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Figure 1: Overview of MRSAudio. The dataset comprises four real-world scenarios: MRSSpeech,
MRSLife, MRSMusic, and MRSSing, each with multimodal annotations for spatial audio research.

Abstract

Humans rely on multisensory integration to perceive spatial environments, where
auditory cues enable sound source localization in three-dimensional space. Despite
the critical role of spatial audio in immersive technologies such as VR/AR, most
existing multimodal datasets provide only monaural audio, which limits the devel-
opment of spatial audio generation and understanding. To address these challenges,
we introduce MRSAudio, a large-scale multimodal spatial audio dataset designed to
advance research in spatial audio understanding and generation. MRS Audio spans
four distinct components: MRSLife, MRSSpeech, MRSMusic, and MRSSing,
covering diverse real-world scenarios. The dataset includes synchronized binaural
and ambisonic audio, exocentric and egocentric video, motion trajectories, and
fine-grained annotations such as transcripts, phoneme boundaries, lyrics, scores,
and prompts. To demonstrate the utility and versatility of MRSAudio, we establish
five foundational tasks: audio spatialization, and spatial text to speech, spatial
singing voice synthesis, spatial music generation and sound event localization and
detection. Results show that MRSAudio enables high-quality spatial modeling and
supports a broad range of spatial audio research. Demos and dataset access are
available at https://mrsaudio.github.io.
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1 Introduction

Humans rely on multisensory integration to perceive and interpret physical environments. With the
rapid growth of film, virtual reality (VR), augmented reality (AR), and gaming applications, users
increasingly expect not only precise audiovisual alignment but also highly immersive experiences.
While recent advances in deep learning have enabled realistic generation of speech, music, and sound
effects synchronized with text or video (Kreuk et al.,|2022; | Yang et al., 2023} Wang et al., |2024])), most
models focus on monaural audio and neglect spatialized soundscapes that enhance immersion. The
human binaural system uses interaural time differences (ITD) and interaural level differences (ILD) to
localize sound in three-dimensional space, and spatial audio must remain consistent with visual cues
(Yost, |1998];|Cohen & Knudsen| |1999; |Grothe et al., 2010). Any mismatch can disrupt immersion and
weaken the sense of presence. For example, hearing a cat’s meow from the left immediately suggests
its location, even if it is just off-screen.

Despite the growing importance of spatial audio in these immersive technologies(Xiel, 2020; [Huiyu
et al.| [20235)), progress in machine learning for spatial audio understanding is limited by the fundamen-
tal spatial data constraints. Most existing audio datasets(Gemmeke et al.,[2017; |Chen et al., [2020;
Agostinelli et al.| [2023)) focus on monaural recordings, which discard vital spatial information, effec-
tively "flattening” the soundscape and preventing models from learning key physical phenomena such
as room reverberation, echo patterns, and sound propagation. Moreover, the scarcity of multimodal
datasets that align spatial audio with synchronized visual, position geometric, and semantic annota-
tions hinders the development of advanced auditory scene-analysis systems capable of human-like
spatial perception.

To address these gaps, we present MRSAudio, a 484-hour large-scale multimodal spatial audio
dataset designed to support both spatial audio understanding and generation. It integrates high-fidelity
spatial recordings with synchronized video, 3D pose tracking, and rich semantic annotations, enabling
comprehensive modeling of real-world auditory scenes. As shown in Figure|l| the dataset comprises
four subsets, each targeting distinct tasks and scenarios. MRSLife (129 h) captures daily activities
such as board games, cooking, and office work, using egocentric video and FOA audio annotated with
sound events and speech transcripts. MRSSpeech (206 h) includes binaural conversations from 44
speakers across diverse indoor environments, paired with video, 3D source positions, and complete
scripts. MRSSing (80 h) features high-quality solo singing performances in Chinese, English,
German, and French by 20 vocalists, each aligned with time-stamped lyrics and corresponding
musical scores. MRSMusic (69 h) offers spatial recordings of 23 Traditional Chinese, Western and
Electronic instruments, with symbolic score annotations that support learning-based methods for
symbolic-to-audio generation and fine-grained localization. Together, these four subsets support a
broad spectrum of spatial audio research problems, including event detection, sound localization, and
binaural or ambisonic audio generation. By pairing spatial audio with synchronized exocentric and
egocentric video, geometric tracking, and detailed semantic labels, MRSAudio enables new research
directions in multimodal spatial understanding and cross-modal generation. Throughout this paper,
unless stated otherwise, we use the term spatial audio to refer to binaural audio.

* We introduce MRSAudio, a 484-hour, large-scale multimodal spatial audio dataset explicitly
designed to push the boundaries of spatial audio understanding and generative modeling.

* We assemble synchronized binaural and ambisonic recordings with exocentric and egocentric video,
geometric source positions, transcripts, scores, lyrics, and event labels, providing one of the most
richly annotated multimodal resources for spatial audio research.

* We organize the data into four complementary subsets (MRSLife, MRSSpeech, MRSSing, MRSMu-
sic), each carefully tailored to different real-world acoustic scenarios and equipped with rich,
scenario-specific annotations to facilitate downstream task development.

* We establish and release evaluation protocols and baseline implementations for five benchmark
tasks: audio spatialization generation, spatial text-to-speech, spatial singing voice synthesis, spa-
tial music generation, and localization and detection of sound events, in order to demonstrate
MRSAudio’s versatility and to foster reproducible research.

The remainder of this paper is organized as follows. Section [2]reviews existing spatial audio datasets.
Section [3]describes the design, collection process, and key statistics of MRSAudio. Section ] presents
extensive benchmark experiments using state-of-the-art methods on five core spatial audio tasks:



audio spatialization, spatial text-to-speech, spatial singing voice generation, spatial music synthesis,
and sound event localization and detection. Finally, Section [5|concludes the paper and discusses the
limitations and potential risks associated with MRS Audio.

2 Related Work

Deep learning has driven remarkable progress in both audio generation (Huang et al.,[2023a; | Yang
et al., [2023} [Kreuk et al.| |2022) and audio understanding (Chu et al.| [2023] [Huang et al., |2023b; |Tang
et al., 2024) tasks. However, the majority of these advances still rely heavily on monaural audio,
which lacks the ability to represent or capture the rich spatial cues that naturally occur in real-world
environments. The rapid adoption of VR/AR technologies has concurrently driven growing demand
for immersive spatial audio experiences. Researchers have focused on several key technologies
including: sound event localization and detection (Adavanne et al.|2019;|Wang et al.||2022)), mono-
to-spatial audio conversion (Gao & Grauman) 2019; |Pedro Morgado & Wang, [2018)), and end-to-end
spatial audio generation (Sun et al.| 2024} Kim et al.| [2025; Liu et al., 2025)).

Despite recent progress, spatial audio generation and understanding remain constrained by the paucity
of high-quality datasets. Due to the difficulty and expense of collecting and annotating high-quality
spatial audio datasets, most open-source datasets still primarily consist of simulated or web-crawled
content. Simulated datasets offer precise annotations but lack perceptual realism, while crawled
datasets often provide real-world diversity but are missing critical labels, such as listener and source
positions and content-level annotations, thus limiting their utility. For instance, spatial symbolic
music generation demands accurate musical scores and corresponding positional metadata. To better
understand the current landscape, we survey existing spatial audio datasets. These datasets differ in
terms of audio format, including First-Order Ambisonics (FOA), multi-channel arrays, and binaural
microphones, as well as in their collection methods (simulated, crawled, recorded) and annotation.

Table 1: Comparison of spatial audio datasets, where T denotes speech transcripts, P represents sound
source positions, N indicates natural language prompts, and C stands for sound class tags

Audio Format . Label
Dataset FOA  Multi  Binaural Collect Hours | Type | Visual T P N C
Spatial LibriSpeech v v X Simulated 650 Speech - o/ X X
YT-Ambigen v X X Crawled 142 ALL Video | X X X X
BEWO-IM X X v Craw+Sim | 2800 ALL Image | X X V X
FAIR-Play X X v Recorded 52 Music | Video | X X X X
STARSS23 v v X Recorded 7.5 ALL Video | X vV X /
BinauralMusic X X v Crawled 15.2 Music | Video | X X X /
RealMAN X v X Recorded | 228.2 | Speech | Image | vV vV X X
Sphere360 4 X X Crawled 288 ALL Video | X X X X
MRSAudio (Ours) v X v Recorded 484 ALL Video |V v V V

As shown in Table [I] existing datasets vary in their goals and modalities. For instance, Spatial
LibriSpeech (Sarabia et al.,[2023) simulates spatial speech using the LibriSpeech corpus and is mainly
intended for binaural TTS applications. RealMAN (Yang et al.| 2024)) is a large-scale real-recorded
and annotated 32-channel microphone array dataset for multichannel speech enhancement and source
localization. YT-Ambigen (Kim et al., 2025) and Sphere360 (Liu et al., 2025) are derived from
web-crawled video datasets, but lack explicit spatial annotations, making them suitable primarily for
video-to-spatial audio generation. BinauralMusic focuses on musical content, offering instrument
class tags. BEWO-1M (Sun et al.,2024) combines crawled content and simulated binaural rendering,
and provides image or GPT-generated prompts. STARSS23 (Shimada et al.||2023) features real-world
FOA and multi-channel audio alongside synchronized videos and includes sound class and position
labels. In contrast to prior datasets, MRS Audio offers a comprehensive, large-scale, and real-world
spatial audio corpus, featuring 484 hours of recorded data in both FOA and binaural formats, covering
all audio domains including general audio, speech, singing, and music. Uniquely, MRSAudio
includes synchronized audio, video, and 3D positional geometry, along with fine-grained cross-modal
annotations, such as: transcripts, word and phoneme boundaries and music scores. These features
make MRS Audio an ideal resource for a broad range of spatial audio generation and understanding
tasks, including spatial speech, music, and singing voice synthesis.



3 Dataset Description

In this section, we present MRSAudio, a freely available multimodal spatial audio corpus with
synchronized video, positional data, and fine-grained annotations, released under the CC BY-NC-SA
4.0 license. Figure[2]illustrates our data processing pipeline, with detailed descriptions in subsequent
subsections. We then summarize key statistics that demonstrate MRSAudio’s scale and diversity.
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Figure 2: The pipeline of data collection and processing of MRSAudio. The blue boxes indicate
steps requiring manual intervention, while the green boxes denote automated processing. In the
“auto-processing” section, dashed modules apply to some scenarios, while solid modules apply to all.

3.1 Planning

To ensure that MRS Audio comprehensively covers scenarios from daily life, speech, singing, and
music, we conduct systematic and modular planning before recording as follows.

MRSLife: This subset focuses on everyday conversations and environmental sound events. Based on
the degree of human vocal interaction, MRSLife is further divided into two parts: MRSDialogue,
which captures unscripted conversations that naturally include spontaneous action sounds (e.g.,
footsteps, door movements), and MRSSound, which focuses on non-verbal sound events primarily
caused by physical activities such as cooking, typing, or sports.

MRSSpeech: MRSSpeech targets clean, high-quality conversational recordings for TTS task. All
spoken interactions are recorded in controlled indoor environments with minimal noise. We invite
speakers to participate in content-driven conversations based on predefined scripts.

MRSSing: MRSSing captures solo vocal performances for singing voice synthesis tasks. It includes
professional solo vocal recordings in four languages: Mandarin, English, German, and French,
performed by singers covering the full vocal range including soprano, alto, tenor, and bass.

MRSMusic: MRSMusic captures immersive instrumental performances suitable for spatial music
generation and analysis. We record solo performances from 45 professional musicians across 23
instruments, including Traditional Chinese, Western and Electronic instruments. Each performance is
paired with its corresponding musical score to support score-based music generation.

Details regarding personnel recruitment, venue selection, equipment configuration, and material
preparation for each subset are provided in Appendix [A.T]

3.2 Recording

Based on the predefined planning, we conduct parallel data collection across all modules. To ensure
participant anonymity, masks are worn during recording when necessary. All participants sign an



open-source data release agreement, allowing the dataset to be freely distributed for academic research
purposes. The recording details are summarized as follows:

MRSLife: In MRSDialogue, audio is recorded using a professional binaural recording head and
high-resolution sound cards, while synchronized video is captured using industry-standard cameras.
In MRSSound, in addition to binaural audio and exocentric video, we also captured FOA (Zoom
H3-VR) and egocentric video (Gopro camera).To ensure the effectiveness of the egocentric video,
participants are asked to remain within the frontal field of view of the binaural recording head.

MRSSpeech: To introduce spatial variability, we select four recording rooms that differ in size and
acoustic material. Each speaker reads inflected emotions from the scripts while walking through
the space, producing dynamic spatial cues. Recordings include spoken passages, binaural audio and
exocentric video, as well as a clean mono audio by a lavalier microphone placed near the speaker.

MRSSing: The professional singers perform according to musical scores. To introduce variation in
source-listener geometry, we adjust the position of the head-mounted binaural microphone relative to
the singer. In addition to the binaural audio and synchronized video, each session includes a clean
vocal track recorded with a studio-grade condenser microphone.

MRSMusic: We record 23 Traditional Chinese, Western and Electronic instruments, performed by
45 professional musicians.To capture rich spatial detail, we vary microphone placement around the
instrument. Recordings include binaural audio, monaural audio, exocentric video, and synchronized
video that records playing gestures. Full recording details are provided in Appendix

3.3 Annotation

To maximize MRS Audio’s utility across a wide range of tasks, we begin with event-level annotations
for all vocal and acoustic content in MRSLife, MRSSpeech, MRSSing, and MRSMusic. However,
coarse annotations alone are insufficient for fine-grained tasks such as singing voice modeling and
music generation from scores. To bridge this gap, we design a comprehensive annotation pipeline.
Full implementation details and detailed annotation guidelines are provided in Appendix

MRSLife: For MRSDialogue, we apply WhisperX (Bain et al., 2023) for automatic speech recog-
nition and speaker diarization to generate initial transcripts and speaker turns. Human annotators
correct recognition errors and speaker attribution mismatches. The audio is then segmented into
utterances and the transcripts are converted into phoneme sequences (using pypinyin for Mandarin). A
two-stage alignment process follows: we first apply the Montreal Forced Aligner (MFA) (McAuliffe
et al.|[2017) for coarse word/phoneme mapping, then manually refine boundaries in Praat (Boersmal
2001). For MRSSound, we annotate sound event categories and corresponding time intervals.

MRSSpeech: Given the availability of full scripts, we adapt WhisperX for long-form word-to-audio
alignment of up to 30 minutes. Each script line is automatically matched to its corresponding audio
segment (see Appendix [A.3|for more details). Annotators then review these alignments, correcting
any omissions or insertions caused by actors’ deviations from the script. Finally, phoneme sequences
are extracted and aligned with the audio using the same procedure as in MRSDialogue.

MRSSing: We use voice activity detection (VAD) to segment recordings into singing regions, then
align pre-existing lyrics using LyricFA’s ASR-based dynamic programming algorithm'| Phoneme
generation is language-dependent: pypinyin for Mandarin, ARPA for English, and MFA’s built-in
phoneme sets for French and German. Alignment is conducted via MFA, followed by manual
refinement. Melody and rhythm of singing are transcribed into MIDI format using ROSVOT (Li
et al.|[2024). Annotators then label each excerpt with high-level style descriptors, such as emotional
tone (happy, sad), tempo (slow, moderate, fast), and pitch range (low, medium, high).

MRSMusic: We use Audio Slicelﬂ to segment the music recordings and generate initial symbolic
annotations with basic-pitch (Bittner et al., [2022), and then employ professional musicians to verify
and adjust note onsets, offsets, and dynamics to match the performance accurately.

Source Localization: For static sources, we manually record 3D positions relative to the capture
space. For dynamic scenes, we use the Ultra-Wideband (UWB) system(Aiello & Rogerson, [2003)

"https://github. com/wolfgitpr/LyricFA
https://github.com/flutydeer/audio-slicer
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to track the positions of sound sources in real time. Based on the recorded position trajectories, we
generate natural language motion descriptions using GPT-40 (Achiam et al., [2023).

3.4 Post-Processing

The post-processing pipeline comprises three key steps to refine raw annotated data. First, segmen-
tation splits continuous recordings into task-oriented clips: utterances for speech and singing are
extracted via alignment timestamps, while MRSSound audio is uniformly divided into 10-second
segments. Next, multimodal synchronization aligns each clip with auxiliary modalities (text, video,
position metadata) with temporal anchors. Static sound sources are annotated with manually mea-
sured 3D coordinates, whereas dynamic sources leverage interpolated UWB tracking trajectories.
For scenes where participants’ faces are visible, anonymization is performed by adding half-face
masks. Finally, quality assurance involves domain experts auditing 15% of clips across all modules
to verify temporal alignment precision, cross-modal content consistency, and annotation accuracy.
Full auditing protocols are documented in Appendix [A-4] ensuring reproducibility of this process.

3.5 Statistics
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Figure 3: Statistical overview of MRSAudio. (a) Spatial distribution of sound sources relative to the
listener. Red, green, and blue arrows denote the positive x, y, and z axes; azimuth is measured around
the z-axis from the x-axis, and elevation is relative to the xy-plane. (b) Word cloud. (c) Proportions
of recording spaces by room size. (d) Distribution of audio segment durations.

To illustrate spatial diversity, Figure [3(a) shows the 3D distribution of sound source positions
relative to the listener. The heatmap reveals near-uniform azimuthal coverage, with greater density
in the frontal hemisphere due to the prevalence of egocentric video recordings. Elevation angles
are concentrated between —40° and 40°, aligning with typical human sound perception patterns.
Figure [3[b) summarizes the annotations using a keyword cloud that captures the range of real-world
activities recorded. Figure3]c) presents the proportions of recording spaces by room size: medium-
sized rooms are the most common, accounting for approximately 40% of sessions, while small and
large rooms each represent around 30%. Recording duration is evenly distributed across room types,
ensuring diverse acoustic coverage. Figure [3[(d) shows the distribution of segment durations after
automatic and manual segmentation. Most audio clips are shorter than 10 seconds, which is suitable
for modeling short-duration events and supports efficient downstream training and inference. Overall,
MRSAudio offers comprehensive coverage across spatial positions, acoustic environments, scene
types, and temporal structures, making it well-suited for a wide range of spatial audio generation and
understanding tasks. A more detailed breakdown of per-scenario statistics is provided in Appendix [A]



4 Benchmarks

To demonstrate the quality and utility of MRS Audio in real-world scenarios, we evaluate it on five
representative spatial audio tasks: (i) audio spatialization, (ii) spatial text-to-speech, (iii) spatial
singing voice synthesis, (iv) spatial music generation, and (v) sound event localization and detection
(SELD). These tasks cover both generation and understanding, and are critical for applications such as
AR/VR, spatial media production, and perceptual scene analysis. All experiments are conducted using
state-of-the-art methods on a server equipped with eight NVIDIA RTX 4090 GPUs. For different
tasks, we employ distinct objective metrics. For generation tasks, we compute cosine similarity scores
for direction (ANG Cos) and distance (DIS Cos) to quantify spatial alignment quality. Additionally,
we utilize subjective MOS-Q (Mean Opinion Score for Quality) to evaluate the quality of generated
audio and MOS-P (Mean Opinion Score for Position) to assess spatial perception. For implementation
details of training and evaluation metrics, please refer to Appendix B}

4.1 Audio Spatialization

Audio spatialization aims to synthesize spatially immersive soundscapes from monaural inputs and
source positional information. To evaluate MRS Audio on this task, we adopt BinauralGrad (Leng
et al., |2022)), a diffusion-based generation model that predicts binaural waveforms conditioned on
monaural audio and source coordinates. Since the downstream generation tasks can be formulated as
predicting interaural (binaural) representations from mono audio, we employ a single-stage training
scheme for all experiments. For comparison, we include a traditional signal processing baseline
(DSP), which renders binaural audio using virtual source positions simulated via room impulse
responses (RIRs) and head-related transfer functions (HRTFs). We adopt the following objective
metrics to evaluate audio quality: (1) W-L2: waveform L2 distance, (2) A-L2: amplitude envelope L2
distance, (3) P-L2: phase difference L2, (4) STFT: multi-resolution STFT loss, (5) PESQ: perceptual
speech quality score. Results for the ground truth and DSP baseline are obtained by averaging across
all test sets from the four MRS Audio subsets. Further details are provided in Appendix

Table 2: Audio Spatialization Performance. For MRSlife, we only use the MRSSound subset.

Method | W-L2 x107%| A-L2] P-L2] PESQt STFT| | MOS-Qt  MOS-P 1
Ground Truth | - - - - - | 469 +0.08 4.5640.10
DSP 1.691 0.048  1.562  2.830 1.246 | 3.89+£0.09 3.75+0.11
MRSLife 0.076 0.025  0.898 - 2.243 | 3914007 3.87+0.10
MRSSpeech 0.460 0.061  0.807 1.929 2.352 | 3.884+0.08 3.84+0.08
MRSSing 0.647 0.093  1.004 1.723 2.539 | 3.8440.09 3.91+0.07
MRSMusic 0.705 0.063  0.835 1.724 | 3.874+0.07 3.93 4 0.09

ALL 0.305 0.041 0.801 2352 1.681 3.93+0.09 3.94 £ 0.07

As shown in Table[2] BinauralGrad achieves strong performance across all MRSAudio subsets, sur-
passing the classical DSP baseline on most objective and subjective metrics. The highest performance
is observed on MRSLife, likely due to the relatively limited variation in sound sources within these
scenes. These results demonstrate that MRS Audio’s rich spatial annotations and diverse acoustic
environments provide a solid foundation for training and evaluating spatial audio generation models.

4.2 Spatial Text to Speech

Spatial TTS aims to produce high-quality speech enriched with spatial cues, thereby enhancing
immersion and realism in AR/VR. Although recent advances in TTS have led to impressive im-
provements in speech quality, progress in spatialized speech generation remains limited due to the
scarcity of spatially annotated recordings with rich, high-quality labels. To evaluate the effectiveness
of MRSAudio for this task, we train an end-to-end model following ISDrama (Zhang et al.|[2025) to
directly generate spatial speech from text and position data. Additionally, we compare with cascaded
pipelines that combine monaural TTS models (CosyVoice (Du et al.,|2024) and F5-TTS (Chen et al.,
2024)) with the audio spatialization module. This allows us to assess both speech generation quality
and the spatial fidelity enabled by our dataset. For content evaluation, we report Character Error Rate
(CER) and Speaker Similarity (SIM). Further details are provided in Appendix



Table 3: Spatial TTS Performance on MRSSpeech. “SP” denotes the Audio Spatialization.

Method Objective Subjective

CER|, SIM1T ANGCost DISCos?tT | MOS-Q 1 MOS-P 1
Ground Truth | 2.54% - - - | 439+£0.08 4.16+0.10
Mono + SP 2.56% 0.98 0.44 0.68 3.88+0.08 3.84 + 0.08
CosyVoice + SP 3.89% 0.96 0.41 0.63 375+£0.12 372+ 0.09
F5-TTS + SP 3.15% 0.97 0.40 0.62 369+ 0.13 3.67+0.14
ISDrama (speech) | 3.35% 0.96 0.48 0.65 385+0.09 3.82+£0.11

As shown in Table 3] the Mono+SP method achieves strong performance across most metrics. The
CER remains low and comparable to the ground truth, indicating preserved linguistic accuracy after
spatialization. A high SIM score reflects stable timbre learning. ANG Cos and DIS Cos show
good spatial alignment with the ground truth, and subjective MOS scores confirm that the generated
speech is both natural and spatially coherent. These results demonstrate that MRSSpeech provides
high-quality, spatially annotated training data that enables effective and realistic spatial TTS.

4.3 Spatial Singing Voice Synthesis

Spatial SVS aims to produce expressive, high-quality singing voices enriched with accurate spatial
cues, thereby enhancing listener immersion. While traditional SVS has advanced considerably, spatial
SVS remains underexplored due to the lack of high-quality, spatially annotated datasets. To evaluate
MRSAudio for this task, we use the MRSSing subset to train and benchmark models. We adopt
the ISDrama architecture to perform end-to-end spatial singing synthesis, incorporating note-level
pitch control to enhance prosody accuracy. For comparison, we use the open-source SVS models
Rmssinger (He et al.,[2023)). The outputs are then spatialized with BinauralGrad. We employ objective
metrics, including Mel-Cepstral Distortion (MCD) and FO Frame Error (FFE), to evaluate spectral
and pitch similarity between predicted and ground-truth. Details are in Appendix

Table 4: Spatial SVS Performance on MRSSing. “SP” denotes the Audio Spatialization.

Method Objective Subjective
MCD| FFE| ANGCos? DISCos?tT | MOS-Q*t MOS-P 1
GT (Ground Truth) | - - - - | 445+£0.10 4.30+0.12
Mono+SP 3.19 0.17 0.51 0.71 3.84+0.09 3.91+0.07
Rmssinger+SP 3.85 0.23 0.45 0.65 3.65+0.08 3.81+0.11
ISDramag(sing) 3.71 0.21 0.47 0.70 3.86 £ 0.13 3.88 +0.09

As shown in Tabled] the Mono + SP approach trained on MRSSing with pitch control achieves the
best performance across most metrics. Its low MCD indicates strong spectral fidelity, and high ANG
Cos and DIS Cos scores demonstrate effective spatial alignment. Subjective MOS results confirm
that the generated singing voices are natural, high-quality, and spatially coherent. These findings
validate MRSSing as an effective resource for spatial singing voice generation.

4.4 Spatial Music Generation

This task aims to synthesize spatially immersive music conditioned on symbolic scores. While datasets
like FAIR-Play offer high-quality instrument recordings, they lack aligned sheet music, limiting
controllable generation. In contrast, our MRSMusic subset includes 23 instruments with aligned
scores, enabling fine-grained, score-based spatial music synthesis. We benchmark three systems on
MRSMusic. First, we apply BinauralGrad (Leng et al.l 2022) to spatialize mono recordings. Second,
we utilize Make-An-Audio 2 (Copet et al.| | 2023) to generate mono music from MIDI scores, which
is subsequently spatialized. Third, we adapt ISDrama to accept both score embeddings and spatial
poses, enabling end-to-end spatial symbolic music generation. For objective evaluation, we compute
Fréchet Audio Distance (FAD) and FFE to evaluate the results. Details are in Appendix



Table 5: Spatial MG Performance on MRSMusic. “SP” denotes the Audio Spatialization.

Method Objective Subjective

FAD] FFE] ANGCostT DISCost | MOS-Q1 MOS-P 1
GT (Ground Truth) \ - - - - \ 449 +£0.09 4.34+0.11
Mono+SP 2.88 0.14 0.48 0.74 3.87+£0.07 3.93 +0.09
Make-An-Audio 2+SP 4.39 0.49 0.49 0.41 374+0.10 3.734+0.13
ISDrama(music) 245 0.21 0.53 0.68 3.89 +0.12 3.8840.10

As shown in Table 5] the Mono + SP pipeline achieves strong performance, benefiting from access to
ground truth mono audio. The Make-An-Audio 2 + SP exhibits limitations in FAD and pitch accuracy.
This suggests that general-purpose audio generation models may struggle to fully capture structured
musical information from symbolic prompts. The ISDrama (Music) model generates music directly
from the symbolic inputs and spatial cues, achieving better coherence and spatial alignment than the
Make-An-Audio 2 + SP. These results highlight MRSMusic’s effectiveness in supporting spatially
controllable music generation across diverse instruments and spatial conditions.

4.5 Sound Event Localization and Detection

This task evaluates the ability to detect and localize sound events using MRSAudio’s spatial an-
notations. We follow STARSS23 (Shimada et al., |2023) using both audio-only and audio-visual
variants on the MRSSound subset. In the audio-only condition, models receive either FOA or binaural
waveforms as input and predict sound event classes along with 3D source coordinates. For the
audio-visual condition, we extract bounding boxes of visible persons to serve as coarse visual priors,
which are fused with the audio representations. We also explore architectural variations by replacing
the original convolutional backbone with a Transformer encoder, allowing us to assess the impact
of temporal modeling capacity on spatial prediction. We evaluate model performance using four
standard joint detection and localization metrics, including location-aware detection (Fsgo, E2Rog0)
and class-aware localization (LEcp, LRcp). Details are in Appendix

Table 6: Sound Event Localization and Detection on MRSSound.

Model | Audio Type | Visual | ERgpo | Fago 1 LEcp | LRcp 1

ConvNet FOA v 1.17+£0.02 13.00 +2.72 42.44 + 891 82.76 +5.19
ConvNet FOA X 1.12+0.02 933+036 4647 +£446 8535+3.80
ConvNet Binaural v 1.11 +£0.03 5904386 41.95+985 4581+11.29
ConvNet Binaural X 1.11 £0.02 6.00+0.34 4517792 70.14 & 10.38
Transformer FOA v 1.01 £0.01 7524042 35.69 747 46.78 £7.62
Transformer FOA X 099 £0.05 795+0.15 4876266 87.32+2.14
Transformer Binaural v 1.01 £0.02 8.47 +0.65 36.18 £7.29 41.33 £ 12.73
Transformer Binaural X 1.11 +£0.04 7371097 46.74 791 43.87 +10.74

As shown in Table[6] model performance varies with architecture, input modality, and audio format.
Transformer-based models generally outperform ConvNet baselines, particularly in reducing localiza-
tion error. FOA input consistently yields better results than binaural audio, benefiting from richer
spatial representation. For example, the Transformer with FOA and no visual input achieves the lowest
error rate (ERggo 0.99) and highest localization recall (LR p 87.32). The addition of visual features
improves performance in some ConvNet settings (e.g., Fago rises from 9.33 to 13.00 with FOA), but
offers limited or inconsistent gains in Transformer models, possibly due to modality mismatch or
redundancy. These results highlight the value of MRS Audio’s spatial annotations and multimodal
streams in supporting flexible evaluation under both unimodal and multimodal configurations.

5 Conclusion and Discussion

We introduce MRS Audio, a large-scale, multimodal spatial audio corpus designed to support a
wide range of generation and understanding tasks. MRSAudio comprises four complementary
modules, MRSLife, MRSSpeech , MRSSing, and MRSMusic, each captured with binaural/FOA



audio, synchronized video, precise 3D pose metadata, and richly detailed annotations (event labels,
transcripts, phoneme boundaries, lyrics, musical scores, and motion prompts). Through extensive
benchmarks on audio spatialization, binaural speech, singing, and music generation , as well as sound
event localization and detection, we demonstrate that MRS Audio’s scale, diversity, and annotation
depth enable state-of-the-art performance and unlock new avenues for spatial audio research.

Limitations and Future Directions: While MRS Audio offers broad multimodal coverage, two limi-
tations remain. First, although synchronized video is provided for all recordings, current benchmarks
only explore visual input in a limited subset of tasks. Second, while the dataset includes both binaural
and First-Order Ambisonic (FOA) formats, the FOA subset is smaller in scale, and most tasks focus
on binaural audio, limiting spatial modeling diversity. Future work will expand the role of visual
modalities in tasks such as sound localization and scene understanding. We also plan to increase FOA
recordings to balance data distribution and support broader spatial audio research, and develop more
FOA-specific benchmarks to better utilize ambisonic spatial cues.

Negative Societal Impact: As with any large-scale audiovisual dataset, MRSAudio carries potential
risks if misused. It could be exploited to generate highly realistic yet synthetic spatial audio for
deepfakes or disinformation in AR and VR applications. To mitigate such risks, MRSAudio is
released under a noncommercial license with clear usage guidelines. We encourage responsible use in
accordance with ethical standards, including consent management, data governance, and transparency.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: As shown in Section|[I] this paper proposes a large-scale multimodal recorded
spatial audio dataset along with refined annotation for spatial audio-related tasks.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed the limitations and the negative societal impact in Section|3}
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: This paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Our dataset is available at the https://huggingface.co/datasets/
verstar/MRSAudio. The source code associated with our work can be accessed in the
GitHub repository: https://github.com/MRSAudio/MRSAudio_Main|and in the sup-
plementary materials. Additionally, training details is shown in Appendix [B]

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: Our dataset is available at the https://huggingface.co/datasets/
verstar/MRSAudio. The source code associated with our work can be accessed in the
GitHub repository: https://github.com/MRSAudio/MRSAudio_Main|and in the sup-
plementary materials.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: The settings and details of experiments is shown in Appendix [B]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We report confidence intervals of subjective metric results in Section 4]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: The required experimental resources are detailed in Section[dand Appendix [B]
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: 1) The wage details for participants are reported in Appendix [A.2}[A.3] and
[B.1] 2) All data were de-identified prior to release, as detailed in Section[3] 3) As described
in Appendix all participants involved in data recording signed consent forms, agreeing
to the publication of the dataset under the CC BY-NC-SA 4.0 license. 4) The dataset we
have released adheres to the CC BY-NC-SA 4.0 license, and all baselines used in the paper
comply with their respective licenses.

Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: We discuss the societal impacts from both positive and negative perspectives
in Section

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

* Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

Justification: All data were de-identified prior to release, as detailed in Section E] and
AppendixA.4] For participants whose faces were visible, we anonymized the recordings by
adding masks.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use all models and codes under their Licenses (e.g. CC 4.0, MIT, etc).
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide detailed description in Section [3|and Appendix [A]for the proposed
dataset.

Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: Appendix [B.T]includes the instructions and screenshots of rating systems. The
wage for participants is mentioned in Appendix as well.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]

All participants signed the consent form before the recording.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as
any important, original, or non-standard components. 1) About LLM: this work only uses
pretrained language models to generate natural prompts based on the given trajectory as
shown in Section [3} 2) We only use image generators to assist the design of the paper’s
header figure.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Details of Dataset

A.1 Details of Planning

During the planning phase, we systematically analyze real-world application scenarios for spatial
audio and divide them into four major categories. MRSLife focuses on daily environmental sound
events, MRSSpeech targets high-quality conversational data, MRSSing captures solo vocal perfor-
mances, and MRSMusic records immersive instrumental music. These four scenarios collectively
cover a broad range of everyday acoustic contexts and are designed to support a wide spectrum of
downstream tasks.

Based on predefined scenario requirements, we recruit professionals from relevant fields to participate
in the recording process. To ensure spatial diversity, we rent various venues tailored to each scenario
type. Following the FAIR-Play protocol, we use a 3Dio Free Space XLR binaural microphone to
capture spatial audio, GoPro HERO cameras and mobile phones to record exocentric and egocentric
videos, and UWB-based tracking systems to capture motion trajectories. Once personnel, locations,
and equipment are secured, we prepare task-specific materials for each subset. For MRSLife, we
further divide the content based on the proportion of speech involved, resulting in two subcategories:
MRSDialogue (e.g., group games, board games) and MRSSound (e.g., kungfu, kitchens, offices,
sports). We predefine common sound events for each, such as clattering dishes, keyboard typing,
and table tennis. For MRSSpeech, we compile a large corpus of scripts from movies, TV shows,
and crosstalk performances and automatically extract dialogue passages for speaker delivery. For
MRSSing, we design lyrics in four languages (Chinese, English, German, and French) and recruit
singers across a range of vocal types to maximize diversity. For MRSMusic, we collect solo
performances across 23 traditional and modern instruments, covering a wide array of timbres and
playing techniques. Specific sound categories for each subset are summarized in Table[7]

Table 7: Examples of predefined content types for each MRS Audio subset.

Subset \ Samples of Categories or Keywords
MRSLife ‘ MRSDialogue: board games, card games, collaborative tasks
MRSSound: kungfu, office, maracas, typing, whistle, gong
MRSSpeech ‘ Movie scripts, crosstalk, scripted TV dialogue, multi-speaker conversations
MRSSing ‘ Chinese, English, German, French; soprano, alto, tenor, bass
MRSMusic ‘ violin, electronic keyboard, cello, viola, double bass, trumpet, trombone, euphonium,

erhu, pipa, xiao, bawu, trumpet, trombone, and others (23 instruments in total)

A.2 Details of Recording

We recruit a large number of participants with professional backgrounds in singing, music, and
language to contribute to the recording process. To protect their identity, participants are asked
to wear masks in appropriate scenarios. Prior to participation, all individuals sign consent forms
agreeing to the open-source release of their audio and video under the CC BY-NC-SA 4.0 license.

All audio is recorded in WAV format at a sampling rate of 48 kHz. Video is recorded at a minimum
resolution of 1080p and 24 frames per second, and is later standardized to this format during
post-processing.

MRSLife: We recruit 62 participants to perform daily activities including board games, cooking,
exercise, and office work. In MRSDialogue, each participant is compensated $30 per recorded hour.
Binaural audio is captured using head-mounted microphones, and third-person video is recorded.
In MRSSound scenes such as kung fu or kitchen demonstrations, performers are paid $50 per hour.
Both binaural and FOA (First-Order Ambisonics) recordings are collected, along with first-person
and third-person video. The binaural dummy head is co-located with the egocentric camera and the
Zoom H3-VR (Ambisonic recorder). The egocentric camera is rigidly aligned with the head’s gaze to
capture first-person visuals, while the Ambisonic recorder is mounted 7.5 cm above the head. An
exocentric camera is placed at a surveyed position in the scene to provide a third-person view of the
environment and object relationships. Participants receive brief scene descriptions and are asked to
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act naturally while maintaining a single active sound source when possible. The total duration for
MRSLife recordings reaches approximately 150 hours.

MRSSpeech: We employ 44 expressive speakers to read from scripted texts, each paid $30 per
hour of recorded audio. The total recorded duration reaches 200 hours, with compensation totaling
$40,000. During recording sessions, speakers alternate between standing and walking around the
recording area to introduce spatial diversity while maintaining speech clarity. Binaural audio is
captured using head-mounted microphones, and clean monaural speech is recorded using lavalier
microphones. All sessions are filmed from a third-person perspective.

MRSSing: Eighteen professional singers participate in the recordings. Each singer is fluent in at
least one of the following languages: Chinese, English, German, or French, and collectively they
cover all vocal ranges including soprano, alto, tenor, and bass. Performers are paid $50 per hour,
contributing a total of 80 hours of audio. Singing is recorded at a fixed position to ensure spatial
consistency. Binaural recordings are captured with head-mounted microphones, and monaural audio
is recorded with a studio-grade microphone. Third-person panoramic video is also captured.

MRSMusic: We engage 45 instrumentalists performing 23 Traditional Chinese, Western and Elec-
tronic instruments such as violin, erhu, pipa, electric guitar, and keyboard. Each performer receives
$60 per recorded hour. A total of 69 hours of solo music performances are recorded. Audio is captured
using both head-mounted binaural microphones and reference monaural microphones. Third-person
video provides a full-scene view, while first-person cameras are used to capture detailed playing
gestures.

A.3 Details of Annotation

We employ a team of domain experts in singing, music performance, and linguistics to carry out and
review all annotations, compensating each annotator at a rate of $15 per hour. Prior to beginning their
work, every expert receives a clear explanation of how the annotations will be used and agrees to
release their annotation results under an open-source license for academic research. For all modules,
we first synchronize each audio with its corresponding video, mono-channel reference track, and
3D positional metadata. Annotators then verify and correct this synchronization to ensure perfect
alignment across modalities.

MRSLife. In MRSDialogue scenes, we automatically generate initial transcripts and speaker clusters
with WhisperX, extracting word-level timestamps and speaker IDs. Experts then load these results in
Praat and assign each cluster to the correct speaker, correcting transcription errors as needed. Next,
we run Montreal Forced Aligner (MFA) (McAuliffe et al.|[2017) to produce coarse phoneme-to-audio
alignments (exported in TextGrid format), using pypinyin to convert Chinese text into phoneme
sequencesE] Finally, annotators refine word and phoneme boundaries in Praat to achieve millisecond-
level precision. In MRSSound segments, annotators additionally label each time interval with the

corresponding event category (e.g., “clattering,” “typing,” “pages turning”).

99 <

MRSSpeech. Given full dialogue scripts, we perform automatic alignment to 30-minute recordings
using a chunk-based extension of WhisperX. This method divides each utterance-level audio segment
into fixed-length chunks (e.g., 30 seconds), applies phoneme-level models (e.g., wav2vec 2.0 (Baevski
et al.,|2020) ) for emission prediction on each chunk, and then concatenates emissions to form a
complete alignment matrix. We compute alignments via a trellis-based dynamic programming
algorithm with backtracking, followed by scaling to restore absolute timestamps. Word- and sentence-
level timings are derived by grouping aligned characters using word indices and sentence tokenization.
Missing or partial timings are interpolated using a specified method (e.g., nearest). This pipeline
enables efficient and accurate alignment of long-form recordings on GPU. We then refine sentence
boundaries in Praat and apply the same MFA-plus-Praat workflow used in MRSLife for fine-grained
phoneme and word-level alignment.

MRSSing. Each segment contains a solo vocal performance with known lyrics. We first apply
voice activity detection (VAD) to segment the recordings. Lyrics are aligned to each segment using
LyricFN’s ASR-based dynamic programming method. English phonemes follow the ARPABET

*https://github.com/mozillazg/python-pinyin
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standardE] while German and French use MFA’s phoneme setsE] We then apply MFA for initial
alignment and refine it manually in Praat to obtain precise word and phoneme boundaries. Annotators
assign fine-grained style tags, including emotion, genre, and tempo. To generate score annotations,
we extract FO contours using RMVPE (Wei et al., [2023)) and convert them into MIDI format via
ROSVOT (Li et al., [2024)), followed by expert correction.

MRSMusic. We segment the recordings using AutoSlicer (Liu et al.,|2022)) and generate preliminary
symbolic annotations using basic-pitch (Bittner et al.l 2022). Professional musicians then verify and
refine the annotations, adjusting note onsets, offsets, dynamics, and articulations to ensure consistency
between the score and performance.

A.4 Details of Post-Processing

Segmentation: After annotation, we segment the raw recordings into shorter clips to support spatial
audio generation and analysis tasks. For speech and singing, we use alignment timestamps to extract
utterances. For MRSSound, each recording is divided into fixed 10-second segments.

Multimodal Synchronization: In addition to binaural audio, each clip is synchronized with the
following modalities: audio, text, video, and position data. Using the segment timestamps, we align
all streams temporally. For static sources, we attach manually recorded 3D coordinates; for dynamic
sources, we interpolate Ultra-Wideband (UWB) tracking data over the segment duration. This process
yields fully synchronized multimodal clips ready for downstream spatial audio tasks. Furthermore,
for segments where participants’ faces are visible, we apply anonymization by using a face detection
model to overlay digital masks during post-processing.

Checking: To ensure the reliability of annotations, domain experts perform a random audit on
15% of the segmented clips across all four modules. The audit process involves the following
steps: (1) Verifying the temporal synchronization across different modal; (2) Confirming that the
assigned event labels accurately reflect the audiovisual content present in each clip; (3) Reviewing
the speech segments to check the correctness of word- and phoneme-level alignments; (4) Evaluating
singing clips for accurate alignment between lyrics and audio, consistency with musical scores,
and correctness of assigned style labels; (5) Assessing MRSMusic excerpts to verify that musical
properties, such as key, pitch, and note duration.

A.5 Statistics of MRSAudio
A.5.1 Statistics of MRSLife

MRSDialogue. Figuref{a) presents the 3D spatial distribution of sound sources in MRSDialogue.
In this subset, which features frequent human conversations, most sources are located around the
ear-level height of the listener. The azimuthal distribution covers nearly all directions surround-
ing the listener, offering diverse angular data for training spatial localization models with strong
generalization.

Figure[d[b) shows the phoneme distribution across all speech segments. The most common phoneme
is ‘i’, while the least frequent is ‘ueng’. This distribution aligns with real-world phonetic patterns
and highlights the dataset’s linguistic richness. Such broad phoneme coverage is beneficial for
downstream tasks in speech synthesis and recognition under spatial settings.

MRSSound. Figure[5a) illustrates the spatial distribution of sound sources in MRSSound relative to
the listener’s head-centered coordinate system. The listener’s facing direction is at 90 degrees, and
most sound events are concentrated in the frontal hemisphere (azimuth from 0° to 180°), which is
consistent with the first-person video capture setup. Some events also appear in the rear field (—180°
to 0°). In elevation, the majority of sound sources are distributed between —90° and 40°, realistically
reflecting everyday human perception in standing scenarios, where sound events typically originate
below ear level. This broad spatial coverage supports the training of spatial audio models with strong
generalization ability.

Figure[5b) presents the duration distribution of recorded sound events. MRSSound covers a wide
variety of everyday scenarios, including cooking in kitchens, working in office environments, and

“nttps://en.wikipedia.org/wiki/ARPABET
*https://mfa-models.readthedocs.io/en/latest/dictionary/
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Figure 4: Statistical overview of MRSDialogue. (a) Spatial distribution of sound sources relative to
the listener. Red, green, and blue arrows denote the positive X, y, and z axes; azimuth is measured
around the z-axis from the x-axis, and elevation is relative to the xy-plane. (b) Distribution of phones
in MRSDialogue.

sports-related activities. The diversity of event types and durations makes the subset suitable for
training and evaluating models in real-world spatial sound event understanding.

A.5.2 Statistics of MRSSpeech

Figure [6[a) illustrates the spatial distribution of speech sources with respect to the listener. The
azimuth angles span the full 360° around the listener, providing comprehensive coverage of spatial
directions. Elevation angles are mostly concentrated between 0° and 60°. Smaller elevations reflect
scenarios where both the speaker and listener are either standing or seated, while larger elevations
(above 30°) simulate common real-world speech situations such as meetings, where a standing
speaker addresses a seated listener. This diverse spatial coverage supports generalization in spatial
speech modeling.

Figure[6[b) shows a word cloud representing the diversity of dialogue content. The transcripts are
sourced from theatrical scripts, films, and other spoken-only scenarios, capturing a wide range of
expressive and stylistic variation. Figure[6{c) presents the distribution of room sizes used for speech
recordings. Most multi-speaker interactions take place in medium to large rooms, such as meeting
or lecture spaces. We include three distinct environments with varying absorption properties and
dimensions to simulate different acoustic conditions.

Figure[6{d) displays the distribution of audio segment durations. Most conversational turns are short,
but the dataset also includes extended monologues exceeding 20 seconds, allowing models to capture
both brief interactions and long-range motion or speaker dynamics.
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Finally, Figure [6{e) presents the phoneme distribution, which covers all common phonetic units
in the dataset’s target language. This phonetic diversity ensures that MRSSpeech provides strong
generalizability for phoneme-aware models in speech synthesis and recognition.

A.5.3 Statistics of MRSSing
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Figure 7: Statistical overview of MRSSing. (a) Spatial distribution of sound sources relative to
the listener. Red, green, and blue arrows indicate the positive directions of the x, y, and z axes,
respectively. Azimuth is measured around the z-axis from the x-axis, and elevation is relative to the
xy-plane. (b) Emotion distribution. (c) Vocal range distribution. (d) Distribution of segment lengths.
(e) Distribution of note pitches across segments.

Figure [7(a) shows the 3D spatial distribution of sound sources with respect to the listener. The
majority of sources are located in front of the listener, consistent with the setup of solo vocal
recordings. However, the coverage also spans surrounding directions in both azimuth and elevation,
ensuring spatial variability for training robust spatial audio models.

Figures[7)(b) and (c) highlight the diversity in style and content. Emotion annotations in Figure[7(b)
include expressive labels such as happy and sad. Figure [7(c) displays the coverage across vocal
ranges, including soprano, alto, tenor, and bass, ensuring a wide span of pitch and timbral variation.

Figure[7(d) presents the duration distribution of singing segments, which ranges from approximately
4 to 10 seconds. This aligns with typical input lengths used in training singing voice synthesis
models. Figure[7[e) illustrates the distribution of note pitches. The full range of musical notes is well
represented, and a clear difference in pitch range is observed between male and female singers, with
females generally singing at higher pitches. This confirms that MRSSing captures realistic vocal and
musical variability.

In summary, MRSSing provides extensive diversity in spatial positioning, language, emotion, vocal
range, segment duration, and pitch. This makes it a strong foundation for research on spatial singing
voice synthesis and expressive vocal modeling.

A.5.4 Statistics of MRSMusic

Figure [8[a) illustrates the spatial positions of musical instruments relative to the listener. Most
sources are located in front of the listener, consistent with typical music listening scenarios. However,
the coverage also includes surrounding directions, contributing to spatial diversity in training and
evaluation.
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Figures[8|(b) and (c) highlight the diversity of instrument types and musical genres. The instrument
set spans Western, Traditional Chinese, and Electronic categories, while the genre annotations
include folk, pop, and classical music. Figure Ekf) further details the recording durations across
23 instruments, showing a relatively balanced distribution that facilitates downstream learning for
different instrument types.

Regarding generalization capacity, Figure [8[d) shows that audio segment durations range from
approximately 4 to 11 seconds, matching typical training input lengths. Figure [§[¢) demonstrates
that the dataset covers a full range of musical pitch values, supporting tasks that require robust pitch
generalization.

A.5.5 Statistics of Demographic Representation

Performers. Across all four subsets, we recruit students from diverse majors at Zhejiang University.
The cohort consists of 161 individuals aged between 18 and 25, with a gender ratio of approximately
3:4 (male to female).

Annotation Team. We employ 25 professional annotators (aged 20-25, gender ratio of about 3:2,
male to female) to perform fine-grained annotations of transcripts, phoneme boundaries, music scores,
and movement descriptors. All annotators were trained student researchers with relevant domain
expertise.

B Details of Experiments

B.1 Subjective Evaluation Metrics

We conduct subjective evaluation of the generation tasks using Mean Opinion Score (MOS). For
each task, we randomly sample 40 utterances from the test set. Each utterance is paired with a
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corresponding source-position prompt and is evaluated by at least five expert listeners. MOS-Q,
Listeners rate each sample on a five-point Likert scale ranging from 1 (bad) to 5 (excellent). For
audio quality, we use MOS-Q, where listeners wear headphones and assess the clarity and naturalness
of the generated audio. For spatial perception, we use MOS-P, where listeners evaluate the realism of
spatial cues and whether the perceived direction and distance of the sound source match the prompt
description. All participants are fairly compensated for their time at a rate of $15 per hour, resulting
in a total cost of approximately $2000. Participants are informed that their evaluations will be used
exclusively for academic research purposes. Instructions for audio evaluations are shown in Figure [9]

MOS-P Testing

left-front up, pausing at 4.5s.

Position Evaluation Instructions Generated Speech Sample Evaluation
In this evaluation, you will assess the position characteristics Voiiicanirateifhe siidio oniascalsoFos
of the audio sample. Focus exclusively on: event: A female voice is speaking
5 - Excellent - Perfectly Impressive speech
« Panning Accuracy (precise left/right channel intensity
variation) position prompt: [DYNAMIC] Source starts at left-front 4 - Good - Mostly Impressive speech
« Distance Perception (convincing near/far spatial up, moves to center front, then to left-front, and finally to 3 - Fair - Just acceptable speech
2 - Poor - Unnatural speech with low quality
1

rendering)
« Prompt Compliance (match between spatial effects and Bad-Bitremel temible speech

text description) Please rate here
Please disregard factors such as audio quality
(clarity/naturalness artifacts), » 0:00/0:00

For best results, wear headphones and work in a quiet
environment.

(a) Screenshot of MOS-P Testing

MOS-Q Testing

Quality Evaluation Instructions Generated Singing Sample Evaluation
In this evaluation, you wil assess the quality characteristics You can rate the audio on a scale of 05
of the audio sample. Focus exclusively on: content: HARE, HEX®R
« Clrty Gotligiitty and arcation) 5 - Excellent - Perfectly Impressive sing voice
« Naturalness (fluency and human-like prosody) phensfe sequence; Li hiue v d.6n <SP gan ki = Good{Mosth Impre=iiversihg Volee
« Rich stylistic details (expressiveness and emotional xin s_uan <sP> 3 - Fair - Just acceptable sing voice
2 - Poor - Unnatural sing voice with low quality
1

nuance)

Bad - Extremely terrible sing voice
Please disregard factors such as positional accuracy (spatial
effects). Please rate here:

» 0:00/0:00

For best results, wear headphones and work in a quiet
environment.

(b) Screenshot of MOS-Q Testing

Figure 9: Instructions for audio evaluations. (a) Screenshot of MOS-P Testing. (b) Screenshot of
MOS-Q Testing

B.2 Objective Evaluation Metrics

To comprehensively assess spatial audio generation and understanding across multiple tasks, we
adopt a set of objective metrics that evaluate signal fidelity, spatial consistency, intelligibility, and
speaker or pitch accuracy. We randomly sample 400 data points as the test set.

Audio Spatialization. We measure waveform similarity using Wave L2, the mean squared error
(MSE) between the generated and reference binaural waveforms. Amplitude L2 and Phase L2 are
computed after applying Short-Time Fourier Transform (STFT), reflecting errors in the magnitude
and phase components respectively. MRSTFT losﬂis also used, combining spectral convergence,
log-magnitude, and linear-magnitude terms for better spectral alignment. In addition, we use the
perceptual evaluation metric PESQH to assess audio quality for speech-related tasks. Since PESQ is

https://github.com/csteinmetz1/auraloss
"https://github.com/aliutkus/speechmetrics
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designed for speech, it is omitted for MRSLife and MRSMusic. For all metrics except PESQ, lower
values indicate better performance.

To evaluate spatial consistency, we use Spatial-AST(Zheng et al.|[2024) to extract angular and distance
embeddings from the binaural audio. Since Spatial-AST predicts positions only for static sources, we
compute the cosine similarity between the predicted and ground truth embeddings within 1-second
segments and average the results to assess overall spatial fidelity.

Spatial Text to Speech. We evaluate speech intelligibility using Character Error Rate (CER), which
measures the proportion of character-level differences between ASR transcriptions and reference
texts. Transcriptions are generated using the Paraformer-zh model (Gao et al.| 2023). To assess
speaker consistency, we compute Speaker Identity Matching (SIM) as the cosine similarity between
speaker embeddings extracted using a WavLM-based speaker verification modelﬂ

Spatial Singing Voice Synthesis. We use Mel Cepstral Distortion (MCD) to assess the spectral
similarity between the generated and reference vocals. It is defined as:

10 D
MCD = 0| 2 2 (e = a(@)*, M

where m.(d) and 77, (d) represent the d-th Mel-frequency cepstral coefficient (MFCC) at frame ¢ for
the ground truth and synthesized signals, respectively, and D is the number of MFCC dimensions.

Additionally, we adopt FO Frame Error (FFE) to evaluate pitch accuracy by comparing extracted FO
contours between the synthesized and ground truth audio.

Spatial Music Generation. We use Fréchet Audio Distance (FAD) (Kilgour et al., [2018)) to assess
perceptual similarity between the feature distributions of generated and reference audio. In addition,
FO Frame Error (FFE) is used to evaluate pitch accuracy by comparing the extracted FO contours
against the reference musical scores.

Sound Event Localization and Detection (SELD). Following STARSS23 (Shimada et al., [2023)),
we adopt four joint detection and localization metrics: Fogo: location-aware F-score; a prediction is
correct if the event class matches and angular error is below 20°. ERgqo: error rate computed as the
sum of insertions, deletions, and substitutions over reference events. LE-p: class-aware localization
error, the mean angular difference between predicted and reference directions. LR p: class-aware
localization recall, the percentage of correctly localized events among all instances of each class. We
compute all metrics in 1-second non-overlapping segments using macro-averaging across all event
classes. Higher values of Fogo and LR p, and lower values of ERogo and LE¢-p indicate better
performance.

B.3 Audio Spatialization

We build upon BinauralGrad’s two-stage diffusion-based framework to convert monaural audio into
spatial audio. However, in our subsequent generation experiments, the synthesized monaural audio
typically corresponds to a centrally positioned source between the ears, effectively serving as the
first stage of BinauralGrad. Therefore, for the spatialization experiments presented here, we use only
the second stage of BinauralGrad to validate spatial audio generation. Specifically, we first convert
binaural recordings to monaural input by averaging the two channels. Next, we apply a DSP-based
method to produce a coarse spatial approximation of the binaural signal. This monaural input and its
simulated binaural counterpart are then used as input to the BinauralGrad model, which is conditioned
on the object’s motion trajectory to generate spatialized binaural audio. We list the architecture and
hyperparameters of BinauralGrad in Table

$https://huggingface.co/pyannote/speaker-diarization
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Table 8: Hyper-parameters of BinauralGrad modules.

Hyperparameter \ BinauralGrad
Wave Encoder Layers 2
Binaural Position Encoder Layers 2
Encoder Encoder Conv1D Kernel 3
Encoder Dropout 0.4
Residual Blocks 3
Bidirectional Layers 3
Mel Predictor Hidden_size 128
Training Steps 200
Sampling Steps 6

B.4 Spatial Text to Speech

We fine-tune two pre-trained models, CosyVoice and F5-TTS, using monaural audio obtained by
averaging the binaural recordings from the MRSSpeech subset. This allows the models to learn the
generation characteristics specific to our dataset. After monaural generation, we apply a pre-trained
spatialization model trained on MRSSpeech to convert the output into spatialized binaural audio.
For the ISDrama baseline, we adopt the model variant proposed in the original paper that conditions
generation on predefined spatial paths to produce binaural spatial speech directly.

Table 9: Hyper-parameters of Rmssinger modules.

Hyperparameter \ Rmssinger
Phoneme Embedding 256
Encoder Layers 4
Phoneme Encoder Hidden 256
Encoder Encoder Conv1D Kernel 9
Encoder Conv1D Filter Size 1024
Encoder Attention Heads 2
Encoder Dropout 0.1
Note Pitches Embedding 256
Encoder Type Embedding 256
Duration Hidden 256
Conv Layers 12
Pitch Kernel Size 3
. Residual Channel 192
Predictor Hidden Channel 256
Training Steps 100
Conv Layers 20
Kernel Size 3
Mel Predictor Residual Channel 256
Hidden Channel 256
Training Steps 100

B.5 Spatial Singing Voice Synthesis

For the ISDrama baseline, we adopt the spatial-path-conditioned generation framework and extend it
by incorporating Rmssinger’s note encoder, allowing explicit pitch control through musical score
input. We use the single stage variation of Rmssinger, a standard singing voice synthesis model, and
train it with monaural targets derived from the averaged binaural recordings in the MRSSing subset.
This enables the model to generate pitch-accurate audio that reflects the acoustic characteristics. The
synthesized monaural audio is then spatialized using the spatialization model trained on MRSSing.
We list the architecture and hyperparameters of Rmssinger in Table[9]
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B.6 Spatial Music Generation

For spatial music generation, in the ISDrama setting, we follow the path-conditioned generation
pipeline but remove the phoneme encoder, using only the note encoder to process symbolic scores
as the sole control condition for generating spatialized music. We also adopt Make-An-Audio 2
as our base model and train it using monaural audio derived from averaged MRSMusic binaural
recordings. We use the pretrained spectrogram autoencoder. Instrument category and symbolic
score information are concatenated into the text prompt to guide the music generation process. The
generated audio is subsequently spatialized using the MRSMusic-trained spatialization model. We
list the hyper-parameters of Make-An-Audio 2 in Table[I0]

Table 10: Hyperparameters of Make-An-Audio 2.

Hyperparameter | Make-An-Audio 2
Input/Output Channels 80
Hidden Channels 20
Autoencoders Residual Blocks 2
Spectrogram Shape (80, 624)
Channel Multipiler [1,2,4]
Input shape (20, T)
Condition_embedding Size 1024
Transformer Backbone Feed-forward Hidden_size 576
Num of Transformer Heads 8
Transformer Blocks 8
Training Steps 1000
Sampling Steps 100
Transformer Embed Channels 768
CLAP Text Encoder Output Project Channels 1024
Token Length 77

Table 11: Hyperparameters of SELD.

Hyperparameter | SELD
Binaural Channels 3
Input FOA Channels 7
p Frequency Bins 128
Frames 120
. Hidden_size 64
Audio Encoder(CNN) Conv Blocks 3
Hidden_size 128
Audio Encoder(Vit) Conv Blocks 1
Transformer Blocks 2
Num of Transformer Heads 4

B.7 Sound Event Localization and Detection

We follow the STARSS23 framework for FOA-based sound event localization and detection, training
on the event segments from the MRSSound subset under both audio-only and audio-visual conditions.
To enable binaural input, we modify the model architecture to use three input channels and extract
interaural phase difference features. This allows us to adapt the SELD model to binaural audio.
Additionally, we experiment with replacing convolutional layers with Transformer encoders to explore
the effect of different architectures on sound event localization and detection performance. We list
the hyper-parameters of SELD in Table [T}
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