

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CONFIGURING PARALLEL TRAINING OF NEURAL NETWORKS USING BAYESIAN OPTIMIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Training of modern large neural networks (NNs) is often done in parallel across multiple GPUs. While existing parallel training frameworks easily allow NN training using multi-dimensional parallelism, the challenge remains in finding the optimal hyperparameters, such as the best balance between the sizes of each parallelism dimension, which would result in the highest training throughput. Due to a large number of candidate parallelism configurations (PCs) for a given training scenario, it is infeasible to perform exhaustive search over all of them. Existing PC optimization methods typically either require conducting training trials on a large number of PCs, each of which can be expensive to perform, or rely on an approximate cost model which may be inaccurate and hardware-specific. To overcome these issues, we present OPPA, which combines constrained Bayesian optimization methods with prior knowledge in the form of a parallelism-informed prior belief, to obtain an optimal PC using a minimal number of NN training trials. We also propose a framework for early termination of trials involving suboptimal PCs, whose efficiency gains can be theoretically justified. We show that OPPA finds an optimal PC more efficiently for training transformers on various multi-GPU systems compared to the methods used in existing parallel training frameworks.

1 INTRODUCTION

Modern advances in deep learning have arisen from the ability to scale neural networks (NNs) to larger sizes. In natural language processing, for example, transformer-based models (Vaswani et al., 2017; Devlin et al., 2019), large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2024) and multimodal models (Radford et al., 2021; Liu et al., 2023), composed of millions or even billions of parameters, have shown tremendous success in tasks such as text classification, text generation, and language understanding. Due to their size, these large NNs often cannot be trained on standard machines with a single processor. To scale up the training process, it is necessary to distribute the NN training workload across a cluster of machines and parallelize the training process. Different parallelism methods for NN training have been proposed, including data parallelism (Rajbhandari et al., 2020; Zhao et al., 2023), pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019), tensor parallelism (Shoeybi et al., 2020), and combinations of these three parallelism methods also referred to as *multi-dimensional parallelism* (Rasley et al., 2020; Shoeybi et al., 2020; Li et al., 2023).

In NN training, to fully utilize the given hardware and reduce the computation time, we would like to maximize the *throughput* of training, or the number of training steps processed in a given time. The throughput will depend on the selected *parallelism configurations* (PCs), which in large-scale parallel training frameworks (Kuchaiev et al., 2019; Rasley et al., 2020; Shoeybi et al., 2020; Li et al., 2023) are specified by several hyperparameters which would also include the size of each parallelism dimension. In practice, it is *difficult to accurately quantify how the choice of PC affects the training throughput*, as it would depend on the NN architecture, the training data, the hardware, or the exact implementations of the parallel training framework. While there are works on approximating (and optimizing) the training throughput of a PC (Li et al., 2022; Zheng et al., 2022; Zhang et al., 2024), *these approximations require strong assumptions* on the compute hardware and the specific parallelized NN training implementation and may not capture all nuances of a parallel training instance, and so relying on them alone may not be reliable enough to directly inform the optimal PC to select.

Figure 1: Main idea of OPPA. OPPA combines Bayesian optimization with knowledge on parallel model training to find the parallelization strategy which achieves the highest training throughput.

In practice, *the most reliable method to consider all possible factors during parallel training would be to conduct real training trials with each PC on real hardware*. Unfortunately, due to the large number of possible PCs, *performing an exhaustive search would be extremely inefficient*. To circumvent this, existing parallel training frameworks will use methods to select a subset of candidate PCs to trial. However, these methods are still inefficient due to simplistic optimization algorithms which are *unable to adapt to known training throughput measurements and do not utilize on any prior domain knowledge*, therefore still need to run excessively many trials to find a good PC candidate.

To efficiently select the PC that achieves the best throughput, we therefore need the ability to adaptively select potentially good PCs to trial, while also filtering out poor candidates using information from trialed PCs and from existing domain knowledge. Given these considerations, it may be possible to use black-box optimization methods such as Bayesian optimization (BO) (Gelbart et al., 2014; Frazier, 2018). However, *naive application of BO is still inefficient*, and could be improved if characteristics of PC trialing and the parallel training process are taken advantage of by the algorithm.

In this paper, we introduce the OPTIMIZER FOR PARALLELISM CONFIGURATIONS, abbreviated as OPPA, *which adaptively and rapidly optimizes the PC for efficient parallel training*. To achieve this, OPPA boosts the efficiency of BO by novelly exploiting *early termination of trials involving suboptimal PCs and a parallelism-informed prior belief*. Despite incorporating these efficiency tricks, OPPA still theoretically guarantees sublinear regret. The main idea of OPPA is presented in Fig. 1. In Sec. 3, we first formulate the problem of finding the optimal PC as a black-box function optimization problem with black-box constraints. In Sec. 4, we discuss the design choices of OPPA. We develop a surrogate model with a *parallelism-informed prior belief* based on knowledge from parallelized NN training that can generalize to many hardware setup and training scenarios (Sec. 4.1), which is then used to select promising PCs to trial using constrained BO (Sec. 4.2). We also discuss the process of trialing a PC and *propose a novel BO technique which early terminates trials with suboptimal PC*, with both theoretical and empirical justification (Sec. 4.3). Finally, we empirically demonstrate the effectiveness of OPPA in Sec. 5, showing that OPPA can more efficiently find a good PC for training transformers compared to existing methods and compared to naively using BO without modifications.

2 BACKGROUND AND RELATED WORKS

In this section, we provide an overview of current techniques of parallelized model training on multiple GPUs, and how optimal parallelism configurations are currently found. We also provide a brief overview of Bayesian optimization, which is a technique we will use in our proposed method.

2.1 PARALLELIZED NEURAL NETWORK TRAINING

To effectively train large neural networks (NNs), the training workload can be distributed across multiple GPUs. Different parallelism dimensions split the workload differently, which affect the

108 amount of computation per GPU, amount of communication between each GPU, and the amount of
 109 memory required in each GPU. Here, we briefly discuss some of these existing parallelism techniques.
 110

111 **Data, tensor, and pipeline parallelism.** The most basic method to parallelize NN training is data
 112 parallelism (DP) (Li et al., 2020), where a batch of training data is split and distributed to each
 113 device, separately processed by the local model replica, before gathering the gradients from each
 114 device. While DP is simple, it replicates the model on each device, taking up additional memory. To
 115 solve this, techniques such as the Zero Redundancy Optimizer (ZERO) (Rajbhandari et al., 2020)
 116 in the DEEPSPEED package, or Fully-Sharded Data Parallel (FSDP) (Zhao et al., 2023) have been
 117 proposed to perform some sharding of model parameters or gradients to avoid full model replication.
 118 Furthermore, tensor parallelism (TP) (Shoeybi et al., 2020; Bian et al., 2021) and pipeline parallelism
 119 (PP) (Huang et al., 2019; Narayanan et al., 2019) have been proposed which partition, respectively,
 120 the tensors in the model and the model execution pipelines onto multiple devices. The specific
 121 implementations of DP, TP, PP can often also be further controlled by the user, including factors
 122 such as which tensors are sharded or how many shards they are partitioned into, which can affect the
 123 overall throughput. The three types of parallelism are discussed further in App. A.

124 **Multi-dimensional parallelism.** Many frameworks (Rasley et al., 2020; Shoeybi et al., 2020; Li
 125 et al., 2023) have also been developed to combine the use of DP, TP, and PP within the same training
 126 process. These frameworks provide simple interfaces for users to specify the desired *parallelism*
 127 *configuration* (PC), which includes hyperparameters controlling the execution of the parallel training
 128 process, a subset of which specifies the size of each parallelism dimension. These frameworks then
 129 automatically handle tensor sharding and execute the parallel training pipeline as per the specified PC.
 130 These frameworks may also manage training on multi-node setting or even heterogeneous hardware.
 131 While these frameworks allow practitioners to easily specify a PC for training, *selecting the optimal*
 132 *PC for the most efficient training is difficult*, since the optimal PC will non-trivially depend on the
 133 GPU specifications, communication bandwidth of the GPU devices, the specific NN architecture or
 134 the training data (Li et al., 2023; Lin et al., 2024; Wagenländer et al., 2024). For example, DP is
 135 ineffective for large models or large batch sizes, since the additional model replications may cause
 136 out-of-memory errors. Meanwhile, PP is less effective on smaller models, as communication costs
 137 between each pipeline stage may dominate the computation of the fragmented pipeline.

138 **Optimization of multi-dimensional parallelism configuration.** The most accurate way to find the
 139 optimal PC would be to trial all possible PCs on the actual training hardware to determine which one
 140 results in the highest training throughput. However, this is prohibitively expensive since there can be
 141 a large number of possible PCs, and each trial would itself require computational resource and time
 142 which may be limited on real clusters. To circumvent this, frameworks such as NEMO¹ (Kuchaiev
 143 et al., 2019) and DEEPSPEED² (Rasley et al., 2020) have implemented methods for automatic PC
 144 tuning based on running NN training trials for a few training steps on a number of PCs. The PCs
 145 trialed are often either selected non-adaptively (e.g., based on random selection), or adaptively based
 146 on a simple surrogate function. However, these methods are unable to *efficiently use the measured*
 147 *throughput of trialed PCs* to model the true throughput and perform informed optimization, and
 148 therefore still require a large number of training trials to obtain a good PC.

149 Since running training trials may be expensive, we may consider constructing a surrogate model
 150 to approximate the computation and communication costs for different parallelism strategies (Li
 151 et al., 2022; Zheng et al., 2022; Zhang et al., 2024), which would allow us to use domain knowledge
 152 to filter out suboptimal PCs while performing fewer trials, or even by not trialing any PCs at all.
 153 This methods, however, would *require an implicit assumption that the surrogate of the true training*
 154 *throughput is correct*, which may not always be possible because surrogates may be unable to fully
 155 capture the nuances of practical parallel training implementations. Furthermore, a fixed surrogate
 156 model would not be easily extendable to new hyperparameters or parallelism nuances which may
 157 arise in a PC, which is important especially with the ever-growing parallelism training literature.

158 2.2 BAYESIAN OPTIMIZATION

159 In order to more efficiently select a PC to trial and to optimize for, we will utilize Bayesian optimiza-
 160 tion (BO) (Frazier, 2018). BO aims to maximize some black-box function $f : \mathcal{X} \rightarrow \mathbb{R}$ which is often

1¹<https://docs.nvidia.com/nemo-framework/user-guide/latest/usingautoconfigurator.html>

2²<https://www.deepspeed.ai/tutorials/autotuning/>

Figure 2: *Left*: Visualization of a parallelism configuration with the hyperparameters that can be tuned. *Right*: Visualization of GPU allocation for 3D parallelism according to the dimension sizes.

expensive to query and whose derivative is unknown. The black-box function is modeled a Gaussian process (GP) (Rasmussen & Williams, 2006), which is characterized by a prior mean $\mu_{\text{prior}}(\cdot)$ and a kernel function $k(\cdot, \cdot)$. Given a set of observations, we perform Bayesian inference to obtain a posterior GP, which is made up of a posterior mean and posterior covariance, encoding the expected value and the uncertainty of the function respectively. With the posterior GP, the BO procedure selects an input that maximizes some acquisition function, such as the expected improvement (Jones et al., 1998) and the upper confidence bound (Srinivas et al., 2012). These acquisition functions balance between exploring unique inputs that have not been queried to obtain some function estimate, and exploiting inputs likely to have high function values in order to efficiently recover a global optimum of f . We provide a more technical overview of GP modeling and BO in App. B.

BO is a widely used to optimize black-box functions which have no closed form and are expensive to evaluate. This include a wide range of problems, such as experimental design (Lei et al., 2021; Rainforth et al., 2023) or material design (Zhang et al., 2020). More relevant to our work, BO is also commonly used for optimizing the NN architecture such that achieves the best performance in a given task (Snoek et al., 2012). **Finding the optimal PC, however, differs in two aspects.** First, the hyperparameters in a PC on the training throughput have better-defined mechanics (even if not completely known), which can be partially described based on domain knowledge. Modeling via a GP allows incorporation of these knowledge through a good choice of prior belief, which reduce the number of trials required. **Second, trialing a PC allows for repeated measurements from many sequential training steps. Here, running many training steps is costly and may be redundant, and so adaptive early termination may be applicable to reduce the number of training steps needed to be run.**

3 PROBLEM SETUP

In this section, we describe the problem setup. For our problem setting, we consider a parallelism configuration (PC), visualized in Fig. 2, which contains a list of tunable hyperparameters found in typical parallel training frameworks, and controls various aspects of parallelized NN training. As shown, a subset of these hyperparameters determines the *size of each parallelism dimension*. In our paper, we consider 3D parallelism where we use dp , tp , and pp , to indicate the size of the data, tensor, and pipeline parallelism dimensions respectively. We assume that their product $dp \cdot tp \cdot pp$ is equal to the number of available GPUs n_{gpus} . The remaining hyperparameters determine the *specific implementations of each parallelism dimension*, which may include hyperparameters of the ZERO optimizer which controls the DP implementation, the number of microbatches and model chunks which control how the PP implementation, or other hyperparameters specific to the parallel training framework. We discuss these hyperparameters further in App. C.1.

We let \mathcal{H} be the set of all possible PCs. The goal of our problem is to find the optimal PC $H^* \in \mathcal{H}$ which results in the *highest throughput* (i.e., can run the most number of training steps per unit of time), while *fitting in the GPU memory* (i.e., the maximum GPU memory required is less than M_0). For some PC H , we let $\mathcal{R}(H)$ and $\mathcal{M}(H)$ be, respectively, the throughput and the maximum memory usage when using PC H . Then, our problem of finding the optimal $H^* \in \mathcal{H}$ can be formulated as a constrained maximization problem given by

$$\underset{H \in \mathcal{H}}{\text{maximize}} \quad \mathcal{R}(H) \quad \text{s.t.} \quad \mathcal{M}(H) \leq M_0. \quad (1)$$

To evaluate a PC H , we can perform a short training trial to estimate its throughput and maximum memory usage. To estimate the throughput of H , we can measure the times t_1, t_2, \dots, t_q over q training steps, which can then be used to approximate the throughput as $\mathcal{R}(H) \approx q^{-1} \sum_{j=1}^q t_j^{-1}$. As we demonstrate in Fig. 3, the time to execute each training step can vary, for example due to setup and compilation processes at the start of the training, and unpredictable system fluctuations which occur throughout training. Therefore, it is unreliable to predict the training throughput using only few training steps, but rather should aggregate the values across multiple training steps. While we can choose to perform q_{\max} training steps during the trial, we can also choose to terminate the trial early after fewer than q_{\max} training steps, although the estimate of $\mathcal{R}(H)$ may also be more inaccurate. To measure the maximum allocated GPU memory throughout the training steps, using CUDA-based PYTORCH, this can be done using the `torch.cuda.max_memory_allocated()` function, which records the maximum allocated GPU memory achieved at any point during training.

When designing our algorithm, we also note two additional characteristics of the problem:

- [A] Since \mathcal{R} and \mathcal{M} are dependent on many factors which may be difficult to model or even known exactly, we assume that *their exact forms are only partially known* given the existing domain knowledge. Therefore, a good surrogate for \mathcal{R} and \mathcal{M} should be able to incorporate domain knowledge with some uncertainty modeling based on observed training trials.
- [B] Even though a PC can be (and should be) trialed on real hardware, *running a single trial incurs a high cost*. This is especially true with suboptimal PCs since the same number of training steps on a suboptimal PC would require more time to execute. This motivates us to design an optimization algorithm such that only promising PCs are trialed, and PCs which are likely suboptimal are not trialed or are only trialed for a shorter period of time.

4 METHOD

In this section, we describe OPPA, which incorporates BO with domain knowledge on training parallelism to perform an informed selection of the optimal PC for parallel training. As shown in Fig. 1, OPPA alternates between three steps; ① modeling the training throughput and maximum memory usage based on observed data using a GP with a parallelism-informed prior belief, ② finding the best PC to trial next using BO, and ③ conducting NN training trials for some number of training steps to obtain an estimate of the training throughput and maximum memory usage for a selected PC.

4.1 CONSTRUCTING A SURROGATE MODEL

In Step ①, we attempt to construct a surrogate model to predict the throughput and the memory usage. As suggested in [A], to explicitly model the imperfections in our domain knowledge, we assume that the true throughput \mathcal{R} and maximum memory usage \mathcal{M} can be decomposed as

$$\mathcal{R}(H) = \hat{\mathcal{R}}(H; \theta_{\mathcal{R}}) + f_{\mathcal{R}}(H), \quad \mathcal{M}(H) = \hat{\mathcal{M}}(H; \theta_{\mathcal{M}}) + f_{\mathcal{M}}(H), \quad (2)$$

where $\hat{\mathcal{R}}$ and $\hat{\mathcal{M}}$ represent the parallelism-informed prior beliefs with hyperparameters $\theta_{\mathcal{R}}$ and $\theta_{\mathcal{M}}$ constructed based on the domain knowledge on parallel training, and $f_{\mathcal{R}}(H)$ and $f_{\mathcal{M}}(H)$ additional unknown contributions not captured by our domain knowledge.

Parallelism-informed prior belief. The functions $\hat{\mathcal{R}}$ and $\hat{\mathcal{M}}$ aim to estimate \mathcal{R} and \mathcal{M} respectively based on existing knowledge about parallel NN training. We *do not require* $\hat{\mathcal{R}}$ and $\hat{\mathcal{M}}$ to be *completely accurate*, but instead only be reasonable estimates and generalize across multiple training scenarios.

For OPPA, to approximate the throughput, we consider the time per training step for the computation \hat{T}_{comp} and for the communication \hat{T}_{comm} , which can combine to approximate the throughput as $\hat{\mathcal{R}}(H; \theta_{\mathcal{R}}) = [\hat{T}_{\text{comp}}(H; t_c) + \hat{T}_{\text{comm}}(H; \mathbf{C})]^{-1}$ where $\theta_{\mathcal{R}} = \{t_{\text{comp}}, \mathbf{C}\}$ are learned hyperparameters.

Figure 3: Time for each training step for a few training trials with different PCs. Each color represents a different PC used, and the dashed line represents the throughput estimate for that PC.

270 For $\hat{\mathcal{T}}_{\text{comp}}$ we consider the additional computation time that arise from the pipeline bubble in PP
 271 Narayanan et al. (2019). Meanwhile, inspired by Xiong et al. (2024), for $\hat{\mathcal{T}}_{\text{comm}}$, we consider an
 272 idealized training scenario visualized in Fig. 2 which assumes the model to compose of roughly
 273 identical blocks, and considers the communication from the All-Reduce operations involved in DP
 274 and TP, and point-to-point communications involved in PP. We consider a canonical ring/tree scaling
 275 with hierarchical aggregation such that intra- and inter-host connections are separately modeled, with
 276 the constants for the specific communication types collapsed into \mathbf{C} . Further details of this are given
 277 in App. D.1. To model maximum memory usage $\hat{\mathcal{M}}$, we consider the memory required per GPU to
 278 store the NN parameters and to store gradient values for backpropagation, as we detail in App. D.2.
 279

280 In both prior belief functions, a key design choice is to make the prior belief function general enough
 281 to capture a variety of training scenarios, with *a simple analytical form based on looser assumptions*
 282 about the model, hardware, and network, and *using learnable parameters* (as opposed to fixed
 283 constants) to capture approximate cost multipliers which depend on the model and training data
 284 sizes, and intra- and inter-host network communications, each of which vary across different training
 285 scenarios. These design choices allow OPPA *to be applicable to training scenarios involving a wide*
 286 *variety of model and hardware setups*, due to the balance between capturing the general effects of
 287 each parallelism dimension, but not being too specific to overfit to any particular training scenario.
 288

289 **Additional contribution terms.** Due to the incomplete domain knowledge to fully describe a parallel
 290 training process, we aim to learn the unaccounted factors $f_{\mathcal{R}}$ and $f_{\mathcal{M}}$ using real training trials. To
 291 do so, we model $f_{\mathcal{R}}$ and $f_{\mathcal{M}}$ using Gaussian processes (GPs). The benefit of using a GP is twofold.
 292 First, a GP is typically flexible enough to model unknown functions that may not have an analytical
 293 form. Second, a GP can quantify its uncertainty, which allows the surrogate to determine how much
 294 it knows about the throughput of a certain PC. This allows OPPA to potentially trial PCs whose
 295 throughput it is more uncertain about given the trials conducted.

296 To model $f_{\mathcal{R}}$ and $f_{\mathcal{M}}$, we use a GP with zero mean. **This is done since we assume \mathcal{R} and \mathcal{M} should**
 297 **already be “centered” around the prior belief functions, and so the additional contribution terms would**
 298 **only need to model the deviations from the prior belief which will likely be “centered” around zero.**
 299 For the kernel function k , we first embed the PC H via an embedding $e : \mathcal{H} \rightarrow [0, 1]^p$ which maps
 300 each PC to a p -dimensional vector. Here, we let $e(H)$ be a concatenation of each hyperparameter
 301 value in H , where each dimension is scaled to be between 0 and 1 according to the feasible values.
 302 Given the embedding, we then use the Matern kernel (Rasmussen & Williams, 2006) with $\nu = 5/2$
 303 where the distance between two PCs is the Euclidean distance of their corresponding embeddings,
 304 with some kernel hyperparameters θ_k . The equation for the Matern kernel is given in App. D.3.
 305

306 Given our prior belief and the modeled additional contribution terms, the decomposition in Eq. (2)
 307 encodes our belief that \mathcal{R} and \mathcal{M} is drawn from a GP which is given by

$$308 \mathcal{R} \sim \mathcal{GP}(\hat{\mathcal{R}}(\cdot; \theta_{\mathcal{R}}), k(\cdot, \cdot; \theta_k)), \quad \text{and} \quad \mathcal{M} \sim \mathcal{GP}(\hat{\mathcal{M}}(\cdot; \theta_{\mathcal{M}}), k(\cdot, \cdot; \theta_k)). \quad (3)$$

309 Using measurements from the previous $i-1$ trials, we find the optimal hyperparameters $\{\theta_{\mathcal{R}}, \theta_{\mathcal{M}}, \theta_k\}$
 310 by maximizing the marginal log-likelihood (Rasmussen & Williams, 2006), then perform GP regres-
 311 sion to obtain the posterior belief for the throughput $\mathcal{N}(\mu_{\mathcal{R},i-1}(H), \sigma_{\mathcal{R},i-1}^2(H))$ and the memory
 312 usage $\mathcal{N}(\mu_{\mathcal{M},i-1}(H), \sigma_{\mathcal{M},i-1}^2(H))$ for any PC H that has not been trialed, which would be a normal
 313 distribution with their respective mean and variance whose form we state in App. D.4.

314 4.2 SELECTING THE NEXT PC TO TRIAL

315 In Step ②, the next PC to trial is chosen based on the surrogate constructed in ① using BO. The
 316 next PC $H_i \in \mathcal{H}$ to trial in round i is chosen to be the PC which maximizes the constrained upper
 317 confidence bound (cUCB) (Srinivas et al., 2012; Wilson et al., 2017), which is given by

$$318 \text{cUCB}_i(H) \triangleq \mathbb{E}_{\hat{r}_{H,i-1}, \hat{m}_{H,i-1}} [X_{H,i-1} + \beta_i | X_{H,i-1} - \mathbb{E}[X_{H,i-1}] |] \quad (4)$$

319 where $\hat{r}_{H,i-1} \sim \mathcal{N}(\mu_{\mathcal{R},i-1}(H), \sigma_{\mathcal{R},i-1}^2(H))$ and $\hat{m}_{H,i-1} \sim \mathcal{N}(\mu_{\mathcal{M},i-1}(H), \sigma_{\mathcal{M},i-1}^2(H))$ are sam-
 320 pled from their respective GPs as modeled from ①, and $X_{H,i-1} = \hat{r}_{H,i-1} \cdot (1 - \text{sigmoid}(\hat{m}_{H,i-1}))$.
 321 Note that in the case that memory constraint is not violated (i.e., when $\text{sigmoid}(\hat{m}_{H,i-1}) \approx 0$),
 322 the objective in Eq. (4) can be reduced to the analytical UCB objective (i.e., $\text{cUCB}_i(H) \approx$
 323 $\mu_{\mathcal{R},i-1}(H) + \beta_i \sigma_{\mathcal{R},i-1}(H)$). The cUCB criterion considers a balance between *exploration* of

324 PCs which have not been trialed, and *exploitation* of PCs which are similar to those with already high
 325 throughputs (Jones et al., 1998; Gelbart et al., 2014). With this balance, the BO iteration is able to
 326 try enough PCs to construct a reasonable surrogate for the functions, while utilizing the remaining
 327 computational resources to trial good PC candidates for to achieve optimal training throughput. This
 328 allows the optimization to be more guided and more efficient, satisfying the requirement in B.
 329

330 **4.3 TRIALING THE NEXT PC**

331 Finally, in step ③, we perform a training trial on the PC H_i chosen in ② for q_{\max} training steps, and
 332 measure the time taken for each training step as $t_{i,1}, \dots, t_{i,q_{\max}}$. We then use these measurements to
 333 obtain an estimate of the throughput $\bar{r}_{i,q_{\max}}$, where $\bar{r}_{i,q} = q^{-1} \sum_{j=1}^q t_{i,j}^{-1}$, with variance $\sigma_{\bar{r}_{i,q_{\max}}}^2$ whose
 334 computation we detail in App. F.1. In practice, as demonstrated earlier in Fig. 3, the actual measured
 335 time for a sequence of training steps may contain outliers which can skew the throughput estimates.
 336 As we discuss in App. F.2, to make our estimate more accurate, we remove outlier values of $t_{i,j}$
 337 before computing the throughput estimate. Meanwhile, the maximum memory usage m_i across all
 338 training steps is measured by `torch.cuda.max_memory_allocated()`.
 339

340 **Early trial termination.** In practice, some PCs do not need to be trialed for the full q_{\max} steps, since
 341 fewer training steps are sufficient to determine that the PC is suboptimal. To save time on these
 342 trials, we consider early trial termination, where the training trial only continues if the throughput
 343 estimation is above some threshold. More formally, we define an indicator variable $I_{i,q}$ given by

$$344 \quad I_{i,q} = \mathbb{1} \left[(q \leq q_{\min}) \vee (\bar{r}_{i,q} \geq \max_{l \in \{1, \dots, i-1\}} \bar{r}_{l,\hat{q}_l} + \tau_q) \right]. \quad (5)$$

345 Intuitively, $I_{i,q} = 1$ when fewer than q_{\min} trials have been conducted, or when the throughput of H_i
 346 is likely to be higher than the throughput values found so far. We can continue the q th training step as
 347 long as $I_{i,q-1} = 1$, and terminate the training trial at the first step \hat{q}_i when $I_{i,\hat{q}_i} = 0$, which is when
 348 we are confident that H_i will not improve the best PC we have found so far. Early termination of
 349 trials will make suboptimal trials terminate earlier, saving computation time in practice, while still
 350 allowing the BO procedure to recover the optimal PC, as we show in the following theorem.

351 **Theorem 4.1** (Informally stated in terms of \mathcal{R}). *There exists some $\{\beta_i\}_{i=1}^N$ and $\{\tau_q\}_{q=1}^{q_{\max}}$ such that,
 352 with high probability, the cumulative regret is $\sum_{i=1}^N (\mathcal{R}(H^*) - \mathcal{R}(H_i)) = \tilde{\mathcal{O}}(\sqrt{N/q_{\min}})$, and for
 353 all $i = 2, \dots, N$, if $\mathcal{R}(H_i) < \max_{j \in \{1, \dots, i-1\}} \mathcal{R}(H_j)$, then $\hat{q}_i < q_{\max}$.*

355 In App. F.3, we prove a more general version of Thm. 4.1, and provide both [an intuitive explanation](#)
 356 along with empirical justification for early termination. Thm. 4.1 shows that sublinear regret can be
 357 achieved even with early termination, which means that OPPA will be able to recover the PC with
 358 the best throughput while allowing efficiency gains in practice. Furthermore, it also shows that PCs
 359 whose throughput is smaller than those of PCs already trialed will likely have their trials terminated
 360 early, therefore allowing OPPA to save resources from trialing suboptimal PCs as mentioned in B.
 361 We present the pseudocode for OPPA incorporating steps ①, ②, and ③ in App. G.

362 **5 EXPERIMENTS**

364 In this section, we present the results for OPPA when used to find the optimal PC for training
 365 transformer models on multi-GPU systems. We consider optimizing PC on different transformer-
 366 based training scenarios and on different hardware configurations with varying number of GPUs. We
 367 focus on transformers since many newer parallel training frameworks are mainly designed for these
 368 architectures. Detailed setups for the training scenarios are found in App. H.1.

370 We compare OPPA with several benchmarks, including RANDOM (random selection), XGBOOST
 371 (adaptive selection based on XGBOOST surrogate model (Chen & Guestrin, 2016) and is the current
 372 method used by DEEPSPEED (Rasley et al., 2020)), COST-MODEL (method which solely relies
 373 on the cost model of the throughput), and VANILLA-BO (which uses BO without any additional
 374 modifications). We provide more detailed description of these benchmarks in App. H.2.

375 We plot the best obtained throughput (in training steps per second) versus how long the optimization
 376 has been run, rather than versus the number of PCs that have been trialed, since each trial take a
 377 different amount of time to run. Nonetheless, plots for the achieved throughput versus the number of
 trials run are in App. I.1. The model loss are independent of the chosen PC and thus are not reported.

Figure 4: The best obtained throughput (higher is better) versus the duration each algorithm has been run for. The lines show the median across repeated trials, while the error band show the quartiles. Figs. 4a and 4b are both ran on a single host, while Figs. 4c and 4d was ran on multiple hosts. Note that some benchmarks were omitted from Fig. 4d due to computational budget.

Training on single-host setups. We first consider training transformers on a single machine with 8 GPUs. In Fig. 4a, we present the results for finding the optimal PC for training the BERT model (Devlin et al., 2019). We see that the methods which use BO outperform non-adaptive and even the other adaptive selection benchmarks. Furthermore, OPPA, which applies a parallelism-informed prior and early termination to BO, is able to achieve better performances than BO alone. We find that OPPA automatically prioritizes PCs with only DP and no ZERO optimizer, which matches our intuition that DP should be adequate for smaller NNs. In Fig. 4b, we consider the Qwen model (Yang et al., 2024), where OPPA again finds a better PC compared to the other benchmarks. Due to the larger model, OPPA now prefers a mix of DP and PP with fewer microbatches to reduce the memory use and synchronization between GPUs. We show the PCs selected by OPPA in App. I.2. We also show the ability of OPPA to optimize the PC on vision models [and mixture-of-experts](#) in App. I.3.

To further visualize the efficiency gains of OPPA, in Fig. 5a, we see that OPPA is able to trial many more PCs in a short amount of time compared to other methods due to terminating suboptimal trials early to avoid wasting time. When combined with a parallelism-informed prior belief to efficiently filter out suboptimal PCs, OPPA is able to return a PC with higher throughput, which in turn allows many more training steps to be processed in the subsequent training even after just 20 minutes of PC optimization, as shown in Fig. 5b. This demonstrates the necessity of OPPA to achieve faster parallel NN training.

Accuracy of surrogate model. In Figs. 6a and 6b we compare the throughput predicted by OPPA with the actual throughput scores. We see that even after a few trials, the predictions made by our surrogate already correlate well with the actual throughput. As we progress, the prediction also becomes more accurate, especially among PCs with high throughput where more trials are being run, allowing the optimal PC to be efficiently found. On the other hand, a cost model alone can capture rough trends of $\mathcal{R}(H)$ but not all nuances especially between the better PCs as shown in Fig. 6c, while a GP alone does not allow the surrogate to learn meaningful interpolations of $\mathcal{R}(H)$ as shown in Fig. 6d. In either of these cases, we see that there is a mismatch between the predicted optimal PC and the actual optimal PC. We further demonstrate the quality of the throughput and maximum memory surrogates in App. I.4, and discuss their robustness in App. I.5.

Effects of each component in OPPA. In Fig. 7, we performed ablation studies to isolate the effects from each proposed component in OPPA. We see that without early termination, BO would spend more time on suboptimal trials, resulting in a slower search process. Similarly, without the prior belief, we would be less informed about PCs which may be optimal, requiring more time to find the optimal PC. Additional results are presented in App. I.6. We also show the effects of q_{\min} on the performance of OPPA in App. I.7, demonstrating minimal degradation for small q_{\min} .

Figure 5: Efficiency of OPPA. Fig. 5a shows the number of PCs trialed by each method. Fig. 5b shows the number of training steps ran by each algorithm during optimization and during subsequent NN training (regions below and above dotted gray line respectively). The legend is the same as in Fig. 4.

8

Figure 6: Predicted throughputs from different surrogates versus the measured throughputs for the Qwen example. Figs. 6a and 6b represent the surrogate from OPPA after 10 and 20 trials respectively, with error bars showing the uncertainty. Fig. 6c shows the predictions from the cost model alone, while Fig. 6d shows the predictions from using GPs alone (both after 20 trials).

Training on multi-host setups. In addition to training on single-host setups, we also tested OPPA on optimizing the PC on multi-host setups. In these cases, the additional communication costs makes the throughput computation less straightforward, while larger number of feasible PCs complicates the optimization problem. We consider two multi-host setups which have different communication types and performance levels. In Fig. 4c, we show the results for tuning the PC for training a LLaMa-3 model (Grattafiori et al., 2024) with 1 billion parameters on a commodity cluster with 16 GPUs, which are setups more commonly found by practitioners with existing hardware in practice. Meanwhile, Fig. 4d are the results for tuning the PC to train a LLaMa-2 model (Touvron et al., 2023) with 7 billion parameters on 32 GPUs distributed across 8 machines in a high-performance computing (HPC) cluster. In both cases, we find that OPPA is still able to outperform other methods by a significant margin. Furthermore, OPPA obtains good PCs consistently (i.e., smaller variance in the resulting throughput), demonstrating its robustness. We also see that BO-based selection methods outperform the other algorithms due to its ability to balance exploration and exploitation, however OPPA is able to do so more efficiently due to the additional guidance from prior knowledge and early termination of trials to save time.

In Fig. 8, we also compare OPPA with cost model-based algorithms, namely AMP (Li et al., 2022) and NNNSCALER (Lin et al., 2024). We see that OPPA allow better PCs to be selected compared to methods based solely on optimizing a cost model. This demonstrates the advantages of adaptive methods which effectively incorporate the scores obtained from actual training trials as opposed to solely using cost model surrogates, and the non-trivial modifications made from OPPA which allow for this boost in performance.

6 CONCLUSION

We have presented OPPA, which uses constrained Bayesian optimization techniques with a parallelism-informed prior distribution to efficiently optimize the parallelization strategy which can achieve the best training throughput across a variety of hardware configurations. OPPA can be easily applied to other parallel training frameworks due to the minimal assumptions on the implementations of the training parallelism and the simplicity to extend to other hyperparameters. We believe that the parallelism-informed prior belief could be embedded with more prior knowledge on specific training implementation or training of specific NN architectures, which should boost OPPA even further to find a better and possibly more elaborate PC for parallel NN training.

Figure 7: Effect of different components of OPPA on the obtained throughput for the Qwen training.

Figure 8: Obtained \mathcal{R} from OPPA compared to those from cost model-based methods for LLaMa-7b training with 32 GPUs. Note the results reported for BO and OPPA are the same from Fig. 4d.

486 REFERENCES
487

488 Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
489 drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
490 Bayesian Optimization. In *Proc. NeurIPS*, 2020.

491 Zhengda Bian, Qifan Xu, Boxiang Wang, and Yang You. Maximizing Parallelism in Distributed
492 Training for Huge Neural Networks. 2021. arXiv:2105.14450.

493 Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In *Proc. SIGKDD*,
494 2016.

495 Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
496 bidirectional transformers for language understanding. In *Proc. NAACL-HLT*, 2019.

497 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
498 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
499 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
500 In *Proc. ICLR*, 2021.

501 Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018. arXiv:1807.02811.

502 Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. Bayesian optimization with unknown
503 constraints. In *Proc. UAI*, 2014.

504 Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
505 Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
506 Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
507 Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
508 Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
509 Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang
510 Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
511 Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
512 Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
513 Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang,
514 Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire
515 Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
516 Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
517 Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
518 van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
519 Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
520 Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani,
521 Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
522 Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yearly, Laurens van der
523 Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
524 Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
525 Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya
526 Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
527 Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
528 Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
529 Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
530 Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
531 Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
532 Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
533 Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
534 Shaoliang Nie, Sharan Narang, Sharath Raparthi, Sheng Shen, Shengye Wan, Shruti Bhosale,
535 Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
536 Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
537 Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
538 Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
539 Virginie Do, Vish Vogeti, Vitor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin

540 Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide
 541 Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
 542 Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
 543 Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
 544 Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
 545 Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
 546 Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
 547 Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
 548 Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
 549 Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola,
 550 Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence,
 551 Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu,
 552 Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
 553 Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
 554 Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
 555 Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
 556 Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban
 557 Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
 558 Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
 559 Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
 560 Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
 561 Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan
 562 Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai
 563 Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
 564 Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
 565 Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
 566 Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
 567 Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran
 568 Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,
 569 Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
 570 Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson,
 571 Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
 572 Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
 573 Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
 574 Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
 575 Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
 576 Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
 577 Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
 578 Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
 579 Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghatham Murthy, Raghu Nayani, Rahul Mitra,
 580 Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
 581 Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
 582 Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji
 583 Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shuang Lindsay, Sheng Feng, Shenghao Lin,
 584 Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
 585 Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
 586 Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
 587 Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
 588 Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
 589 Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
 590 Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
 591 Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaoqian
 592 Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
 593 Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
 594 Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoqiu Wen, Zhenyu
 595 Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models. 2024.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
 Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: efficient training of giant

594 neural networks using pipeline parallelism. In *Proc. NeurIPS*, 2019.
 595

596 Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient Global Optimization of
 597 Expensive Black-Box Functions. *Journal of Global Optimization*, 13(4):455–492, 1998.

598 Johannes Kirschner and Andreas Krause. Information Directed Sampling and Bandits with Het-
 599 eroscedastic Noise. In *Proc. COLT*, 2018.
 600

601 Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel
 602 Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, Patrice Castonguay, Mariya Popova,
 603 Jocelyn Huang, and Jonathan M. Cohen. NeMo: a toolkit for building AI applications using Neural
 604 Modules. 2019. arXiv:1909.09577.

605 Bowen Lei, Tanner Quinn Kirk, Anirban Bhattacharya, Debdeep Pati, Xiaoning Qian, Raymundo
 606 Arroyave, and Bani K. Mallick. Bayesian optimization with adaptive surrogate models for
 607 automated experimental design. *npj Computational Materials*, 7(1):1–12, December 2021.
 608

609 Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. AMP: automatically finding model parallel
 610 strategies with heterogeneity awareness. In *Proc. NeurIPS*, 2022.

611 Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
 612 Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. PyTorch distributed: experiences
 613 on accelerating data parallel training. In *Proc. VLDB*, 2020.
 614

615 Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang,
 616 and Yang You. Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training.
 617 In *Proc. ICPP*, 2023.

618 Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng Li, Saeed Maleki, Xu Cao,
 619 Ning Shang, Yilei Yang, Weijiang Xu, Mao Yang, Lintao Zhang, and Lidong Zhou. nnScaler:
 620 constraint-guided parallelization plan generation for deep learning training. In *Proc. OSDI*, 2024.
 621

622 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In *Proc.
 623 NeurIPS*, 2023.

624 Anastasia Makarova, Ilnura Usmanova, Ilija Bogunovic, and Andreas Krause. Risk-averse Het-
 625 eroscedastic Bayesian Optimization. In *Proc. NeurIPS*, 2021.
 626

627 Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R.
 628 Ganger, Phillip B. Gibbons, and Matei Zaharia. PipeDream: generalized pipeline parallelism for
 629 DNN training. In *Proc. SOSP*, 2019.

630 OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
 631 Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
 632 Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
 633 Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
 634 Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
 635 Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
 636 Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
 637 Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
 638 Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
 639 Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
 640 Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
 641 Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
 642 Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
 643 Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
 644 Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
 645 Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
 646 Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
 647 Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
 Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
 Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,

648 Aris Konstantinidis, Kyle Koscic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
 649 Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
 650 Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
 651 Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
 652 Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
 653 Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
 654 Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
 655 Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
 656 Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
 657 Giambattista Parascandolo, Joel Parish, Emry Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
 658 Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
 659 Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
 660 Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
 661 Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
 662 Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
 663 Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
 664 Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
 665 Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
 666 Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
 667 Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
 668 Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
 669 Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
 670 Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
 671 Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
 672 Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
 673 William Zhuk, and Barret Zoph. GPT-4 Technical Report. 2024. arXiv:2303.08774.

674 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 675 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 676 Learning Transferable Visual Models From Natural Language Supervision. In *Proc. ICML*, 2021.

677 Tom Rainforth, Adam Foster, Desi R. Ivanova, and Freddie Bickford Smith. Modern Bayesian
 678 Experimental Design. 2023. arXiv:2302.14545.

679 Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: memory optimizations
 680 toward training trillion parameter models. In *Proc. SC*, 2020.

681 Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System Optimiza-
 682 tions Enable Training Deep Learning Models with Over 100 Billion Parameters. In *Proc. SIGKDD*,
 683 2020.

684 Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian Processes for Machine Learning*.
 685 MIT Press, 2006. ISBN 978-0-262-18253-9.

686 Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
 687 Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. In
 688 *Proc. ICLR*, 2017.

689 Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
 690 Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
 691 Parallelism. 2020. arXiv:1909.08053.

692 Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
 693 learning algorithms. In *Proc. NeurIPS*, 2012.

694 Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian Process
 695 Optimization in the Bandit Setting: No Regret and Experimental Design. *IEEE Transactions on
 696 Information Theory*, 58:3250–3265, 2012.

697 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
 698 Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
 699 tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,

702 Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
 703 Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
 704 Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
 705 Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
 706 Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 707 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
 708 Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
 709 Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
 710 Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models.
 711 2023.

712 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
 713 Kaiser, and Illia Polosukhin. Attention is All you Need. In *Proc. NeurIPS*, 2017.

714 Marcel Wagenländer, Guo Li, Bo Zhao, Luo Mai, and Peter Pietzuch. Tenplex: Dynamic Parallelism
 715 for Deep Learning using Parallelizable Tensor Collections. In *Proc. SOSP*, 2024.

716 James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. The reparameteriza-
 717 tion trick for acquisition functions. 2017.

718 Dian Xiong, Li Chen, Youhe Jiang, Dan Li, Shuai Wang, and Songtao Wang. Revisiting the Time
 719 Cost Model of AllReduce. 2024. arXiv:2409.04202.

720 An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
 721 Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
 722 Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
 723 Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
 724 Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
 725 Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
 726 Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
 727 Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
 728 Zhifang Guo, and Zhihao Fan. Qwen2 Technical Report. 2024.

729 Shiwei Zhang, Lansong Diao, Chuan Wu, Zongyan Cao, Siyu Wang, and Wei Lin. HAP: SPMD
 730 DNN Training on Heterogeneous GPU Clusters with Automated Program Synthesis. In *Proc.
 731 EuroSys*, 2024.

732 Yichi Zhang, Daniel W. Apley, and Wei Chen. Bayesian Optimization for Materials Design with
 733 Mixed Quantitative and Qualitative Variables. *Scientific Reports*, (1):4924, 2020.

734 Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
 735 Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balooglu, Pritam Damania, Bernard
 736 Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. PyTorch FSDP: Experiences
 737 on Scaling Fully Sharded Data Parallel. In *Proc. VLDB*, 2023.

738 Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
 739 Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa:
 740 Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. In *Proc. OSDI*,
 741 2022.

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 A ADDITIONAL DISCUSSION ON PARALLELISM TYPES
757

758 **Data parallelism.** The most basic type of training parallelism is data parallelism (DP) (Li et al., 2020)
759 where a batch of training data is split into shards and distributed among each device. These shards
760 are then fed into the local replicas of the models, before the parameter updates from each device are
761 synchronized. While simple and often the fastest, the naive DP approach requires replication of the
762 model on each device, which takes up additional storage on each machine. Several methods have
763 since been proposed to perform DP with sharded models, including the Zero Redundancy Optimizer
764 (ZERO) introduced by Rajbhandari et al. (2020) in the DEEPSPEED package, and Fully-Sharded Data
765 Parallel (FSDP) introduced by Zhao et al. (2023). While these frameworks allow for efficient DP
766 implementations, their effectiveness can still heavily depend on the choice of hyperparameters. For
767 example, ZERO involves three different stages of optimization which chooses whether the optimizer
768 states, the model gradients or the model parameters are sharded between each GPU. The choice of
769 sharded items affect the amount of data that has to be stored in each GPU and communicated across
770 GPUs, which in turn affects the throughput of the training and the memory usage in each GPU.
771

772 **Tensor parallelism.** Another method for scaling operation is tensor parallelism (TP) where individual
773 tensors are sharded across multiple devices, so that the matrix multiplication operations are instead
774 done in a distributed manner, allowing these operations to scale to larger sizes than otherwise that
775 would fit on a single GPU. TP initially involved splitting a tensor along a single dimension (Shoeybi
776 et al., 2020), however has since also incorporated sharding tensors across multiple dimensions as
777 well (Bian et al., 2021).
778

779 **Pipeline parallelism.** In pipeline parallelism (PP) (Huang et al., 2019; Narayanan et al., 2019)
780 we instead partition the model along its execution pipeline, with each model partition running
781 synchronously with microbatches of data. The gradients are accumulated for each microbatch and
782 updated at the end of each training step. By sharding the model and training data into smaller chunks,
783 the GPU memory required at any one time becomes lower, allowing for the training of larger models
784 at the cost of more sequential operation rounds and higher cost of communication between each GPU.
785 The tradeoff between training speed and maximum memory usage can be further controlled based on
786 the size of microbatches and the number of model chunks.
787

788 B TECHNICAL PRIMER ON GAUSSIAN PROCESSES AND BAYESIAN
789 OPTIMIZATION
790

791 In this section, we provide a technical overview of Gaussian process (GP) regression and on Bayesian
792 optimization (BO). The contents are adapted from Rasmussen & Williams (2006); Frazier (2018).
793

794 A Gaussian process (GP) $\mathcal{GP}(\mu_{\text{prior}}, k)$ with prior mean μ_{prior} and kernel k is a random process
795 where for any subset of input \mathbf{X} , its corresponding output is given by a normal distribution $f(\mathbf{X}) \sim$
796 $\mathcal{N}(\mu_{\text{prior}}(\mathbf{X}), k(\mathbf{X}, \mathbf{X}))$. The prior mean $\mu_{\text{prior}}(x)$ describes the expected value of the random function
797 $f(x)$ at a certain input, while the kernel function $k(x, x')$ roughly captures the covariance between
798 $f(x)$ and $f(x')$.
799

800 Assume we have an unknown function f drawn from the GP. Given a set of observations $D =$
801 $(\mathbf{X}, \mathbf{y}) = \{(x_1, y_1), \dots, (x_n, y_n)\}$ where $y_i = f(x_i) + \epsilon_i$ are noisy observations of the true function
802 with Gaussian noise $\epsilon_i \sim \mathcal{N}(0, \lambda_i)$. Then, when performing Bayesian inference, we can express the
803 posterior mean and covariance of the GP as
804

$$\mu(x) = \mu_{\text{prior}}(x) + k(x, \mathbf{X}) (k(\mathbf{X}) + \text{diag}(\lambda))^{-1} (\mathbf{y} - \mu_{\text{prior}}(\mathbf{X})), \quad (6)$$

$$\sigma^2(x) = k(x, x) - k(x, \mathbf{X}) (k(\mathbf{X}) + \text{diag}(\lambda))^{-1} k(\mathbf{X}, x). \quad (7)$$

805 In practice, the prior mean and kernel may have hyperparameters θ which specify what functions
806 it is able to model. For example, many kernel functions include lengthscale values which govern
807 how correlated the function output is when a certain input dimension changes. One method to find
808 the optimal hyperparameters for the kernel is by finding the hyperparameter which maximizes the
809 marginal log-likelihood.
810

811 In Bayesian optimization (BO), the goal is to find the maxima of the unknown function f . This
812 function is black-box, and assumed to have no analytical form. To do so, we can learn more about
813

810 f by querying it at different inputs, and perform Bayesian inference to update our belief on the
 811 unknown function.

812 Given the current observations $\mathcal{D}_t = (\mathbf{X}_t, \mathbf{y}_t) = \{(x_1, y_1), \dots, (x_t, y_t)\}$ in round t of data selection,
 813 GP regression can be performed to obtain a posterior mean μ_t and posterior variance σ_t^2 . The next
 814 input to query x_{t+1} can be chosen as the input which maximizes some acquisition function. Examples
 815 of such acquisition function include the expected improvement (Jones et al., 1998)

$$817 \text{EI}_t(x) = \mathbb{E}_{y' \sim \mathcal{N}(\mu_{t-1}(x), \sigma_{t-1}^2(x))} [\max(0, y' - \max_{y \in \mathbf{y}_{t-1}} y)] \quad (8)$$

818 or the upper confidence bound (Srinivas et al., 2012)

$$819 \text{UCB}_t(x) = \mu_{t-1}(x) + \beta_t \sigma_{t-1}(x) \quad (9)$$

820 where $\beta_t > 0$ is a constant that may vary with t . In all of these acquisition functions, a tradeoff is
 821 performed between selecting inputs that the GP is uncertain about (i.e., with high $\sigma_{t-1}^2(x)$) to learn
 822 more about those unknown region, and selecting inputs in regions where the function value is known
 823 to be higher (i.e., with high $\mu_{t-1}(x)$).

826 C DETAILED DISCUSSION ON THE PROBLEM SETUP

828 C.1 HYPERPARAMETERS CONSIDERED

830 in Table 1, we list several hyperparameters which we include in our parallelism configuration and
 831 the range of the values. Note that the hyperparameters are constrained to give a valid PC as well;
 832 for example, we ensure that $\text{dp} \cdot \text{tp} \cdot \text{pp} = \text{n_gpus}$ to ensure that each dimension do not exceed
 833 number of GPUs. Some hyperparameters are also set to their default value when not in use; for
 834 example, if $\text{pp} = 1$ (i.e., no PP used) then we restrict $\text{mb} = \text{mc} = 1$ such that PCs are not duplicated.
 835 In the code, we generate all possible PCs beforehand so we can ensure that all PCs chosen will be
 836 valid according to the constraints.

837 Table 1: Tunable hyperparameters in a parallelism configuration.

839 Hyperparameter	840 Description	841 Feasible Values
840 DP size (dp)	841 Data parallelism degree	842 $[1, \text{n_gpus}]$
841 TP size (tp)	842 Tensor parallelism degree	843 $[1, \text{n_gpus}]$
842 PP size (pp)	843 Pipeline parallelism degree	844 $[1, \text{n_gpus}]$
843 DP bucket size	844 Size for gradient reduction buckets (MB)	845 $[1, 4096]$
844 ZeRO stage	845 ZeRO stage used	846 $[0, 3]$
845 ZeRO bucket size	846 Bucket size for ZeRO communication	847 $[1, 4096]$
846 Overlap ZeRO communication	847 Whether to overlap ZeRO communication	848 True / False
847 Overlap Zero AllGather	848 Whether to overlap AllGather	849 True / False
848 # microbatches (mb)	849 Number of microbatches per forward pass	850 \leq batch size
849 # model chunks (mc)	850 Number of model chunks for pipelining	851 \leq # transformer blocks
850 Overlap P2P for PP	851 Overlap PP communication or not	852 True / False
851 Grad. checkpointing	852 Whether gradient checkpointing is enabled	853 True / False

852 C.2 THROUGHPUT VERSUS TIME PER TRAINING STEP

853 We explain why we choose to maximize throughput instead of minimizing time per training step.

854 As an example, suppose we consider three PCs H, H', H'' where the times per training step are given
 855 by $\mathcal{T}(H) = 0.3$, $\mathcal{T}(H') = 0.4$, and $\mathcal{T}(H'') = 0.5$. In this case, H would be the best PC out of the
 856 three. We see here the gap of the time per training step between H and H' is $\mathcal{T}(H') - \mathcal{T}(H) = 0.1$,
 857 and the same gap size for H' and H'' of $\mathcal{T}(H'') - \mathcal{T}(H') = 0.1$. Meanwhile, the gap between the
 858 throughput of the two PCs would be $\mathcal{R}(H) - \mathcal{R}(H') = \mathcal{T}(H)^{-1} - \mathcal{T}(H')^{-1} = 3.3 - 2.5 = 0.8\bar{3}$
 859 and $\mathcal{R}(H') - \mathcal{R}(H'') = \mathcal{T}(H)^{-1} - \mathcal{T}(H'')^{-1} = 2.5 - 2 = 0.5$. We can see that the gap between the
 860 best PC becomes enhanced when we consider the throughput, when we compare it with the relative
 861 gap size of the training step time.

862 More concretely, if we have a PC which requires time t per training step, then you can reduce it by an
 863 amount of Δt , then the throughput would have increased by an amount $(\Delta t)/t^2$. When t becomes

864 smaller, the change in throughput will also increase but at an increasing rate. This therefore means by
 865 modeling the throughput, the scores of the good PCs will be more clearly separated.
 866

867 Additionally, we also consider a maximization of throughput since throughput would be bounded by
 868 $[0, r_{\max}]$, rather than the time per training step which would be unbounded on one end, i.e., be in the
 869 interval $[t_{\min}, \infty)$, which makes suboptimal PCs easier to handle. Also, we frame our problem as a
 870 maximization in order to be consistent with Bayesian optimization works which typically considers a
 871 maximization problem.

872 D DETAILED DISCUSSION OF GP SURROGATE IN OPPA

873 D.1 PARALLELISM-INFORMED PRIOR MEAN FOR THE THROUGHPUT

874 In this section, we elaborate on how the throughput prior mean is constructed in order to obtain the
 875 form for the parallelism-informed prior mean. In summary, we design the prior to incorporate the
 876 following characteristics.
 877

- 878 • *Parallelism coverage.* We model DP/TP traffic via All-Reduce-style collectives and PP via
 879 point-to-point transfers, using a placement-aware split of intra- and inter-host links. For
 880 computation costs, we also explicitly consider the pipeline bubbles.
 881
- 882 • *Topology and protocol awareness.* The communication term uses canonical ring/tree scaling
 883 with hierarchical aggregation (node-local first, then cross-node), while collapsing ZERO
 884 stages into a single All-Reduce surrogate at the bandwidth level (bytes over the wire are of
 885 the same order) and letting stage-specific latency/overlap differences be absorbed by C (e.g.,
 886 event counts, bucket sizes, communication overhead for each parallelism dimension, etc.).
 887
- 888 • *Hardware agnosticism via learning.* Rather than hard-coding device/network constants, we
 889 expose a small set of effective coefficients that are learned from a few traces. This keeps
 890 the prior portable across models, data types, and interconnects while preserving the correct
 891 asymptotic trends for dp , tp , and pp .
 892

To estimate the computation time, we assume an idealized machine that allows infinite parallelization, such that DP and TP are perfectly parallelized. Meanwhile, PP using an interleaved schedule incurs additional computation time from the microbatches being ran sequentially, and from pipeline bubble when the first microbatch is being fed through the pipeline (Narayanan et al., 2019). This additional computation time from PP, visualized in Fig. 9, is roughly equal to

$$893 \hat{T}_{\text{comp}}(H; t_{\text{comp}}) = \frac{t_{\text{comp}}}{n_{\text{gpus}}} \cdot \left(mb + \frac{pp - 1}{mc} \right) \quad (10)$$

894 where mb is the number of microbatches used in PP (set to 1 when PP is not used), mc is the number
 895 of model chunks for PP (also set to 1 when PP is not used), and $t_c = t_f + t_b$ is the total time to
 896 perform the forward and backward passes.
 897

To estimate the communication time, inspired by the model visualized in Fig. 2, we assume that DP and TP involve All-Reduce communications, and PP P2P communications, where these costs are modeled separately. We use an extended (α, β, γ) model discussed by Xiong et al. (2024), and for the intra- and inter-host communications, we characterize the network performance by the latency α_{intra} and α_{inter} , the per-byte bandwidth cost β_{intra} and β_{inter} , the incast overhead γ_{intra} and γ_{inter} , and the memory access overhead δ_{intra} and δ_{inter} . We assume that the inter-host communication costs will be larger than their intra-host counterparts.

910 For DP and TP, we assume that the Ring All-Reduce implementation is used, where the cost to gather
 911 and scatter data of size N across D machines is given by

$$912 C_{\text{AR}}(D, N, \alpha, \beta, \gamma, \delta) = 2(D - 1)\alpha + \frac{D - 1}{D}N(2\beta + \gamma + 3\delta). \quad (11)$$

913 For DP, we consider the gradient synchronization from the All-Reduce algorithm. The data size per
 914 GPU for DP All-Reduce, N_{dp} , is

$$915 N_{dp} = \lambda_Z \frac{M_{\text{model}}}{tp \cdot pp} \quad (12)$$

Figure 9: Estimate for computation time for PP where t_f and t_b are the time required for the forward and backward stages respectively, for when $pp = n_gpus = 4$, $mb = 4$, and $mc = 2$

where M_{model} is a learnable total model parameter size, and λ_Z is a tiny fudge for ZERO flavor while staying in AR-land, and it accounts for param-All-Gather + grad-Reduce-Scatter volume equivalence with small overhead for ZERO-3.

Suppose G_{node} is the number of GPUs per node. The overall communication cost from DP $\hat{\mathcal{T}}_{\text{comm,dp}}$ would then depend on the configuration of the network as follows:

- In a **hierarchical** (multi-host scenario with $dp > G_{\text{node}}$) system, the cost is given by

$$\hat{\mathcal{T}}_{\text{comm,dp}}(H; \mathbf{C}) = C_{\text{AR}}(G_{\text{node}}, N_{\text{dp}}, \alpha_{\text{intra}}, \beta_{\text{intra}}, \gamma_{\text{intra}}, \delta_{\text{intra}}) + C_{\text{AR}}(\lceil dp/G_{\text{node}} \rceil, N_{\text{dp}}/G_{\text{node}}, \alpha_{\text{inter}}, \beta_{\text{inter}}, \gamma_{\text{inter}}, \delta_{\text{inter}}). \quad (13)$$

- In a **flat inter-node** (multi-host scenario with $dp \leq G_{\text{node}}$), the cost is given by

$$\hat{\mathcal{T}}_{\text{comm,dp}}(H; \mathbf{C}) = C_{\text{AR}}(dp, N_{\text{dp}}, \alpha_{\text{inter}}, \beta_{\text{inter}}, \gamma_{\text{inter}}, \delta_{\text{inter}}). \quad (14)$$

- In a **flat intra-node** (single-host scenario), the cost is given by

$$\hat{\mathcal{T}}_{\text{comm,dp}}(H; \mathbf{C}) = C_{\text{AR}}(dp, N_{\text{dp}}, \alpha_{\text{intra}}, \beta_{\text{intra}}, \gamma_{\text{intra}}, \delta_{\text{intra}}). \quad (15)$$

Depending on the hardware used, the appropriate cost for the scenario can be selected.

For TP, we consider the cost from frequent activation communication (e.g., All-Reduce per layer). Let $M_{\text{act,tp}}$ be a learnable characteristic data size for one such TP All-Reduce operation. Let $O_{\text{tp}/mb}$ be the learnable number of these operations per microbatch. The total number of TP communication operations is $N_{\text{tp,ops}} = O_{\text{tp}/mb} \cdot mb$, and the cost of a single TP All-Reduce operation is $C_{\text{AR}}(tp, M_{\text{act,tp}}, \alpha_{\text{eff}}, \beta_{\text{eff}}, \gamma_{\text{eff}}, \delta_{\text{eff}})$ where effective parameters $\alpha_{\text{eff}}, \beta_{\text{eff}}, \gamma_{\text{eff}}, \delta_{\text{eff}}$ are chosen as intra-node or inter-node based on whether the tp group spans multiple hosts (i.e., if $N_H > 1$ and $tp > G_{\text{node}}$) or not. Then, the total TP communication cost is the number of communication operations multiplied by the cost per communication operation, or

$$\hat{\mathcal{T}}_{\text{comm,tp}}(H; \mathbf{C}) = N_{\text{tp,ops}} \cdot C_{\text{AR}}(tp, M_{\text{act,tp}}, \alpha_{\text{eff}}, \beta_{\text{eff}}, \gamma_{\text{eff}}, \delta_{\text{eff}}). \quad (16)$$

For PP, we consider the point-to-point (P2P) transfers of activations and gradients between pp pipeline stages, where the cost to transfer data of size N is given by

$$C_{\text{P2P}}(N, \alpha, \beta) = \alpha + N \cdot \beta. \quad (17)$$

Let $M_{\text{act,pp}}$ be a learnable characteristic data size for one P2P transfer (e.g., the size of an activation tensor). The number of communication boundaries is $pp - 1$. Communication occurs for each of mb microbatch, in both forward (activations) and backward (gradients) directions. The total number of P2P communications is given by $N_{\text{pp,transfers}} = \max(pp - 1, 0) \cdot 2mb$, where a single P2P transfer uses effective latency α_{eff} and effective per-unit-data cost $\beta_{\text{pp,eff}}$ (derived from base β parameters), chosen as intra-node or inter-node based on whether communicating stages are on different hosts

(approximated if $N_H > 1$). Given this, the overall cost of all communications related to PP would be given by

$$\hat{\mathcal{T}}_{\text{comm,pp}}(H; \mathbf{C}) = N_{\text{pp,transfers}} \cdot C_{\text{P2P}}(M_{\text{act,pp}}, \alpha_{\text{eff}}, \beta_{\text{pp,eff}}). \quad (18)$$

Here, if $\text{pp} = 1$, then $\hat{\mathcal{T}}_{\text{comm,pp}} = 0$.

When combining the communication costs for all three types of parallelism, considering in practice large chunks of communication overlap with compute, we attach non-overlap factors κ and obtain

$$\hat{\mathcal{T}}_{\text{comm}}(H; \mathbf{C}) = \kappa_{\text{dp}} \cdot \hat{\mathcal{T}}_{\text{comm,dp}}(H; \mathbf{C}) + \kappa_{\text{tp}} \cdot \hat{\mathcal{T}}_{\text{comm,tp}}(H; \mathbf{C}) + \kappa_{\text{pp}} \cdot \hat{\mathcal{T}}_{\text{comm,pp}}(H; \mathbf{C}) \quad (19)$$

where \mathbf{C} are constants related to the various costs which are to be inferred. Given Eqs. (10) and (19), we can construct the prior mean for throughput to be

$$\hat{\mathcal{R}}(H; \{t_{\text{comp}}, \mathbf{C}\}) = [\hat{\mathcal{T}}_{\text{comp}}(H; t_{\text{c}}) + \hat{\mathcal{T}}_{\text{comm}}(H; \mathbf{C})]^{-1}. \quad (20)$$

D.2 PARALLELISM-INFORMED PRIOR MEAN FOR THE MAXIMUM MEMORY USAGE

We briefly elaborate on the choice of prior mean in Eq. (21). As discussed, we only consider the memory that is required to store the NN parameters, and those to compute the gradient updates.

For NN parameters, its sharding can be done on the pipeline or on the layers, allowing us to approximate the GPU memory required for storing the NN parameters to be inversely proportional to $\text{pp} \cdot \text{tp}$. Note that assuming the simplest DP implementation, the NN parameters are duplicated and stored on each DP dimension, and so the maximum memory usage is not affected by the DP.

Meanwhile, in the case of backpropagation computation, the maximum memory used will roughly be proportional to how many model parameters a certain GPU has to perform the forward and backward passes for, times how many training samples the GPU has to process at any one time. We expect this quantity to be inversely proportional to the number of total GPUs times the latter to depend on the number of microbatches used.

Combining these two factors, can write the maximum memory usage as

$$\hat{\mathcal{M}}(H; \theta_{\mathcal{M}}) = \min \{m_1 \cdot (\text{pp} \cdot \text{tp})^{-1} + m_2 \cdot (\text{n_gpus} \cdot \text{mb})^{-1} + m_3, M_0\} \quad (21)$$

where, m_1 captures the memory used for storing model parameters, and m_2 captures the memory used during backpropagation computations, m_3 are any other additional memory overheads unaccounted for by our model, and $\theta_{\mathcal{M}} = \{m_1, m_2, m_3\}$. Note that since we cannot measure maximum memory usage above values of M_0 , we apply the min function to clip the prior belief function.

D.3 KERNEL

Given the embedding $e(H)$, we use the Matern kernel (Rasmussen & Williams, 2006), which is given by

$$k(H, H') = \sigma_k^2 k_{\text{Matern}, \nu}(e(H), e(H'); \ell) = \sigma_k^2 \frac{2^{1-\nu}}{\Gamma(\nu)} (\sqrt{2\nu} d_{\ell}(H, H'))^{\nu} K_{\nu}(\sqrt{2\nu} d_{\ell}(H, H'))$$

where Γ is the Gamma function, K_{ν} is the modified Bessel function, σ_k is the kernel scaling constant,

$$d_{\ell}(H, H') = (e(H) - e(H'))^T \mathbf{L}^{-2} (e(H) - e(H')) \quad (22)$$

is the distance between two PC embeddings and $\mathbf{L} = \text{diag}(\ell) = \text{diag}([\ell_1 \cdots \ell_p])$ is the lengthscale.

D.4 POSTERIOR DISTRIBUTION OF PREDICTED THROUGHPUT AND MEMORY USAGE

Suppose we are in the i th round. We let $\mathbf{H}_i = [H_1 \cdots H_i]$ be the list of PCs, $\bar{\mathbf{r}}_i = [\bar{r}_{1,\hat{q}_1} \cdots \bar{r}_{i,\hat{q}_i}]$ and $\sigma_{\bar{\mathbf{r}}_i}^2 = [\sigma_{\bar{r}_{1,\hat{q}_1}}^2 \cdots \sigma_{\bar{r}_{i,\hat{q}_i}}^2]$ be the observed throughput and the corresponding variance, and $\mathbf{m}_i = [m_1 \cdots m_i]$ be the observed maximum memory usage values.

Given the data, we first find the optimal hyperparameters $\theta = \{\theta_{\mathcal{R}}, \theta_{\mathcal{M}}, \theta_k\}$. This is done by maximizing the marginal log-likelihood (Rasmussen & Williams, 2006), or

$$\theta = \arg \max_{\theta'} \log p(\bar{\mathbf{r}}_i, \mathbf{m}_i | \bar{\mathbf{H}}_i, \theta). \quad (23)$$

1026 The posterior mean and variance for the throughput for some PC H' can then be defined as
 1027

$$\mu_{\mathcal{R},i}(H') = \hat{\mathcal{R}}(\mathbf{H}_i; \theta_{\mathcal{R}}) + k(H', \mathbf{H}_i; \theta_k)(k(\mathbf{H}_i, \mathbf{H}_i; \theta_k) + \text{diag}(\sigma_{\mathbf{r}_i}^2))^{-1}(\bar{\mathbf{r}}_i - \hat{\mathcal{R}}(\mathbf{H}_i; \theta_{\mathcal{R}})), \quad (24)$$

$$\sigma_{\mathcal{R},i}^2(H') = k(H', H'; \theta_k) - k(H', \mathbf{H}_i; \theta_k)(k(\mathbf{H}_i, \mathbf{H}_i; \theta_k) + \text{diag}(\sigma_{\mathbf{r}_i}^2))^{-1}k(\mathbf{H}_i, H'; \theta_k), \quad (25)$$

1031 and the posterior mean and variance for the memory usage for some PC H' can then be defined as
 1032

$$\mu_{\mathcal{M},i}(H') = \hat{\mathcal{M}}(\mathbf{H}_i; \theta_{\mathcal{M}}) + k(H', \mathbf{H}_i; \theta_k)(k(\mathbf{H}_i, \mathbf{H}_i; \theta_k) + \lambda I)^{-1}(\mathbf{m}_i - \hat{\mathcal{M}}(\mathbf{H}_i; \theta_{\mathcal{M}})), \quad (26)$$

$$\sigma_{\mathcal{M},i}^2(H') = k(H', H'; \theta_k) - k(H', \mathbf{H}_i; \theta_k)(k(\mathbf{H}_i, \mathbf{H}_i; \theta_k) + \lambda I)^{-1}k(\mathbf{H}_i, H'; \theta_k) \quad (27)$$

1036 where λ is to make the matrix invertible.
 1037

1038 E DETAILED DISCUSSION OF PC SELECTION METHOD IN OPPA

1039 E.1 RANDOM SAMPLING FOR ADDITIONAL EXPLORATION

1042 In OPPA, we sometimes select PCs at random for additional exploration. There are two scenarios
 1043 which triggers a random selection of PC in OPPA.

- 1045 1. In the first few chosen PCs. This is because in the beginning there are no PCs which can be
 1046 used to infer the hyperparameters for the prior distribution of the GP, therefore a few PCs
 1047 are chosen at random to kick-off the modeling process and provide a reasonably diverse set
 1048 of samples to infer the hyperparameters well.
- 1049 2. When too many out-of-memory errors have been encountered in a row. This is because any
 1050 out-of-memory trials will not result in a usable training data for the throughput modeling
 1051 and possibly minimal data for the maximum memory GP, which does not aid the GP model.
 1052 When too many such cases are encountered, we attempt to do random exploration so that
 1053 the model can receive some information that can be used to model better with and find new
 1054 feasible PCs.

1055 For the random selection process, we select a PC using a weighted random strategy, such that the
 1056 probability of obtaining a PC with a certain parallelism dimension size configurations are equal.
 1057

1058 F DETAILED DISCUSSION PC TRIALING METHOD

1059 F.1 THROUGHPUT ESTIMATION

1062 Given the time $t_{i,1}, \dots, t_{i,q}$ required for q training steps, we can estimate the throughput and its
 1063 predicted variance as
 1064

$$\bar{r}_{i,q} = \frac{1}{q} \sum_{j=1}^q \frac{1}{t_{i,j}}, \quad \text{and} \quad \sigma_{\bar{r}_{i,q}}^2 = \frac{1}{q} \sum_{j=1}^q \left(\frac{1}{t_{i,j}} - \bar{r}_{i,q} \right)^2. \quad (28)$$

1068 F.2 OUTLIER REMOVAL

1070 As demonstrated in Fig. 3, not all training time measurements will be representative of the true
 1071 throughput. We therefore perform two actions. First, we remove the first training step, $t_{i,1}$, since
 1072 it typically corresponds to a warm-up for the training and therefore will usually be an anomaly
 1073 measurement. Second, we compute the median and the inter-quartile range (IQR), and remove all
 1074 measurements which are away from the median by at least $2 \times IQR$. **This is a standard method**
 1075 **for outlier removal in practice. However, we choose a looser threshold for outliers to account for**
 1076 **fluctuating measurements. This generally has little effect on the overall optimization since most**
 1077 **training steps tend to not fluctuate by too much anyway. This is demonstrated by Fig. 10 which shows**
 1078 **that the predicted throughput would have little difference across the threshold of outlier removal,**
 1079 **showing robustness of our method to the outlier removal process. The remaining training points are**
 then used to compute Eq. (28).

Figure 10: Example of the outlier removal process based on the IQR on different random PC trials. Here, we show the effect of the threshold selected versus the mean of the measurements, demonstrating the robustness with respect to the different thresholds.

F.3 ADDITIONAL DISCUSSION ON EARLY TRIAL TERMINATION MECHANISM

In this section, we attempt to prove Thm. 4.1. To do so, we will consider a more general case for an arbitrary unknown function f . We will first provide an intuitive justification for why early termination can be applied, followed by a theoretical proof for Thm. 4.1 and ablation studies on synthetic functions.

F.3.1 INTUITION BEHIND EARLY TERMINATION MECHANISM

Before stating the formal proof, we provide some intuition behind why the early termination mechanism saves on resources while also not affecting the overall performance. In Fig. 11, we present a toy example of a BO iteration where an input is repeatedly queried.

Here, we notice several things. We first see that for a certain input, more repetitions of the query will result in a lower standard deviation for the overall observation. This is simply from the fact that when we take the mean of several i.i.d. observations, the mean will tend towards the true value, and the variance of the mean predictor will decay at a rate inversely proportional to the number of observations. This is reflected in the plots where the observation at $x = 2$ has smaller and smaller standard deviation as we have more repeats, and as we will show in Corollary F.2. In these cases, we see that some repeated queries are therefore necessary to reduce the noise of the observations.

However, as we perform more repeats, there is a diminishing effect on how much more information is gained from each additional repeats. In the diagram, we see that after 20 repeats of the observations (as in Fig. 11c), the GP would barely change with more repeats of the same observation. Similarly, we see that at 20 repeats, we are able to somewhat conclude that the global optimum is less likely to be in the neighborhood of $x = 2$, as reflected by the corresponding probability density function, and that this belief remains when we continue up to 100 repeats (as in Fig. 11d). This shows the additional repeats are unlikely to improve our surrogate prediction and the confidence of the optimal. We therefore can see that by stopping after 20 repeats, we would have been able to eventually make the same conclusion about the optimum in the end while saving on resources that would have been incurred from repeated queries.

Finally, we note that additional repeats are more beneficial to recovering the optimum value in the case that it improves upon the best observation so far. In Fig. 12, we see that additional repeats of observation at $x = 2$ eventually results in diminishing returns, as seen in the probability distribution of the maximum value of $f(x)$ being similar between using 20 repeats and 100 repeats. Meanwhile, in Fig. 13, where we instead repeatedly query the input $x = 4.2$, we continue to gain information about the maximum value even when we use 100 repeats, as seen by the sharper probability distribution for

Figure 11: Demonstration of why early termination of certain trials does not affect final result. Figs. 11a to 11d represent the modeled GP and the predicted optimum when a certain input, in this case at $x = \arg \max_{x'} \mu_t(x') + \beta_t \sigma_t(x') = 2$, is repeatedly queried for 0, 1, 20, and 100 times. For each subfigure, the top diagram represents the modeled GP, where the dashed green line represents the true function, the blue line and error band represent the GP mean and standard deviation, and the red points represent the observation mean and standard deviation (the latter which shrinks with more repeats). In the bottom diagram, we show the probability of each input being the optimal (i.e., probability that $x = \arg \max_{x'} f(x')$), while highlighting the interval around the input $x = 2$.

the belief of the maximum $f(x)$. We therefore can see that additional repeats are less informative if they are for suboptimal inputs. We can therefore use this idea to form a metric to determine if a trial should be terminated early.

F.3.2 PROOF OF THM. 4.1

With this intuition, we will now formally prove the performance of the early termination mechanism. For completeness, we first state the assumptions for the function and the observations, which follows from other BO works (Srinivas et al., 2012; Makarova et al., 2021; Kirschner & Krause, 2018) however with additional assumptions on repeated observations from the same input.

Figure 12: Additional demonstration of why early termination of certain trials does not affect the obtained optimal value. The setup is as done previously in Fig. 11, with queries at $x = 2$. For each subfigure, the left plot represents the modeled GP as shown previously in Fig. 11. In the right diagram, we show the probability density function for the belief of the maximum value $\max_x f(x)$ according to the GP.

Figure 13: Additional demonstration of why early termination of certain trials does not affect the obtained optimal value. The setup is similar to as done previously in Fig. 11, however instead with queries at $x = 4.2$, and with only 20 repeats and 100 repeats shown (comparable to Figs. 12c and 12d). The information in each subfigure is the same as in Fig. 12.

Assumption F.1. Let $f \sim \mathcal{GP}(0, k)$ be an unknown function drawn from a GP with zero mean and kernel function k , where the RKHS norm $\|f\|_{\mathcal{H}} \leq B$ is bounded. The BO procedure is as noted in Algorithm 2, where in each BO iteration i , an input $x_i \in \mathcal{X}$ is selected, and $\hat{q}_i \leq q_{\max}$ noisy outputs $y_{i,j} = f(x_i) + \varepsilon_{i,j}$ are returned, where $\varepsilon_{i,j} \sim \mathcal{N}(0, s^2)$ are i.i.d. noise.

We now also show Algorithm 1 which repeats each query q_{\max} times, and our proposed Algorithm 2 which does early termination on some of the rounds. Our theoretical results in this section will consider Algorithm 2.

We first state a result regarding the mean estimator of $f(x_i)$.

Corollary F.2. Suppose we define

$$\bar{y}_{i,q} = \frac{1}{q} \sum_{j=1}^q y_{i,j}. \quad (29)$$

Then, the expected value of \bar{x}_i is $\mathbb{E}[\bar{y}_{i,q}] = f(x_i)$, and its variance bounded by $\mathbb{V}[\bar{y}_{i,q}] = s^2/q$.

Algorithm 1 GP-UCB with Repeated Trials

```

1:  $\mathcal{D}_0 \leftarrow \emptyset$ 
2: for  $i = 1, \dots, N$  do
3:   Fit GP on  $\mathcal{D}_{i-1}$  to obtain mean  $\mu_{i-1}$  and variance  $\sigma_{i-1}^2$ 
4:    $x_i \leftarrow \arg \max_{x \in \mathcal{X}} \mu_{i-1}(x) + \beta_i \sigma_{i-1}(x)$ 
5:   for  $j = 1, \dots, q_{\max}$  do
6:     Sample  $y_{i,j} = f(x_i) + \varepsilon_{i,j}$ 
7:   end for
8:    $\bar{y}_{i,q_{\max}} \leftarrow q_{\max}^{-1} \sum_{j=1}^{q_{\max}} y_{i,j}$ 
9:    $\mathcal{D}_i \leftarrow \mathcal{D}_{i-1} \cup \{(x_i, \bar{y}_{i,q_{\max}})\}$ 
10: end for

```

Algorithm 2 Modified GP-UCB with Early Trial Termination

```

1:  $\mathcal{D}_0 \leftarrow \emptyset$ 
2: for  $i = 1, \dots, N$  do
3:   Fit GP on  $\mathcal{D}_{i-1}$  to obtain mean  $\mu_{i-1}$  and variance  $\sigma_{i-1}^2$ 
4:    $x_i \leftarrow \arg \max_{x \in \mathcal{X}} \mu_{i-1}(x) + \beta_i \sigma_{i-1}(x)$ 
5:   for  $j = 1, \dots, q_{\max}$  do
6:     Sample  $y_{i,j} = f(x_i) + \varepsilon_{i,j}$ 
7:      $\bar{y}_{i,j} \leftarrow j^{-1} \sum_{j'=1}^j y_{i,j'}$ 
8:      $\mathcal{D}'_{i,j'} \leftarrow \mathcal{D}_i \cup \{(x_i, \bar{y}_{i,j'})\}$ 
9:     if  $y_{i,q} < \max_{j < i} \bar{y}_{j,\hat{q}_j} + \tau_q$  then
10:       break
11:     end if
12:   end for
13:    $\mathcal{D}_i \leftarrow \mathcal{D}'_{i,j'}$ 
14: end for

```

1271 *Proof.* The results are direct consequences of the summation of expected values and variances of
1272 independent random variables, and the fact that $\mathbb{V}[y_{i,j}] = s^2$ by assumption. \square

1273 We will now prove the first half of Thm. 4.1. Given the results in Corollary F.2, we next show that we
1274 are able to obtain a GP with good estimate bounds even if some trials are terminated early, i.e., not
1275 ran for up to q_{\max} repeats.

1276 **Lemma F.3.** *Suppose we let*

$$\mu_i(x) = k(x, \mathbf{X}_i) (k(\mathbf{X}_i, \mathbf{X}_i) + s^2 \mathbf{Q}_i^{-1})^{-1} \mathbf{y}_i, \quad (30)$$

$$\sigma_i^2(x) = k(x, x) - k(x, \mathbf{X}_i) (k(\mathbf{X}_i, \mathbf{X}_i) + s^2 \mathbf{Q}_i^{-1})^{-1} k(\mathbf{X}_i, x) \quad (31)$$

1277 where $\mathbf{X}_i = [x_1 \dots x_i]$, $\mathbf{y}_i = [\bar{y}_{1,\hat{q}_1} \dots \bar{y}_{i,\hat{q}_i}]$, and $\mathbf{Q}_i = \text{diag}([\hat{q}_1 \dots \hat{q}_i])$. If

$$\beta_i = B + \sqrt{2 \log \frac{\det(k(\mathbf{X}_i, \mathbf{X}_i) + s^2 \mathbf{Q}_i^{-1})^{1/2}}{\delta \det(s^2 \mathbf{Q}_i^{-1})^{1/2}}} \quad (32)$$

1278 then, with probability greater than $1 - \delta$, for all $x \in \mathcal{X}$ and all $i = 1, \dots, N$, we have

$$|f(x) - \mu_{i-1}(x)| \leq \beta_i \sigma_{i-1}(x). \quad (33)$$

1279 *Proof.* Given the variance of the mean predictor from Corollary F.2, our scenario can be thought of
1280 as having i observations with heteroscedastic noise with variances of $s^2/\hat{q}_1, \dots, s^2/\hat{q}_i$. The variance
1281 bounds then follow directly from Lemma 7 in Kirschner & Krause (2018) where we substitute
1282 $\Sigma_i \rightarrow s^2 \mathbf{Q}_i^{-1}$ and $\lambda \rightarrow 1$. \square

1283 **Corollary F.4.** *Given Lemma F.3, for all $x' \in \mathcal{X}$, we have $f(x') - \mu_{i-1}(x_i) \leq \beta_i \sigma_{i-1}(x_i)$.*

1296 *Proof.* We see that
 1297

$$1298 \quad f(x') - \mu_{i-1}(x_i) \leq \mu_{i-1}(x') + \beta_i \sigma_{i-1}(x') - \mu_{i-1}(x_i) \quad \text{by Lemma F.3,} \quad (34)$$

$$1299 \quad \leq \mu_{i-1}(x_i) + \beta_i \sigma_{i-1}(x_i) - \mu_{i-1}(x_i) \quad \text{by how } x_i \text{ is chosen,} \quad (35)$$

$$1300 \quad = \beta_i \sigma_{i-1}(x_i). \quad (36)$$

1301

1302

1303

1304 We now show the cumulative regret of the problem. Let

$$1305 \quad \mathbb{I}[\mathbf{y}_X; \mathbf{f}_X] = \frac{1}{2} \sum_{x'_i \in X} \log \left(1 + \frac{\sigma_{i-1}^2(x'_i)}{s^2/\hat{q}_i} \right), \quad (37)$$

1308 and

$$1309 \quad \gamma_i = \max_{X=[x'_1, \dots, x'_i] \subset \mathcal{X}} \mathbb{I}[\mathbf{y}_X; \mathbf{f}_X] \quad (38)$$

1311 be the maximum possible information gain across i rounds. We then prove the following result.1312 **Theorem F.5.** *Let $x^* = \arg \max_{x \in \mathcal{X}} f(x)$. With probability at least $1 - \delta$,*

$$1314 \quad \sum_{i=1}^N f(x^*) - f(x_i) \leq s\beta_N \sqrt{\frac{8N\gamma_N}{q_{\min}}}. \quad (39)$$

1318 *Proof.* This result is similar to previous results for UCB-based methods, e.g., Theorem 3 in Srinivas
 1319 et al. (2012) or Corollary 9 in Kirschner & Krause (2018).1320 With probability at least $1 - \delta$, Lemma F.3 holds. We see that

$$1322 \quad \sum_{i=1}^N (f(x^*) - f(x_i)) = \sum_{i=1}^N \underbrace{(f(x^*) - \mu_{i-1}(x_i))}_{\text{Corollary F.4}} + \underbrace{(\mu_{i-1}(x_i) - f(x_i))}_{\text{Lemma F.3}} \quad (40)$$

$$1325 \quad \leq \sum_{i=1}^N 2\beta_i \sigma_{i-1}(x_i). \quad (41)$$

1328 Since

$$1330 \quad \sum_{i=1}^N \sigma_{i-1}^2(x_i) \leq \sum_{i=1}^N \frac{s^2}{\hat{q}_i} \frac{\sigma_{i-1}^2(x_i)}{s^2/\hat{q}_i} \quad (42)$$

$$1333 \quad \leq \frac{s^2}{q_{\min}} \sum_{i=1}^N \log \left(1 + \frac{\sigma_{i-1}^2(x_i)}{s^2/\hat{q}_i} \right) \quad (43)$$

$$1336 \quad \leq \frac{2s^2}{q_{\min}} \gamma_N, \quad (44)$$

1338 we can rewrite Eq. (41) as

$$1340 \quad \sum_{i=1}^N (f(x^*) - f(x_i)) \leq \sqrt{\sum_{i=1}^N 4\beta_i^2} \sqrt{\sum_{i=1}^N \sigma_{i-1}^2(x_i)} \quad \text{by Cauchy-Schwartz,} \quad (45)$$

$$1343 \quad \leq \beta_N \sqrt{4N} \sqrt{\sum_{i=1}^N \sigma_{i-1}^2(x_i)} \quad \text{since } \beta_i \leq \beta_N, \quad (46)$$

$$1347 \quad \leq s\beta_N \sqrt{\frac{8N\gamma_N}{q_{\min}}} \quad \text{by Eq. (44).} \quad (47)$$

1349

□

1350 *Remark F.6* (The regret bound in Thm. F.5 is lower when q_{\min} increases). We investigate the upper
 1351 bound in Eq. (47) further to see its dependence on q_{\min} .

1352 For simplicity, we will let $\mathbf{K} = k(\mathbf{X}_N, \mathbf{X}_N)$. First, we see that

$$1354 \log \det (\mathbf{K} + s^2 \mathbf{Q}_N^{-1}) = \log \det s^2 \mathbf{Q}_N^{-1} + \log \det (I + s^{-2} \mathbf{Q}_N \mathbf{K}) \quad (48)$$

$$1355 \leq \log \det s^2 \mathbf{Q}_N^{-1} + \log \det (I + s^{-2} q_{\max} \mathbf{K}), \quad (49)$$

1357 which means that

$$1359 \beta_N = B + \sqrt{2 \log \frac{\det (\mathbf{K} + s^2 \mathbf{Q}_N^{-1})^{1/2}}{\delta \det (s^2 \mathbf{Q}_N^{-1})^{1/2}}} \quad (50)$$

$$1363 = B + \sqrt{2 \log \frac{1}{\delta} + \log \det (\mathbf{K} + s^2 \mathbf{Q}_N^{-1}) - \log \det s^2 \mathbf{Q}_N^{-1}} \quad (51)$$

$$1365 \leq B + \sqrt{2 \log \frac{1}{\delta} + \log \det (I + s^{-2} q_{\max} \mathbf{K})}. \quad (52)$$

1367 Furthermore, we see that

$$1369 \gamma_N = \max_{X=[x'_1, \dots, x'_N] \subset \mathcal{X}} \frac{1}{2} \sum_{x'_i \in X} \log \left(1 + \frac{\sigma_{i-1}^2(x'_i)}{s^2 / \hat{q}_i} \right) \quad (53)$$

$$1373 \leq \max_{X=[x'_1, \dots, x'_N] \subset \mathcal{X}} \frac{1}{2} \sum_{x'_i \in X} \log \left(1 + \frac{\sigma_{i-1}^2(x'_i)}{s^2 / q_{\max}} \right). \quad (54)$$

1375 Therefore we see that both β_N and γ_N are upper bounded by terms which are independent of q_{\min} ,
 1376 and so the constants in the upper bound provided in Thm. F.5 do not hide any additional dependencies
 1377 with respect to q_{\min} . This shows that the upper bound of cumulative regret from Eq. (47) decays at a
 1378 rate of $1/\sqrt{q_{\min}}$.

1380 We will now prove the second half of Thm. 4.1. We first prove the following result.

1381 **Lemma F.7.** Define $c_1 \triangleq \sqrt{2 \log(2Nq_{\max}/\delta)}$. With probability at least $1 - \delta$, for all $i = 1, \dots, N$
 1382 and all $q = 1, \dots, q_{\max}$, we have

$$1384 |\bar{y}_{i,q} - f(x_i)| \leq \frac{c_1 s}{\sqrt{q}}. \quad (55)$$

1387 *Proof.* From Corollary F.2, we know that the $\bar{y}_{i,q}$ is normally distributed with mean $f(x_i)$ and
 1388 standard deviation s/\sqrt{q} . By Chernoff bounds, for each $i = 1, \dots, N$ and each $q = 1, \dots, q_{\max}$, we
 1389 would have $\bar{y}_{i,q} - f(x_i) > c_1 s / \sqrt{q}$, and $f(x_i) - \bar{y}_{i,q} > c_1 s / \sqrt{q}$ where either event happens with
 1390 probability no greater than $\delta N / 2q_{\max}$. This means that with probability no greater than $\delta / N q_{\max}$,
 1391 we have $|\bar{y}_{i,q} - f(x_i)| > c_1 s / \sqrt{q}$. Therefore, by union bound, we have for all $i = 1, \dots, N$
 1392 and each $q = 1, \dots, q_{\max}$, we would have $|\bar{y}_{i,q} - f(x_i)| \leq c_1 s / \sqrt{q}$ with probability greater than
 1393 $1 - (\delta / N q_{\max})(N q_{\max}) = 1 - \delta$. \square

1394 **Theorem F.8.** Define

$$1396 \tau_q = c_1 s \left(\frac{1}{\sqrt{q_{\min}}} + \frac{1}{\sqrt{q}} \right). \quad (56)$$

1399 Then, with probability at least $1 - \delta$, for all $i \leq N$, if we have $f(x_i) < \max_{j < i} f(x_j)$, then $\hat{q}_i < q_{\max}$.

1401 *Proof.* With probability at least $1 - \delta$, Lemma F.7 applies.

1403 To prove the statement above, we show its contrapositive. Suppose we have $\hat{q}_i = q_{\max}$, or that the trial
 for x_i does not terminate early. This implies that $\bar{y}_{i,q} \geq \max_{j < i} \bar{y}_{j,\hat{q}_j} + \tau_q$ for all $q = q_{\min}, \dots, q_{\max}$.

For any q in this range, we would then have

$$f(x_i) \geq \bar{y}_{i,q} - \frac{c_i s}{\sqrt{q}} \quad (57)$$

$$\geq \max_{j < i} \bar{y}_{j, \hat{q}_j} + \tau_q - \frac{c_1 s}{\sqrt{q}} \quad (58)$$

$$\geq \max_{j \leq i} f(x_j) - \frac{c_1 s}{\sqrt{q_{\min}}} + \tau_q - \frac{c_1 s}{\sqrt{q}} \quad (59)$$

$$= \max_{j < i} f(x_j). \quad (60)$$

This proves the contrapositive which in turn proves the original statement.

Finally, Thms. F.5 and F.8 can be combined with appropriate union bounds to achieve a more formal version of Thm. 4.1.

F.3.3 ABLATION STUDIES ON TOY EXAMPLES

In Fig. 14, we provide a brief empirical demonstration of efficiency gains due to early termination. We see that when the noise variance is too high, querying the function once per input would give observations which are too noisy to give good information. Meanwhile, by repeating each query a maximum number of times, we can obtain a good estimate of the true function and allow the BO process to arrive at the optimal using few queries. However, we see that when early termination is allowed, we can still arrive at the optimal input as before, while not requiring all queries to be repeated the maximum number of times. This shows that early termination allows for efficiency gains while minimally sacrificing on the actual optimization process.

Figure 14: Results of BO with early termination (with $q_{\min} = 1$) on different synthetic functions where each query has different noise levels. For each case, we show the best queried objective value (left plot), and the cumulative number of total repeated queries made with each BO round (right plot).

In practice, since it is difficult to determine γ_N , β_N , s , and c_1 exactly, we instead fix β_i and τ_q to some constant. In OPPA, we choose $\beta_i = 1$ and $\tau_q = 10^{-3}$. We find that these values work well for our methods. Furthermore, in our proofs we do not consider the constrained BO setting. Despite this, the early termination can still be used in practice to achieve good results, which we show in the experiments.

G PSEUDOCODE OF OPPA

We present the pseudocode for OPPA in Algorithm 3.

In practice, we find that fixed hyperparameter values (i.e., setting $\beta_t = 1$, $\tau_q = 10^{-3}$, and $q_{\min} = 5$ in all iterations as done in our main experiments) gives consistent results, since the parameters are generally robust to different choices of hyperparameter values anyway.

In the experiments, the value of q_{\max} are set in accordance to Table 2 depending on the benchmark; however in practice can be set as large as the practitioner wants depending on how accurately they would like to measure the actual throughput of the PC. As plotted in Fig. 15, we find that after

1458 a certain point, a larger number of repeats will typically not have large effects on the measured
 1459 throughput of a PC, showing that OPPA is quite robust to different choices of q_{\max} . For OPPA, larger
 1460 q_{\max} is more tolerable since the early termination mechanism will not exhaust such budget anyway.
 1461

1462 We also consider removing outliers which are beyond two times the IQR from the mean; this is be
 1463 more lenient towards fluctuating training effects, however can also be set to 1.5 times the IQR as
 1464 typically done as well with little consequences, as described in App. F.2.

Algorithm 3 OPTIMIZER FOR PARALLELISM CONFIGURATIONS (OPPA)

```

1: Generate all valid PCs  $\mathcal{H}$ 
2: for  $i = 1, 2, \dots, N$  do
3:   if  $i < N_{\text{random}}$  then
4:     Select  $H_i$  randomly
5:   else
6:     // Step ① – Modeling throughput and memory usage
7:     Construct  $\mu_{\mathcal{R},i-1}$  and  $\sigma_{\mathcal{R},i-1}^2$  according to Eqs. (24) and (25) respectively
8:     Construct  $\mu_{\mathcal{M},i-1}$  and  $\sigma_{\mathcal{M},i-1}^2$  according to Eqs. (26) and (27) respectively
9:     // Step ② – Selecting the next PC to query
10:     $H_i \leftarrow \arg \max_{H \in \mathcal{H} \setminus \{H_1, \dots, H_{i-1}\}} \text{cUCB}_i(H)$  where  $\text{cUCB}_i$  is defined in Eq. (4)
11:   end if
12:   // Step ③ – Querying some PC
13:   for  $q = 1, \dots, q_{\max}$  do
14:     Measure training step time as  $t_{i,j}$ 
15:     Compute  $\bar{r}_{i,q}$  and  $\sigma_{\bar{r}_{i,q}}^2$  according to Eq. (28)
16:     if  $q \geq q_{\min}$  and  $\bar{r}_{i,q} < \max_{j < i} \bar{r}_{j,\hat{q}_j} + \tau_q$  then
17:       break
18:     end if
19:   end for
20:    $\hat{q}_i \leftarrow q$  to track the number of training steps ran in round  $i$ 
21:   Measure maximum memory usage as  $m_i$ 
22:   if time budget exceeded then
23:     break
24:   end if
25: end for
26: return  $H_{i^*}$  where  $i^* = \arg \max_{i \leq N: (m_i < M_0) \wedge (\hat{q}_i = q_{\max})} \bar{r}_{i,\hat{q}_i}$ 

```

H ADDITIONAL INFORMATION ON EXPERIMENTAL SETUP
H.1 TRAINING AND HARDWARE CONFIGURATIONS

1498 We list the models used in our experiments in Table 2, along with the allotted search time and how
 1499 many trials we repeat on them. All models used are based on the transformer architecture, and were
 1500 retrieved from Huggingface.

1501 Note that in all of our plots, we plot the median value (with a line) and also the lower and upper
 1502 quartiles (with a fainter band over and under the line). We do so since we find that the values are
 1503 often asymmetrically skewed, and therefore opted to show the quartile values to more accurately
 1504 represent the distribution of these values. Also note that the repeated trials were reduced for larger
 1505 models due to restrictions in compute budget.

1506 1507 Table 2: Details of models used in our experiments and the corresponding training scenario

Case	Model	# Params	Batch size	Max. seq. length	Search Time	q_{\max}	Repeats
BERT	BERT Base Uncased	110M	256	256	20 mins	50	10
Qwen	Qwen-2	1.5B	64	1024	20 mins	30	10
LLaMa-1b	LLaMa 3	1B	64	1024	60 mins	20	5
LLaMa-7b	LLaMa 2	7B	256	1024	60 mins	30	5

Figure 15: The effect of number of training steps repeatedly measured on the predicted throughput. The blue lines represent a training trial and the measured time per training step. The orange line represents the average training time (i.e., reciprocal of throughput) predicted up to that certain training step.

Our model training is implemented based on the COLOSSAL-AI framework (Li et al., 2023), which allows execution of NN training with 3D parallelism with different tunable hyperparameters. We note, however, that OPPA is also general enough to be applied to any other training framework as well, whose implementation we leave to future works.

In Table 3, we list the hardware configuration used in our experiments. The hardware configurations used are based on the resources that are available to the authors.

Table 3: Configurations of tested hardwares.

Config. Name	GPU Model (Memory)	GPUs per host	# Host	Multi-Host Characteristic
8 GPUs	NVIDIA RTX A5000 (24GB)	8	1	
16 GPUs	NVIDIA RTX 3080 (10GB)	8	2	Docker Overlay Network
32 GPUs	NVIDIA A100 (40GB)	4	8	High-Performance Compute

H.2 ALGORITHMS RAN

We list the algorithms we have ran along with their implementation details here.

- **RANDOM.** This involves randomly selecting a PC from \mathcal{H} to trial in each round until the time budget is exhausted.
- **XGBOOST** (Chen & Guestrin, 2016). This is the method DEEPSPEED (Rasley et al., 2020) uses to configure the PC, and is adapted to work with the hyperparameters in our PC. The method involves training an XGBOOST model based on the observed throughput values, then selecting the next PC to trial as the one whose predicted throughput is the highest. This is repeated until time budget is exhausted.
- **COST-MODEL.** This involves using the cost model as described in Apps. D.1 and D.2, learned based on several randomly selected PCs, to obtain an estimate of throughput and maximum memory usage, and perform a one-shot selection of the best PC according to the predictions.
- **VANILLA-BO.** This performs BO whose GP has constant mean and Matern kernel with $\nu = 5/2$. The cUCB criterion is used for PC selection. The BO loop is implemented using BoTorch (Balandat et al., 2020).

1566
 1567 • OPPA. This is the method proposed in Sec. 4, which involves modifying BO to include a
 1568 parallelism-informed prior belief and early trial termination. [The hyperparameters used are](#)
 1569 [as stated in App. G](#).

1570 We note that due to the search space employed for \mathcal{H} , we do not consider benchmarks which performs
 1571 non-adaptive optimization with a cost model. This is because those methods optimize with respect to
 1572 the computation graph rather than the hyperparameters which we discussed in App. C.1, and since
 1573 they do not use the same information as OPPA to perform optimization, making it futile to compare
 1574 between the two since they focus on optimizing different aspects of training parallelism. Nonetheless,
 1575 we provide some comparisons with selected algorithms of such nature, namely Li et al. (2022) and
 1576 Lin et al. (2024) in Fig. 8.

I ADDITIONAL RESULTS

I.1 PLOTS OF BEST ACHIEVED THROUGHPUT VERSUS OTHER QUANTITIES

1582 In Fig. 16, we plot the best achieved throughput versus the number of training trials that have been
 1583 ran. We see that in this view, OPPA still outperforms other benchmarks. While the margin may be
 1584 smaller in some instances, we see that OPPA is able to achieve the good results more consistently as
 1585 seen by the error bars when compared to some of the other methods. This also demonstrates that the
 1586 prior belief used in OPPA alone would have helped in achieving a better performance regardless of
 1587 the early termination mechanism in OPPA.

1598 Figure 16: Results of the best obtained throughput (higher is better) plotted against the number of
 1599 PCs that have been trialed. The lines represent the median value of the best obtained throughput
 1600 across five trials, while the error bar represent the quartile values. Note that for the experiments on 32
 1601 GPUs, we are unable to run the optimization beyond the allotted time due to resource constraints and
 1602 therefore are only able to plot some algorithms for a fewer number of queried PCs.

1604 In Fig. 17, we show the achieved throughput is plotted against the number of training steps performed
 1605 in the training trials, showing that the difference in efficiency of OPPA becomes more pronounced.
 1606 From these results see that OPPA is both more time efficient and query efficient, which can be useful
 1607 when the overhead to perform one trial may become higher, for example when the framework is
 1608 adapted to run on a cluster with a job scheduler.

I.2 OPTIMAL PCs RECOVERED BY OPPA

1612 In Table 4, we show the PCs that were recovered by OPPA. Note that the optimal PCs chosen match
 1613 quite well with intuition, where for smaller models DP tends to be prioritized. Meanwhile for larger
 1614 models and training scenarios which are done across multiple machines, PP is prioritized.

I.3 PC OPTIMIZATION FOR OTHER MODELS

1618 In Fig. 18, we presented the results for tuning the PC for ViT model (Dosovitskiy et al., 2021). We
 1619 see that the results here show that OPPA is able to select better PCs compared to the other methods,
 consistent with other results in the paper.

Figure 17: Results of the best obtained throughput (higher is better) plotted against the total number of training steps ran during in the training trials. The lines represent the median value of the best obtained throughput across five trials, while the error bar represent the quartile values.

Table 4: Example of optimal PCs selected by OPPA in different training scenarios. Values are based on observations of optimal PCs across multiple repeated trials. A range of value shows that a certain parameter shows a spread across multiple trials (i.e., no strong preference towards one value), while a dash shows that the parallelism dimension associated with that hyperparameter is not used.

Hyperparameter	BERT, 8 GPUs	Qwen, 8 GPUs	LLaMa-1b, 16 GPUs	LLaMa-7b, 32 GPUs
DP size (dp)	8	4	1	2
TP size (tp)	1	1	1	1
PP size (pp)	1	2	16	16
DP bucket size	1 – 64	1 – 4096	-	1 – 4096
ZeRO stage	0	1	-	1
ZeRO bucket size	-	1 – 64	-	64 – 4096
Overlap ZeRO communication	-	True/False	-	False
Overlap ZeRO AllGather	-	True/False	-	False
# microbatches (mb)	-	8	64	32
# model chunks (mc)	-	1 – 2	1	1
Overlap P2P for PP	-	True/False	False	True/False
Grad. checkpointing	True	False	False	False

Additionally, in Fig. 19, we presented the results for tuning the PC for transformer-based Mixture-of-Experts (MoE) model Shazeer et al. (2017), with the additional tuning of the expert parallelism (EP) degree being performed by the same framework in addition to the existing DP, TP and PP. For the experiments we consider parallel training of a model with 16 transformer units, 32 attention heads and 32 experts. Each trial is ran for up to $q_{\max} = 50$ steps, and in OPPA, we set $q_{\min} = 10$ to account for higher variation in training step times. In the results, we again see consistently better performances compared to the other competing methods. Specifically, even if OPPA may eventually lead to similar results to vanilla BO at the end of the optimization process, OPPA is able to do so more consistently (lower variance across random runs), and is able to arrive at the optimal PC much more rapidly and efficiently. These results further demonstrate that OPPA is able to also generalize to other models as well.

I.4 PREDICTED THROUGHPUT AND MEMORY BY PARALLELISM-INFORMED PRIOR BELIEF

In Figs. 20 to 22, we compare the modeled throughput with the true values in different training scenarios. We see that in this case, using the prior belief allows for the values to be modeled adequately well, but more importantly, allow for the PC which achieves the best throughput to also have the highest values, and therefore be identified correctly. We find that for the BO process, a surrogate only needs to model the good PCs well in order to select a good PC in the end. Meanwhile, the GP without prior belief learns the patterns much less efficiently or do not learn them at all. This correlates well with the results in the main text where standard BO selects a worse PC compared to OPPA which uses a better prior belief.

In Fig. 23, we compare the modeled maximum memory with the true measured value. In both cases a GP has been used however with and without a parallelism-informed prior belief since only VANILLA-BO and OPPA are the only benchmarks we tested which explicitly models the memory

1686 Figure 18: Results for training ViT model (Dosovitskiy et al., 2021) with batch size of 256.

1700 Figure 19: Results for training Mixture-of-Expert (Shazeer et al., 2017) models. Note that we do not
1701 run all benchmarks due to resource constraints.

1702
1703
1704 usage. Here, we see that OPPA is able to better model the memory usage due to its use of the prior
1705 belief. This is reflected in the confusion matrices which shows that after training, OPPA is able to
1706 more accurately detect when a certain PC will result in out-of-memory errors.

1719 Figure 20: Comparison of modeled throughput values versus the true throughput for training of BERT
1720 model on 8 GPUs after 20 PC trials.

1721
1722 To additionally demonstrate the interpretability of the GP modeling for the surrogate, in Table 5,
1723 we show the results for the lengthscales learned by the kernel (as given in Eq. (22)). We see that
1724 hyperparameters that have larger effects on the resulting throughput or are less well-modeled by our
1725 prior belief will typically correspond to the shorter lengthscales. For example, for the training of
1726 BERT, we see that the parameters for TP dimension size and for the number of microbatches (for PP)
1727 have shorter lengthscales. This matches our intuition where the throughput would be more sensitive
to the increased TP or PP being used (for the worse). This additional interpretability makes GP a

Figure 21: Comparison of modeled throughput values versus the true throughput for training of Qwen model on 8 GPUs after 20 PC trials.

Figure 22: Comparison of modeled throughput values versus the true throughput for training of LLaMa-2 model on 32 GPUs for, in order, OPPA after 10 trials, OPPA after 20 trials, GP after 10 trials and XGBOOST after 10 trials. Note that among the three algorithms only OPPA ran for up to 20 trials given the time constraint.

very suitable candidate for surrogate modeling in this case, since it allows practitioners to be more aware of the modeling intuition by the surrogate as well as being accurate.

Table 5: Example of the log lengthscales learned by the kernel of the GP for the throughput surrogate model. The bolded value are to highlight hyperparameters with particularly shorter lengthscales.

Hyperparameter	BERT, 8 GPUs	Qwen, 8 GPUs
DP size (dp)	1.877	5.233
TP size (tp)	-1.071	6.024
PP size (pp)	2.293	-1.849
DP bucket size	3.484	5.994
ZeRO stage	0.434	5.279
ZeRO bucket size	3.402	6.516
Overlap ZeRO communication	3.949	7.581
Overlap ZeRO AllGather	3.822	7.589
# microbatches (mb)	-1.322	-1.741
# model chunks (mc)	-0.293	0.124
Overlap P2P for PP	3.854	6.974
Grad. checkpointing	-0.334	6.586

I.5 EFFECTS OF PRIOR MISSPECIFICATION

To investigate the robustness of our method with respect to a misspecified prior, we conduct experiments to see how OPPA behaves as our cost-model prior becomes increasingly inaccurate. To do so, we add a perturbation term into our cost function, where we increase the magnitude of the perturbation term up to about 25% and 50% that of the maximum throughput obtained. We present the median obtained throughput across 5 random trials in Table 6. We see that even when the cost-function prior

Figure 23: Comparison of modeled maximum memory usage versus the true maximum memory usage for training of *Qwen* model on 8 GPUs after 20 PC trials. In each row, the left hand graph shows the predicted value versus the actual value (with the predictive variance are omitted for clarity), while the right hand table is the confusion matrix.

is adversarially constructed (by knowingly adding an incorrect term into the cost function), we are still able to obtain good performances to the unperturbed cost-model prior even if the convergence is slightly slower. This suggests that even in this extreme case, the GP is able to correct for the inaccuracies in the cost-prior effectively.

In practice, prior misspecification typically will due to the cost function not being sufficiently complex to match the true parallel training dynamics, because of incomplete or inaccurate domain knowledge about the true system rather than due to an adversarial construction of the cost function. This is the case in the cost function we have chosen in our paper, where there is a discrepancy between the cost function alone and the true throughput as demonstrated in Fig. 6c, resulting from our cost function not modeling the effects of all hyperparameters in the PC. Under practical scenarios, we therefore would not expect the results to be as extreme as what we have seen in the presented results, and that a GP should be able to effectively model the throughput values.

Table 6: Effect of perturbing the prior belief on the resulting optimization process. The values reported are the median throughput obtained for the PC found after certain number of minutes of running OPPA with the perturbed prior belief function.

Percent perturbation magnitude	10 mins. of search	20 mins. of search
0 (original prior)	0.425	0.446
About 25	0.424	0.447
About 50	0.415	0.447

1836 I.6 ADDITIONAL RESULTS FOR ABLATION STUDIES OF COMPONENTS IN OPPA
1837
1838

1839 In Fig. 24, we demonstrate how early termination and parallelism-informed prior belief affect the
1840 overall achieved throughput. First, we see that when parallelism-informed prior belief is used, the
1841 performance is no worse than when no prior belief is used, although this benefit is more pronounced
1842 for the Qwen example, possibly due to the increased complexity in the training setup. meanwhile,
1843 with early termination, we see that the performance is better in terms of time and number of training
1844 steps needed, while not sacrificing the performances when considering the number of PCs that are
1845 trialed to achieve a certain performance. This shows that the benefit gain comes from being able to
1846 shorten the duration of the training trials while not sacrificing the throughput predictions.
1847
1848

1859 Figure 24: The effects of different components of OPPA on the optimal PC found. In each row, we
1860 present the results in a certain training setup, where we present the obtained throughput versus, from
1861 left to right, the time the algorithm has been ran for, the number of unique PCs trialed, and the number
1862 of training steps that has been ran across all of the trials.
1863
1864
1865
1866
1867
1868
1869

1879 I.7 THE EFFECT OF q_{\min} ON OPPA PERFORMANCE
1880
1881

1882 In Fig. 25, we see how the choice of q_{\min} affects the achieved throughput. For the BERT case, we
1883 see that early termination clearly improves the time required for optimization, as seen where when
1884 $q_{\min} = q_{\max}$ the obtained PC is the worst when all methods are allotted the same amount of time. As
1885 q_{\min} decreases, we see that there is less drop in the amount of time required since each training step is
1886 dominated by the time to setup each PC trial. However, we still see that when we plot the number
1887 of training steps for the optimization, we see that a smaller q_{\min} will require fewer training steps to
1888 arrive at the same optimal PC. However, this trend breaks down when q_{\min} is too small, likely since
1889 the value obtained is too noisy to give good information. Nonetheless, even in this case, we stil obtain
good results. For the Qwen case, similar trends can be seen where reducing q_{\min} is able to reduce the
time and the number of training steps required to find the optimal PC up to a certain point.

Figure 25: The effects of q_{\min} on the optimal PC found. In each row, we present the results in a certain training setup, where we present the obtained throughput versus, from left to right, the time the algorithm has been ran for, the number of unique PCs trialed, and the number of training steps that has been ran across all of the trials.

J ADDITIONAL DISCUSSIONS REGARDING THE PAPER

J.1 REGARDING THE NOVELTY OF THE PROPOSED METHOD

Here, we highlight some of the novelty of our work beyond being a direct application of Bayesian optimization (BO), which sets it apart from these works. This has been highlighted in Secs. 3 and 4, and is done so by (1) using specific characteristics within the PC optimization problem to inform different design choices for the BO process, and (2) developing a novel BO technique with provable theoretical guarantees, which is an advancement for BO in itself.

First, we point out that *our work identifies specific characteristics of the PC optimization which allows us to design OPPA to directly tackle these points and obtain strong performances*. Unlike a typical hyperparameter optimization problem, we notice that there are several ways in which optimizing the PC differs, each allowing us to incorporate appropriate and novel techniques into our framework beyond using vanilla BO with an updated prior function.

- **Designing an appropriate surrogate model and prior for PC optimization which works across many training scenarios is non-trivial** (Sec. 4.1). In our problem setting, we designed a prior function which is specific enough to capture characteristics of parallelized NN training based on existing domain knowledge, while still allowing enough flexibility to adapt to a wide range of possible parallel training scenarios. This is demonstrated in our results where the same choice of model and prior is valid on a variety of hardware configurations, and give strong results across all of them.
- We also utilize **black-box constraints to filter out infeasible PCs from the search space** (Secs. 3 and 4.2). In PC optimization, the black-box constraint will naturally arise since some unknown PCs may result in OOM errors on real machines. We therefore attempt to automatically learn the feasible space and inform the search process accordingly. This is unlike vanilla BO which would assume that the feasible set is fully known, and perform the search accordingly.

1944
 1945
 1946
 1947
 1948
 1949
 1950
 1951
 1952
 1953
 1954
 1955
 1956
 1957
 1958
 1959
 1960

- Since trialing a PC involves sequentially running many training steps to measure the running time, we also **introduce a novel and systematic way to detect suboptimal PCs early and terminate them to save time** (Sec. 4.3). This is designed based on how training throughput is measured, and whose novel solution is proposed and analyzed (both theoretically and empirically), as we discuss in the next point.

Second, we *introduce a novel BO algorithm* where an experiment is sequentially repeated, and can be terminated early in suboptimal cases (Sec. 4.3 and App. F.3). We *inspire this problem via the optimization of PC in parallel training*, and *introduce a principled method to decide when early trial termination should be done*, providing both theoretical justification and empirical results in PC optimization. This improves on existing BO works which will fix the number of times an experiment should be repeated before the experiments are performed, and will waste resources on suboptimal trials. Outside of PC optimization, our method can also be adapted to cases where noisy measurements should be recorded multiple times to obtain a better estimate such as in real scientific experiments where trials are often repeated anyway.

1959 J.2 REGARDING THE NECESSITY OF REAL TRAINING TRIALS

1961 We note that while the effect of some hyperparameters in a PC can be estimated reasonably well, this
 1962 would not be the case for all hyperparameters (as already stated in Secs. 2 and 3). The only method
 1963 to accurately tune these hyperparameters would therefore be based on empirical data from actual
 1964 model training. To achieve the best performance for NN training, it is therefore inevitable that we
 1965 would have to perform some actual NN training to evaluate the effects of these hyperparameters. This
 1966 motivates why adaptive methods which rely on actual time for training is important. This viewpoint
 1967 is reflected in real parallel training frameworks such as DEEPSEED or NEMO where real training
 1968 trials are also used to perform PC tuning (as also highlighted in Sec. 2), and also further demonstrated
 1969 throughout in our paper to be superior to non-adaptive methods (e.g., as seen in Fig. 8).

1970 Furthermore, in practice, the training time is often long and a relatively short time for PC optimization
 1971 can already give large savings on the overall efficiency of NN training. To more concretely
 1972 demonstrate this, in Fig. 5b, we have presented the benefits of optimizing the PC with OPPA before
 1973 performing actual training. In our case, the optimization process is done for less than an hour which in
 1974 practice, is insignificant compared to the time for training large-scale models. For instance, finetuning
 1975 a language model may take several hours or days, while pretraining from scratch often extends to
 1976 weeks or even months. When we extrapolate the speed of training process to see how many training
 1977 steps can be processed in a few hours, as done in Fig. 5b, we find that the PC chosen by OPPA
 1978 can already lead to many more training steps being performed compared to other methods, or even
 1979 compared to using a cost model alone to non-adaptively select a PC (which will still require time
 1980 to perform optimization nonetheless). This shows that in many practical scenarios where the actual
 1981 training would be done for a long period of time, a relatively short time spent on optimizing the PC
 1982 can lead to large benefits in computational saving.

1983 K LIMITATIONS AND BROADER IMPACTS

1985 In this work, we have mainly focused on optimizing tunable hyperparameters which are found in
 1986 common parallel training frameworks. While there are many other aspects and search spaces of
 1987 parallelization that we could consider, we have instead mainly considered hyperparameters which
 1988 would generally be tuned manually by practitioners who want to perform parallel training. We believe
 1989 that Bayesian optimization with an appropriate formulation could also allow our methods to these
 1990 other search spaces that may arise as well. Maximizing the throughput during NN training would
 1991 allow the same amount of computation to possibly be done in a more efficient manner, both in terms
 1992 of time and compute resources. While this may allow faster development of NNs for both good and
 1993 bad use cases, overall it would still have a positive impact since it allows for higher efficiency which
 1994 reduces waste in computation time and other feasible resources that come with it.

1995
 1996
 1997