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ABSTRACT

Continual Test-time Adaptation (TTA) addresses sequential out-of-distribution
scenarios with unlabeled data but overlooks long-term and recurring in-
distribution aspects of the real world. Therefore, we introduce Lifelong Con-
tinual Adaptation, which enables models to efficiently retrieve domain-specific
knowledge when encountering in-distribution data streams with sequential and
recurring domains. We found that optimization-based Continual TTA methods
underperform on the proposed problem due to two major pitfalls: updating the
model’s parameters is expensive and impractical for resource-constrained devices,
and these methods exhibit instability when adapting to long-term recurring do-
mains. To address these challenges, we propose a diffusion-based prompt gen-
eration method (DiffPrompt). Specifically, instead of continually optimizing the
foundation model, we generate domain-specific prompts for it to adapt. We use
a conditional diffusion model to learn a prompt-space distribution for various do-
mains. During testing, the diffusion model generates prompts for the current do-
main based on the incoming batch of data, facilitating the continual adaptation
of the foundation model. Our experiments demonstrate that DiffPrompt enables
stable and efficient deployment in practical scenarios involving sequential and re-
curring domains.

1 INTRODUCTION

Domain shifts significantly degrade the performance of deep learning models due to the misalign-
ment between the domains of the training and deployment phases (Quionero-Candela et al., 2009}
Koh et al., [2021). This challenge is further compounded when models encounter sequential domain
changes during deployment (Wang et al.| 2022). For example, the driving conditions for autonomous
vehicles are always evolving such as lighting conditions at various times of the day and varying
weather conditions. It causes different visual data, demanding the model to adapt wisely.

To address these challenges, a line of research known as continual Test-Time Adaptation (TTA)
focuses on continually adapting machine learning models. They typically aim to address sequen-
tial novel domains with unlabeled data examples encountered during deployment. The assumption
is that both data instances and domains are previously unseen during training (Wang et al., 2022}
Dobler et al., 2023} [Yuan et al., 2023)). However, the extant framework of continual TTA fails to
account for three critical real-world scenarios. First, they emphasize sequential out-of-distribution
(OOD) scenarios, where training and deployment domains differ, while overlooking the sequential
in-distribution (ID) data, resulting in an incomprehensive evaluation. Second, the scarcity of the
number of sequential domains limits the assessment of a model’s long-term adaptation capabilities.
Finally, the recurring nature of certain domains encountered repetitively during deployment is dis-
regarded (Hoang et al.| 2023)). Therefore, we introduce a novel problem setting, known as Lifelong
Continual Adaptation (LCA), that aims to foster model continual adaptation in more realistic scenar-
ios characterized by long-term sequential, recurring, and in-distribution data, described in Table [I]
and Figure[T] LCA explores how to efficiently retrieve and utilize knowledge of seen domains during
deployment.

We conducted an analysis of multiple baseline methods on the proposed LCA setting, including the
non-adapted domain generalization approach, Empirical Risk Minimization (ERM) (Vapnik et al.,
1998)), and various continual TTA methods (Wang et al., 2022; |Dobler et al.L [2023; | Yuan et al.,[2023)).
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Table 1: Distinguishing between Continual TTA and our Lifelong Continual Adaptation setting
(LCA). The goal of Continual TTA is to preserve model performance from degrading on sequential
domain shifts by learning from unseen domains during test time, while the goal of LCA is to achieve
stable and high performance on realistic domain distributions by retrieving knowledge for each
encountered seen domain during deployment.
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Figure 1: This paper considers a scenario where a model operates in data streams featuring se-
quential and recurring domains. Different colors represent different domains. The Deployment part
illustrates the continual adaptation workflow of the proposed prompt generation method at deploy-
ment time. The training process is illustrated in Figure @

In our findings, ERM achieves only moderate performance due to its lack of domain adaptation when
encountering sequential domain shifts. Conversely, continual TTA approaches endeavor to adapt to
different sequential domains by optimizing model parameters using manual-crafted self-supervised
training objectives. However, these methods present two primary drawbacks. First, the optimization
of model parameters demands substantial computational and memory resources, rendering deploy-
ment on resource-constrained devices impractical (Bommasani et al.,2021). Even worse, the recent
trend of scaling laws in foundation models exacerbates the issue (Kaplan et al.,[2020). Second, our
empirical results, as presented in Table [4] reveal that optimization-based continual TTA methods
exhibit significant instability, impeding their capability to adapt to long-term recurring domains.

Alternatively, as a paradigm of parameter-efficient fine-tuning, prompt tunning (Zhou et al., [2022b;
Jia et al.| 2022)) can guide foundation models to adapt to downstream tasks by optimizing only the
learnable prompt vectors prepended to the input space, while maintaining the rest of the model
frozen. Inspired by this paradigm, we propose a prompt generation framework that enables vision
foundation models, such as CLIP (Radford et al., [2021)), to adapt to long-term sequential domains
under the resource-constrained scenario. Specifically, we introduce a diffusion model as a domain
prompt generator, directly sampling a domain prompt through an iterative denoising process con-
ditioned on incoming batches of data examples from each specific domain. The training of the
diffusion-based prompt generator is decomposed into two stages: prompt collection and diffusion
training. The primary objective of the prompt collection stage is to encapsulate the prompt distri-
bution of each training domain through a set of learnable prompt samples, wherein domain-specific
knowledge is presumed to be encoded within each domain’s prompt distribution. During the diffu-
sion training stage, we train a conditional latent diffusion model using the collected prompt samples
from each specific domain. This model aims to generate domain-specific prompts from Gaussian
noise, conditioned on mini-batch data from that domain. The principal advantage of employing a
diffusion-based generative approach to represent domain-specific knowledge lies in its robustness
compared to discriminative counterparts, as it learns the distribution of domain prompts rather than
relying on a single domain prompt. In addition, directly generating a domain prompt without prompt
tuning alleviates gradient backpropagation, leading to significant resource efficiency during adapta-
tion.

Our work makes three contributions. First, we introduce a novel problem setting for continual do-
main adaptation, known as Lifelong Continual Adaptation, which emphasizes the evaluation of long-
term sequential, recurring, and in-distribution domains in real-world scenarios. Second, we propose
a framework that formulates the continual adaptation process as generating a sequence of domain-
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specific prompts to guide the foundation model for domain adaptation, utilizing a diffusion-based
generative approach. Diffusion models have shown success in generating inputs (e.g. images (He
et al., 2023)), outputs (e.g. bounding boxes (Chen et al., |2023), semantic labels (Tan et al.| 2022)),
and neural network parameters (Erkog et al.| 2023). Our work is the first to show that diffusion
models can also be used to generate prompts in continual adaptation. Finally, we conduct extensive
experiments to demonstrate the superiority of the proposed method compared with various baselines.

2 RELATED WORK

Prompt tuning and adaptation Prompting (Petroni et al.,|2019; |Brown et al., 2020} Lester et al.,
2021; [Li & Liang} 2021} [Liu et al., 2021} [Yao et al., 2023} Zhu et al., |2023) has emerged as a
crucial technique for enhancing the performance of pre-trained models in various downstream tasks.
Radford et al.|(2021)) introduces CLIP, a powerful vision-language model which uses textual prompts
to guide image classification. Following this, CoOp (Zhou et al., 2022b) proposes to adapt CLIP
by learning textual prompts on the text encoder. CoCoOp (Zhou et al., |2022a) extends CoOp by
conditionally tuning to improve performance. VPT (Jia et al.,[2022) introduces fine-tuning prompts
on Vision Transformers (Dosovitskiy et al.|[2021) to adapt to downstream tasks.

Continual adaptation Some work (Hoffman et al. [2014; Wulfmeier et al. [2018; [Volpi1 et al.
2021;|Liu et al., 2020; |Kumar et al.,2020) considers an evolving domain adaptation where the target
domain evolves over time. A line of recent research known as continual Test-Time Adaptation
(TTA) focuses on continually adapting a source model to target unseen sequential domains (Wang
et al.l 2022). These methods are mainly based on a teacher-student self-training framework and
utilize source prototype pulling (Dobler et al., 2023)) and resampling (Yuan et al., | 2023)) strategies to
improve stability. The LCA setting in our work differs from continual TTA in its focus. Continual
TTA aims to prevent performance degradation across sequential domain shifts by learning from
unseen domains during test time. In contrast, LCA focuses on achieving stable and high performance
by retrieving knowledge for each encountered seen domain during deployment.

Continual learning Continual learning addresses catastrophic forgetting, the performance degra-
dation on old tasks when learning new ones (Wang et al.l |2024b). Domain incremental learning, a
subset of continual learning, involves sequential domains and aims to balance performance across
old and new domains (Mirza et al.,[2022; Shi & Wang| 2023)). In contrast, LCA focuses on retrieving
and utilizing knowledge of an old domain during test time, without learning new domains.

Diffusion-based generation Denoising Diffusion Probabilistic Models (DDPM) have garnered
significant attention for their ability to produce high-quality data through a process of iterative de-
noising (Ho et al.,2020; |Luol [2022; Rombach et al.,[2022; Dhariwal & Nichol, 2021} |Peebles & Xiel,
2023}, |Croitoru et al., [2023)). Several studies employ diffusion models for data augmentation (He
et al., 2023} [Trabucco et al., |2024)), and these models are also explored for classification tasks (L1
et al., 2023} Du et al., [2023} |[Prabhudesai et al., 2023). Furthermore, recent research investigates
the application of diffusion models for generating neural network weights (Erkoc et al., 2023} [Nava
et al.} 2023; |Wang et al., [2024a). Some work also utilizes diffusion models to generate bounding
boxes for object detection (Chen et al., [2023) and to enhance the quality of semantic segmenta-
tion (Tan et al., [2022)).

3 METHODOLOGY

We propose a diffusion-based prompt generation method to achieve stable and high-performance
deployment of a foundation model on practical data streams involving sequential and recurring do-
mains. Section introduces the preliminaries of the problem definition and diffusion models.
Section [3.2] describes the training of our method prior to deployment. Section [3.3] introduces the
condition module within our method. Finally, Section [3.4] covers the deployment of our method.

3.1 PRELIMINARY

3.1.1 PROBLEM DEFINITION

Let Dy, Ds, ..., D, represent different domains, each with a corresponding training set D" and
a test set D, During training, the model has access to the training sets {D{*"}7_; from these
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multiple domains. During deployment, the model encounters test sets from these domains in a
sequential and recurring manner. Let S = {D;,Ds,...,D,} represent the sequence of domains.
The test stream presents this sequence of domains, which recurs r times, as represented:

Stest — {(DieSt, Déest’ el D;Slest)l’ (Diliesit7 l)éest7 el foSt)g, . (DiCSt, DEGSt, . D;‘,Lest)r}

()
Specifically, the model performs adaptation and inference on the data examples from each domain
D', We use the classification accuracy A, ; as the evaluation metric, corresponding to the perfor-
mance on the ¢-th domain during the j-th recurrence. In addition, we calculate the mean accuracy
over the entire data stream as follow:

T n

- 1
A= — A; . 2
—> D Aij )

j=11i=1

3.1.2 DIFFUSION MODELS

Diffusion models are a sophisticated class of generative models that have shown remarkable capabil-
ities in generating high-quality synthetic data. The core principle behind diffusion models involves a
process known as the forward and reverse diffusion processes (Ho et al.|[2020; |Luo, 2022; Rombach
et al., [2022).

Forward diffusion The original data is gradually noised in forward diffusion. Specifically, for
data x( sampled from the real distribution ¢(x), the forward diffusion ¢(x1.7|xo) is a process of
adding noise to the data with a Markov chain of T" steps of g(@|x;_1), at each of which Gaussian
noise with variance f; is added:

T
g(@rrlzo) = [ [ a(ailio1), where g(ai|azi_1) = N (@e; e = /1 = Brs—1, B4 = BI), (3)
t=1
where p and ¥ are the mean and variance, and I is the identity matrix.

Reverse diffusion The forward process adds noise incrementally until 7 resembles isotropic
Gaussian noise. Consequently, we can sample a 7 from a Gaussian distribution A/(0,I) and
conduct a reverse diffusion to generate a sample © ~ ¢(x). Because q(x:_1|x+) is intractable to
compute, we use a neural network py parameterized with 6 to approximate it:

T
po(zo.T) = po(@T) H (ze—1|ze), where po(@i_1|@:) = N(@i—15 po(T1, 1), To (21, 1)), (4)

where g and ¥y are the predicted Gaussian parameters by the diffusion model.

The training of the diffusion model involves the optimization of the negative log-likelihood of the
training data. A simplified version of the evidence lower bound is typically used as the objective
function:

L= E’mo,t,GNN(O,I) “|€ - 60(\/57751"0 + V1 — e, t)HQ] ) &)

where a; = 1 — 3 and oy = szl Qs; €p 1s the neural network used to predict the noise € at each
time step ¢.

3.2 OVERVIEW OF TRAINING

There are two stages during the training of our method: prompt collection and diffusion training, as
illustrated in Figure[2] In the prompt collection stage, we train a base model with trainable prompts
using the training sets of different domains to collect prompt samples. In the diffusion training stage,
we train a diffusion model with the collected prompt samples for prompt generation at deployment
time.
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Figure 2: Overview of training. The training of our method involves two stages: prompt collection
(left) and diffusion training (right). In the prompt collection stage, a base model with trainable
prompts is trained using the training sets from different domains to collect prompt samples. In
the diffusion training stage, these collected prompt samples are used to train a conditional latent
diffusion model for prompt generation at deployment time. The deployment process is illustrated in

Figure/[l}

Prompt collection We employ the foundation model CLIP (Radford et al., 2021) as the base
model. Upon it, we adopt trainable textual prompts (Zhou et al.,[2022b) to realize adaptation for the
model. On each training set of domains {D{*™}?_,, we train the base model using the cross-entropy

loss function:
exp(cos(F,T,)/T)

C b
Zj:l exp(cos(F, Ty)/7)
where F’ is the image encoder output; T is the text encoder output for the j-th class out of C classes;
cos(+, -) denotes the cosine similarity, and 7 is a temperature parameter. Only the prompt is tunable
while the whole CLIP model is frozen. For each domain, we collect a set of fitted prompts from
different epochs, expressed as:

P=A{Pp|k=1,2,....,n}, where P,={pr;lji=12,...,m}, (7)

Lcg = —log (6)

where m is the number of prompt samples for each domain.

Diffusion training After collecting the prompt samples, we train a conditional latent diffusion
model with them to learn the prompt-space distribution among different domains. We first train
an unconditional denoising autoencoder f,. to translate the prompts P to a low-dimensional latent
space. It is optimized using a reconstruction loss:

1 B
=1

where p; represents the i-th prompt in a batch; £ is the random noise added to the input and the
latent space; fq(p;, &) is the reconstructed prompt from the autoencoder with added noise, and B
is the batch size. The latent space aids in efficient and stable training (Rombach et al., [2022).

Under the latent space, we train an image-conditioned diffusion model using the prompt samples
and training images. This process can be expressed as:

6 =0 —+Vy|le—es (Varo + VI —aze, t,C(X™) || )

Here, vy is the latent representation of the prompts, and C is the designed condition module used to
encode images into conditions, which will be described in Section X' represents the training
images from the corresponding domain associated with vg. v is the learning rate.
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3.3 FEATURE DISTRIBUTION AS CONDITION

The condition module is designed to perceive domains in order to provide conditions that are sensi-
tive to different domains. Inspired by discussions on the relationship between domains and feature
distribution in the field of domain adaptation, we recognize that domain shifts result in varied fea-
ture distributions extracted by discriminative models. A line of research focuses on overcoming this
issue by forcing models to extract similar feature distributions from images of different domains to
achieve domain adaptation (Ganin et al.,|2016;|Ganin & Lempitskyl 2015;|Sun & Saenkol 2016). In
this work, however, we exploit this characteristic within the condition module; in other words, we
use feature distributions as conditions.

Concretely, we employ a pre-trained image encoder from CLIP in the condition module. It produces
features F' from the incoming batch of images from streams. Afterward, we compute the distribution
statistics for the batch of features, adopting the mean and standard deviation as follows:

(10)

where c is the batch size of images. We concatenate the mean and standard deviation as concat[u, o]
to serve as the conditions to be input to the diffusion model.

3.4 IMAGE-CONDITIONED PROMPT GENERATION

At deployment time, as shown in Figure[T} we sample prompts conditioned on batches of test images
from test streams using the trained diffusion model through the reverse diffusion process:

1 l—oy test
Vi1 N <vt m@(vt,LC(X ))) +oz, t=T,...,1, (11)
where vr and z are random noise sampled from A(0, I'); o; comes from the noise schedule used
in the forward diffusion process, and X' represents the test images. The generated prompts are
assigned to the base model to adapt it to the current domain.

4 EXPERIMENTS

In this section, we provide a detailed evaluation of our proposed DiffPrompt. We begin by describing
the datasets used (@.1) and the experimental setup (4.2). Next, we discuss the baselines against
which our method is compared and provide implementation details to ensure reproducibility
(@.4). Following this, we present the results of our experiments (4.5), demonstrating the efficacy of
our approach. Finally, we conduct ablation studies (#.6) to verify whether DiffPrompt functions as
intended.

4.1 DATASETS

We include two datasets in the experiments, DomainNet (Peng et al., 2019) and ImageNet-C (Croce
et al.| 2021)), which are widely used in domain adaptation and test-time adaptation tasks.

DomainNet The dataset contains 6 domains: Clipart (clip), Infograph (info), Painting (paint),
Quickdraw (quick), Real (real), and Sketch (sketch). It has 345 classes and is naturally class-
imbalanced in each domain. We follow the official split to organize the training and test sets for
each domain.

ImageNet-C This dataset is derived by applying various corruptions to the images in the valida-
tion set of ImageNet. There are 4 categories of corruptions (weather, noise, blur, digital) aimed at
mimicking a range of natural environmental conditions that may be encountered during deployment.
Following the RobustBench benchmark (Croce et al., 2021]), we adopt 15 corruption domains, in-
cluding brightness (bri), frosted glass (gla), JPEG compression (jpe), contrast (con), defocus blur
(def), impulse noise (imp), motion blur (mot), snow (sno), zoom blur (zoo), frost (fro), pixelation
(pix), gaussian noise (gau), elastic transformation (ela), shot noise (sho), and fog (fog). Similar
to the split of DomainNet, we adopt a 70%/30% split to obtain the training and test sets for each
domain.



Under review as a conference paper at ICLR 2025

4.2 EXPERIMENTAL SETUP

The experimental setting mimics a practical scenario where a model is deployed in data streams
featuring sequential and recurring domains. It has two primary conditions. Firstly, a sequence of
domains is presented in streams, which is the same setup as recent continual TTA works (Song
et al., 2023; Dobler et al., |2023), with associated experimental results detailed in Tables [2] and
Secondly, the sequence of domains in the first condition recurs in streams. We set the number of
recurring times to 15, and the associated results are shown in Tables E] and E} For all methods, we
use the same base model, which is the ‘ViT-B/16’ version of the CLIP model. All methods follow
the paradigm of prompt tuning, where only the prompt is updated while CLIP’s model parameters
remain frozen. The batch size is uniformly set to 64.

4.3 BASELINES

We include 5 baseline methods in the comparative experiments: Zero-shot, Empirical Risk Mini-
mization (ERM), two fully test-time adaptation methods: TENT (Wang et al., [2021) and SAR (Niu
et al., |2023), and three recent continual test-time adaptation methods: RMT (Dobler et al., [2023)),
CoTTA (Wang et al.,[2022)), and RoTTA (Yuan et al.| 2023)).

Zero-shot Zero-shot means that we use the base model, a pre-trained CLIP model, to be directly
evaluated on the test data streams. The prompt applied to the text encoder is the commonly used
template ”a photo of a [CLASS]”.

ERM In this baseline, the CLIP model is trained with the training sets of all domains. The textual
prompt is trainable while the CLIP model itself is frozen, as in CoOp (Zhou et al., 2022b)). The
initialization of the prompt is the template ~’a photo of a [CLASS]”. The training recipe is consistent
with that in the prompt collection stage of our method. After training, the model with the trained
prompt is evaluated on the test streams.

TENT TENT employs an entropy minimization loss to increase prediction confidence on test data,
enabling adaptation during test time.

SAR SAR applies entropy minimization loss to filtered, reliable samples and further reduces the
sharpness of the entropy.

CoTTA This method uses a teacher-student self-training framework, where the student model is
continually trained with the data in streams and pseudo labels from the teacher model. The teacher
model is updated by an exponential moving average of the student weights, and it produces the
pseudo labels with test-time augmented input data. In the continual test-time adaptation setting, the
method continually optimizes a source model in the streams of sequential target domains. In our
experiments, for consistency with other baselines and our method, this method is evaluated starting
from the ERM-trained model in streams.

RMT The method adopts a similar teacher-student self-training framework as CoTTA while fur-
ther introducing a contrastive learning method with computed source prototypes and a source replay
strategy. In our experiments, we also use the ERM-trained model as the initialization for this method.
We use the training sets to compute the prototypes and conduct the source replay. Due to mem-
ory constraints, we do not include the evaluation of this method on the ImageNet-C dataset (1000
classes) because it needs to simultaneously keep two computational graphs for backpropagation for
two losses associated with two different inputs.

RoTTA RoOTTA is also based on a teacher-student self-training framework while it introduces a
resampling approach to enhance stability and performance in online streams. We also evaluate the
method using the ERM-trained base model.

4.4 IMPLEMENTATION DETAILS

In the prompt collection stage, we train the base model for 100 epochs on the training sets of each
domain, respectively. Similar to |[Wang et al.| (2024a)), we collect one prompt sample per epoch
during the last 80 epochs, resulting in a total of 80 prompt samples per domain. We use the SGD
optimizer with a learning rate of 0.003, a momentum of 0.9, and a weight decay of 0.0003. To
prevent overfitting, a cosine learning rate scheduler with a warmup period of 2 epochs is applied.

In the diffusion training stage, we use a denoising autoencoder for the latent space, following the
architecture in [Wang et al.| (2024a). For the diffusion model, we adopt an architecture similar to
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Table 2: Continual adaptation on test sets of 6 sequential domains in DomainNet. Continual TTA
methods are evaluated using the ERM-trained model, with accuracy represented by the numbers.
Some continual TTA methods only maintain the performance of the base model, similar to ERM,
while our method demonstrates better deployment performance.

Method clip info paint quick real sketch Mean
Zero-shot  71.0 47.6 66.2 13.9 83.7 63.5 57.7
ERM 75.3 55.6 72.3 25.5 85.9 68.0 63.8
TENT 754 £001 53.6 4£0.02 69.5 £0.04 1.8 +0.05 84.4 4002 504 +£180 55.9 +0.30
SAR 75.0 £003  53.5 £009 69.8 £007 11.7 £084 85.0 £0.17 65.1 £040 60.0 £0.19
CoTTA 75.3 £003 554 4002 7224006 23.4 +058 8544028 67.2+037 63.2 £0.22
RMT 74.7 018  55.0 £0.15 70.8 £035 20.0 £1.76 85.9 +0.16 67.6 £041  62.4 +0.48
RoTTA 754 £005 55.54005 72.1 £008 22.6 +£124 8554022 67.5 4030 63.1 £0.30
Ours 79.6 £006 58.9 +023 75.8 £069 30.1 +0.14 87.7 +048 71.5 +050 67.3 £0.29

Table 3: Continual adaptation on test sets from 15 sequential domains in ImageNet-C. Continual
TTA methods are evaluated using the ERM-trained model. The numbers represent accuracy.

Method bri gla jpe con def imp mot sno zoo fro pix gau ela sho fog Mean
Zero-shot  53.0 15.1 32.1 21.6 23.1 14.6 24.1 28.1 22.0 28.5 32.3 15.2 13.2 15.7 38.1 25.1
ERM 57.6 19.9 36.7 26.7 27.7 20.2 29.4 33.4 26.8 33.4 38.4 20.3 18.6 20.2 43.2 30.2
TENT 467 55 06 02 01 02 01 01 01 02 01 01 01 01 01 3.6

£004 £023 £001 £002 £0.00 £001 £0.00 000 001 2002 2000 000 +000 +000 £001 +00!
CoTTA 46.1 12.9 28.2 19.7 19.9 12.7 20.4 23.7 18.0 23.8 26.7 12.5 10.1 12.6 31.4 21.3
£0.04 £0.03 £0.06 £0.07 £0.10 £007 £0.10 £0.10 £021 +023 £034 £0.16 £0.12 £039 £0.19 £0.13
RoTTA 46.2 13.2 28.9 20.5 20.9 13.8 20.9 24.3 18.6 23.8 26.7 12.7 10.4 12.7 30.0 21.6
003 £0.18 £028 +£045 £041 £047 £022 £026 +0.14 £025 £035 £0.15 £0.06 +040 £090 £0.07

Ours 60.8 21.0 38.4 27.9 28.3 20.9 30.5 354 28.3 34.6 39.4 20.4 22.0 20.8 45.5 31.6
40.00 +0.00 £0.05 +0.05 +0.00 £0.05 +0.05 +£0.04 £0.00 +0.05 +0.05 +0.00 +0.04 +0.05 0.00 +0.01

Stable Diffusion (Rombach et al.l [2022)), but we scale down the model complexity considering the
prompt data scale and add linear layers at both the beginning and end to fit the input and output to a
1D latent space. We use a linear Beta scheduler with Sy, = 0.0001, SBeng = 0.02, and 1000 steps.
For this stage, we use the AdamW optimizer (Loshchilov & Hutter, 2019) with a weight decay of
2e-6 and a learning rate of 0.003. Both stages can be performed on a single GPU with 20GB of
memory. The code will be available online.

4.5 RESULTS

On sequential domains Tables [2] and [3] present the results of continual adaptation on sequential
domains for DomainNet and ImageNet, respectively. We perform multiple runs with five different
random seeds for the evaluation. In Table 2} TENT and SAR degrade the performance of the ERM-
trained model in the stream under the prompt-tuning paradigm. Regarding continual Test-Time
Adaptation (TTA) methods, CoTTA and RoTTA retain stable performance, aligning with the ERM-
trained model. Although these methods can improve performance from the source to the target
domain by learning from test-time data of unseen domains, they do not further enhance performance
on sequential domains seen by the ERM-trained model. Continual TTA methods focus on learning
from unseen domains to prevent model degradation while overlooking performance gains in in-
distribution deployment. In contrast, our method demonstrates better deployment performance than
the ERM baseline by 3.6%. In Table [3] the continual TTA methods fail to maintain performance
with the base model, while our generative expert prompts result in a 1.4% improvement over the
ERM-trained prompt.

On long-term recurring streams  Tables [ and [5| present results of continual adaptation on long-
term sequential and recurring domains for DomainNet and ImageNet, respectively. Here, the do-
main sequence recurs 15 times. Since each domain is repeated multiple times with different random
seeds, we conduct the long-term evaluation only once. CoTTA and RoTTA lead to gradually de-
graded performance along the recurring episodes. RMT presents stable accuracy approaching that
of the ERM-trained model, benefiting from the training prototype pulling. Meanwhile, our method
showcases stability with the recurring domain sequence and performs better than the ERM baseline.
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Table 4: Continual adaptation on a recurring 6-domain sequence in DomainNet, repeated 15 times.
Continual TTA methods are evaluated using the ERM-trained model, with the numbers representing
accuracy. While the following continual TTA methods show gradual degradation over the recurring
sequences, our method demonstrates stability.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean
Zero-shot  57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7 57.7

ERM 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8
CoTTA 63.6 63.0 62.5 62.0 61.7 61.4 61.2 61.0 60.8 60.6 60.4 60.3 60.1 60.0 59.8 61.2
RMT 61.4 619 62.2 62.4 62.5 62.6 62.7 62.7 62.8 62.8 62.9 62.9 62.9 62.9 629 62.6
RoTTA 63.7 63.0 62.1 60.9 59.5 57.6 55.5 53.3 50.9 48.5 46.2 44.0 42.2 40.6 39.1 525
Ours 67.2 67.1 67.1 66.9 67.2 67.1 67.0 67.2 66.9 67.1 67.3 67.3 67.1 67.2 67.2 67.1

Table 5: Continual adaptation on a recurring 15-domain sequence in ImageNet-C. The sequence
recurs 15 times. Continual TTA methods are evaluated using the ERM-trained model. The numbers
represent accuracy.

Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Mean

Zero-shot  25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1 25.1
ERM 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2 30.2
CoTTA 21.5 21.3 20.7 20.0 19.1 18.3 17.5 16.8 16.1 154 14.8 14.2 13.7 13.2 12.7 17.0
RoTTA 21.6 21.4 199 18.6 17.7 169 163 15.7 152 14.7 143 139 13.6 13.2 129 164
Ours 31.6 31.6 31.5 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6

4.6 ABLATION STUDIES

Does the condition module perceive different domains? The condition module is designed to
perceive different domains so that it can produce conditions from images to guide the diffusion
process in a domain-aware manner. To verify this, we visualize the output conditions of the condi-
tion module fed with test images from different domains. As shown in the t-SNE visualization in
Figure the conditions from test images of different domains present a visually distinguishable
distribution, which proves the domain-aware ability of the condition module.

Are the image-conditioned generative prompts domain-specific? The generative prompts con-
ditioned on the incoming batch of images are expected to be domain-specific and tailored to the
current domain. To verify this, we conduct an inter-domain-condition experiment. In this experi-
ment, we test the generative prompts conditioned on images from one domain across the sequential
domain streams. As shown in Figure [3b] each colored line represents a different domain of images
that the prompt generation is conditioned on. The names surrounding the circles indicate the test do-
mains. It can be observed that, for each test domain, the generative prompts conditioned on images
from the same domain exhibit the best performance compared to those conditioned on images from
other domains. This demonstrates that the generative prompts are domain-specific and well-suited
for the encountered domain.

Table 6: Hypernetwork VS. Diffusion model. As a discriminative model, the hypernetwork baseline
fails to model prompt distribution, leading to worse performance than the diffusion method.

Method clip info paint quick real sketch Mean

Hypernetwork 65.7 46.6 599 128 772 60.1 53.7
Diffprompt 79.6 589 758 30.1 87.7 715 67.3

What if a hypernetwork replaces the diffusion model for prompt generation? We replace the
diffusion model with a custom hypernetwork baseline. Specifically, the hypernetwork uses CLIP’s
image encoder as the backbone and a linear layer to generate the prompts. Following the similar
training recipe described in Section [3.2] we present the results on DomainNet in Table [6] As a
discriminative model, the hypernetwork baseline fails to model the prompt distribution from the
collected prompts, leading to inferior performance compared to the diffusion-based method.
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Figure 3: (a) Visualization of the conditions produced by the condition module. (b) Performance of
inter-domain-conditioned generative prompts on sequential domain streams. Different colors in the
legend indicate different domains of condition images.

Table 7: Comparison of GPU memory usage, computation cost, and model size. DiffPrompt demon-
strates efficiency in both memory usage and computation cost.

Method Memory  Computation cost Model size
TENT 12.6 GB 12.3 TFLOPs 523.5 MB
CoTTA 15.5GB 29.0 TFLOPs 523.5 MB
RoTTA 143 GB 29.0 TFLOPs 523.5 MB
RMT 24.4 GB 45.3 TFLOPs 523.5 MB

DiftfPrompt 3.4 GB 9.9 TFLOPs 523.5+183.1 MB

Computation resources. We compare the proposed method with the baselines in Table [/l We
use PyTorch Profiler to record GPU memory usage, computation cost with a batch size of 64 on
DomainNet, and compute the model size. Specifically, the GPU memory and computation cost
account for operations during adaptation and inference at test time. As a result, DiffPrompt has
lower memory and computation consumption because prompt generation does not involve gradient
backpropagation, despite the 1000 denoising steps in the diffusion model’s inference. In contrast,
the optimizer-based baselines require calculating the gradient of each CLIP parameter, and their
total cost would continue to increase as CLIP scales up. Additionally, a drawback of DiffPrompt is
its model size, as it requires saving an extra diffusion model for prompt generation beyond the CLIP.

5 LIMITATION AND DISCUSSION

In this work, the setting does not include the domain generalization problem, where a model learns to
generalize to an unseen domain from seen domains. The proposed prompt generation method learns
a prompt-space distribution from the training sets of seen domains, without the aim of generalizing
to the distribution of an unseen domain. Therefore, experiments show that generative prompts condi-
tioned on images of an unseen domain only result in moderate performance similar to the zero-shot
method. On the other hand, in Stable Diffusion (Rombach et al., [2022)) for image generation, the
diffusion model is trained with a wide range of conditions, while in our case, the model is trained
with image conditions from only limited domains. This is a reason why this work does not primarily
consider the generalization problem.

6 CONCLUSION

In this paper, we introduce Lifelong Continual Adaptation, which enables models to efficiently re-
trieve domain-specific knowledge when encountering sequential and recurring in-distribution data
streams. For this realistic setting, we propose a novel prompt generation method that leverages a
diffusion model to learn a prompt-space distribution for domains. During deployment, it generates
domain-specific prompts conditioned on incoming images to adapt foundation models. We demon-
strate that our generative prompts enhance model performance in practical data streams compared
to baselines. Future work could explore integrating more diverse conditions into the prompt-space
diffusion model training to improve generalization across unseen domains.
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