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Abstract

Diffusion models have shown strong performance in generating high-quality tabular data,
but they carry privacy risks by inadvertently reproducing exact training samples. While
prior work focuses on data augmentation for memorization mitigation, little is known about
which individual samples contribute the most to memorization. In this paper, we present
the first data-centric study of memorization dynamics in tabular diffusion models. We begin
by quantifying memorization for each real sample based on how many generated samples
are flagged as its memorized replicas, using a relative distance ratio metricE] Our empirical
analysis reveals a heavy-tailed distribution of memorization counts: a small subset of sam-
ples disproportionately contributes to leakage, a finding further validated through sample-
removal experiments. To better understand this effect, we divide real samples into the
top- and non-top-memorized groups (tags) and analyze their training-time behavior differ-
ences. We track when each sample is first memorized and monitor per-epoch memorization
intensity (AUC) across groups. We find that memorized samples tend to be memorized
slightly earlier and show significantly stronger memorization signals in early training stages.
Based on these insights, we propose DynamicCut, a two-stage, model-agnostic mitigation
method. DynamicCut (a) ranks real samples by their epoch-wise memorization intensity,
(b) prunes a tunable top fraction, and (c) retrains the model on the filtered dataset. Across
multiple benchmark tabular datasets and tabular diffusion models, DynamicCut reduces
memorization ratios with negligible impact on data diversity and downstream task per-
formance, and complements existing data augmentation methods for further memorization
mitigation. Furthermore, DynamicCut has transferability across different generative models
for memorization sample tagging, i.e., high-ranked samples identified from one model (e.g.,
a diffusion model) are also effective in reducing memorization when removed from other
generative models such as GANs and VAEs.

1 Introduction

Tabular data generation has gained increasing attention due to its broad applicability in healthcare, finance,
and digital platforms, supporting tasks such as data augmentation, privacy preservation, and counterfactual
analysis|Hernandez et al.| (2022);|Fonseca & Bacao| (2023)); |Assefa et al.| (2020)). Recent advances in generative
modeling—particularly diffusion models have significantly improved the fidelity and diversity of synthetic
tabular data Kotelnikov et al.[(2023)); [Zhang et al.| (2023);|Yang et al.| (2024); Shi et al.| (2025). These models
outperform traditional GAN- or VAE-based approaches Xu et al.| (2019) by offering better distributional
coverage and sample quality across mixed-type and high-dimensional tabular domains.

Despite the impressive performance of diffusion models in synthesizing high-quality tabular data, memoriza-
tion remains a critical concern. In particular, tabular generative models risk reproducing individual training
records that, while appearing structurally altered, still retain sensitive attributes of real individuals. This
subtle form of privacy leakage violates core principles of generative modeling and has severe implications

1We follow [Yoon et al.|(2023);|Gu et al|(2023); [Fang et al.| (2024) to define sample memorization using the relative distance
ratio.



Under review as submission to TMLR

CTGAN TVAE TabDDPM

Mem. Improve (%) Mem. Improve (%) Mem. Improve (%)

Precision

Recall Recall Recall

B svote [ tcm [l tcvp [l bcv

Figure 1: Overview of DynamicCutMix (DynamicCut 4+ CutMix) performance in CTGAN, TVAE and
TabDDPM on Adult dataset. “Mem. Improve” denotes the normalized reduction in memorization ratio.
Higher values, better mitigation effectiveness.

in sensitive domains such as healthcare and finance Karras et al| (2022); [Carlini et al.| (2021); |Song et al.|
(2021); Ho et al[(2020). To address this, prior work has primarily focused on memorization detection based
on nearest-neighbor distance ratios and dataset-level augmentation strategies such as feature mixing Tab-
CutMix [Fang et al. (2024). However, these methods fall short in two key ways. First, the memorization
detection tool does not explain when or which samples are memorized during training. Second, the memoriza-
tion mitigation method like TabCutMix operates uniformly across the dataset, ignoring the heterogeneous
nature of sample-level memorization risks. This gap in understanding motivates a central question:

Can we proactively identify and mitigate memorization in tabular diffusion models by
monitoring sample-level training dynamics in real time?

To answer this, we take a data-centric perspective and conduct the first fine-grained analysis of memorization
dynamics in tabular diffusion models. Specifically, we seek to characterize: (1) When memorization arises
during training; (2) Which samples are more likely to be memorized; (3) How memorization evolves and
varies across examples. We show that memorization is not evenly distributed across samples: a small subset
of training samples is disproportionately memorized. By tracking when each real sample is first memorized
and quantifying its memorization intensity over epochs, we reveal strong early-stage signals that can be
exploited to mitigate memorization.

Building on these insights, we propose a model-agnostic method for memorization mitigation, named Dy-
namicCut, to identify and remove the samples with high-contribution memorization based on their early
memorization intensity. DynamicCut can also be integrated into the existing data augmentation method
TabCutMix, named DynamicCutMix, to further reduce memorization for tabular generative models. Our
approach consistently reduces memorization across diverse datasets and generative models (e.g., TabDDPM,
CTGAN, TVAE) without compromising data quality. Notably, the memorization mitigation benefits from
samples with high-contribution memorization removal learned from one generative model can generalize to
other generative models, demonstrating strong transferability and practicality.

2 Related Work

Tabular Generative Models. The generation of synthetic tabular data has attracted increasing attention
with wide applications. Early methods such as TableGAN [Park et al.| (2018)), CTGAN, and TVAE
used GANs [Goodfellow et al.| (2020) and VAEs [Kingmal (2013)) to address feature imbalance.
Extensions like GANBLR [Zhang et al| (2021) and VAE-BGM |Apelldniz et al| (2024) incorporate Bayesian
structures to better model feature interactions and latent distributions.

To enhance dependency modeling, GOGGLE |[Liu et al.| (2023) uses graph neural networks, while
GReaT [Borisov et al| (2023) reformulates tabular rows as text for table-level modeling. Other alternatives
include TabPFGen Ma et al.| (2024)), which employs a label-weighted Energy-Based Model with in-context
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learning. Recently, diffusion models—originally used in image generation [Ho et al.| (2020)—have shown
strong performance on tabular data. Notable examples include STaSy |Kim et al| (2023), TabDDPM Kotel-
nikov et al.| (2023]), CoDi |Lee et al. (2023), TabSyn |Zhang et al.| (2023]), Balanced Tabular Diffusion |Yang
et al.| (2024)), and TabDiff |Shi et al.| (2025).

Memorization in Generative Models. Memorization has been widely studied in image and language
generation [van den Burg & Williams| (2021)); |Gu et al.| (2023)); |Somepalli et al.| (2023b); Wen et al.| (2024);
Hintersdorf et al.| (2024); [Huang et al. (2024)); Shah et al.| (2025), where models often replicate training
data. In vision, diffusion models like Stable Diffusion |Rombach et al.| (2022) and DDPM Ho et al.| (2020)
exhibit memorization [Somepalli et al.| (2023a); |Carlini et al.| (2021), mitigated by methods such as concept
ablation [Kumari et al.| (2023) and adaptive sample suppression Chen et al.| (2024). In language models, tech-
niques like Goldfish Loss|[Hans et al.|(2024) and early memorization prediction Biderman et al.|(2024)) aim to
reduce overfitting to specific sequences. However, memorization in tabular data generation remains under-
explored. Due to the structured and mixed-type nature of tabular data, understanding how memorization
arises—and how it can be mitigated—presents a distinct and open research challenge.

3 Preliminary

3.1 Long-Tailed Distribution of Memorization Count

To understand the memorization behavior of diffusion-based tabular models, we conducted an empirical
analysis using TabDDPM [Kotelnikov et al.| (2023)) as a representative example. For each real training
sample, we quantified sample-level memorization by counting the number of generated samples flagged as
its replicas, based on the relative distance ratio criterion.

Obs.1: Long-tailed Memorization Distribution. Figure [2|reveals that memorization frequency follows
a highly skewed, long-tail distribution. Most training samples are rarely recalled, whereas a small subset is
repeatedly memorized across generations. This uneven distribution highlights that diffusion models tend to
favor specific samples during generation, reflecting an inherent imbalance in how training data are retained.

Obs.2: Influence of High-frequency Samples. A small number of samples dominate the overall mem-
orization behavior, suggesting that certain instances exert disproportionate influence on model recall. Iden-
tifying and analyzing these high-frequency samples is key to understanding the origin of memorization bias
and evaluating its consequences for both generation quality and potential privacy leakage.
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Figure 2: Memorization frequency per training sample shows a long-tail distribution, where a small number
of samples are memorized much more frequently than others.

3.2 Tagging High-Memorization Samples

Building on the observed long-tailed distribution of sample-level memorization, we assign binary tags to
training samples based on how frequently they are memorized during generation. Specifically, we rank
all samples by their memorization count and define three threshold levels: the top 5%, top 10%, and top
20% most-memorized samples. Each sample is then tagged to indicate whether it falls within these high-
risk subsets. These tags serve as the basis for analyzing memorization dynamics and designing targeted
interventions.
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Table 1: Comparison of memorization ratio after removing different subsets of training samples on the Adult
dataset.

Dataset Method Mem. Ratio (%) | Improv.
TabDDPM 31.33 -
-Random 5% 31.82 —1.56% |
-Label 5% 26.12 16.63% |

Adult -Random 10% 26.35 15.90% |
-Label 10% 19.35 38.24% |
-Random 20% 27.63 11.81% |
-Label 20% 19.86 36.61% |

3.3 Effectiveness of Targeted Sample Removal

To assess the practical impact of these high-memorization samples, we compare two intervention strategies:
(1) randomly removing a specified portion of the training data, and (2) selectively removing the most-
memorized samples as determined by our tagging. Table [1| presents memorization ratios for both strategies
on the ADULT dataset.

Obs.1: Effect of Targeted Sample Removal. Removing high-memorization samples consistently reduces
overall memorization more effectively than random removal. For instance, eliminating 10% of samples
at random results in a 15.90% reduction, whereas excluding the top 10% most-memorized samples yields
a 38.24% reduction. This pattern persists across all removal levels (5%, 10%, 20%), demonstrating the
disproportionate impact of a small subset of memorized data.

Obs.2: Concentration and Mitigation of Memorization. Memorization is concentrated within a
limited subset of training data, implying that modest yet targeted interventions can substantially reduce
memorization without large-scale data pruning. This finding points to the feasibility of efficient, privacy-
aware training strategies. Supplementary analyses of tag-specific performance are provided in Appendix [B.6]

4 Closer Look at Memorization Dynamics During Training

Having identified high-memorization samples, we now investigate how memorization evolves throughout
training. Specifically, we aim to understand when samples are memorized, how memorization persists or
vanishes over time, and what dynamic patterns differentiate high-risk samples from others. This section
formalizes memorization-related events and defines metrics to quantify memorization intensity.

4.1 Memorization and Forgetting: Event Definitions

We adopt the widely used relative distance ratio criterion [Yoon et al.| (2023); \Gu et al.| (2023); [Fang et al.
(2024) to determine whether a generated sample & memorizes a real training sample. Formally, let D be
the training dataset and d(-,-) be a distance metric in the input space. Let NNj(x) and NNy(x) denote
the nearest and second-nearest training samples to @, respectively. We define the distance ratio r(x) as
d(x,NN, (2,D))
d(2.NN2 (2,D))

threshold (we follow prior work and use 7 = ).

r(x) = , A sample x is considered memorized if r(x) < 7, where 7 is a fixed memorization

Based on this definition, we track training-time dynamics at the level of individual real samples x, € D by
monitoring whether generated samples x, are repeatedly flagged as memorizing x,. We define the following
events: First Memorization: The earliest training epoch when any generated sample satisfies r(x,) < 7
for a given «,.. Forget Event: A transition where x, was previously memorized but no longer satisfies the
memorization criterion in subsequent epochs. Cumulative Memorization Count: The total number of
times a sample is memorized during training. Cumulative Forget Count: The total number of transitions
from memorization to non-memorization status.

To quantify the overall strength of memorization or forgetting, we adopt the Memorization Area Under Curve
(Mem-AUC) [Fang et al(2024). For each real sample x,, we track its minimum distance ratios r(x,) across
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generated samples over training epochs and define: Mem-AUC(z,) = fol Plr(zy) < 7 | NNy (zg) = x,] dT,
where Plr(x4) < 7] is the fraction of generated samples at each epoch that satisfy the memorization threshold
7 for @,. Intuitively, higher Mem-AUC values indicate stronger and more persistent memorization behavior
over time.

These event-based definitions and metrics form the basis of our dynamic analysis, where we compare high-
and low-memorization samples for memorization dynamic analysis during training.

4.2 Temporal Dynamics of Memorization

Building on our tagging of high-memorization samples, we now investigate the temporal behavior of memo-
rization throughout training. Figure [3| shows the cumulative proportion of samples memorized over training
epochs, comparing the Top 5% most-memorized samples to the remaining Non-Top samples across three
datasets.
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Figure 3: Cumulative proportion of samples memorized over epochs for Top 5% and Non-Top groups.

Obs.1: Early Memorization of High-Frequency Samples. Across all datasets—DEFAULT, SHOPPERS,
and ADULT—the Top 5% samples consistently reach the memorized state earlier than the remaining data,
though not excessively so. This stable temporal gap indicates that high-memorization samples are more
quickly absorbed during training.

Obs.2: Different Convergence Speeds Between Top and Non-Top Groups. Across all three
datasets, the cumulative memorization curves of the Top 5% group rise and saturate earlier than those
of the Non-Top group, indicating a faster convergence toward the memorized state. In contrast, the Non-
Top group exhibits a more gradual increase and reaches saturation later. This difference in convergence speed
is consistent across datasets, and similar trends are also observed for the Top 10% and Top 20% subsets

(Appendix [B.1.2).

4.3 Temporal Dynamics of Forgetting

Figure || (A) illustrates the distribution of forget events over time, comparing Top 5% and Non-Top samples.

Obs.1: Early Forgetting of High-Memorization Samples. Forget events for Top samples occur earlier
in training than for Non-Top samples. This pattern parallels the earlier memorization trend in Figure
indicating that samples memorized sooner also begin to be forgotten sooner. The alignment between early
memorization and early forgetting suggests that Top samples actively participate in the learning dynamics
from the very start of training. To quantify this difference, we apply the Kolmogorov—Smirnov (KS) test
to compare the temporal distributions of forget events between Top and Non-Top samples. The maximum
vertical separations are 8.36% (shoppers, p = 0), 4.66% (default, p = 6.4e—99), and 1.28% (adult, p =
2.5e—11), showing statistically significant differences in all three datasets. Moreover, when mapping the
maximum separation to the time axis, the maximum horizontal gap reaches about 650 epochs for shoppers,
140 epochs for default, and 40 epochs for adult. This shows that, although the curves in Figure A) appear
close in value, the separation in training time is on the order of tens to hundreds of epochs, which is not
small in practice.

Obs.2: Volatile Retention of Top Samples. As shown in Figure (B), the Top 5% samples experience
substantially more forget events throughout training. These samples frequently alternate between memorized
and non-memorized states, reflecting higher volatility and sensitivity to parameter updates. Despite their
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Figure 4: (A) Temporal dynamics of forget events for Top 5% and Non-Top samples. (B) Total number of
forget events observed during training for Top 5% and Non-Top.

early involvement in learning, they exhibit less stable retention. Consistent patterns are observed across all
three datasets, with similar trends for the Top 10% and Top 20% groups detailed in Appendix

4.4 Temporal Dynamics in Memorization Intensity

To quantify how memorization strength changes during training, we track the average Mem-AUC (memo-
rization area under curve) over epochs for Top and Non-Top groups. Mem-AUC provides a smooth measure
of memorization intensity over varying thresholds.

Obs.1: Early Spikes in Memorization Intensity for Top Samples. As shown in Figure [5| the Top
10% samples display a pronounced spike in Mem-AUC during the early training epochs, reflecting a brief
period of massive memorization intensity. In contrast, Non-Top samples exhibit a slower and more gradual
increase, with overall memorization levels remaining low.

Obs.2: Early Identification Enables Proactive Mitigation. This early-stage peak indicates that
memorization-prone samples can be detected early in training, without the need for full training-time mon-
itoring. Such early signals enable proactive interventions—such as pruning, targeted regularization, or
curriculum adjustments—to mitigate memorization risk and improve model generalization.

Algorithm 1 Pseudo-code of DynamicCut

Require: Training set D = {x,...,xN}, early epoch number T, pruning ratio p (default
0.1)
1: Set k + [0.1-TT7; > Set the number of top epochs used for scoring.
2: for each sample x; € D do
3:  Collect Mem-AUC values A; = {a1(x;),...,ar(x;)}; > Record early memorization dynamics.
4:  Sort A; in descending order; > Identify peak memorization signals.
5:  Compute memorization score s; < mean of top-k values in A;; > Aggregate peak memorization into

a single score.

6: end for

7: Set threshold 7 as the (1 — p) quantile of {s;}}¥,; > Determine the pruning cutoff.
8: Construct filtered set Dgigered  {Xi € D | 8; < T} > Remove the top-p high-risk samples.
9: return Dgiiered
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Figure 5: Mean Mem-AUC over training epochs for Top 10% and Non-Top samples. The sharp spike
(massive memorization intensity in a few epochs) is illustrated in the blue box.

Table 2: The overview performance comparison for DynamicCut methods on different datasets. “DC"
represents our proposed DynamicCut. “Mem. Ratio" represents memorization ratio. “Improv" represents
the improvement ratio on memorization.

Methods Mem. Ratio (%) | Improv. MLE (%)t a-Precision(%)t  S-Recall(%)?  Shape Score(%)t Trend Score(%)t C2ST(%)t DCR(%)
TabDDPM 19.33 £ 0.45 - 76.79 £ 0.69 98.15 & 1.45 44.41 £0.70  97.58+ 0.95 94.46 £ 0.68 91.85 4+ 6.04 49.12 + 0.94
TabDDPM+DC  18.69 + 1.04 3.31% | 76.42 £ 0.73  93.26 & 5.44 42.64 +1.16  93.40 £ 3.46 89.65 + 4.00 86.09 & 6.48 50.78 + 1.60
CTGAN 12.83 £ 0.63 - 68.68 + 0.21 68.95 £ 1.70 16.49 £ 0.55  85.04 £ 0.93 77.05 + 2.47 61.89 4+ 4.89 49.45 + 0.80
Default CTGAN+DC 12.60 £ 0.20 1.79% | 70.04 £ 0.66  69.06 & 3.69 16.46 £ 0.97  85.11 £ 0.20 77.03 £ 0.41 58.03 & 5.65 50.93 + 1.82
TVAE 17.22 £ 0.43 - 72.24 £ 0.36  82.97 + 0.37 20.57 + 0.42  89.37 £ 0.54 83.36 & 0.99 52.63 4+ 0.37 51.33 + 0.96
TVAE+DC 16.75 £ 0.60 2.73% | 76.87 £ 0.54 82.54 + 1.97 21.25 £ 0.60 89.98 £+ 0.74 80.36 £ 0.63 51.42 &+ 3.67 50.01 £ 2.21
TabDDPM 31.37 £ 0.31 - 92.17 £ 0.32  93.16 £ 1.58 52.57 £ 1.30  97.08 £ 0.46 92.92 & 3.27 86.74 4+ 0.63  51.36 = 0.63
TabDDPM+DC  29.41 + 2.38 6.66% )  91.08 + 1.18 91.88 + 2.74 52.74 + 2.67  93.56 £ 2.89 89.40 + 3.87 80.12 4 4.54 51.87 + 0.23
CTGAN 19.80 £+ 1.15 - 83.22 + 1.30 85.26 + 5.17 26.67 +1.66 77.73 £ 0.50 86.48 £ 0.69 67.18 4+ 5.84 48.54 + 0.74
Shoppers CTGAN+DC 19.64 £ 0.45 0.81% | 83.71 £ 0.44 89.13 £ 4.17 27.73 £ 0.66 77.78 + 0.87 86.93 £+ 0.34 69.31 4+ 6.11  48.55 + 1.50
TVAE 23.17 £ 0.77 - 86.65 + 0.48  50.32 £ 2.98 11.16 £ 1.33  74.75 £ 0.92 77.56 + 1.11 21.29 4 3.28 43.31 + 0.65
TVAE+DC 22.65 + 0.83 2.24% |  86.93 + 0.38 50.61 + 1.39 12.49 £ 0.85 74.66 + 0.73 79.14 £ 0.30 21.38 +2.28 47.61 + 5.38
TabDDPM 31.01 £ 0.18 - 91.09 + 0.07 93.58 + 1.99 51.52 +2.29  98.84 £ 0.03 97.78 £+ 0.07 94.63 + 1.19  51.56 + 0.34
TabDDPM+DC  26.80 + 1.03 13.58% J 90.81 +0.29 97.45 + 1.20 45.54 £ 1.32  95.68 £ 2.55 93.62 & 2.82 86.84 4+ 3.48 50.42 + 1.24
Adult CTGAN 21.68 + 0.62 - 88.64 + 0.32 78.15 + 3.66 26.27 + 0.67  82.43 £ 0.90 82.83 4 0.93 63.64 4+ 2.74 49.14 + 0.27
CTGAN+DC 16.64 £+ 0.27 23.25% | 88.23 +£0.67 74.41 + 1.07 23.52 +0.92 81.08 £ 1.56 83.26 £ 1.00 61.72 + 4.20 48.14 + 0.51
TVAE 30.78 + 0.41 - 88.61 £ 0.49 92.34 £2.19 29.90 + 1.00  82.71 £+ 0.45 79.06 £+ 0.90 48.67 £2.70 48.76 £ 0.25
TVAE+DC 25.93 + 1.10 15.76% | 88.25 &+ 0.33  87.80 &+ 0.74 30.57 & 2.82  83.54 £ 0.56 78.71 £ 0.86 55.64 4+ 2.59  45.96 + 0.54

5 Methodology

5.1 Motivation

Our approach is driven by a series of consistent empirical findings observed in tabular diffusion models.
First, memorization follows a pronounced long-tail distribution (Figure , with a small subset of training
samples being memorized disproportionately often. These high-risk samples tend to be memorized early in
training (Figure [3), exhibit volatile learning behavior with frequent forget-and-relearn cycles (Figure [4A),
and contribute significantly to overall memorization. Selective removal of these samples reduces memo-
rization much more effectively than random removal at the same rate (Table [1)). Moreover, memorization
intensity—measured via Mem-AUC—peaks in the early training stages (Figure [5)), indicating that high-risk
samples can be identified from only partial training trajectories. Together, these observations suggest that
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Table 3: The overview performance comparison for tabular models on different datasets. “DCM" represents
our proposed DynamicCutMix.

Methods Mem. Ratio (%) | Improv. MLE (%)t a-Precision(%)1  f-Recall(%)1  Shape Score(%)t  Trend Score(%)t C2ST(%)1 DCR(%)
TabDDPM 19.33 £ 0.45 - 76.79 £ 0.69 98.15 £+ 1.45 44.41 £ 0.70  97.58+ 0.95 94.46 + 0.68 91.85 + 6.04 49.12 + 0.94
TabDDPM+SMOTE  17.46 + 0.51 9.66% | 76.92 + 0.35 91.19 + 0.68 40.52 + 0.65  94.89 + 1.46 28.63 + 2.28 72.73 £ 0.69  50.95 + 0.38
TabDDPM+TCM 16.76 + 0.47 13.26% |  76.47 + 0.60 97.30 + 0.46 38.72 +£2.78  97.27 + 1.74 93.27 &+ 2.52 94.72 + 3.87  50.23 £ 0.53
TabDDPM+TCMP 18.00 £ 0.24 6.88% | 76.92 £ 0.17  98.26 £ 0.25 41.92 £ 0.52  97.37 £+ 0.09 91.42 + 1.15 95.64 + 0.49 49.75 + 0.32
TabDDPM+DCM 15.79 £ 2.06 18.31% | 76.68 = 0.76 91.97 + 1.78 37.89 £ 0.84 93.62 £ 2.78 89.30 &+ 3.02 87.63 & 2.15  48.17 £ 2.59
CTGAN 12.83 £ 0.63 - 68.68 = 0.21  68.95 &+ 1.70 16.49 £ 0.55  85.04 £ 0.93 77.05 £ 2.47 61.89 + 4.89 49.45 + 0.80
CTGAN+SMOTE 13.56 + 0.41 —5.69% ] 7123 + 1.54 65.18 + 2.81 17.13 £ 0.20  84.31 £ 0.20 31.76 + 0.11 56.35 + 0.60  49.05 + 2.85
Default CTGAN+TCM 12.87 £ 0.28 —0.03% | 7321 4+ 045 75.30 + 2.12 16.63 £ 0.27  85.77 £ 0.13 76.69 £+ 1.20 58.62 + 5.34  49.90 + 3.12
CTGAN+TCMP 11.80 + 0.25 8.03% | 70.05 + 0.81 71.33 £+ 0.82 17.02 £ 0.60  85.28 £ 0.97 78.09 £+ 0.32 63.67 + 3.07  50.14 £ 0.60
CTGAN+DCM 12.47 £ 0.07 2.81% | 7237 £0.39 71.72 £0.74 16.64 £0.20  85.78 £ 0.70 76.85 + 1.62 57.98 +£3.09  48.48 £0.24
TVAE 17.22 £0.43 - 72.24 £ 0.36  82.97 = 0.37 20.57 = 042 89.37% 0.54 83.36 = 0.99 52.63 + 0.37 51.33 + 0.96
TVAE+SMOTE 15.64 £+ 0.41 9.18% | 75.41 £ 0.42  82.47 £+ 0.42 20.77 £ 0.73  88.79 £+ 0.08 79.34 £+ 2.40 53.28 + 3.26 49.20 + 1.54
TVAE+TCM 16.42 + 0.37 4.65% | 75.05 + 0.66  80.23 + 2.07 21.90 + 2.36  89.65 &+ 0.15 80.15 4+ 0.75 52.10 +4.29  49.99 + 1.78
TVAE+TCMP 15.59 £+ 0.28 9.47% | 72.75 £ 0.52  81.57 £ 0.32 19.52 £ 0.39  89.33 £ 0.48 78.04 £ 6.05 45.60 + 0.90  50.07 £ 0.52
TVAE+DCM 16.32 £ 0.21 5.23% | 76.27 £ 0.25 85.49 £+ 0.41 21.66 = 0.19  90.36 &+ 0.25 86.76 + 5.13 54.81 £0.79  51.07 £ 1.35
TabDDPM 31.37 £ 0.31 - 92.17 £ 0.32  93.16 = 1.58 52.57 £ 1.30  97.08 £+ 0.46 92.92 + 3.27 86.74 + 0.63 51.36 = 0.63
TabDDPM+SMOTE  26.64 + 1.46 15.07% 1  89.96 £ 0.95 94.41 + 4.67 45.22 +£ 3.26  90.78 £+ 0.49 83.09+ 2.47 64.05 + 1.44 51.94 + 1.52
TabDDPM+TCM 25.56 + 1.17 18.51% | 9217 4+ 0.26  94.41 + 1.49 50.05 + 1.59  97.18 + 0.34 93.95+ 0.51 86.96 + 0.50  47.52+ 1.81
TabDDPM+TCMP 28.51 + 0.35 9.12% | 92.09 + 0.99 93.43 £+ 1.65 52.30 +£ 0.73  97.31 + 0.22 94.79+ 0.30 87.02 + 2.04  50.83 £ 0.59
TabDDPM+DCM 24.24 + 2.83 22.73% | 91.46 +0.74 93.25 + 3.87 46.15 +4.42  92.32 + 5.00 89.11+ 4.95 80.56 + 4.81 49.74 + 3.34
CTGAN 19.80 £ 1.15 - 83.22 £ 1.30 85.26 £ 5.17 26.67 £ 1.66  77.73 + 0.50 86.48 + 0.69 67.18+ 5.84 48.54 = 0.74
CTGAN+SMOTE 20.53 = 1.86 —3.69% | 87.09 £1.22 76.13 + 13.12 26.19 + 3.66  75.57 + 2.48 83.94 + 1.13 59.83 + 6.67 50.74 £ 1.75
Shoppers  CTGAN+TCM 19.06 + 0.42 3.74% | 84.21 +£1.21 80.82 £ 7.68 26.50 = 1.50  77.51 + 2.15 85.75 + 1.31 62.04 + 6.75 49.90 + 2.33
CTGAN+TCMP 19.69 + 0.35 0.52% | 83.94 + 0.80 82.07 + 9.62 23.47 +£ 043 76.15 + 0.22 84.56 + 0.40 64.60 + 0.82  52.02 + 0.13
CTGAN+DCM 18.71 + 0.56 5.51% | 85.51 &+ 0.46  83.51 £ 1.60 26.19 + 0.82  78.23 £ 0.30 86.36 4 0.47 68.85 + 2.45  50.64 £ 1.11
TVAE 23.17 £ 0.77 - 86.65 + 0.48 50.32 £ 2.98 11.16 £ 1.33  74.75 £ 0.92 77.56 + 1.11 21.29 + 3.28 43.31 + 0.65
TVAE+SMOTE 19.77 £ 0.39 14.67% | 89.71 £ 0.69 52.39 + 3.94 13.74 £ 0.54  71.80 £ 0.63 76.20 &+ 0.68 20.67 + 2.34 47.42 + 3.40
TVAE+TCM 20.81 &+ 2.38 10.19% | 87.33 £0.90 49.75 + 5.04 12.66 £ 3.18  75.47 £ 1.30 78.91 £+ 1.30 21.87 + 3.87 50.06 = 1.78
TVAE+TCMP 20.16 + 0.80 12.98% |  87.07 +0.74 50.69 + 0.44 10.54 £ 1.68  74.86 + 0.26 78.55+ 0.48 21.78 + 4.28  43.21 + 0.69
TVAE+DCM 20.30 &+ 1.33 12.39% | 88.32 4+ 0.29 51.12 + 2.46 11.98 £ 0.58  75.02 £+ 0.97 79.02 £ 0.12 22.99 + 2,12 49.98 £ 2.55
TabDDPM 31.01 £ 0.18 - 91.09 £ 0.07 93.58 £ 1.99 51.52 +2.29  98.84 &+ 0.03 97.78 + 0.07 94.63 £ 1.19  51.56 £+ 0.34
TabDDPM+SMOTE  28.98 £ 0.78 6.56% | 90.41 £ 0.36  94.93 £ 1.72 46.10 £ 0.65  93.40 = 1.12 90.76 + 1.76 80.75 + 0.84  51.82 £ 0.56
TabDDPM+TCM 27.55 = 0.19 11.16% |  91.15 £ 0.06 94.97 + 0.06 47.43 £ 1.46  98.65 + 0.03 97.75 + 0.07 85.61 + 16.03  50.99 % 0.65
TabDDPM+TCMP 26.10 + 2.11 15.83% 1  90.54 + 0.17  92.26 + 6.97 43.49 + 3.74  95.10 + 4.27 91.50 + 6.53 84.76 + 10.12  50.68 + 0.89
TabDDPM+DCM 26.27 + 0.57 15.29% | 90.81 &+ 0.16 95.23 + 1.14 45.76 + 1.02  98.27 £ 0.32 96.71 + 0.86 92.64 + 1.65  50.79 £ 0.46
CTGAN 21.68 + 0.62 - 88.64 + 0.32 78.15 £ 3.66 26.27 + 0.67  82.43 + 0.90 82.83 + 0.93 63.64 + 2.74  49.14 £ 0.27
CTGAN+SMOTE 21.54 + 0.69 0.65% | 88.59 + 0.41 74.96 £+ 5.01 24.65 = 1.44 82,16 + 1.14 80.23 + 0.38 60.01 + 2.10 51.71 + 2.15
Adult CTGAN+TCM 19.80 £ 0.48 8.67% | 88.94 £ 0.64 76.10 £ 4.79 26.29 = 1.53  83.26 = 1.30 80.09 + 1.89 61.16 + 3.59 49.87 + 0.64
CTGAN+TCMP 21.20 = 0.31 2.23% | 88.63 + 0.66 76.27 £ 0.60 25.56 + 0.33  81.42 + 0.32 82.11 + 1.01 60.98 + 1.67 50.96+ 0.17
CTGAN+DCM 16.53 + 0.88 23.75% |  88.45+0.29 79.31 + 1.04 23.31 + 142 82.23 +0.23 82.80 + 2.27 63.46 + 3.43  48.13 £ 0.33
TVAE 30.78 + 0.41 - 88.61 + 0.49 92.34 + 2.19 29.90 + 1.00  82.71 &+ 0.45 79.06 £ 0.90 48.67 +2.70  48.76 £+ 0.25
TVAE+SMOTE 28.61 + 0.16 7.05% | 87.89 + 0.32  89.00 + 3.48 31.01 +£2.50 80.65 + 1.28 81.83 + 1.64 52.98 + 6.01 50.37 + 0.76
TVAE+TCM 29.39 + 0.58 4.52% | 87.33 £ 0.90 89.01 £ 5.77 30.87 +£2.48  87.00 + 2.13 82.57 + 1.56 54.98 &£ 7.02  49.43 £ 0.04
TVAE+TCMP 29.88 + 0.34 2.93% | 88.42 +£ 0.26  88.02 = 0.72 29.78 = 1.42  82.76 £ 0.92 77.92 + 0.66 52.52+ 7.24 51.35 = 0.29
TVAE+DCM 26.11 + 0.45 15.17% | 88.12+0.32 87.54 +1.24 31.54 +£ 0.38  83.45 + 0.84 78.57 £ 0.68 54.85 + 5.05 48.81 + 2.10

memorization is both predictable and concentrated, enabling targeted early-stage interventions to mitigate
privacy risk while preserving data utility.

5.2 Algorithms

To operationalize these insights, we propose DynamicCut, a lightweight, model-agnostic filtering method
that proactively identifies and removes memorization-prone samples based on early training dynamics. The
procedure is summarized in Algorithm

Based on the observation that memorization-prone samples show strong signals early in training, we propose
a lightweight filtering strategy that uses early Mem-AUC dynamics. For each training sample x; € D =
{z1,...,xzn}, we collect Mem-AUC values A; = {ai(x;),...,ar(x;)} during the first T epochs. We then
compute a memorization score s; as the mean of the top-k highest values in A;, where k = [0.1-T']. After
ranking all samples by s;, we remove the top p ratio with the highest scores, resulting in the filtered set
Dsitered = {®; € D | 8; < 7}, where 7 is the (1 — p) quantile. We use p = 0.1 by default.
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6 Experiments

In this section, we extensively evaluate the effectiveness of DynamicCut and DynamicCutMix across
several SOTA tabular diffusion models in various datasets and compare other augmentation methods
SMOTE |Chawla et al.| (2002]), TabCutMix [Fang et al.| (2024) and TabCutMixPlus [Fang et al.| (2024]).

6.1 Experimental Setup

Datasets.We utilize three real-world tabular datasets—Adult, Default, and Shoppers—each comprising both
numerical and categorical features. Detailed descriptions and summary statistics for these datasets can be
found in the Appendix [D.4]

Models.We integrate DynamicCut into three generative models for tabular data: TabDDPM [Kotelnikov
et al.[(2023), CTGAN Xu et al.| (2019)), and TVAE Xu et al.[(2019)). This integration enables a comprehensive
evaluation of each model’s generation quality and memorization behavior when enhanced with DynamicCut.
More detailed information about these diffusion models can be found in the Appendix [D.2]

Evaluation Metrics.We evaluate the performance of synthetic data generation from two perspectives:
memorization and synthetic data quality. For memorization evaluation, we generate the same number of
synthetic samples as the training dataset and follow [D-3]to calculate the distance between the generated and
real samples. For synthetic data quality evaluation, we consider 1) low-order statistics (i.e., column-wise
density and pair-wise column correlation) measured by shape score and trend score; 2) high-order metrics
a-precision and f-recall scores measuring the overall fidelity and diversity of synthetic data; 3) downstream
tasks performance machine learning efficiency (MLE); 4) C2ST (Classifier Two-Sample Test) evaluates data
quality by measuring how well a classifier can distinguish real from synthetic data—lower accuracy suggests
better distributional alignment; 5) DCR, (Distance to Closest Record) measures privacy risk by quantifying
how closely a synthetic sample resembles training vs. holdout samples—Ilower differences indicate better
privacy preservation. The reported results are averaged over 5 independent experimental runs. More details
on evaluation metrics can be found in |Zhang et al.| (2023)); |[Fang et al.| (2024).

Table 4: Comparison of memorization mitigation Transferability performance for tabular models under
different tagging sources. “DCM?” represents our proposed DynamicCutMix. The “Tagging” column
indicates the source of memorization labels: “—” means no filtering was applied.

Tagging Methods Mem. Ratio (%) | Improv. MLE (%)t a-Precision(%)t  B-Recall(%)t  Shape Score(%)t  Trend Score(%)t  C2ST(%)t DCR(%)
- CTGAN 12.83 4+ 0.63 - 68.68 + 0.21  68.95 & 1.70 16.49 + 0.55  85.04 + 0.93 T7.05 £ 2.47 61.89 + 4.89  49.45 4 0.80
CTGAN CTGAN+DCM 1247 + 0.07 2.81% | 7237 £0.39 71.72 £ 0.74 16.64 £ 0.20  85.78 &+ 0.70 76.85 & 1.62 57.98 £ 3.09 48.48 + 0.24
Default TabDDPM CTGAN+DCM  12.69 + 0.32 1.09% | 71.41+£ 0.89  68.93 £ 0.94 16.09 £0.59 84.42 + 1.03 75.38 & 1.54 56.85 + 4.31  50.49 + 1.12
- TVAE 17.22 £ 0.43 - 7224 £0.36  82.97 £ 0.37 20.57 4+ 0.42  89.37+ 0.54 83.36 + 0.99 52.63 + 0.37  51.33 & 0.96
TVAE TVAE+DCM 16.32 £ 0.21 5.23% | 76.27 £ 0.25 85.49 £ 0.41 21.66 = 0.19  90.36 = 0.25 86.76 + 5.13 54.81 £ 0.79 51.07 + 1.35
TabDDPM TVAE+DCM 16.54 £ 0.27 3.95% | 73.82 £ 0.40 80.89 £ 1.12 21.47 +£1.28  89.58 £ 0.19 78.24 £+ 1.28 53.27 £ 4.92  50.92 & 2.49
- CTGAN 19.80 £ 1.15 - 83.22 £ 1.30 85.26 &+ 5.17 26.67 £ 1.66  77.73 £ 0.50 86.48 + 0.69 67.184 5.84  48.54 4+ 0.74
CTGAN CTGAN+DCM  18.71 £ 0.56 5.51% | 85.51 + 0.46 83.51 &+ 1.60 26.19 + 0.82  78.23 £ 0.30 86.36 + 0.47 68.85 + 2.45 50.64 + 1.11
Shoppers TabDDPM CTGAN+DCM  18.58 4 0.43 6.16% | 83.52 £ 0.53 80.21 & 2.75 25.70 + 1.22 7749 £1.24 86.40 + 0.62 66.03 + 7.67 50.47 + 2.27
TVAE 23.17 £ 0.77 - 86.65 + 0.48  50.32 & 2.98 11.16 £ 1.33  74.75 = 0.92 77.56 £ 1.11 21.29 +3.28 43.31 + 0.65
TVAE TVAE+DCM 20.30 & 1.33 12.39% | 88.32 £0.29 51.12 & 2.46 11.98 £ 0.58  75.02 & 0.97 79.02 £ 0.12 22.99 + 2,12 49.98 &+ 2.55
TabDDPM TVAE+DCM 19.54 £ 0.95 14.76% | 88.43 4+ 0.17 50.43 + 3.45 12.08 + 2.01 74.82 £ 0.25 78.37 + 1.18 22.57 + 3.68 47.26 +1.81
- CTGAN 21.68 & 0.62 - 88.64 = 0.32 78.15 & 3.66 26.27 £ 0.67  82.43 £ 0.90 82.83 £ 0.93 63.64 £2.74 49.14 £ 0.27
CTGAN CTGAN+DCM  16.53 + 0.88 23.75% | 88.45 +0.29 79.31 + 1.04 23.31 4+ 1.42 8223 £0.23 82.80 + 2.27 63.46 + 3.43  48.13 4+ 0.33
Adult TabDDPM CTGAN+DCM  19.71 £ 0.32 9.09% | 87.87 + 0.37 7240 + 4.17 25.56 + 1.45  81.42 + 1.91 81.15 + 1.23 58.84 +2.46  50.00 £0.19
- TVAE 30.78 £ 0.41 - 88.61 = 0.49 92.34 &+ 2.19 29.90 &£ 1.00  82.71 £ 0.45 79.06 & 0.90 48.67 £2.70 48.76 £ 0.25
TVAE TVAE+DCM 26.11 4 0.45 15.17% | 88.12 £ 0.32 87.54 + 1.24 31.54 £0.38 83.45 £ 0.84 78.57 £ 0.68 54.85 £ 5.05 48.81 & 2.10
TabDDPM TVAE+DCM 28.68 4+ 0.21 6.82% |  89.23 £ 0.38 85.50 £ 4.09 30.23 £+ 3.81  82.36 + 1.96 78.80 £ 2.50 54.48 £ 8.01  49.57 & 0.35

6.2 Unified Evaluation of Memorization under Data Quality and Training Dynamics

Table [2] presents a comprehensive comparison of generative models with and without our proposed Dynam-
icCut strategy across three datasets: DEFAULT, SHOPPERS, and ADULT.

Obs.1: Consistent Memorization Reduction with DynamicCut. Across all model-dataset com-
binations, applying DynamicCut consistently lowers the memorization ratio. For example, TabDDPM’s
memorization ratio on the ADULT dataset decreases from 31.01% to 26.80%, corresponding to a 13.58%
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relative reduction. Similar decreases are observed on DEFAULT and SHOPPERS (3.31% and 6.66%, respec-
tively). Furthermore, other model families such as CTGAN and TVAE also benefit from DynamicCut,
achieving reductions of up to 23.25% and 15.76% on ADULT. These consistent improvements demonstrate
that DynamicCut effectively mitigates memorization across diverse architectures and data regimes.

Obs.2: Preservation of Downstream Utility. The decrease in memorization does not entail a major
loss of downstream performance. Although a-Precision and p-Recall occasionally show minor declines,
other metrics such as Shape Score, Trend Score, and MLE remain stable or even improve. For instance,
on DEFAULT, TabDDPM+DynamicCut maintains high fidelity in both shape (93.40%) and trend (89.65%)
scores, closely matching the baseline while achieving better memorization control.

These results highlight that DynamicCut offers a principled and effective solution to control memorization
risk without significantly sacrificing generation quality, making it a practical add-on for improving both
the fidelity and safety of tabular generative models. Additional tag ratio and hyperparameter studies are

provided in Appendix and [B4

6.3 DynamicCut with TabCutMix (DynamicCutMix): Combined Effect and Evaluation

Table [3] summarizes the performance of our proposed DCM method, which combines memorization-aware
filtering (DC) with data augmentation (TCM). We evaluate DCM on three generative models (TabDDPM,
CTGAN, TVAE) and three datasets (DEFAULT, SHOPPERS, ADULT), comparing it to strong baselines in-
cluding TCM, TCMP, and SMOTE.

Obs.1: Superior Memorization Reduction by DCM. Across all model-dataset combinations, DCM
consistently achieves the lowest memorization ratios. For instance, on DEFAULT with TabDDPM, DCM
reduces memorization to 15.79%, outperforming both TCM (16.76%) and TCMP (18.00%). Similar trends
are observed for other models and datasets, confirming DCM’s effectiveness in suppressing memorization.

Obs.2: Strong Utility Preservation of DCM. In addition to reducing memorization, DCM maintains
high downstream utility. On ADULT, TabDDPM+DCM attains a Shape Score of 98.27% and a Trend Score
of 96.71%, surpassing SMOTE and matching or exceeding TCM and TCMP. These results highlight DCM’s
ability to achieve a favorable balance between memorization mitigation and sample fidelity.

Table 5: The real and generative samples by TadDDPM and TadDDPM with DCM in Adult dataset. DCM
represents DynamicCutMix.

Samples Age  Workclass fnlwgt Education  Education.num  Marital Status  Occupation  Relationship Race Sex Capital Gain _ Capital Loss  Hours per Week  Native Country  Income

Real 42.0 Private 108502.0 HS-grad 9.0 Divorced Sales Not-in-family ~ White ~ Female 0.0 0.0 420 United-States <=50K
TadDDPM 55.0 Private 107841.53 HS-grad 9.0 Divorced Sales Not-in-family ~ White  Female 0.0 0.0 68.07 United-States <=50K
TadDDPM+DCM 380 Private HS-grad 9.0 Divorced Sales Not-in-family  Black  Female 0.0 0.0 40.0 United-States <=50K
Real 21.0 Private HS-grad 9.0 Never-married Sales Own-child White Male 0.0 0.0 40.0 United-States <=50K
TadDDPM 24.54 Private HS-grad 9.0 Never-married Sales Own-child White Male 0.0 0.0 24.78 United-States <=50K
TadDDPM+DCM  18.0 Private 187309.42 HS-grad 9.0 Never-married Sales Own-child White Male 0.0 0.0 25.0 United-States <=50K

6.4 Cross-Model Transferability of Memorization Signals

Table [f] evaluates whether memorization-prone samples identified by TabDDPM generalize to other models.
We compare standard DCM, which uses model-specific memorization signals (e.g., CTGAN+DCM), against
DCM-TabDDPM, which uses labels derived from TabDDPM’s training and applies them to CTGAN and
TVAE.

Obs.1: Cross-model Transferability of DCM Labels. TabDDPM-derived labels exhibit strong trans-
ferability across model families. For example, on ADULT, CTGAN+DCM reduces memorization by 23.75%,
while CTGAN+DCM-TabDDPM still achieves a 9.09% reduction. Similar patterns hold for TVAE across
datasets. Although slightly less effective than model-specific labels, DCM-TabDDPM continues to deliver
consistent memorization reduction benefits.

Obs.2: Retained Utility under Cross-model Application. DCM-TabDDPM also preserves model
utility. Core metrics such as Shape Score and Trend Score remain largely stable, with only minor performance
trade-offs. For instance, on DEFAULT, TVAE+DCM-TabDDPM attains a Shape Score of 89.58%, closely
matching the 90.36% achieved by the model-specific DCM. These results confirm that label transfer across
models can mitigate memorization without compromising data quality.

10
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These results suggest that memorization signals from TabDDPM are robust and broadly useful, making
DCM applicable even in settings without access to full training traces from the target model. Additional
experimental results are provided in Appendix

6.5 Case Study on Adult Dataset: Real vs. Generated Samples

Table [5] presents representative examples from the Adult dataset comparing real samples, TadDDPM-
generated samples, and those generated with DCM.

Obs.1: Evidence of Sample-level Memorization in TabDDPM. TabDDPM often produces samples
that closely resemble real records, with categorical attributes largely unchanged and only minor fluctuations
in numerical fields. This high structural similarity indicates direct sample-level memorization.

Obs.2: Enhanced Diversity with DCM. DCM introduces greater variability in continuous attributes
such as age and working hours while preserving coherence in categorical features. For example, the mem-
orization ratio rises from 0.0971 to 0.7598, suggesting that the generated sample diverges from the original
and is no longer memorized.

7 Conclusions

We study memorization dynamics in tabular diffusion models from a data-centric perspective and find
that a small subset of samples is memorized early and disproportionately. Leveraging this, we propose
DynamicCut to filter high-risk samples using early memorization signals, and DynamicCutMix to combine
filtering with feature-level augmentation. Our methods are simple, model-agnostic, and effective across
datasets and architectures, reducing memorization while preserving data quality and generalizing across
generative models. Limitations and future directions are discussed in Appendix [C:I] and [C.2]
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A Appendix

B More Experimental Results

B.1 Experiments on More Tag Ratios
B.1.1 Overall Performance Comparison

To understand how the tag ratio p used to identify high-memorization samples affects DynamicCut’s ef-
fectiveness, we conduct experiments across five different tag ratios: p = 1%, 3%, 5%,10%, and 20% on
the SHOPPERS and ADULT datasets, as shown in Table [f] We note that the distribution of memorization
frequency in[2)is typically long-tailed, and only a small fraction of samples are replicated many times. Impor-
tantly, DynamicCut does not rely on a hard frequency cutoff, but instead ranks samples by their warm-up
Mem-AUC scores and selects the top-p% most memorization-prone samples. We treat p as an empirical
design choice rather than a theoretically optimal constant, and study its effect below. We have the following
observations:

Obs.1: Optimal Filtering Threshold at p = 10%. Across both SHOPPERS and ADULT, set-
ting p = 10% consistently achieves the largest reduction in memorization—22.73% and 15.29%, respec-
tively—outperforming smaller thresholds (p = 1%,3%,5%) and the larger threshold (p = 20%). This
suggests that a moderate filtering ratio strikes a balance between aggressiveness and reliability in identifying
memorization-prone samples.

Obs.2: Trade-offs at Extreme Thresholds. A lower threshold (p = 1%, 3%,5%) yields weaker memo-
rization reduction and, in some cases, greater degradation in utility metrics such as $-Recall. Conversely, a
higher threshold (p = 20%) leads to less precise filtering, resulting in weaker memorization mitigation and
inconsistent improvements in utility performance.

Overall, these results suggest that the threshold p should be chosen in a moderate range rather than being
overly conservative or overly aggressive. In our experiments, using a 10% threshold for filtering provides the
best trade-off between memorization suppression and generation quality, and we therefore adopt p = 10% as
the default setting for DynamicCut.

Table 6: Ablation study on the ratio p used for selecting high-memorization samples to filter in DynamicCut.
“DCM 1%”, “DCM 3%”, “DCM 5%”, “DCM 10%”, and “DCM 20%” refer to retaining only the top-p fraction
of memorized samples (according to warm-up Mem-AUC) for filtering. “Improv.” reports the relative
memorization reduction compared to base TabDDPM. Results are shown for SHOPPERS and ADULT.

Methods Mem. Ratio (%) | Improv. MLE (%)t a-Precision(%)1  B-Recall(%)?  Shape Score(%)1 Trend Score(%)t C2ST(%)t DCR(%)
TabDDPM 31.37 £ 0.31 - 92.17 £ 0.32  93.16 £ 1.58 52.57 £ 1.30  97.08 £ 0.46 92.92 + 3.27 86.74 £ 0.63 51.36 £ 0.63
Shoppers TabDDPM+DCM 1% 29.44 £+ 0.83 6.16% | 92.25 £ 0.50  94.18 £+ 1.50 51.76 £ 1.17  95.81 £+ 0.54 92.71 + 1.52 84.28 + 3.54 50.56 + 2.03
TabDDPM+DCM 3% 29.46 £ 0.95 6.09% | 91.73 £ 0.63  93.59 + 2.63 52.20 &+ 0.54  96.78 £ 0.52 92.69 + 1.49 85.81 & 0.85 51.09 + 1.05
TabDDPM+DCM 5% 28.43 + 1.76 9.37% | 93.30 £ 0.22  94.49 £+ 1.87 49.07 +2.35  95.98 + 1.14 92.04 + 1.81 84.66 = 3.35 51.28 £+ 1.28
TabDDPM+DCM 10% 24.24 + 2.83 22.73% 1 9146 £ 0.74 93.25 + 3.87 46.15 + 4.42  92.32 + 5.00 89.11+ 4.95 80.56 + 4.81 49.74 + 3.34
TabDDPM+DCM 20%  29.40 + 0.40 6.28% | 91.58 + 0.51  91.66 + 2.77 52.98 + 1.99  95.30 + 1.88 91.83 + 1.35 82.69 + 4.29 52.44 + 0.33
TabDDPM 31.01 £ 0.18 - 91.09 £ 0.07 93.58 £ 1.99 51.52 £2.29 98.84 £ 0.03 97.78 £ 0.07 94.63 £ 1.19  51.56 £ 0.34
Adult TabDDPM+DCM 1% 28.26 + 1.71 9.78% | 90.81 £+ 0.24  95.59 + 0.98 46.18 £ 2.76  97.89 £+ 1.39 96.05 + 2.59 90.97 + 3.58 50.44 + 1.03
TabDDPM+DCM 3% 27.75 £ 0.72 10.51% J 90.46 & 0.14  95.37 + 0.83 44.46 + 2.11  97.61 + 1.86 94.98 + 3.94 90.53 + 3.27  50.61 + 1.06
TabDDPM+DCM 5% 27.63 £ 1.41 10.90% J 9091 + 0.26  95.73 + 2.92 45.56 + 2.63  98.08 £ 0.48 96.14 + 1.50 90.21 £+ 3.35 51.06 £ 0.56
TabDDPM+DCM 10%  26.27 & 0.57 15.29% | 90.81 £ 0.16 95.23 & 1.14 45.76 £ 1.02  98.27 + 0.32 96.71 + 0.86 92.64 £ 1.65 50.79 £ 0.46
TabDDPM+DCM 20%  26.09 + 0.82 15.87% ] 90.63 &+ 0.31  94.75 + 2.10 44.45 + 0.83  98.03 £ 0.50 94.79 + 1.88 91.01 £+ 2.39  50.85 + 0.24

B.1.2 Temporal Dynamics of Memorization

Figure [6] presents the cumulative proportion of memorized samples across training epochs for Top and Non-
Top groups. Compared to the 5% results shown in the main paper, this figure includes additional curves for
Top 10% and Top 20% samples, demonstrating that the early memorization trend persists across broader
thresholds.
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Figure 6: Cumulative proportion of samples memorized over epochs for Top and Non-Top groups.

B.1.3 Temporal Dynamics of Forgetting

Figure [7] and Figure [§] extend the forgetting analysis in the main paper by including Top 10% and Top 20%
groups in addition to the Top 5%. The results confirm that higher-memorization samples consistently exhibit
earlier and more frequent forgetting behavior across all thresholds.

Default Shoppers Adult
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M Non-Top

M Top 10%
M Non-Top

Cumulative Proportion

M Top 20%
M Non-Top

2000 4500 6600 8600 10500 ] 530 1000 1500 2000 2500 3000
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T 500 1000 1500 2000 2500 3000 3500 4000

Figure 7: Dynamic changes in the number of forget events over training epochs for different groups.

B.2 Experiments on Different Warm-up Window Lengths

To understand how the choice of the warm-up window length affects DynamicCut’s effectiveness, we conduct
experiments with three different window settings on each dataset: 600, 700, and 800 epochs for DEFAULT,
and 2000, 2100, and 2200 epochs for SHOPPERS, as shown in Table [7] We emphasize that the warm-up
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Figure 8: Dynamic changes in the number of forget events over training epochs for different groups.

window is a data-dependent design choice rather than a fixed hyperparameter, since different datasets can
exhibit different training dynamics. Accordingly, our goal here is not to identify a single universally optimal
window, but to examine how reasonable variations of this choice influence both memorization mitigation and
generation quality. We have the following observations:

Obs.1: The Optimal Window Length Is Dataset-Dependent. We observe that the best warm-up
window length is not identical across datasets, indicating that this choice is inherently dataset-dependent.
While the default window (600 epochs for DEFAULT and 2000 epochs for SHOPPERS) achieves strong mem-
orization reduction, extending the window to 700/800 or 2100/2200 epochs leads to different degrees of
performance change across the two datasets. This further confirms that the warm-up window should be
viewed as a data-dependent design choice rather than a fixed hyperparameter.

Obs.2: Overly Long Windows Degrade Memorization Mitigation. When the warm-up window is
extended to 700 or 800 epochs on DEFAULT, and to 2100 or 2200 epochs on SHOPPERS, we consistently observe
weaker memorization reduction and, in some cases, slight degradation in utility metrics. This suggests that
using an overly long window can dilute the early memorization signal and reduce the precision of identifying
high-risk samples, leading to less effective filtering.

These results indicate that the warm-up window should focus on early training dynamics and be adjusted
based on the dataset, rather than being set to an excessively large value. In practice, moderate window
lengths provide a better balance between stable memorization suppression and generation quality, and Dy-
namicCut remains robust under reasonable variations of this design choice.
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Table 7: Ablation study on different warm-up window lengths used in DynamicCut. “Improv.” reports the

relative memorization reduction compared to base TabDDPM.
Dataset ~ Window Mem. Ratio (%) | Improv. MLE (%)t  a-Precision(%)T f-Recall(%)T Shape Score(%)T Trend Score(%)t C2ST(%)t  DCR(%)

600 15.79 + 2.06 18.31% | 76.68+0.76 91.97 +1.78 37.89£0.84  93.62+£2.78 89.30 & 3.02 87.63 £2.15 48.17 £ 2.59
Default 700 18.14 +2.36 6.17% | 78.06 £1.33 92.36 +4.21 4219+1.13 9321 +1.44 90.25 £ 1.72 84.66 + 3.41  49.47 +1.42
800 19.10 £ 0.46 1.21% | T7.75£0.53  90.14 £ 6.30 43.28£5.31  93.66 £7.08 91.10 £ 5.83 85.78 £4.28 51.10 £ 0.67
2000 24.24 +£2.83 22.73% | 9146 £0.74 93.25 +3.87 46.15+4.42  92.32+£5.00 89.11 4 4.95 80.56 +4.81 49.74 + 3.34
Shoppers 2100 28.11 £ 2.00 10.39% | 90.31+£1.01 94.08 +1.08 51.07 £3.17  95.03 £ 1.66 91.19 £2.41 81.59 £5.22  51.00+£0.25
2200 29.69 + 0.56 5.36% |  91.30+£0.27 93.04 +1.45 53.25 £1.07  94.60 £2.33 91.89 4+ 0.73 81.76 £3.96  51.66 + 0.57

Table 8: Additional evaluation of tabular generative models on supplementary datasets. “DCM” denotes
our proposed DynamicCutMix method.

Methods Mem. Ratio (%) | Improv. MLE (%)t a-Precision(%)t  B-Recall(%)t  Shape Score(%)t Trend Score(%)t C2ST (%)t DCR(%)
TabDDPM 24.63 £ 0.18 - 80.24 £ 0.78 99.14 £+ 0.15 49.11 £ 0.17  99.61 £ 0.03 98.95 £+ 0.30 99.43 £+ 0.55 49.91 + 0.36
TabDDPM+SMOTE 23.10 + 0.69 6.21% | 79.47 £ 0.45 96.35 + 2.38 4744 £ 1.17  96.58 £ 0.75 94.39 £+ 1.28 85.43 £ 1.69 50.73 £ 0.19
Cardio TabDDPM+TCM 23.05 £ 0.38 6.40% | 79.71 £ 0.58 97.82 + 2.05 48.37 &£ 1.11  98.66 + 1.35 95.86 £ 3.43 96.31 4 0.42  49.24 + 1.58
TabDDPM+TCMP 23.54 £+ 0.34 4.43% | 79.82 +0.27 98.71 4+ 0.49 48.87 + 0.34  98.88+ 0.62 98.67 £+ 0.20 96.31 + 0.42  49.34 + 0.38
TabDDPM+DCM 24.07 £ 0.24 2.27% 1 79.41 +0.46 98.92 + 0.62 48.84 £ 0.14  99.19 + 0.36 98.72 £+ 0.32 97.38 £ 0.65 50.93 + 0.40
TabDDPM 98.48 £ 0.35 - 99.32 £ 0.58 98.63 & 0.73 50.53 £ 0.47  98.58 &+ 1.51 98.48 £ 0.35 98.63 £ 1.68  52.47 & 0.54
TabDDPM+SMOTE  96.78 + 0.41 1.72% | 99.22 + 0.54  79.49 £ 0.78 43.76 + 1.37  91.09 + 0.50 88.04 + 4.73 76.66 + 2.61 50.29 £+ 0.28
Wilt TabDDPM+TCM 97.17 £ 0.12 1.33% . 99.22 £ 0.38 97.93 £ 1.01 4847 £ 1.17  97.31 £1.28 95.71 £+ 2.49 96.92 + 1.72  48.75 + 2.18
TabDDPM+TCMP 96.75 £ 0.67 1.76% | 99.52 £ 0.37 98.55 £+ 0.14 49.36 £ 0.99  97.12 £ 0.84 96.81 £+ 0.63 96.76 & 3.44 45.52 = 1.35
TabDDPM+DCM 96.59 £ 0.32 1.92% | 98.49 + 0.42 98.84 + 0.25 47.00 £ 0.40  97.02 £ 0.88 95.75 £ 2.18 93.62 4+ 0.67 51.08 &+ 0.53

B.3 Experiments on More Datasets

To further assess the robustness and transferability of DCM, we conduct additional experiments on two
diverse datasets, as shown in Table 8} CARDIO and WILT. These datasets differ significantly from the
main benchmarks in size, structure, and difficulty, offering a more comprehensive evaluation of DCM’s
generalizability. We compare TabDDPM enhanced with DCM against several strong augmentation baselines
including SMOTE, TCM, and TCMP.

Obs: Balanced Performance of DCM on Complex Datasets. DCM maintains competitive or superior
performance across both datasets. On CARDIO, although TCMP achieves the lowest memorization ratio
(23.05%), DCM attains a comparably low value (24.07%) while delivering the highest Shape Score (99.19%),
a top-level Trend Score (98.72%), and the best DCR (50.93%). This demonstrates DCM’s strong ability to
balance diversity and fidelity in sample generation.

On WiLt, DCM outperforms all other methods in key distributional metrics. While reducing the memory
ratio to 96.59%, DCM achieves the highest a-Precision (98.84%), a strong Trend Score (95.75%), and a supe-
rior DCR, (51.08%), surpassing both TCMP and SMOTE. Notably, DCM avoids the significant performance
degradation in 8-Recall and C2ST observed with SMOTE, highlighting its ability to preserve minority modes
without compromising sample quality.

These results provide further evidence that DCM generalizes beyond standard benchmarks and remains
effective across a range of dataset characteristics.

B.4 Hyperparameter Study on Pooling Strategy

We examined how different pooling strategies for warm-up Mem-AUC scores influence DynamicCut’s ability
to spot high-memorization samples. Three variants were compared: (1) Mean pooling (DCM-Mean) —
averages Mem-AUC across all warm-up epochs; (2) Max pooling (DCM-Max) — takes each sample’s single
highest Mem-AUC., and (3) top-10% mean pooling (DCM-Top-Mean) — averages only the top-10% highest
Mem-AUC epochs for each sample. As shown in Table [9] we have the following observations:

Obs.1: Top-10% Mean Achieves the Most Effective Memorization Mitigation. The Top-10% mean
consistently yields the greatest reduction in memorization across both datasets, decreasing memorization by
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18.31% on DEFAULT and 22.73% on SHOPPERS relative to the TabDDPM baseline. This confirms that
targeted averaging among high-memorization samples best balances precision and diversity in filtering.

Obs.2: Max Pooling Trades Memorization Control for Slight Utility Gains. DCM-Max occa-
sionally achieves marginal improvements in utility metrics such as MLE, but its memorization reduction is
smaller and less consistent. This indicates that aggressive selection may favor utility preservation at the cost
of weaker memorization suppression.

Obs.3: Mean Pooling Provides a Balanced but Suboptimal Trade-off. DCM-Mean delivers moder-
ate improvements across both memorization and utility metrics but fails to outperform the Top-10% mean
in either privacy protection or sample quality. These results highlight that simple averaging offers stability
but lacks the targeted precision needed for optimal trade-offs.

These results suggest that computing the memorization score based on the most salient epochs offers a more
reliable signal for identifying high-risk samples. Therefore, we adopt top-10% mean as the default pooling
method in our DynamicCut implementation.

Table 9: Comparison of different pooling strategies used to compute memorization scores for filtering. “DCM-
Mean,” “DCM-Max,” and “DCM-Top-Mean” denote the use of mean, max, and top-10% mean pooling
over the warm-up phase Mem-AUC sequence, respectively. “Improv.” indicates the relative memorization
reduction over the base TabDDPM.

Methods Mem. Ratio (%) | Improv. MLE (%)t a-Precision(%)1  f-Recall(%)t  Shape Score(%)t Trend Score(%)T C2ST(%)1 DCR(%)
TabDDPM 19.33 + 0.45 - 76.79 £ 0.69 98.15 &+ 1.45 44.41 £ 0.70  97.58+ 0.95 94.46 £ 0.68 91.85 £ 6.04 49.12 + 0.94
Default TabDDPM+DCM-Mean 17.12 +£ 0.78 11.43% | 79.55 £ 0.70 95.92 + 3.21 38.94 £0.98  96.21 &+ 1.33 90.23 £ 0.88 87.35 £ 4.42 50.64 £ 0.94
TabDDPM+DCM-Max 16.67 = 1.22 13.76% | 80.09 £ 0.55 91.08 £ 7.60 37.93 £326 94.59 & 3.32 90.51 £ 3.52 88.47 £ 7.36  49.32 £ 2.63
TabDDPM+DCM-Top-Mean 15.79 = 2.06 18.31% | 76.68 £0.76 91.97 £ 1.78 37.89 £0.84 93.62 + 2.78 89.30 £ 3.02 87.63 £ 2.15 48.17 £ 2.59
TabDDPM 31.37 £ 0.31 - 92.17 4+ 0.32  93.16 = 1.58 52.57 £1.30  97.08 &+ 0.46 92.92 4 3.27 86.74 £ 0.63 51.36 4 0.63
Shoppers TabDDPM+DCM-Mean 27.33 £ 1.12 12.88% | 92.58 & 0.42  95.66 + 0.61 48.54 + 0.70  94.12 &+ 2.01 91.47 + 1.07 82.01 £ 2.73 51.00 + 2.91
TabDDPM+DCM-Max 26.68 £ 2.75 14.95% | 93.21 + 0.32  91.93 + 6.24 47.97 4+ 3.22  94.34 £ 412 90.50 £ 5.55 80.66 £+ 11.39  49.59 + 1.86
TabDDPM+DCM-Top-Mean 24.24 + 2.83 22.73% | 91.46 £ 0.74 93.25 £ 3.87 46.15 + 4.42  92.32 £ 5.00 89.11+ 4.95 80.56 £ 4.81 49.74 & 3.34

B.5 Experiments on Transferability

To further evaluate the transferability of memorization labels across generative models, we visualize memo-
rization ratios under different labeling-training combinations for each dataset in Figure[0] For each heatmap,
the row indicates the model used to generate memorization labels (e.g., TabDDPM), and the column indicates
the model trained using those labels for DCM filtering.

Obs.1:  Model-specific Labels Provide the Most Precise Filtering. Across all three
datasets—DEFAULT, SHOPPERS, and ADULT—model-specific labels (diagonal entries) consistently yield the
lowest memorization ratios. This indicates that labels generated by the same model offer the most accurate
guidance for identifying and filtering memorization-prone samples during training.

Obs.2: TabDDPM Labels Generalize Effectively Across Models. Labels derived from TabDDPM
transfer well to other model architectures, achieving the second-best memorization reduction in most off-
diagonal settings. For instance, TabDDPM-generated labels substantially reduce memorization when applied
to CTGAN and TVAE, outperforming labels produced by weaker models such as TVAE. These results
suggest that TabDDPM captures structural regularities that are broadly useful for cross-model memorization
mitigation.

These results confirm that memorization-prone samples identified by a strong base model (e.g., TabDDPM)
can be effectively reused across other generative models for filtering, demonstrating the robustness and
practical value of our transferability approach.

B.6 Experiments on Memorization Tag Performance

To assess the quality of memorization labels generated during the warm-up phase, we compute the average
AUC of classifiers trained to predict whether a sample will exhibit high memorization frequency. As shown
in Table [10] the AUC values range from 73.78% on DEFAULT to 80.14% on SHOPPERS, indicating a strong
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Figure 9: Heatmaps showing memorization ratios (%) for different label-source and model-target combina-
tions on DEFAULT, SHOPPERS, and ADULT datasets. Rows denote the model used to generate memorization
labels, and columns denote the model trained with those labels.

Table 10: AUC scores of memorization tag classifiers trained using warm-up phase labels across three
datasets. Higher AUC indicates better agreement between early-phase tags and final high memorization
frequency samples.

Dataset Average AUC

Default 73.78%
Shoppers 80.14%
Adult 76.52%

alignment between early-phase memorization behavior and the final memorization frequency observed during
training.

Obs: Warm-up Memorization as a Reliable Filtering Signal. These results indicate that early-stage
(warm-up) memorization dynamics provide a robust signal for detecting memorization-prone samples. The
consistently high AUC scores across datasets confirm that the warm-up labeling strategy effectively captures
patterns linked to memorization, supporting its use as a reliable filtering criterion in DynamicCut.

B.7 Experiments on Data Generation Quality
B.7.1 Feature Correlation Matrix Comparison

To assess whether DCM affects the structural fidelity of synthetic data, we compare the absolute divergence
between the pairwise feature correlation matrices of the real and synthetic data. As shown in Figure [I0]
lighter colors indicate smaller divergences, implying better preservation of inter-feature relationships.

Obs: Preservation of Feature Correlations after DCM Filtering. Across all three datasets—ADULT,
DEFAULT, and SHOPPERS—the heatmaps reveal that DCM-filtered models retain correlation structures that
are visually comparable to, and in some cases slightly stronger than, those of the base TabDDPM. The
minimal differences suggest that DCM’s memorization filtering does not distort the underlying statistical
dependencies among features.

These results demonstrate that DynamicCut can effectively reduce memorization without compromising the

core structural quality of the generated data.

B.7.2 Shape Score

To further evaluate the quality of the synthetic data, we compare the shape score of each feature across
datasets, as shown in Figure[TI] The shape score measures the similarity between the marginal distributions
of real and synthetic data, with higher values indicating better alignment.

Obs: Preservation of Marginal Distributions after DCM Filtering. Across all datasets—ADULT,
DEFAULT, and SHOPPERS—the shape scores of TabDDPM and TabDDPM+DCM remain closely aligned for
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Figure 10: Heatmaps of the pair-wise column correlation of synthetic data v.s. the real data. The value
represents the absolute divergence between the real and estimated correlations (the lighter, the better).

most features. In particular, for ADULT and DEFAULT, the scores exceed 0.95 for the majority of features,
indicating that marginal distributions are well preserved after applying DCM. Although SHOPPERS exhibits
higher feature variability, DCM still maintains competitive shape scores relative to the base model.

These results confirm that DynamicCut achieves effective memorization reduction without degrading the
fidelity of per-feature distributions, thus preserving a key aspect of data generation quality.
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Figure 11: Shape score comparison for each feature in synthetic data generated by TabDDPM and TabD-
DPM+DCM across multiple datasets.

B.8 Computational Overhead of DynamicCut

The warm-up memorization monitoring stage does not introduce any additional forward or backward passes.
The overhead mainly comes from tracking and aggregating per-sample Mem-AUC statistics during the first T’
epochs. Specifically, collecting Mem-AUC values incurs a cost of O(T'N), and computing the top-k statistics
for each sample costs O(T'N log N) in a naive implementation, or O(T'N) using a streaming top-k scheme. In
contrast, the overall training cost of the backbone model is O( EN (Cyq+Chwa)), where E is the total number
of training epochs and Clyq and Chyq denote the costs of one forward and backward pass, respectively. Since
T < F, the additional overhead introduced by DynamicCut is small compared to the full training cost.

In practice, Mem-AUC does not need to be computed at every epoch. In our implementation, we compute it
once every 10 epochs during the warm-up stage. Computing Mem-AUC once takes about 4 seconds on the
Default dataset (30,000 rows), about 1 second on the Shoppers dataset (12,330 rows), and about 8 seconds
on the Adult dataset (48,842 rows). This trend is consistent with the analysis above: the monitoring cost
scales roughly linearly with the dataset size N, so larger datasets incur higher per-evaluation cost. With
this setting, the total warm-up monitoring cost is about 240 seconds for Default, about 200 seconds for
Shoppers, and about 400 seconds for Adult. Compared to the baseline training time (65 minutes for Default,
60 minutes for Shoppers, and 63 minutes for Adult), this corresponds to roughly 5.8%, 5.3%, and 9.6% extra
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time, respectively. Since this cost only appears in the early warm-up stage and does not add any forward or
backward passes, the overall overhead remains modest in all cases.

B.9 Average Trade-off Between Memorization Reduction and Generation Performance

Table 11: Average trade-off summary. We report (i) averaged memorization reduction (Improv. in Tauble7
and (ii) averaged generation performance metrics. Averages are computed over three backbones (TabDDPM,
CTGAN, TVAE) for Default, and over all datasets/backbones (Default, Shoppers, Adult x TabDDPM,
CTGAN, TVAE; 9 settings) for All.

Setting Method  Mem. Ratio MLE  «a-Precision (-Recall Shape Trend C2ST DCR

(Improv.%1)  (%1) (%61) (%) () (W) (%)
SMOTE 4.38 74.52 79.61 26.14  89.33  46.58  60.79  49.73
Defandt  TCM 5.96 74.91 84.28 25.75  90.90 83.37 68.48 50.04
TCMP 8.13 73.24 83.72 26.15  90.66 82.52  68.30  49.99
DCM 8.78 75.11 83.06 2540  89.92 8430 66.81 49.24
SMOTE 5.94 84.13 80.07 2948 8471 70.64 57.85 50.36
All TCM 8.30 83.98 81.99 30.12  87.97 8546 64.23 49.77
TCMP 7.55 83.38 81.54 29.29  86.62 84.11 64.06 49.89
DCM 13.47 84.22 82.13 29.01 8659 85.05 64.86 49.53

As shown in Table[II] DCM consistently provides the strongest memorization reduction among all compared
methods, both on the Default dataset and when averaging over all datasets and backbones. In particular,
DCM achieves the highest average reduction on Default (8.78%) and a substantially larger reduction in
the overall setting (13.47%), clearly outperforming SMOTE, TCM, and TCMP in terms of memorization
mitigation.

Importantly, this stronger suppression of memorization does not come with a systematic degradation in
generation quality. Across both Default and All, DCM remains competitive with the other methods on all
evaluated quality metrics, and its performance is generally comparable to the best baseline in each column.
This indicates that the gain in memorization reduction is not obtained by sacrificing overall sample quality.

More concretely, on Default, DCM attains the best MLE score and the highest Trend score, while staying close
to TCM and TCMP on a-Precision, S-Recall, Shape, C2ST, and DCR. When considering the overall average
across all datasets and backbones, DCM again achieves the best or tied-best performance on several metrics,
including MLE, a-Precision, Trend, and C2ST, while remaining comparable on the remaining metrics. These
results demonstrate that DCM offers a favorable trade-off: it more effectively reduces memorization, yet
preserves the overall generation quality, and in several aspects even improves it.

B.10 Additional Baselines

To better situate our method within existing memorization-mitigation strategies for tabular generative mod-
els, we extend our evaluation under the TABDDPM backbone by adding an additional data-augmentation
baseline, Mixup, alongside the previously included baselines SMIOTE, TCM, and TCMP. The results
are summarized in Table [[2

Obs.1: DCM achieves stronger memorization reduction than augmentation-based baselines.
Mixup provides a consistent but limited reduction in memorization across datasets, with improvements of
4.50% on DEFAULT, 12.50% on SHOPPERS, and 3.14% on ADULT. In contrast, our DCM achieves the
strongest memorization mitigation on DEFAULT and SHOPPERS, reducing memorization by 18.31% and
22.73%, respectively, while remaining competitive on ADULT (15.29%), where TCMP achieves a slightly
larger reduction (15.83%). This overall pattern reinforces our main finding that filtering a small set of
samples selected by early memorization dynamics is a strong and reliable intervention, especially on datasets
where memorization is more heterogeneous.
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Table 12: Performance comparison of additional memorization-mitigation baselines. “DCM” denotes our
proposed DynamicCutMix.

Dataset ~ Methods Mem. Ratio (%) | Improv. MLE (%)t a-Precision(%)t  S-Recall(%)t  Shape Score(%)t Trend Score(%)t C2ST(%)t DCR(%)
TabDDPM 19.33 +0.45 - 76.79+£0.69 98.1541.45 44.41£0.70  97.58 £0.95 94.46 £ 0.68 91.85 £ 6.04 49.12+£0.94
TabDDPM+Mixup 18.46 + 0.71 4.50% | 7718 £ 0.35 93.20 &+ 4.16 42.59 £ 1.13  95.34 £ 1.79 90.32 £ 3.31 92.59 £ 2.82  52.36 + 1.57

Default TabDDPM+SMOTE  17.46 £ 0.51 9.66% | 76.92+0.35  91.19 +0.68 40.52£0.65  94.89 & 1.46 28.63 +2.28 72.73 £ 0.69 50.95 £ 0.38
TabDDPM+TCM 16.76 4+ 0.47 13.26% | 76.47 +£0.60  97.30 + 0.46 38.72+£2.78 97.27+1.74 93.27 £2.52 94.72 £3.87  50.23 +0.53
TabDDPM+TCMP 18.00 4 0.24 6.88% | 76.92+0.17  98.26 £0.25 41.92 +0.52 97.37 £0.09 91.42+1.15 95.64 £ 0.49 49.75 £ 0.32
TabDDPM+DCM 15.79 4 2.06 18.31% ] 76.68+0.76  91.97 +1.78 37.89+0.84 93.62+2.78 89.30 + 3.02 87.63 £2.15 48.17 £ 2.59
TabDDPM 31.37£0.31 - 92.17£0.32  93.16 £ 1.58 52.57£1.30  97.08 £ 0.46 92.92 £3.27 86.74 £ 0.63 51.36 £ 0.63
TabDDPM+Mixup 27.45 + 1.88 12.50% ) 91.44 + 1.37  94.80 + 0.68 51.72 £ 1.05 92.14 + 4.16 89.31+ 3.91 82.34 +£3.24 46.85 + 5.81

Shoppers TabDDPM+SMOTE  26.64 + 1.46 15.07% ) 89.96 +£0.95 94.41 +4.67 45.22£3.26  90.78 +0.49 83.09 £2.47 64.05 £ 1.44 51.94 £1.52
TabDDPM+TCM 25.56 + 1.17 18.51% ) 9217 +£0.26  94.41 +1.49 50.05 £1.59  97.18 £0.34 93.95 £ 0.51 86.96 + 0.50 4752 +1.81
TabDDPM+TCMP 28.51+0.35 9.12% ) 92.09+0.99 9343 +1.65 52.30 £0.73  97.31 +£0.22 94.79 £0.30 87.02 £2.04 50.83 £ 0.59
TabDDPM+DCM 24.24+2.83 22.73% | 91.46 +0.74  93.25+ 3.87 46.15+4.42  92.32+5.00 89.11 +£4.95 80.56 + 4.81 49.74 £3.34
TabDDPM 31.01+0.18 - 91.09 £0.07 93.58 £1.99 51.52£2.29  98.84+0.03 97.78 £0.07 94.63 £1.19 51.56 + 0.34
TabDDPM-+Mixup 30.04 £+ 0.41 3.14% ) 90.82 £ 0.12 95.78 + 0.68 47.65 £ 1.35 98.02 & 1.08 96.78 £ 1.33 93.65 £ 3.59  50.86 + 0.86

Adult TabDDPM+SMOTE  28.98 +£0.78 6.56% )  90.41+0.36 94.93+1.72 46.10 £0.65  93.40+1.12 90.76 £ 1.76 80.75 £ 0.84 51.82 £ 0.56
TabDDPM+TCM 27.55 £0.19 11.16% }  91.15+0.06  94.97 +0.06 4743 £1.46  98.65+0.03 97.75 £0.07 85.61 £16.03  50.99 & 0.65
TabDDPM+TCMP 26.10 £ 2.11 15.83% ) 90.54 £0.17  92.26 +6.97 4349 +£3.74  95.10+4.27 91.50 £6.53 84.76 £10.12  50.68 + 0.89
TabDDPM+DCM 26.27 £ 0.57 15.29% ] 90.81+£0.16 95.23+1.14 45.76 £1.02  98.27+0.32 96.71 £ 0.86 92.64 £ 1.65 50.79 £ 0.46

C Discussion

C.1 Limitation Discussion

While our work provides a principled and effective approach to reducing memorization in tabular diffusion
models, it has several limitations.

First, the effectiveness of DynamicCut depends on a warm-up phase that sufficiently exposes early mem-
orization patterns. For models or datasets where such patterns emerge later, the current strategy may
underperform or miss certain high-risk samples.

Second, the method introduces additional hyperparameters—such as the warm-up length, top-k selection
ratio, and filtering percentage—which may affect performance. Although we use consistent settings across
datasets, the optimal configuration may vary depending on data scale, feature types, and training dynamics.

We leave these directions for future exploration.

C.2 Future Work

Our study opens several promising directions for future research.

First, a deeper investigation into why certain samples are more prone to memorization is needed. In partic-
ular, exploring memorization at the feature level—such as which attributes contribute most to high memo-
rization intensity—could improve interpretability and inform more targeted interventions.

Second, our current method uses a fixed warm-up phase to identify memorization-prone samples. Future
work could explore adaptive or continuous memorization monitoring strategies that dynamically adjust to
training progress or model uncertainty.

Finally, while it is widely observed in practice that some samples are memorized much more frequently than
others, a clear theoretical explanation is still missing. This behavior is closely related to data heterogeneity,
and is connected to prior works (Ghorbani & Zoul [2019; [Shrivastava et all 2016; Kumar et al., [2010) on
hard samples and data valuation. In future work, we plan to further study this problem and develop a
theoretical framework to explain why certain samples are more likely to be memorized, which could help
connect empirical findings with theory and guide more principled mitigation strategies.
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D Experimental Details

We implement DynamicCut and DynamicCutMix along with all baseline methods using the PyTorch frame-
work. All models are trained using the Adam optimizer. Our code is available at https://anonymous.
4open.science/r/DynamicCut-8255

D.1 Baselines of Data Augmentation

This section outlines the data augmentation methods evaluated in this work, including SMOTE, TabCutMix
(TCM), and TabCutMixPlus (TCMP).

o SMOTE: The Synthetic Minority Oversampling Technique (SMOTE) |Chawla et al.| (2002) is a
foundational oversampling method initially proposed to address class imbalance in datasets with
continuous variables. It generates new minority class samples by interpolating feature values between
existing samples and their k nearest neighbors. Although SMOTE is effective in enhancing diversity
and reducing overfitting in fully numerical datasets, its design does not account for categorical
attributes. Direct application to mixed-type data can therefore produce invalid or nonsensical feature
combinations that violate feature semantics.

o Mixup: Mixup (Zhang, [2017)) is a data augmentation method that generates new training examples
by interpolating between pairs of samples and their labels. Although it is simple and has been shown
to be effective in many settings, it implicitly enforces a linear interpolation in the feature space.

o TabCutMix (TCM): TabCutMix (TCM) [Fang et al| (2024) adapts the CutMix concept from
computer vision to the tabular domain. TCM generates augmented samples by selectively replacing
subsets of features between two instances from the same class, guided by a binary mask sampled
from a Bernoulli distribution. The mask controls the replacement ratio A, enabling partial feature
replacement. By promoting intra-class variability while preserving label integrity, TCM improves
generalization and reduces overfitting in mixed-type tabular learning tasks.

o TabCutMixPlus (TCMP): TabCutMixPlus (TCMP) [Fang et al| (2024 builds upon TCM by
introducing dependency-aware feature augmentation. TCMP first performs feature clustering based
on domain-relevant correlation metrics to identify groups of highly related features. Augmentation
is then performed at the cluster level, ensuring that structurally or semantically related features
are swapped together. This strategy helps maintain intra-cluster consistency, mitigates the risk of
generating unrealistic data points, and enhances both diversity and robustness in the augmented
dataset.

D.2 Baselines of Tabular Data Generation

This section describes the baseline generative models used in our study. These methods represent widely
recognized approaches for synthesizing structured tabular data with mixed numerical and categorical at-
tributes.

e CTGAN [Xu et al.|(2019): CTGAN is a generative adversarial network (GAN) designed to address
the unique challenges of tabular data generation. To better capture complex, skewed, or multimodal
numerical feature distributions, CTGAN employs mode-specific normalization based on quantile
transformation. Additionally, it leverages a conditional sampling strategy that focuses on rare cate-
gories when generating new samples. This conditional mechanism helps balance class distributions
and promotes diversity across different feature values in the generated data.

o TVAE Xu et al| (2019): TVAE extends the variational autoencoder (VAE) framework to handle
tabular data. Like CTGAN, it applies mode-specific normalization and conditional generation tech-
niques, but models data through a latent probabilistic structure by optimizing the Evidence Lower
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Bound (ELBO). This allows TVAE to learn a meaningful latent representation that captures de-
pendencies between numerical and categorical features, facilitating the generation of realistic and
diverse synthetic samples while maintaining scalability.

o TabDDPM Kotelnikov et al,| (2023): TabDDPM adapts denoising diffusion probabilistic models
(DDPMs) for tabular data with mixed feature types. It applies continuous-time stochastic differen-
tial equations (SDEs) to latent representations of tabular samples, enabling score-based generative
modeling. To jointly model numerical and categorical features, TabDDPM incorporates specialized
feature embeddings and masking strategies within a unified diffusion framework. This design sup-
ports both unconditional and conditional sample generation, offering improved training stability and
sample quality.

D.3 Quantifying Memorization

Generative models risk overfitting when they overly replicate samples from their training data instead of
producing diverse, novel instances representative of the full underlying data distribution. While retaining
some level of fidelity is beneficial in certain use cases—such as high-precision applications—over-memorization
can hinder diversity, introduce privacy risks, and compromise the model’s ability to generalize. This issue
is particularly relevant in tabular data scenarios, where direct reproduction of training records may lead to
sensitive information leakage or limit the usefulness of generated data.

Relative Distance Ratio Criterion. To systematically evaluate the extent of memorization, we intro-
duce the relative distance ratio as a sample-level diagnostic. Given a generated sample x and the training
dataset D, the distance ratio r(x) is computed as:

’r‘(l‘) - d(m,NNl(ac,D))
~ d(z,NNy(z, D))’

where d(-,-) is a distance function in the data space, NNj(x,D) is the closest training sample to x, and
NNy (z, D) is the second closest. A lower r(x) indicates that x is unusually close to a single training point
compared to others, signaling potential memorization.

Following best practices from the domain of image synthesis, we label a generated sample as memorized if
its distance ratio falls below a threshold of %

Memorization AUC. To capture how memorization varies over a range of sensitivity thresholds, we
introduce the Memorization Area Under the Curve (Mem-AUC). This metric aggregates the memorization
ratio across all threshold values 7 € [0, 1], providing a comprehensive view of memorization intensity:

1
Mem-AUC :/ Mem. Ratio(7)dr,
0

where Mem. Ratio(7) denotes the fraction of generated samples with r(z) < 7 for a given threshold 7.

Higher Mem-AUC values indicate stronger overall memorization tendencies, while lower values reflect better
generalization and less replication of the training data. Together, the memorization ratio and Mem-AUC
offer both fixed-threshold and threshold-sweeping perspectives on the memorization behavior of generative
models.

Memorization Ratio. We define the memorization ratio as the fraction of generated samples that meet
this memorization condition:

Mem. Ratio = — Z]I(T(CL’) < 2)s

where G represents the set of generated instances and I(-) is an indicator function. This score provides a
single-point estimate of the prevalence of memorization in the generated dataset.
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Tracking Memorization Dynamics. To move beyond a single, static memorization snapshot, we follow
each real training sample through epoch and document when and how often it becomes memorized, forgotten,
and re-memorized. Below we introduce the exact notation and event definitions that make this temporal
analysis reproducible. We denote D = {xr}‘rzll as training set, 7 as a fixed memorization threshold (we
adopt 7= 1), and G, = {x_gjl}‘f:l‘ as the samples generated after epoch e € {1,...,E}.

For every real sample z,. and epoch e, we record a binary flag
L(z,) = 1|3z €Ge:r(x) <7 A NNy(z,D) = z,|,

where NNy (-, D) returns the nearest neighbour in the training set. Intuitively, 1.(z,) = 1 means that, at
epoch e, at least one generated sample sits “too close” to x,, signalling potential leakage of that sample.

Event Definitions. We translate the per-epoch indicators into discrete events that mirror our informal
reasoning about memorization behavior.

FirstMem(z,) = min{ e : 1.(x,) = 1}
(first epoch z,. is memorized),
Forget(z,) = {e: Le_1(x,) = 1 ALe(ay) = 0}
(moments when z, stops being memorized).
If FirstMem(z,.) is undefined, the model never memorizes .

Count Statistics. A single event seldom tells the full story. We therefore accumulate events into counts
that capture temporal behaviors and volatility.

B
CumMemCnt(x,) = Z 1e(x,)
e=1

total epochs during which z,. is memorized,
CumForgetCnt(x,.) = |Forget(z,)]|

number of “un-memorization” transitions.

High CumMemCnt indicates long-lasting leakage; a high CumForgetCnt suggests unstable or oscillatory
behavior.

Instance-level Mem-AUC. To capture how strongly a sample x, is memorized—independent of an arbi-
trary threshold—we integrate the conditional memorization probability over every possible threshold:

1

Mem-AUC(z,) = / Prr(z) <7 | NN (z,D) = z,| dr.
0

Here, the probability is estimated over all z € G, and all epochs e. Larger values imply stronger, more persis-

tent memorization. Such instance-level Mem-AUC provides a quantitative way to detect high-memorization

samples based on temporal and memorization strength signal, such as top-10 % (high-risk) and bottom-10 %

(low-risk) Mem-AUC subsets.

In a nutshell, these precise definitions underpin our analysis and pinpoint when memorization first emerges,
how long it persists, and how often the model successfully “forgets” individual records. The temporal
lens complements the static memorization ratio and provides a new dimension for memorization mitigation
throughout training.

D.4 Datasets

We conduct our experiments on three widely recognized benchmark datasets sourced from the UCI Ma-
chine Learning Repository. These datasets span diverse application domains, including income prediction,
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Table 13: Statistics of datasets. Num indicates the number of numerical columns, and Cat indicates the
number of categorical columns.

Dataset | #Rows #Num #Cat #Train #Validation #Test Task

Adult 48,842 6 9 28,943 3,618 16,281  Classification
Default 30,000 14 11 24,000 3,000 3,000 Classification
Shoppers | 12,330 10 8 9,864 1,233 1,233  Classification
Cardio 70,000 5 7 44,800 11,200 14,000 Classification
Wilt 4,889 5 1 3,096 775 968 Classification

credit risk assessment, and online customer behavior analysis. Table [I3] provides an overview of their key
characteristics.

Detailed Dataset Summaries.

e Adult Datasetﬂ Also known as the Census Income dataset, this dataset contains demographic and
employment information from the 1994 U.S. Census. The binary classification task aims to predict
whether an individual’s annual income exceeds $50,000. It consists of 48,842 records with features
such as age, education, occupation, marital status, and work class. This dataset is commonly used
in fairness, socio-economic, and income classification studies.

¢ Default Dataseiﬂ This dataset includes 30,000 instances of credit card clients in Taiwan, featuring
financial and demographic information collected between April and September 2005. The goal is to
predict the likelihood of a client defaulting on their credit card payment in the next billing cycle. Key
attributes include credit limit, payment history, bill amounts, and personal demographics, making
it particularly relevant for financial risk modeling and credit scoring research.

e Shoppers Datasetﬂ Collected from user sessions on e-commerce platforms, this dataset consists
of 12,330 records detailing user interaction patterns. Features include the number of pages visited,
session durations, and various behavioral indicators. The binary target indicates whether a session
ended with a purchase. This dataset serves as a benchmark for studying customer behavior, website
optimization, and purchase intent prediction.

e Wilt Datasetﬂ This dataset originates from high-resolution remote sensing imagery and is designed
for binary classification of vegetation health. The task involves distinguishing between healthy land
cover (label 'n’) and areas exhibiting signs of disease or stress (label 'w’), based on 4, 889 observations.
Each instance is described by spectral and textural attributes extracted from Quickbird satellite
data, including metrics like GLCM mean texture, normalized color bands (green, red, NIR), and
statistical features such as the standard deviation of the panchromatic band. The dataset is notably
imbalanced, with only 74 samples labeled as diseased, presenting additional challenges for generative
modeling and minority class preservation.

e Cardio Datasetﬂ This dataset contains anonymized health profiles of 70,000 individuals, collected
for the purpose of predicting cardiovascular disease risk. The feature set spans 11 variables covering
demographic information (e.g., age, gender, height, weight), clinical measurements (e.g., systolic
and diastolic blood pressure, cholesterol levels, glucose concentration), and lifestyle indicators (e.g.,
smoking, alcohol use, physical activity). The binary target indicates whether a subject has been
diagnosed with cardiovascular disease. The dataset is moderately imbalanced and has been widely
used in evaluating tabular generative and classification models.

2https://archive.ics.uci.edu/dataset/2/adult
Shttps://archive.ics.uci.edu/dataset/350/default+of+credit+card+clients
4https://archive.ics.uci.edu/dataset/468/online+shoppers+purchasing+intention+dataset
Shttps://archive.ics.uci.edu/dataset/285/wilt
Shttps://www.kaggle.com/datasets/sulianova/cardiovascular-disease-dataset
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In Table[I3] The column “# Rows” represents the number of records in each dataset, while “# Num” and “#
Cat” indicate the number of numerical and categorical features (including the target feature), respectively.
Each dataset is divided into training, validation, and testing sets for machine learning efficiency experiments.
For the Adult dataset, which includes an official test set, we use this set directly for testing, and split the
training set into training and validation sets with a ratio of 8 : 1. For the remaining datasets, the data is
partitioned into training, validation, and test sets with a ratio of 8 : 1 : 1, ensuring consistent splitting using
a fixed random seed.
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