rate of 5e-4, and implementing
a batch size of 64. On the other hand, for the ISIC-18 ex-
periments, we have set the learning rate to 1e-3, and the
batch size to 32. For the experiments involving CelebA and
ISIC-18, we leverage models that have been pretrained on
ImageNet. Our models are trained for a range of 30 to 50
epochs, incorporating early stopping techniques to enhance
efficiency.

GSCMs with Searchable Architectures. We apply LBG
to various DARTS-based approaches: DARTS (Liu et al.,
2018b), P-DARTS (Chen et al., 2019), and PC-DARTS (Xu
et al., 2020). The search spaces of these methods are the
combination of (dilated) separable convolutions with two
different sizes of 3× 3 and 5× 5, max pooling with the size
of 3 × 3, average pooling with the size of 3 × 3, identity,
and zero operations. Each LBG experiment was repeated
five times with different random seeds. The mean and stan-
dard deviation of classification errors obtained from the
experiments are reported.

In the architecture search stage, for CIFAR-10 and CIFAR-
100, the architecture of each group-specific classification
model contains 5 cells – reduced from 8 cells to 5 cells to
match the parameter numbers of our baseline models – and
each cell consists of 7 nodes. We use two group-specific sub-
models (i.e., two subgroups K = 2) in the search process
with the initial channels of 16. The search algorithm was
based on SGD with a batch size of 64, the initial learning
rate of 0.025 (reduced in later epochs using a cosine decay
scheduler), epoch number of 50, weight decay of 3e-4, and
momentum of 0.9. The rest of hyperparameters mostly
follow the original settings in DARTS, P-DARTS, and PC-
DARTS. For a fair comparison, in all the DALBG-NAS
experiments λ = 0.1. For ISIC-18 and CelebA experiments,
we utilize the same setting as described in the previous part.

During architecture evaluation, each GSCM sub-model is
formed by stacking 11 copies (reduced from 20 layers to
align with the baselines’ sizes) of the corresponding opti-
mally searched cell for CIFAR-10 and CIFAR-100 experi-
ments. The initial channel number is set to 36. We train the
networks with a batch size of 96 and 600 epochs on a single
Tesla V100 GPU. For evaluation of ImageNet, we use the
searched architectures on CIFAR-10 and we stack 8 copies
(similarly reduced from 14 layers to match the baselines’
sizes) of obtained cells are stacked into each GSCM larger
network, which was trained using four Tesla V100 GPUs
on the 1.2M training images, with the batch size of 1024
and initial channel number of 48 for 250 epochs. Finally,
for the evaluation of architecture in ISIC-18 and CelebA,
we follow the same settings as those described for fixed
human-designed GSCMs. However, as we don’t have mod-
els pretrained on ImageNet available, we supplement our
training with additional data for both CelebA and ISIC-18.

4.3. Results

First, we evaluate and compare the fairness of our proposed
methods with the our baselines on CelebA dataset. In line
with the methodology of (Wang et al., 2022), we use ”at-
tractive” as the binary class label for prediction, and as
bias-sensitive attribute, we consider ”gender” (male and fe-
male) in relation to the predicted labels. For evaluation we
use Demographic Parity (DP) and Difference in Equalized
Odds (DEO) metrices similar to (Wang et al., 2022). The
results of our experiments, as shown in Table 1, demonstrate
that our proposed methods can improve accuracy while si-
multaneously mitigating unfair decision-making on minority
groups. This is achieved through the use of group-specific
models, which are trained on individual groups. We can
also observe that DALBG improves accuracy more than
LBG, but LBG achieves better fairness results on the DEO
metric. This could be due to the fact that domain adaptation
incorporated in DALBG may perpetuate or even amplify
any existing biases present in the source domain, which may
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Table 4. Test errors, number of model parameters (in millions), and search costs (GPU days on a Tesla v100) on CIFAR-100
and CIFAR-10. (DA)LBG-DARTS represents (DA)LBG applied to DARTS. Similar meanings hold for other notations in
such a format.

CIFAR-100 CIFAR-10
Method Error(%) Param(M) Cost Error(%) Param(M) Cost
DARTS (Liu et al., 2018b) 20.58±0.44 3.4 1.5 2.76±0.09 3.3 1.5
LBG-DARTS (ours) 18.02±0.36 3.6 1.7 2.62±0.08 3.5 1.6
DALBG-DARTS (ours) 17.97±0.43 3.7 2.0 2.64±0.12 3.6 2.0
PC-DARTS (Xu et al., 2020) 17.96±0.15 3.9 0.1 2.57±0.07 3.6 0.1
LBG-PCDARTS (ours) 16.21±0.19 4.1 0.3 2.51±0.11 3.7 0.3
DALBG-PCDARTS (ours) 16.18±0.21 4.2 0.4 2.48±0.15 3.8 0.4
P-DARTS (Chen et al., 2019) 17.49 3.6 0.3 2.50 3.4 0.3
LBG-PDARTS (ours) 16.46±0.54 3.7 0.6 2.48±0.16 3.5 0.5
DALBG-PDARTS (ours) 16.39±0.48 3.9 0.6 2.47±0.19 3.7 0.6

not be fully removed if the target domain is significantly
different.

Table 2 demonstrates the results of fairness experiments on
the ISIC-18 dataset where gender is the sensitive attribute
and we use Statistical Parity Difference (SPD), Equal Op-
portunity Difference (EOD), and Average Odds Difference
(AOD) as metrics to evaluate a model’s fairness. This table
shows that our method not only boosts accuracy perfor-
mance, but also improves fairness by effectively mitigating
bias in both fixed human-designed neural networks and NAS.
This performance improvement is attributable to our group-
aware approach, which effectively groups similar samples
with respect to unprotected sensitive attributes. This proves
the advantage of our methods in addressing imbalanced
attributes in the data.

Furthermore, in Table 3, we compare our proposed method
with ResNet, Vision Transformers (Swin-T and T2T-ViT)
,and our MoE baselines (i.e., MGE-CNN and DeepMOE).
The results in this table verify that our proposed method
performs better than the baselines on all CIFAR-10, CIFAR-
100, and ImageNet datasets considerably. This empirically
verifies our claim that (DA)LBG reduces the overfitting risk
found in MoE methods since the group assignments are
learned by minimizing the validation loss during a multi-
stage optimization.

Table 4 shows the comparison of our proposed methods
and the existing works, which includes the classification
errors with error bars, the number of model parameters, and
search costs on CIFAR-10 and CIFAR-100 test sets. By
comparing different methods, we make the following ob-
servation. Applying (DA)LBG to different NAS methods,
including DARTS, P-DARTS, and PC-DARTS, the classi-
fication errors of these methods are greatly reduced. For
instance, the original error of DARTS on CIFAR-100 is
20.58%; when DALBG is applied, this error is significantly
reduced to 17.97%. As another example, after applying

LBG to PC-DARTS and P-DARTS, the errors of CIFAR-
100 experiments are decreased from 17.96% to 16.21% and
17.49% to 16.46%, respectively. Similarly for CIFAR-10,
utilizing (DA)LBG in DARTS-based methods manages to
reduce the errors and overfittings. These results strongly in-
dicate the broad effectiveness of our framework in searching
better neural architectures.

Table 5. Results of ImageNet with gradient-based NAS meth-
ods. Notations are the same as those in Table 4.

Top-1 Top-5 Param
Method Error (%) Error (%) (M)

DARTS-CIFAR10 (Liu et al., 2018b) 26.7 8.7 4.7
DALBG-DARTS-CIFAR10 (ours) 24.9 8.1 4.9
P-DARTS (CIFAR10) (Chen et al., 2019) 24.4 7.4 4.9
DALBG-PDARTS-CIFAR10 (ours) 23.9 6.9 5.0
PC-DARTS-CIFAR10 (Xu et al., 2020) 24.8 7.3 5.3
DALBG-PCDARTS-CIFAR10 (ours) 23.1 6.3 5.7

In Table 5, we compare different methods on ImageNet, in
terms of top-1 and top-5 errors on the test set and number
of model parameters, where the search costs are the same
as the ones reported in Table 4. In these experiments, the
architectures are searched on CIFAR-10 and evaluated on
ImageNet similar to original DARTS (Liu et al., 2018b).
DALBG-DARTS-CIFAR10 denotes that DALBG is applied
to DARTS and performs search on CIFAR-10. Similar mean-
ings hold for other notations in such a format. The observa-
tions made from these results are consistent with those made
from Table 4. The architectures searched using our methods
are consistently better than those searched by correspond-
ing baselines. For example, DALBG-DARTS-CIFAR10
achieves 1.8% lower top-1 error than DARTS-CIFAR10. To
the best of our knowledge, DALBG-PCDARTS-CIFAR10
is the new SOTA on mobile setting of Imagenet.

4.4. Ablation Studies

In this section, we conduct ablation studies to analyze the
impact of individual components in our proposed frame-
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works.

Ablation on tradeoff parameter λ: We study the effec-
tiveness of tradeoff parameter λ in Eq. (8) on accuracy and
fairness. We apply DALBG on CelebA dataset with two
searchable GSCMs (i.e., K = 2) with the same setting as
described in Section 4.2. In Table 6, we illustrate how the
accuracy and fairness of DALBG on the test sets of CelebA
are affected by increasing the tradeoff parameter λ. It can be
observed that increasing λ from 0 to 0.1 leads to a decrease
in fairness but an increase in accuracy, as a result of the
MMD loss feedback. However, continuing to increase λ
leads to a drop in accuracy as well. This is because placing
too much emphasis on domain shift can result in less focus
on in-domain performance ability.

Table 6. Ablation results on tradeoff parameter λ.

Methods Error (%) DEO
LBG-DARTS with λ = 0 15.91 0.0535
DALBG-DARTS with λ = 0.01 15.73 0.0754
DALBG-DARTS with λ = 0.1 15.22 0.0891
DALBG-DARTS with λ = 1 15.38 0.0917

Ablation on number of subgroups: Next, we examine
how different numbers of GSCM models with different num-
ber of subgroups K ∈ {1, 2, 3, 4} in Eq. (10) impact both
accuracy and fairness performances. We apply (DA)LBG
to DARTS. Table 7 indicates that for CelebA larger num-
ber of subgroups can decrease the classification error and
improve the fairness. However, in our experiments number
of subgroups K = 3 and K = 4 seem to achieve on par
results, while K = 3 is more computationally efficient. The
improved performance with a larger number of subgroups
can be due to the fact that, in real life, many unprotected
attributes may not be considered, but their combinations can
still be used as proxies and affect decision-making processes.
Thus, depending on the data and task, we can choose the
most suitable number of subgroups, which can be different
in various scenarios. Also, additional experiments and com-
parisons of (DA)LBG with bagging-based model ensemble
can be found in the Supplements.

Table 7. Ablation results on number of subgroups.

Methods Error (%) DEO
LBG-ResNet18 with K = 1 17.59 0.5427
LBG-ResNet18 with K = 2 17.02 0.0596
LBG-ResNet18 with K = 3 16.88 0.0541
LBG-ResNet18 with K = 4 16.85 0.0533

Ablation on different domain adaptation techniques:
In this study, we aim to investigate the efficacy of different
distance measuring approaches, namely Maximum Mean
Discrepancy (MMD), Correlation Alignment (CORAL),

Kullback-Leibler (KL) divergence, and Contrastive Domain
Discrepancy (CDD), by incorporating them into our frame-
work. We conduct our experiments on DARTS with a similar
experimental setup to Table 1. The results, presented in Ta-
ble 8, indicate that MMD loss is the most effective approach
in achieving both high accuracy and fairness compared to
the other three methods. The superior performance of MMD
in our framework can be attributed to its non-parametric na-
ture and ability to capture non-linear relationships due to
its kernel-based approach. In contrast, KL divergence relies
on the assumption that both distributions are well-defined
probability distributions and, along with CDD, may struggle
to capture non-linear relationships in the data. Furthermore,
while CORAL aligns the second-order statistics (i.e., covari-
ance matrices) of the feature distributions, MMD maps the
data into a Reproducing Kernel Hilbert Space (RKHS) using
kernel functions. This capability enables MMD to capture
more intricate relationships between data points, potentially
resulting in improved performance within our framework.
However, it is worth noting that the effectiveness of a do-
main adaptation technique may vary depending on the spe-
cific task and the degree of domain shift between the source
and target domains. Thus, the choice of an appropriate tech-
nique should be based on the unique characteristics of the
data and the task at hand.

Table 8. Ablation results on different domain adaptation tech-
niques.

Methods Error (%) DEO
DALBG-DARTS-MMD 15.22 0.0891
DALBG-DARTS-CORAL 15.71 0.1137
DALBG-DARTS-KL 15.36 0.0945
DALBG-DARTS-CDD 15.80 0.1142

5. Conclusions and Discussion
In this paper, we propose a novel MLO approach, called
Learning by Grouping (LBG), drawing from humans’
grouping-driven methodology of solving problems. Our
approach learns to group a diverse set of problems into dis-
tinct subgroups where problems in the same subgroups are
similar; a group-specific solution is developed to solve prob-
lems in the same subgroups. We formulate our LBG as a
multi-level optimization problem which is solved end-to-
end. An efficient gradient-based optimization algorithm is
developed to solve the LBG problem. We further incorpo-
rate domain adaptation in our framework to reduce the risk
of overfitting. In our experiments on various datasets, we
demonstrate that the proposed framework not only helps to
mitigate overfitting and improve fairness, but also consis-
tently outperforms baseline methods. The main limitation
of LBG is that it cannot be applied to non-differentiable
NAS approaches up to a point. In our future works, we will
extend learning by grouping to reinforcement learning and
evolutionary algorithms.
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A. Optimization Algorithm
We develop an efficient optimization algorithm to solve our proposed LBG problem. Notations are given in Table 9. We
define group jn such that jn = argmaxk Cnk, and let Gn = Cnjn be the ground truth assignments of the sample xn to
group jn. Let ĵn = argmaxk fk(xn;T ), and let En = fĵn(xn;T ) be the confidence of the GAM in assigning xn to the
group ĵn.

Table 9. Notations used in LBG
Notation Meaning
Ak Architecture of the Group-Specific Classification Model (GSCM) of group k (Only in NAS applications)
Sk Network weights of the Group-Specific Classification Models f(x;Sk) of group k
T Network weights of the Group Assignment Model (GAM) f(x;T )
C Learnable ‘ground-truth’ categorization matrix
Dn Training data
Di Validation data

We approximate T ∗(C) using one step gradient descent w.r.t
∑N

n=1−Gn(C) log fjn(xn;T ):

T ∗(C) ≈ T ′ = T − ηt∇T

N∑
n=1

−Gn(C) log fjn(xn;T ) (11)

Then we plug T ′ into
∑N

n=1 En (xn;T
∗(C)) ℓ(f(xn;Sĵn

(Aĵn
), yn) and get an approximated objective. And we approxi-

mate S∗
ĵn
(T ∗(C)) using one step gradient descent w.r.t the approximated objective:

S∗
ĵn
(T ∗(C)) ≈ S′

ĵn
= Sĵn

− ηs∇Sĵn

N∑
n=1

En (xn;T
′(C)) ℓ(f(xn;Sĵn

(Aĵn
)), yn) (12)

Finally, we plug T ′ and S′
ĵn

into
∑M

i=1 ℓ
(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
and get an approximated objective.

Then we update A by gradient descent:

C ← C − ηc∇C

M∑
i=1

ℓ
(
Eĵi

(xi;T
′(C)) f

(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)
, (13)

where by applying chain rule it yields:

∇C

M∑
i=1

ℓ
(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
=

∂T ′

∂C

M∑
i=1

∂S′
ĵi

∂T ′ ∇S′
ĵi

ℓ
(
Eĵi

(
xi;T

′(C)
)
f
(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)
+ (14)

∂T ′

∂C
∇T ′

M∑
i=1

ℓ
(
Eĵi

(
xi;T

′(C)
)
f
(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)

and ∂T ′

∂C and
∂S′

ĵi

∂T ′ are computed as follows:

∂T ′

∂C
= −ηt∇2

C,T

N∑
n=1

−Gn(C) log fjn(xn;T ) (15)

∂S′
ĵi

∂T ′ = −ηs∇2
T ′,Sĵi

N∑
n=1

En (xn;T
′(C)) ℓ(f(xn;Sĵn

(Aĵn
)), yn) (16)
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For the NAS applications we also update architectures Aĵi
, where ĵi ∈ K:

A← A− ηa∇A

M∑
i=1

ℓ
(
Eĵi

(xi;T
′(C)) f

(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)
, (17)

similar to group updating in Eq. 14, we apply chain rule as follows:

∇A

M∑
i=1

ℓ
(
Eĵi

(xi;T
∗(C)) f

(
xi;S

∗
ĵi
(Aĵi

, T ∗(C))
)
, yi

)
= (18)

M∑
i=1

∂S′
ĵi

∂Aĵi

∇S′
ĵi

ℓ
(
Eĵi

(
xi;T

′(C)
)
f
(
xi;S

′
ĵi
(Aĵi

, T ′(C))
)
, yi

)

and
∂S′

ĵi

∂Aĵi

can be computed using the following equation:

∂S′
ĵi

∂Aĵi

= −ηs∇2
A

ĵi
,S

ĵi

N∑
n=1

En

(
xn;T

′(C)
)
ℓ(f(xn;Sĵn

(Aĵn
)), yn) (19)

This algorithm is summarized in Algorithm 1.

Algorithm 1 Optimization algorithm for Learning by Grouping

0: while not converged do
0: 1. Update the group assignment model’s weights T
0: using Eq. 11.
0: 2. Update the group-specific classification models’
0: weights {Sk}Kk=1 using Eq. 12.
0: if NAS application then
0: 3. Update the group-assignment matrix C and
0: the group-specific classification models’
0: architectures {Ak}Kk=1 using Eq. 13 and Eq. 17.
0: else
0: 3. Only update the group-assignment matrix C
0: using Eq. 13.
0: end if
0: end while=0

B. Additional Experiments
B.1. Comparison with Bagging-based Model Ensemble

In this section we compare our proposed method (LBG) with bagging-based model ensemble, which uses three models (the
same as our method). Table 10 demonstrates the results. Our method works better than model ensemble because it uses
a divide-and-conquer strategy. It divides data examples into groups where examples in the same group are similar; then
for each group, an expert model is learned. Divide-and-conquer makes model training easier, because it is easier to train a
highly-performant model for a group of similar examples than for a mixture of dissimilar examples from different groups.
In ensemble learning, each model is trained on a mixture of dissimilar examples from different groups, which is a harder
problem to solve. Additionally, in our method, the expert for each group can capture the unique data patterns in that group.
Capturing group-specific data patterns can help to make more accurate predictions. In contrast, each model in ensemble
learning is trained on all examples from different groups, which does not take group-specific data patterns into account.

B.2. Language Tasks

In this section, we apply LBG with fixed human-designed architectures to language understanding tasks.
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Table 10. Comparison of our work with existing bagging-based model ensemble on CIFAR-100.

Methods Test error (%)
Ensemble+DARTS-2nd 19.66±0.34
LBG-DARTS-2nd (ours) 18.02±0.36

Ensemble+P-DARTS 17.32±0.27
LBG-PDARTS (ours) 16.46±0.54

B.2.1. DATASETS

We conducted experiments on the various tasks of the General Language Understanding Evaluation (GLUE) benchmark
(Wang et al., 2018). GLUE contains nine tasks, which are two single-sentence tasks (CoLA and SST-2), three similarity and
paraphrase tasks (MRPC, STS-B, and QQP), and four inference tasks (MNLI, QNLI, RTE, WNLI). We test the performance
of LBG in language understanding by submitting our inference results to the GLUE evaluation server. GLUE offers training
and development data splits, that are used as training and validation data. For the test dataset, and GLUE organisers provide
a submission server that reports the performance on the private held out test dataset.

Table 11. Comparison of BERT-based and RoBERTa-based experiments on GLUE sets. LBG-BERT and LBG-RoBERTa results on the
set are the medians of 5 runs.

Corpus BERT LBG-BERT RoBERTa LBG-RoBERTa
CoLA (Matthews Corr.) 60.5 62.8 68.0 69.5
SST-2 (Accuracy) 94.9 96.5 96.4 96.8
MRPC (Accuracy/F1) 85.4/89.3 86.2/89.5 90.9/92.3 90.2/92.4
STS-B (Pearson/Spearman Corr.) 87.6/86.5 88.4/87.9 92.4/92.0 92.5/92.3
QQP (Accuracy/F1) 89.3/72.1 89.6/72.3 92.2/- 92.6/77.0
MNLI (Matched/Mismatched Accuracy) 86.7/85.9 86.5/85.9 90.2/90.2 91.1/91.1
QNLI (Accuracy) 92.7 93.5 94.7 94.9
RTE (Accuracy) 70.1 72.4 86.6 86.7
WNLI (Accuracy) 65.1 66.3 91.3 86.3

B.2.2. EXPERIMENTAL SETTINGS

We examine our proposed method by conducting varied experiments on several different tasks and datasets. We compare
LBG on language understanding tasks with fixed architectures using BERT (Devlin et al., 2019) and RoBERTa (Liu et al.,
2019). BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) initialize the Transformer encoder with pre-trained BERT
and RoBERTa, respectively, with the intentions of masked language modeling and next sentence prediction. Then, they
utilize the pre-trained encoder and a classification head to build a text classification model. This text classification model
latter will be fine-tuned on a target classification task.

To examine our method in language understanding, we employ BERT and RoBERTa as the group-specific sub-models
with K = 4 latent subgroups on the GLUE tasks. LBG-BERT and LBG-RoBERTa are optimized using Adam optimizer
(Paszke et al., 2017). The maximum length of text was set to 512 tokens. Our hyperparameter settings for BERT and
RoBERTa experiments are the same as in (Gururangan et al., 2020). Each GLUE task has a different batch size, learning
rate, and number of epochs, where they are within the batch sizes ∈ {16, 32}, learning rates ∈ {1e−5, 2e−5, 3e−5, 4e−5},
and number of epochs ∈ {3, 4, 5, 6, 10}.

B.2.3. RESULTS

Table 11 demonstrates the comparison of our methods with BERT and RoBERTa methods on nine different GLUE tasks.
It is shown in this table that LBG can efficiently enhance the performance of existing base models in various language
understanding tasks. In most of the tasks, LBG-BERT and LBG-RoBERTa outperform BERT and RoBERTa, respectively.
In MNLI and MRPC, the results of our methods are on par with the baselines, while RoBERTa achieves a slightly better
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result than our methods on the WNLI task.
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