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ABSTRACT

Training of modern large neural networks (NNs) is often done in parallel across
multiple GPUs. While there are existing parallel training frameworks which easily
allow NN training using multi-dimensional parallelism, the challenge remains in
optimizing the balance between size of each parallelism dimensions, and in tuning
the hyperparameters within these parallelism dimensions. Due to a large number of
possible parallelism configurations (PCs) for a given training scenario, it is infea-
sible to perform exhaustive search over all candidates. Existing PC optimization
methods typically either require conducting training trials on a large number of
PCs, each of which can be expensive to perform, or rely on an approximate cost
model which may be inaccurate and hardware-specific. To overcome these issues,
we present OPPA, which combines constrained Bayesian optimization methods
with prior knowledge in the form of a parallelism-informed prior belief, to obtain
an optimal PC using a minimal number of NN training trials. We also propose a
framework for early termination of trails involving suboptimal PCs, whose effi-
ciency gains can be theoretically justified. We show that OPPA finds an optimal PC
more efficiently for training transformers on various multi-GPU systems compared
to the methods used in existing parallel training frameworks.

1 INTRODUCTION

Modern advances in deep learning have arisen from the ability to scale neural networks (NNs) to
larger sizes. In natural language processing, for example, transformer-based models (Vaswani et al.,
2017; Devlin et al., 2019), large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2024)
and multimodal models (Radford et al., 2021; Liu et al., 2023), composed of millions or even billions
of parameters, have shown tremendous success in tasks such as text classification, text generation,
and language understanding. Due to their size, these large NNs often cannot be trained on standard
machines with a single processor. To scale up the training process, it is necessary to distribute the
NN training workload across a cluster of machines and parallelize the training process. Different
parallelism methods for NN training have been proposed, including data parallelism (Rajbhandari
et al., 2020; Zhao et al., 2023), pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019),
tensor parallelism (Shoeybi et al., 2020), and combinations of these three parallelism methods also
referred to as multi-dimensional parallelism (Rasley et al., 2020; Shoeybi et al., 2020; Li et al., 2023).

In NN training, to fully utilize the given hardware and reduce the computation time, we would like to
maximize the throughput of training, or the number of training steps processed in a given time. The
throughput will depend on the selected parallelism configurations (PCs), which in large-scale parallel
training frameworks (Kuchaiev et al., 2019; Rasley et al., 2020; Shoeybi et al., 2020; Li et al., 2023)
may consist of the size of each parallelism dimension, and various other hyperparameters controlling
how each parallelism dimension is executed. In practice, it is difficult to accurately quantify how
the choice of PC affects the training throughput, as it would depend on the NN architecture, the
training data, the hardware, or the exact implementations of the parallel training framework. While
there are many works on approximating the training throughput of a PC (Li et al., 2022; Zheng
et al., 2022; Zhang et al., 2024), which can consequentially be used to find the optimal PC, these
approximations require strong assumptions on the compute hardware and the specific parallelized
NN training implementation and may not capture all nuances of a parallel training instance, and so
relying on them alone may not be reliable enough to directly inform the optimal PC to select.
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Figure 1: Main idea of OPPA. OPPA combines Bayesian optimization with knowledge on parallel
model training to find the parallelization strategy which achieves the highest training throughput.

In practice, the most reliable method to consider all possible factors during parallelized training
would be to conduct real training trials with each PC on real hardware. Unfortunately, due to the
large number of possible PCs, performing an exhaustive search would be extremely inefficient. To
circumvent this, existing parallel training frameworks will use methods to select a subset of candidate
PCs to trial. However, these methods are still inefficient due to simplistic optimization algorithms
which are unable to adapt to known training throughput measurements and do not utilize on any prior
domain knowledge, therefore still need to run excessively many trials to find a good PC candidate.

To efficiently select the PC that achieves the best throughput, we therefore need the ability to adaptively
select potentially good PCs to trial, while also filtering out poor candidates using information from
trialed PCs and from existing domain knowledge. Given these considerations, it may be possible to
use black-box optimization methods such as Bayesian optimization (BO) (Gelbart et al., 2014; Frazier,
2018). However, naive application of BO is still inefficient, and could be improved if characteristics
of PC trialing and the parallelized training process are taken advantage of by the algorithm.

In this paper, we introduce the OPTIMIZER FOR PARALLELISM CONFIGURATIONS, abbreviated as
OPPA, which is the first algorithm to adaptively optimize the PC for more efficient parallel NN training
and be designed to incorporate domain knowledge and characteristics of parallelized training. The
main idea of OPPA is presented in Fig. 1. In Sec. 3, we first formulate the problem of finding the
optimal PC as a black-box function optimization problem with black-box constraints. In Sec. 4,
we discuss the design choices of OPPA. Here, we develop a surrogate model with a parallelism-
informed prior belief based on knowledge from parallelized NN training that can generalize to many
hardware setup and training scenarios (Sec. 4.1), which is then used to select promising PCs to trial
using constrained BO (Sec. 4.2). We also discuss the process of trialing a PC and propose a novel
BO technique which early terminates trials with suboptimal PC, with theoretical justification and
empirical verification (Sec. 4.3). Finally, we empirically demonstrate the effectiveness of OPPA in
Sec. 5, showing that OPPA can more efficiently find a good PC for training transformers compared to
existing methods and compared to naively using BO without modifications.

2 BACKGROUND AND RELATED WORKS

In this section, we provide an overview of current techniques of parallelized model training on
multiple GPUs, and how optimal parallelism configurations are currently found. We also provide a
brief overview of Bayesian optimization, which is a technique we will use in our proposed method.

2.1 PARALLELIZED NEURAL NETWORK TRAINING

To effectively train large neural networks (NNs), the training workload can be distributed across
multiple GPUs. Different parallelism dimensions split the workload differently, which affect the
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amount of computation per GPU, amount of communication between each GPU, and the amount of
memory required in each GPU. Here, we briefly discuss some of these existing parallelism techniques.

Data, tensor, and pipeline parallelism. The most basic method to parallelize NN training is data
parallelism (DP) (Li et al., 2020), where a batch of training data is split and distributed to each
devices, separately processed by the local model replica, before gathering the gradients from each
device. While DP is simple, it replicates the model on each device, taking up additional memory. To
solve this, techniques such as the Zero Redundancy Optimizer (ZERO) (Rajbhandari et al., 2020)
in the DEEPSPEED package, or Fully-Sharded Data Parallel (FSDP) (Zhao et al., 2023) have been
proposed to perform some sharding of model parameters or gradients to avoid full model replication.
Furthermore, tensor parallelism (TP) (Shoeybi et al., 2020; Bian et al., 2021) and pipeline parallelism
(PP) (Huang et al., 2019; Narayanan et al., 2019) have been proposed which partition, respectively,
the tensors in the model and the model execution pipelines onto multiple devices. The specific
implementations of DP, TP, and PP can be controlled by different hyperparameters, which may affect,
for example, which tensors are being sharded or how many shards they are partitioned into, which
can affect the overall throughput. The three types of parallelism are discussed further in App. A.

Multi-dimensional parallelism. Many frameworks (Rasley et al., 2020; Shoeybi et al., 2020; Li
et al., 2023) have also since been developed to allow DP, TP, and PP to be used together in the
same training process. These frameworks provide simple interfaces for the users to specify the
desired parallelism configuration (PC), which include the size of each parallelism dimension and
other hyperparameters specific to each parallelism dimension. These frameworks then automatically
handle tensor sharding and execute the parallelized training pipeline as per the specified PC. These
frameworks may also manage training on multi-node setting or even heterogeneous hardware. While
these frameworks allow practitioners to easily specify a PC for training, selecting the optimal PC
for the most efficient training is difficult, since the optimal PC will non-trivially depend on the
GPU specifications, communication bandwidth of the GPU devices, the specific NN architecture or
the training data (Li et al., 2023; Lin et al., 2024; Wagenländer et al., 2024). For example, DP is
ineffective for large models or large batch sizes, since the additional model replications may cause an
out-of-memory errors. Meanwhile, PP is less effective on smaller models, as communication costs
between each pipeline stages may dominate the actual computation of the fragmented pipeline.

Optimization of multi-dimensional parallelism configuration. The most accurate way to find the
optimal PC would be to trial all possible PCs on the actual training hardware to determine which one
results in the highest training throughput. However, this is prohibitively expensive since there can be
a large number of possible PCs, and each trial would itself require computational resource and time
which may be limited on real clusters. To circumvent this, frameworks such as NEMO1 (Kuchaiev
et al., 2019) and DEEPSPEED2 (Rasley et al., 2020) have implemented methods for automatic PC
tuning based on running NN training trials for a few training steps on a number of PCs. The PCs
trialed are often either selected non-adaptively (e.g., based on random selection), or adaptively based
on a simple surrogate function. However, these methods are unable to efficiently use the measured
throughput of trialed PCs to model the true throughput and perform informed optimization, and
therefore still require a large number of training trials to obtain a good PC.

Since running training trials may be expensive, we may consider constructing a surrogate model
to approximate the computation and communication costs for different parallelism strategies (Li
et al., 2022; Zheng et al., 2022; Zhang et al., 2024), which would allow us to use domain knowledge
to filter out suboptimal PCs while performing fewer trials, or even by not trialing any PCs at all.
This methods, however, would require an implicit assumption that the surrogate of the true training
throughput is correct, which may not always be possible because surrogates may be unable to fully
capture the nuances of practical parallel training implementations. Furthermore, a fixed surrogate
model would not be easily extendable to new hyperparameters or parallelism nuances which may
arise in a PC, which is important especially with the ever-growing parallelism training literature.

2.2 BAYESIAN OPTIMIZATION

In order to more efficiently select a PC to trial and to optimize for, we will utilize Bayesian optimiza-
tion (BO) (Frazier, 2018). BO aims to maximize some black-box function f : X → R which is often

1https://docs.nvidia.com/nemo-framework/user-guide/latest/usingautoconfigurator.html
2https://www.deepspeed.ai/tutorials/autotuning/

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pipeline 
Stage 0

Data 
Parallel 
Rank 0 ZeRO 

hyperparams

Bucket sizes

PP also 
affected by:

Number of 
microbatches

DP also 
affected by:

Intra-GPU comm. 
DP All-Reduce comm. 
TP All-Reduce comm. 
PP Point-to-Point comm.

Pipeline 
Stage 1

Pipeline 
Stage 2

Pipeline 
Stage 3

Data 
Parallel 
Rank 1 etc…

etc…Number of 
model chunks

Data parallel (DP) 
dimension

Pipeline parallel (PP) dimension

Tensor parallel 
(TP) dimension

GPU 8 GPU 10 GPU 12 GPU 14

GPU 9 GPU 11 GPU 13 GPU 15

GPU 0 GPU 2 GPU 4 GPU 6

GPU 1 GPU 3 GPU 5 GPU 7

Figure 2: Left: Visualization of a parallelism configuration, including the hyperparameters that can be
tuned. Right: Visualization of GPU allocation for 3D parallelism according to the dimension sizes.

expensive to query and whose derivative is unknown. The black-box function is modeled a Gaussian
process (GP) (Rasmussen & Williams, 2006), which is characterized by a prior mean µprior(·) and
a kernel function k(·, ·). Given a set of observations, we perform Bayesian inference to obtain a
posterior GP, which is made up of a posterior mean and posterior covariance, encoding the expected
value and the uncertainty of the function respectively. With the posterior GP, the BO procedure selects
an input that maximizes some acquisition function, such as the expected improvement (Jones et al.,
1998) and the upper confidence bound (Srinivas et al., 2012). These acquisition functions balance
between exploring unique inputs that have not been queried to obtain some function estimate, and
exploiting inputs likely to have high function values in order to efficiently recover a global optimum
of f . We provide a more technical overview of GP modeling and BO in App. B.

BO is a widely used to optimize black-box functions which have no closed form and are expensive
to evaluate. This include a wide range of problems, such as experimental design (Lei et al., 2021;
Rainforth et al., 2023) or material design (Zhang et al., 2020). More relevant to our work, BO is also
commonly used for optimizing the NN architecture such that achieves the best performance in a given
task (Snoek et al., 2012). Unlike in this scenario, however, the effects of the hyperparameters in a PC
on the training throughput have better-defined mechanics (even if not completely known), which can
be partially described based on domain knowledge. Modeling via a GP allows incorporation of these
knowledge through a good choice of prior belief, which reduce the number of trials required.

3 PROBLEM SETUP

In this section, we describe the problem setup. For our problem setting, we consider a parallelism
configuration (PC), visualized in Fig. 2, which contains a list of tunable hyperparameters found in
typical parallel training frameworks, and controls various aspects of parallelized NN training. A
subset of hyperparameters in a PC determine the size of each parallelism dimension. In our paper,
we consider 3D parallelism where we use dp, tp, and pp, to indicate the size of the data, tensor,
and pipeline parallelism dimensions respectively. We assume that their product dp · tp · pp is equal
to the number of available GPUs n_gpus. The remaining hyperparameters determine the specific
implementations of each parallelism dimensions, which may include hyperparameters of the ZERO
optimizer which controls the DP implementation, the number of microbatches and model chunks
which control how the PP implementation, or other hyperparameters specific to the parallel training
framework. We discuss these hyperparameters further in App. C.1.

We letH be the set of all possible PCs. The goal of our problem is to find the optimal PC H∗ ∈ H
which results in the highest throughput (i.e., can run the most number of training steps per unit of
time), while fitting in the GPU memory (i.e., the maximum GPU memory required is less than M0).
For some PC H , we letR(H) andM(H) be, respectively, the throughput and the maximum memory
usage when using PC H . Then, our problem of finding the optimal H∗ ∈ H can be formulated as a
constrained maximization problem given by

maximize
H∈H

R(H) s.t. M(H) ≤M0. (1)

To evaluate a PC H , we can perform a short training trial to estimate its throughput and maximum
memory usage. To estimate the throughput of H , we can measure the times t1, t2, . . . , tq over q
training steps, which can then be used to approximate the throughput asR(H) ≈ q−1

∑q
j=1 t

−1
j .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 10 20 30
Train steps

2

4

6

Ti
m

e 
fo

r s
te

p 
(s

)

Figure 3: Time for each train-
ing step for a few training trials
with different PCs. Each color
represents a different PC used,
and the dashed line represents the
throughput estimate for that PC.

As we demonstrate in Fig. 3, the time to execute each train-
ing step can vary, for example due to setup and compilation
processes at the start of the training, and unpredictable sys-
tem fluctuations which occur throughout training. Therefore,
it is unreliable to predict the training throughput using only
few training steps, but rather should aggregate the values across
multiple training steps. While we can choose to perform qmax
training steps during the trial, we can also choose to termi-
nate the trial early after fewer than qmax training steps, al-
though the estimate of R(H) may also be more inaccurate.
To measure the maximum allocated GPU memory throughout
the training steps, using CUDA-based PYTORCH, this can be
done using the torch.cuda.max_memory_allocated()
function, which records the maximum allocated GPU memory
achieved at any point during training.

When designing our PC optimization algorithm, we also take note
of two additional characteristics of the problem:

A Since R andM are dependent on many factors which may be difficult to model or even
known exactly, we assume that their exact forms are only partially known given the existing
domain knowledge. Therefore, a good surrogate forR andM should be able to incorporate
domain knowledge with some uncertainty modeling based on observed training trials.

B Even though a PC can be (and should be) trialed on real hardware, running a single trial
incurs a high cost. This is especially true with suboptimal PCs since the same number of
training steps on a suboptimal PC would require more time to execute. This motivates us to
design an optimization algorithm such that only promising PCs are trialed, and PCs which
are likely suboptimal are not trialed or are only trialed for a shorter period of time.

4 METHOD

In this section, we describe OPPA, which incorporates BO with domain knowledge on training
parallelism to perform an informed selection of the optimal PC for parallel training. As shown in
Fig. 1, OPPA alternates between three steps; 1⃝ modeling the training throughput and maximum
memory usage based on observed data using a GP with a parallelism-informed prior belief, 2⃝ finding
the best PC to trial next using BO, and 3⃝ conducting NN training trials for some number of training
steps to obtain an estimate of the training throughput and maximum memory usage for a selected PC.

4.1 CONSTRUCTING A SURROGATE MODEL

In Step 1⃝, we attempt to construct a surrogate model to predict the throughput and the memory
usage. As suggested in A , to explicitly model the imperfections in our domain knowledge, we
assume that the true throughputR and maximum memory usageM can be decomposed as

R(H) = R̂(H; θR) + fR(H), M(H) = M̂(H; θM) + fM(H), (2)

where R̂ and M̂ represent the parallelism-informed prior beliefs with hyperparameters θR and
θM constructed based on the domain knowledge on parallelized training, and fR(H) and fM(H)
additional unknown contributions not captured by our domain knowledge.

Parallelism-informed prior belief. The functions R̂ and M̂ aim to estimateR andM respectively
based on existing knowledge about parallel NN training. We do not require R̂ and M̂ to be completely
accurate, but instead only be reasonable estimates and generalize across multiple training scenarios.

For OPPA, to approximate the throughput, we consider the time per training step for the computation
T̂comp and for the communication T̂comm, which can combine to approximate the throughput as
R̂(H; θR) =

[
T̂comp(H; tc) + T̂comm(H;C)

]−1
where θR = {tcomp,C} are learned hyperparameters.

For T̂comp we consider the additional computation time that arise from the pipeline bubble in PP

5
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Narayanan et al. (2019). Meanwhile, inspired by Xiong et al. (2024), for T̂comm, we consider an
idealized training scenario visualized in Fig. 2 which assumes the model to compose of roughly
identical blocks, and considers the communication from the All-Reduce operations involved in DP
and TP, and point-to-point communications involved in PP. We consider a canonical ring/tree scaling
with hierarchical aggregation such that intra- and inter-host connections are separately modeled, with
the constants for the specific communication types collapsed into C. Further details of this are given
in App. D.1. To model maximum memory usage M̂, we consider the memory required per GPU to
store the NN parameters and to store gradient values for backpropagation, as we detail in App. D.2.

In both prior belief functions, a key design choice is to make the prior belief function general enough
to capture a variety of training scenarios, with a simple analytical form based on looser assumptions
about the model, hardware, and network, and using learnable parameters (as opposed to fixed
constants) to capture approximate cost multipliers which depend on the model and training data
sizes, and intra- and inter-host network communications, each of which vary across different training
scenarios. These design choices allow OPPA to be applicable to training scenarios involving a wide
variety of model and hardware setups, due to the balance between capturing the general effects of
each parallelism dimension, but not being too specific to overfit to any particular training scenario.

Additional contribution terms. Due to the incomplete domain knowledge to fully describe a
parallelized training process, we aim to learn the unaccounted factors fR and fM using real training
trials. To do so, we model fR and fM using Gaussian processes (GPs). The benefit of using a GP is
twofold. First, a GP is typically flexible enough to model unknown functions that may not have an
analytical form. Second, a GP can quantify its uncertainty, which allows the surrogate to determine
how much it knows about the throughput of a certain PC. This allows OPPA to potentially trial PCs
whose throughput it is more uncertain about given the trials conducted.

To model fR and fM, we use a GP with zero mean. This is done so since we assume the additional
contribution is expected to have no additional bias on the estimates of the quantities. For the kernel
function k, we first embed the PC H via an embedding e : H → [0, 1]p which maps each PC to a
p-dimensional vector. Here, we let e(H) be a concatenation of each hyperparameter value in H ,
where each dimension is scaled to be between 0 and 1 according to the feasible values. Given the
embedding, we then use the Matern kernel (Rasmussen & Williams, 2006) with ν = 5/2 where the
distance between two PCs is the Euclidean distance of their corresponding embeddings, with some
kernel hyperparameters θk. The equation for the Matern kernel is given in App. D.3.

Given our prior belief and the modeled additional contribution terms, the decomposition in Eq. (2)
encodes our belief thatR andM is drawn from a GP which is given by

R ∼ GP
(
R̂(· ; θR), k(·, · ; θk)

)
, and M∼ GP

(
M̂(· ; θM), k(·, · ; θk)

)
. (3)

Using measurements from the previous i−1 trials, we find the optimal hyperparameters {θR, θM, θk}
by maximizing the marginal log-likelihood (Rasmussen & Williams, 2006), then perform GP regres-
sion to obtain the posterior belief for the throughput N

(
µR,i−1(H), σ2

R,i−1(H)
)

and the memory
usageN

(
µM,i−1(H), σ2

M,i−1(H)
)

for any PC H that has not been trialed, which would be a normal
distribution with their respective mean and variance whose form we state in App. D.4.

4.2 SELECTING THE NEXT PC TO TRIAL

In Step 2⃝, the next PC to trial is chosen based on the surrogate constructed in 1⃝ using BO. The
next PC Hi ∈ H to trial in round i is chosen to be the PC which maximizes the constrained upper
confidence bound (cUCB) (Srinivas et al., 2012; Wilson et al., 2017), which is given by

cUCBi(H) ≜ Er̂H,i−1,m̂H,i−1

[
XH,i−1 + βi

∣∣XH,i−1 − E[XH,i−1]
∣∣] (4)

where r̂H,i−1 ∼ N
(
µR,i−1(H), σ2

R,i−1(H)
)

and m̂H,i−1 ∼ N
(
µM,i−1(H), σ2

M,i−1(H)
)

are sam-
pled from their respective GPs as modeled from 1⃝, and XH,i−1 = r̂H,i−1·

(
1−sigmoid(m̂H,i−1)

)
.

Note that in the case that memory constraint is not violated (i.e., when sigmoid(m̂H,i−1) ≈ 0),
the objective in Eq. (4) can be reduced to the analytical UCB objective (i.e., cUCBi(H) ≈
µR,i−1(H) + βiσR,i−1(H)). The cUCB criterion considers a balance between exploration of
PCs which have not been trialed, and exploitation of PCs which are similar to those with already high
throughputs (Jones et al., 1998; Gelbart et al., 2014). With this balance, the BO iteration is able to
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try enough PCs to construct a reasonable surrogate for the functions, while utilizing the remaining
computational resources to trial good PC candidates for to achieve optimal training throughput. This
allows the optimization to be more guided and more efficient, satisfying the requirement in B .

4.3 TRIALING THE NEXT PC

Finally, in step 3⃝, we perform a training trial on the PC Hi chosen in 2⃝ for qmax training steps, and
measure the time taken for each training step as ti,1, . . . , ti,qmax . We then use these measurements to
obtain an estimate of the throughput r̄i,qmax , where r̄i,q = q−1

∑q
j=1 t

−1
i,j , with variance σ2

r̄i,qmax
whose

computation we detail in App. F.1. In practice, as demonstrated earlier in Fig. 3, the actual measured
time for a sequence of training steps may contain outliers which can skew the throughput estimates.
As we discuss in App. F.2, to make our estimate more accurate, we remove outlier values of ti,j
before computing the throughput estimate. Meanwhile, the maximum memory usage mi across all
training steps is measured by torch.cuda.max_memory_allocated().

Early trial termination. In practice, some PCs do not need to be trialed for the full qmax steps, since
fewer training steps are sufficient to determine that the PC is suboptimal. To save time on these
trials, we consider early trial termination, where the training trial only continues if the throughput
estimation is above some threshold. More formally, we define an indicator variable Ii,q given by

Ii,q = 1
[
(q ≤ qmin) ∨

(
r̄i,q ≥ maxl∈{1,...,i−1} r̄l,q̂l + τq

)]
. (5)

Intuitively, Ii,q = 1 when fewer than qmin trials have been conducted, or when the throughput of Hi

is likely to be higher than the throughput values found so far. We can continue the qth training step as
long as Ii,q−1 = 1, and terminate the training trial at the first step q̂i when Ii,q̂i = 0, which is when
we are confident that Hi will not improve the best PC we have found so far. Early termination of
trials will make suboptimal trials terminate earlier, saving computation time in practice, while still
allowing the BO procedure to recover the optimal PC, as we show in the following theorem.

Theorem 4.1 (Informally stated in terms ofR). There exists some {βi}Ni=1 and {τq}qmax
q=1 such that,

with high probability, the cumulative regret is
∑N

i=1

(
R(H∗)−R(Hi)

)
= Õ

(√
N/qmin

)
, and for

all i = 2, . . . , N , ifR(Hi) < maxj∈{1,...,i−1}R(Hj), then q̂i < qmax.

In App. F.3, we prove Thm. 4.1 for a general function which may not be R, and provide some
empirical justification for early termination. Thm. 4.1 shows that sublinear regret can be achieved
even with early termination, which means that OPPA will be able to recover the PC with the best
throughput while allowing efficiency gains in practice. Furthermore, it also shows that PCs whose
throughput is smaller than those of PCs already trialed will likely have their trials terminated early,
therefore allowing OPPA to save resources from trialing suboptimal PCs as mentioned in B . We
present the pseudocode for OPPA incorporating steps 1⃝, 2⃝, and 3⃝ in App. G.

5 EXPERIMENTS

In this section, we present the results for OPPA when used to find the optimal PC for training
transformer models on multi-GPU systems. We consider optimizing PC on different transformer-
based training scenarios and on different hardware configurations with varying number of GPUs. We
focus on transformers since many newer parallelized training frameworks are mainly designed for
these architectures. Detailed setups for the training scenarios are found in App. H.1.

We compare OPPA with several benchmarks, including RANDOM (random selection), XGBOOST
(adaptive selection based on XGBOOST surrogate model (Chen & Guestrin, 2016) and is the current
method used by DEEPSPEED (Rasley et al., 2020)), COST-MODEL (method which solely relies
on the cost model of the throughput), and VANILLA-BO (which uses BO without any additional
modifications). We provide more detailed description of these benchmarks in App. H.2.

We plot the best obtained throughput (in training steps per second) versus how long the optimization
has been run, rather than versus the number of PCs that have been trialed, since each trials take a
different amount of time to run. Nonetheless, plots for the achieved throughput versus the number of
trials run are in App. I.1. The model loss are independent of the chosen PC and thus are not reported.
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Figure 4: The best obtained throughput (higher is better) versus the duration each algorithm has been
run for. The lines show the median across repeated trials, while the error band show the quartiles.
Figs. 4a and 4b are both ran on a single host, while Figs. 4c and 4d was ran on multiple hosts. Note
that some benchmarks were omitted from Fig. 4d due to computational budget.

Training on single-host setups. We first consider training transformers on a single machine with
8 GPUs. In Fig. 4a, we present the results for finding the optimal PC for training the BERT model
(Devlin et al., 2019). We see that the methods which use BO outperform non-adaptive and even the
other adaptive selection benchmarks. Furthermore, OPPA, which applies a parallelism-informed
prior and early termination to BO, is able to achieve better performances than BO alone. We find
that OPPA automatically prioritizes PCs with only DP and no ZERO optimizer, which matches our
intuition that DP should be adequate for smaller NNs. In Fig. 4b, we consider the Qwen model (Yang
et al., 2024), where OPPA again finds a better PC compared to the other benchmarks. Due to the
larger model, OPPA now prefers a mix of DP and PP with fewer microbatches to reduce the memory
use and synchronization between GPUs. We show the PCs selected by OPPA in App. I.2. We also
demonstrate the generalizability of OPPA for PC optimization on vision models in App. I.3.
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Figure 5: Efficiency of OPPA. Fig. 5a shows
the number of PCs trialed by each method.
Fig. 5b shows the number of training steps ran
by each algorithm during optimization and
during subsequent NN training (regions below
and above dotted gray line respectively). The
legend is the same as in Fig. 4.

To further visualize the efficiency gains of OPPA,
in Fig. 5a, we see that OPPA is able to trial many
more PCs in a short amount of time compared to
other methods due to terminating suboptimal trials
early to avoid wasting time. When combined with a
parallelism-informed prior belief to efficiently filter
out suboptimal PCs, OPPA is able to return a PC
with higher throughput, which in turn allows many
more training steps to be processed in the subsequent
training even after just 20 minutes of PC optimization,
as shown in Fig. 5b. This demonstrates the necessity
OPPA to achieve faster parallel NN training.

Accuracy of surrogate model. In Figs. 6a and 6b
we compare the throughput predicted by OPPA with
the actual throughput scores. We see that even after
a few trials, the predictions made by our surrogate
already correlate well with the actual throughput. As
we progress, the prediction also becomes more accurate, especially among PCs with high throughput
where more trials are being run, allowing the optimal PC to be efficiently found. On the other hand,
a cost model alone can capture rough trends of R(H) but not all nuances especially between the
better PCs as shown in Fig. 6c, while a GP alone does not allow the surrogate to learn meaningful
interpolations ofR(H) as shown in Fig. 6d. In either of these cases, we see that there is a mismatch
between the predicted optimal PC and the actual optimal PC. We further demonstrate the quality of
the throughput and maximum memory surrogates in App. I.4, and discuss their robustness in App. I.5.

Effects of each components in OPPA. In Fig. 7, we performed ablation studies to isolate the effects
from each proposed components in OPPA. We see that without early termination, BO would spend
more time on suboptimal trials, resulting in a slower search process. Similarly, without the prior
belief, we would be less informed about PCs which may be optimal, requiring more time to find the
optimal PC. Additional results are presented in App. I.6. We also show the effects of qmin on the
performance of OPPA in App. I.7, demonstrating minimal degradation for small qmin.
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Figure 6: Predicted throughputs from different surrogates versus the measured throughputs for the
Qwen example. Figs. 6a and 6b represent the surrogate from OPPA after 10 and 20 trials respectively,
with error bars showing the uncertainty. Fig. 6c shows the predictions from the cost model alone,
while Fig. 6d shows the predictions from using GPs alone (both after 20 trials).

0 10 20
Time (mins)

0.40

0.44

Be
st

 
(H

) (
s

1 )

Vanilla-BO
BO + Early Term.
BO + Prior Belief
O P

Figure 7: Effect of different com-
ponents of OPPA on the obtained
throughput for the Qwen training.
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Figure 8: Obtained R from OPPA
compared to those from cost model-
based methods for LLaMa-7b
training with 32 GPUs. Note the
results reported for BO and OPPA
are the same from Fig. 4d.

Training on multi-host setups. In addition to training on
single-host setups, we also tested OPPA on optimizing the PC
on multi-host setups. In these cases, the additional communi-
cation costs makes the throughput computation less straight-
forward, while larger number of feasible PCs complicates the
optimization problem. We consider two multi-host setups which
have different communication types and performance levels. In
Fig. 4c, we show the results for tuning the PC for training a
LLaMa-3 model (Grattafiori et al., 2024) with 1 billion param-
eters on a commodity cluster with 16 GPUs, which are setups
more commonly found by practitioners with existing hardware
in practice. Meanwhile, Fig. 4d are the results for tuning the
PC to train a LLaMa-2 model (Touvron et al., 2023) with 7
billion parameters on 32 GPUs distributed across 8 machines
in a high-performance computing (HPC) cluster. In both cases,
we find that OPPA is still able to outperform other methods
by a significant margin. Furthermore, OPPA obtains good PCs
consistently (i.e., smaller variance in the resulting throughput),
demonstrating its robustness. We also see that BO-based selec-
tion methods outperform the other algorithms due to its ability
to balance exploration and exploitation, however OPPA is able
to do so more efficiently due to the additional guidance from
prior knowledge and early termination of trials to save time.

In Fig. 8, we also compare OPPA with cost model-based algo-
rithms, namely AMP (Li et al., 2022) and NNSCALER (Lin
et al., 2024). We see that OPPA allow better PCs to be selected
compared to methods based solely on optimizing a cost model.
This demonstrates the advantages of adaptive methods which effectively incorporate the scores ob-
tained from actual training trials as opposed to solely using cost model surrogates, and the non-trivial
modifications made from OPPA which allow for this boost in performance.

6 CONCLUSION

We have presented OPPA, which uses constrained Bayesian optimization techniques with a parallelism-
informed prior distribution to efficiently optimize the parallelization strategy which can achieve the
best training throughput across a variety of hardware configurations. OPPA can be easily applied to
other parallelized training frameworks due to the minimal assumptions on the implementations of
the training parallelism and the simplicity to extend to other hyperparameters. We believe that the
parallelism-informed prior belief could be embedded with more prior knowledge on specific training
implementation or training of specific NN architectures, which should boost OPPA even further to
find a better and possibly more elaborate PC for parallel NN training.
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A ADDITIONAL DISCUSSION ON PARALLELISM TYPES

Data parallelism. The most basic type of training parallelism is data parallelism (DP) (Li et al., 2020)
where a batch of training data is split into shards and distributed among each devices. These shards
are then fed into the local replicas of the models, before the parameter updates from each devices are
synchronized. While simple and often the fastest, the naive DP approach requires replication of the
model on each devices, which takes up additional storage on each machines. Several methods have
since been proposed to perform DP with sharded models, including the Zero Redundancy Optimizer
(ZERO) introduced by Rajbhandari et al. (2020) in the DEEPSPEED package, and Fully-Sharded Data
Parallel (FSDP) introduced by Zhao et al. (2023). While these frameworks allow for efficient DP
implementations, their effectiveness can still heavily depend on the choice of hyperparameters. For
example, ZERO involves three different stages of optimization which chooses whether the optimizer
states, the model gradients or the model parameters are sharded between each GPUs. The choice of
sharded items affect the amount of data that has to be stored in each GPUs and communicated across
GPUs, which in turn affects the throughput of the training and the memory usage in each GPUs.

Tensor parallelism. Another method for scaling operation is tensor parallelism (TP) where individual
tensors are sharded across multiple devices, so that the matrix multiplication operations are instead
done in a distributed manner, allowing these operations to scale to larger sizes than otherwise that
would fit on a single GPU. TP initially involved splitting a tensor along a single dimension (Shoeybi
et al., 2020), however has since also incorporated sharding tensors across multiple dimensions as
well (Bian et al., 2021).

Pipeline parallelism. In pipeline parallelism (PP) (Huang et al., 2019; Narayanan et al., 2019)
we instead partition the model along its execution pipeline, with each model partitions running
synchronously with microbatches of data. The gradients are accumulated for each microbatches and
updated at the end of each training step. By sharding the model and training data into smaller chunks,
the GPU memory required at any one time becomes lower, allowing for the training of larger models
at the cost of more sequential operation rounds and higher cost of communication between each
GPUs. The tradeoff between training speed and maximum memory usage can be further controlled
based on the size of microbatches and the number of model chunks.

B TECHNICAL PRIMER ON GAUSSIAN PROCESSES AND BAYESIAN
OPTIMIZATION

In this section, we provide a technical overview of Gaussian process (GP) regression and on Bayesian
optimization (BO). The contents are adapted from Rasmussen & Williams (2006); Frazier (2018).

A Gaussian process (GP) GP(µprior, k) with prior mean µprior and kernel k is a random process
where for any subset of input X, its corresponding output is given by a normal distribution f(X) ∼
N
(
µprior(X), k(X,X)

)
. The prior mean µprior(x) describes the expected value of the random function

f(x) at a certain input, while the kernel function k(x, x′) roughly captures the covariance between
f(x) and f(x′).

Assume we have an unknown function f drawn from the GP. Given a set of observations D =
(X, y) = {(x1, y1), . . . , (xn, yn)} where yi = f(xi) + ϵi are noisy observations of the true function
with Gaussian noise ϵi ∼ N (0, λi). Then, when performing Bayesian inference, we can express the
posterior mean and covariance of the GP as

µ(x) = µprior(x) + k(x,X)
(
k(X) + diag(λ)

)−1
(y− µprior(x)) , (6)

σ2(x) = k(x, x)− k(x,X)
(
k(X) + diag(λ)

)−1
k(X, x) . (7)

In practice, the prior mean and kernel may have hyperparameters θ which specify what functions
it is able to model. For example, many kernel functions include lengthscale values which govern
how correlated the function output is when a certain input dimension changes. One method to find
the optimal hyperparameters for the kernel is by finding the hyperparameter which maximizes the
marginal log-likelihood.

In Bayesian optimization (BO), the goal is to find the maxima of the unknown function f . This
function is black-box, and assumed to have no analytical form. To do so, we can learn more about
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f by querying it at different inputs, and perform Bayesian inference to update our belief on the
unknown function.

Given the current observations Dt = (Xt, yt) = {(x1, y1), . . . , (xt, yt)} in round t of data selection,
GP regression can be performed to obtain a posterior mean µt and posterior variance σ2

t . The next
input to query xt+1 can be chosen as the input which maximizes some acquisition function. Examples
of such acquisition function include the expected improvement (Jones et al., 1998)

EIt(x) = Ey′∼N (µt−1(x),σ2
t−1(x))

[
max(0, y′ − max

y∈yt−1

y)
]

(8)

or the upper confidence bound (Srinivas et al., 2012)

UCBt(x) = µt−1(x) + βtσt−1(x) (9)

where βt > 0 is a constant that may vary with t. In all of these acquisition functions, a tradeoff is
performed between selecting inputs that the GP is uncertain about (i.e., with high σ2

t−1(x)) to learn
more about those unknown region, and selecting inputs in regions where the function value is known
to be higher (i.e., with high µt−1(x)).

C DETAILED DISCUSSION ON THE PROBLEM SETUP

C.1 HYPERPARAMETERS CONSIDERED

in Table 1, we list several hyperparameters which we include in our parallelism configuration and
the range of the values. Note that the hyperparameters are constrained to give a valid PC as well;
for example, we ensure that dp · tp · pp = n_gpus to ensure that each dimension do not exceed
number of GPUs. Some hyperparameters are also set to their default value when not in use; for
example, if pp = 1 (i.e., no PP used) then we restrict mb = mc = 1 such that PCs are not duplicated.
In the code, we generate all possible PCs beforehand so we can ensure that all PCs chosen will be
valid according to the constraints.

Table 1: Tunable hyperparameters in a parallelism configuration.

Hyperparameter Description Feasible Values
DP size (dp) Data parallelism degree [1, n_gpus]
TP size (tp) Tensor parallelism degree [1, n_gpus]
PP size (pp) Pipeline parallelism degree [1, n_gpus]

DP bucket size Size for gradient reduction buckets (MB) [1, 4096]
ZeRO stage ZeRO stage used [0, 3]

ZeRO bucket size Bucket size for ZeRO communication [1, 4096]
Overlap ZeRO communication Whether to overlap ZeRO communication True / False

Overlap ZeRO AllGather Whether to overlap AllGather True / False
# microbatches (mb) Number of microbatches per forward pass ≤ batch size
# model chunks (mc) Number of model chunks for pipelining ≤ # transformer blocks
Overlap P2P for PP Overlap PP communication or not True / False
Grad. checkpointing Whether gradient checkpointing is enabled True / False

C.2 THROUGHPUT VERSUS TIME PER TRAINING STEP

We explain why we choose to maximize throughput instead of minimizing time per training step.

As an example, suppose we consider three PCs H,H ′, H ′′ where the times per training step are given
by T (H) = 0.3, T (H ′) = 0.4, and T (H ′′) = 0.5. In this case, H would be the best PC out of the
three. We see here the gap of the time per training step between H and H ′ is T (H ′)− T (H) = 0.1,
and the same gap size for H ′ and H ′′ of T (H ′′)− T (H ′) = 0.1. Meanwhile, the gap between the
throughput of the two PCs would beR(H)−R(H ′) = T (H)−1 − T (H ′)−1 = 3.3̄− 2.5 = 0.83̄
andR(H ′)−R(H ′′) = T (H)−1−T (H ′)−1 = 2.5−2 = 0.5. We can see that the gap between the
best PC becomes enhanced when we consider the throughput, when we compare it with the relative
gap size of the training step time.

More concretely, if we have a PC which requires time t per training step, then you can reduce it by an
amount of ∆t, then the throughput would have increased by an amount (∆t)/t2. When t becomes
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smaller, the change in throughput will also increase but at an increasing rate. This therefore means by
modeling the throughput, the scores of the good PCs will be more clearly separated.

Additionally, we also consider a maximization of throughput since throughput would be bounded by
[0, rmax], rather than the time per training step which would be unbounded on one end, i.e., be in the
interval [tmin,∞), which makes suboptimal PCs easier to handle. Also, we frame our problem as a
maximization in order to be consistent with Bayesian optimization works which typically considers a
maximization problem.

D DETAILED DISCUSSION OF GP SURROGATE IN OPPA

D.1 PARALLELISM-INFORMED PRIOR MEAN FOR THE THROUGHPUT

In this section, we elaborate on how the throughput prior mean is constructed in order to obtain the
form for the parallelism-informed prior mean. In summary, we design the prior to incorporate the
following characteristics.

• Parallelism coverage. We model DP/TP traffic via All-Reduce–style collectives and PP via
point-to-point transfers, using a placement-aware split of intra- and inter-host links. For
computation costs, we also explicitly consider the pipeline bubbles.

• Topology and protocol awareness. The communication term uses canonical ring/tree scaling
with hierarchical aggregation (node-local first, then cross-node), while collapsing ZERO
stages into a single All-Reduce surrogate at the bandwidth level (bytes over the wire are of
the same order) and letting stage-specific latency/overlap differences be absorbed by C (e.g.,
event counts, bucket sizes, communication overhead for each parallelism dimensions, etc.).

• Hardware agnosticism via learning. Rather than hard-coding device/network constants, we
expose a small set of effective coefficients that are learned from a few traces. This keeps
the prior portable across models, data types, and interconnects while preserving the correct
asymptotic trends for dp,tp, and pp.

To estimate the computation time, we assume an idealized machine that allows infinite parallelization,
such that DP and TP are perfectly parallelized. Meanwhile, PP using an interleaved schedule incurs
additional computation time from the microbatches being ran sequentially, and from pipeline bubble
when the first microbatch is being fed through the pipeline (Narayanan et al., 2019). This additional
computation time from PP, visualized in Fig. 9, is roughly equal to

T̂comp(H; tcomp) =
tcomp

n_gpus
·
(
mb+

pp− 1

mc

)
(10)

where mb is the number of microbatches used in PP (set to 1 when PP is not used), mc is the number
of model chunks for PP (also set to 1 when PP is not used), and tc = tf + tb is the total time to
perform the forward and backward passes.

To estimate the communication time, inspired by the model visualized in Fig. 2, we assume that DP
and TP involve All-Reduce communications, and PP P2P communications, where these costs are
modeled separately. We use an extended (α, β, γ) model dicussed by Xiong et al. (2024), and for
the intra- and inter-host communications, we characterize the network performance by the latency
αintra and αinter, the per-byte bandwidth cost βintra and βinter, the incast overhead γintra and γinter, and
the memory access overhead δintra and δinter. We assume that the inter-host communication costs will
be larger than their intra-host counterparts.

For DP and TP, we assume that the Ring All-Reduce implementation is used, where the cost to gather
and scatter data of size N across D machines is given by

CAR(D,N,α, β, γ, δ) = 2(D − 1)α+
D − 1

D
N(2β + γ + 3δ). (11)

For DP, we consider the gradient synchronization from the All-Reduce algorithm. The data size per
GPU for DP All-Reduce, Ndp, is

Ndp = λZ
Mmodel

tp · pp
(12)

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 1 2 2 3 3 4 4 1 2 3 4

tf ⋅ (pp − 1)
n_gpus ⋅ mc

tb ⋅ (pp − 1)
n_gpus ⋅ mc

(tf + tb) ⋅ mb

n_gpus

tf
n_gpus ⋅ mc

tb
n_gpus ⋅ mc

Total time

Figure 9: Estimate for computation time for PP where tf and tb are the time required for the forward
and backward stages respectively, for when pp = n_gpus = 4, mb = 4, and mc = 2

where Mmodel is a learnable total model parameter size, and λZ is a tiny fudge for ZERO flavor while
staying in AR-land, and it accounts for param-All-Gather + grad-Reduce-Scatter volume equivalence
with small overhead for ZERO-3.

Suppose Gnode is the number of GPUs per node. The overall communication cost from DP T̂comm,dp

would then depend on the configuration of the network as follows:

• In a hierarchical (multi-host scenario with dp > Gnode) system, the cost is given by

T̂comm,dp(H;C) = CAR(Gnode, Ndp, αintra, βintra, γintra, δintra)

+ CAR(⌈dp/Gnode⌉, Ndp/Gnode, αinter, βinter, γinter, δinter). (13)

• In a flat inter-node (multi-host scenario with dp ≤ Gnode), the cost is given by

T̂comm,dp(H;C) = CAR(dp, Ndp, αinter, βinter, γinter, δinter). (14)

• In a flat intra-node (single-host scenario), the cost is given by

T̂comm,dp(H;C) = CAR(dp, Ndp, αintra, βintra, γintra, δintra). (15)

Depending on the hardware used, the appropriate cost for the scenario can be selected.

For TP, we consider the cost from frequent activation communication (e.g., All-Reduce per layer).
Let Mact,tp be a learnable characteristic data size for one such TP All-Reduce operation. Let
Otp/mb be the learnable number of these operations per microbatch. The total number of TP
communication operations is Ntp,ops = Otp/mb ·mb, and the cost of a single TP All-Reduce operation
is CAR(tp,Mact,tp, αeff, βeff, γeff, δeff) where effective parameters αeff, βeff, γeff, δeff are chosen as
intra-node or inter-node based on whether the tp group spans multiple hosts (i.e., if NH > 1 and
tp > Gnode) or not. Then, the total TP communication cost is the number of communication
operations multiplied by the cost per communication operation, or

T̂comm,tp(H;C) = Ntp,ops · CAR(tp,Mact,tp, αeff, βeff, γeff, δeff). (16)

For PP, we consider the point-to-point (P2P) transfers of activations and gradients between pp
pipeline stages, where the cost to transfer data of size N is given by

CP2P(N,α, β) = α+N · β. (17)

Let Mact,pp be a learnable characteristic data size for one P2P transfer (e.g., the size of an activation
tensor). The number of communication boundaries is pp− 1. Communication occurs for each of mb
microbatches, in both forward (activations) and backward (gradients) directions. The total number of
P2P communications is given by Npp,transfers = max(pp− 1, 0) · 2mb, where a single P2P transfer
uses effective latency αeff and effective per-unit-data cost βpp,eff (derived from base β parameters),
chosen as intra-node or inter-node based on whether communicating stages are on different hosts
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(approximated if NH > 1). Given this, the overall cost of all communications related to PP would be
given by

T̂comm,pp(H;C) = Npp,transfers · CP2P(Mact,pp, αeff, βpp,eff). (18)

Here, if pp = 1, then T̂comm,pp = 0.

When combining the communication costs for all three types of parallelism, considering in practice
large chunks of communication overlap with compute, we attach non-overlap factors κ and obtain

T̂comm(H;C) = κdp · T̂comm,dp(H;C) + κtp · T̂comm,tp(H;C) + κpp · T̂comm,pp(H;C) (19)

where C are constants related to the various costs which are to be inferred. Given Eqs. (10) and (19),
we can construct the prior mean for throughput to be

R̂(H; {tcomp,C}) =
[
T̂comp(H; tc) + T̂comm(H;C)

]−1
. (20)

D.2 PARALLELISM-INFORMED PRIOR MEAN FOR THE MAXIMUM MEMORY USAGE

We briefly elaborate on the choice of prior mean in Eq. (21). As discussed, we only consider the
memory that is required to store the NN parameters, and those to compute the gradient updates.

For NN parameters, its sharding can be done on the pipeline or on the layers, allowing us to
approximate the GPU memory required for storing the NN parameters to be inversely proportional to
pp · tp. Note that assuming the simplest DP implementation, the NN parameters are duplicated and
stored on each DP dimensions, and so the maximum memory usage is not affected by the DP.

Meanwhile, in the case of backpropagation computation, the maximum memory used will roughly be
proportional to how many model parameters a certain GPU has to perform the forward and backward
passes for, times how many training samples the GPU has to process at any one time. We expect this
quantity to be inversely proportional to the number of total GPUs times the latter to depend on the
number of microbatches used.

Combining these two factors, can write the maximum memory usage as

M̂(H; θM) = min
{
m1 · (pp · tp)−1 +m2 · (n_gpus · mb)−1 +m3, M0

}
(21)

where, m1 captures the memory used for storing model parameters, and m2 captures the memory used
during backpropagation computations, m3 are any other additional memory overheads unaccounted
for by our model, and θM = {m1,m2,m3}. Note that since we cannot measure maximum memory
usage above values of M0, we apply the min function to clip the prior belief function.

D.3 KERNEL

Given the embedding e(H), we use the Matern kernel (Rasmussen & Williams, 2006), which is given
by

k(H,H ′) = σ2
kkMatern,ν

(
e(H), e(H ′); ℓ

)
= σ2

k

21−ν

Γ(ν)

(√
2ν dℓ(H,H ′)

)ν
Kν

(√
2ν dℓ(H,H ′)

)
where Γ is the Gamma function, Kν is the modified Bessel function, σk is the kernel scaling constant,

dℓ(H,H ′) =
(
e(H)− e(H ′)

)⊤
L−2

(
e(H)− e(H ′)

)
(22)

is the distance between two PC embeddings and L = diag(ℓ) = diag([ ℓ1 · · · ℓp ]) is the lengthscale.

D.4 POSTERIOR DISTRIBUTION OF PREDICTED THROUGHPUT AND MEMORY USAGE

Suppose we are in the ith round. We let Hi = [H1 · · ·Hi] be the list of PCs, r̄i = [r̄1,q̂1 · · · r̄i,q̂i ]
and σ2

r̄i = [σ2
r̄1,q̂1
· · ·σ2

r̄i,q̂i
] be the observed throughput and the corresponding variance, and mi =

[m1 · · ·mi] be the observed maximum memory usage values.

Given the data, we first find the optimal hyperaparameters θ = {θR, θM, θk}. This is done by
maximizing the marginal log-likelihood (Rasmussen & Williams, 2006), or

θ = argmax
θ′

log p(r̄i, m̄i|H̄i, θ). (23)
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The posterior mean and variance for the throughput for some PC H ′ can then be defined as

µR,i(H
′) = R̂(Hi; θR) + k(H ′,Hi; θk)

(
k(Hi,Hi; θk) + diag(σ2

r̄i)
)−1(r̄i − R̂(Hi; θR)

)
, (24)

σ2
R,i(H

′) = k(H ′, H ′; θk)− k(H ′,Hi; θk)
(
k(Hi,Hi; θk) + diag(σ2

r̄i)
)−1

k(Hi, H
′; θk), (25)

and the posterior mean and variance for the memory usage for some PC H ′ can then be defined as

µM,i(H
′) = M̂(Hi; θM) + k(H ′,Hi; θk)

(
k(Hi,Hi; θk) + λI

)−1(mi − M̂(Hi; θM)
)
, (26)

σ2
M,i(H

′) = k(H ′, H ′; θk)− k(H ′,Hi; θk)
(
k(Hi,Hi; θk) + λI

)−1
k(Hi, H

′; θk) (27)

where λ is to make the matrix invertible.

E DETAILED DISCUSSION OF PC SELECTION METHOD IN OPPA

E.1 RANDOM SAMPLING FOR ADDITIONAL EXPLORATION

In OPPA, we sometimes select PCs at random for additional exploration. There are two scenarios
which triggers a random selection of PC in OPPA.

1. In the first few chosen PCs. This is because in the beginning there are no PCs which can be
used to infer the hyperparameters for the prior distribution of the GP, therefore a few PCs
are chosen at random to kick-off the modeling process and provide a reasonably diverse set
of samples to infer the hyperparameters well.

2. When too many out-of-memory errors have been encountered in a row. This is because any
out-of-memory trials will not result in a usable training data for the throughput modeling
and possibly minimal data for the maximum memory GP, which does not aid the GP model.
When too many such cases are encountered, we attempt to do random exploration so that
the model can receive some information that can be used to model better with and find new
feasible PCs.

For the random selection process, we select a PC using a weighted random strategy, such that the
probability of obtaining a PC with a certain parallelism dimension size configurations are equal.

F DETAILED DISCUSSION PC TRIALING METHOD

F.1 THROUGHPUT ESTIMATION

Given the time ti,1, . . . , ti,q required for q training steps, we can estimate the throughput and its
predicted variance as

r̄i,q =
1

q

q∑
j=1

1

ti,j
, and σ2

r̄i,q =
1

q

q∑
j=1

(
1

ti,j
− r̄i,q

)2

. (28)

F.2 OUTLIER REMOVAL

As demonstrated in Fig. 3, not all training time measurements will be representative of the true
throughput. We therefore perform two actions. First, we remove the first training step, ti,1, since
it typically corresponds to a warm-up for the training and therefore will usually be an anomaly
measurement. Second, we compute the median and the inter-quartile range (IQR), and remove all
measurements which are away from the median by at least 2× IQR. The remaining training points
are then used to compute Eq. (28).

F.3 REGRET ANALYSIS OF EARLY TRIAL TERMINATION

In this section, we attempt to prove Thm. 4.1. To do so, we will consider a more general case for an
arbitrary unknown function f . We first state the assumptions for the function and the observations,
which follows from other BO works (Srinivas et al., 2012; Makarova et al., 2021; Kirschner & Krause,
2018) however with additional assumptions on repeated observations from the same input.
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Assumption F.1. Let f ∼ GP(0, k) be an unknown function drawn from a GP with zero mean and
kernel function k, where the RKHS norm ∥f∥H ≤ B is bounded. The BO procedure is as noted in
Algorithm 2, where in each BO iteration i, an input xi ∈ X is selected, and q̂i ≤ qmax noisy outputs
yi,j = f(xi) + εi,j are returned, where εi,j ∼ N (0, s2) are i.i.d. noise.

We now also show Algorithm 1 which repeats each query qmax times, and our proposed Algorithm 2
which does early termination on some of the rounds. Our theoretical results in this section will
consider Algorithm 2.

Algorithm 1 GP-UCB with Repeated Trials

1: D0 ← ∅
2: for i = 1, . . . , N do
3: Fit GP on Di−1 to obtain mean µi−1 and variance σ2

i−1
4: xi ← argmaxx∈X µi−1(x) + βiσi−1(x)
5: for j = 1, . . . , qmax do
6: Sample yi,j = f(xi) + εi,j
7: end for
8: ȳi,qmax ← q−1

max
∑qmax

j=1 yi,j
9: Di ← Di ∪ {(xi, ȳi,qmax)}

10: end for

Algorithm 2 Modified GP-UCB with Early Trial Termination

1: D0 ← ∅
2: for i = 1, . . . , N do
3: Fit GP on Di−1 to obtain mean µi−1 and variance σ2

i−1
4: xi ← argmaxx∈X µi−1(x) + βiσi−1(x)
5: for j = 1, . . . , qmax do
6: Sample yi,j = f(xi) + εi,j
7: ȳi,j ← j−1

∑j
j′−1 yi,j′

8: D′
i,j′ ← Di ∪ {(xi, ȳi,j)}

9: if ȳi,q < maxj<i ȳj,q̂j + τq then
10: break
11: end if
12: end for
13: Di ← D′

i,j′

14: end for

We first state a result regarding the mean estimator of f(xi).

Corollary F.2. Suppose we define

ȳi,q =
1

q

q∑
j=1

yi,j . (29)

Then, the expected value of x̄i is E[ȳi,q] = f(xi), and its variance bounded by V[ȳi,q] = s2/q.

Proof. The results are direct consequences of the summation of expected values and variances of
independent random variables, and the fact that V[yi,j ] = s2 by assumption.

We will first prove the first half of Thm. 4.1. Given the results in Corollary F.2, we next show that we
are able to obtain a GP with good estimate bounds even if some trials are terminated early, i.e., not
ran for up to qmax repeats.

Lemma F.3. Suppose we let

µi(x) = k(x,Xi)
(
k(Xi,Xi) + s2Q−1

i

)−1yi , (30)

σ2
i (x) = k(x, x)− k(x,Xi)

(
k(Xi,Xi) + s2Q−1

i

)−1
k(Xi, x) (31)
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where Xi = [x1 · · ·xi], yi = [ȳ1,q̂1 · · · ȳi,q̂i ], and Qi = diag([q̂1 · · · q̂i]). If

βi = B +

√√√√2 log
det

(
k(Xi,Xi) + s2Q−1

i

)1/2
δ det

(
s2Q−1

i

)1/2 (32)

then, with probability greater than 1− δ, for all x ∈ X and all i = 1, . . . , N , we have∣∣f(x)− µi−1(x)
∣∣ ≤ βiσi−1(x). (33)

Proof. Given the variance of the mean predictor from Corollary F.2, our scenario can be thought of
as having i observations with heteroscedastic noise with variances of s2/q̂1, . . . , s2/q̂i. The variance
bounds then follow directly from Lemma 7 in Kirschner & Krause (2018) where we substitute
Σi → s2Q−1

i and λ→ 1.

Corollary F.4. Given Lemma F.3, for all x′ ∈ X , we have f(x′)− µi−1(xi) ≤ βiσi−1(xi).

Proof. We see that

f(x′)− µi−1(xi) ≤ µi−1(x
′) + βiσi−1(x

′)− µi−1(xi) by Lemma F.3, (34)
≤ µi−1(xi) + βiσi−1(xi)− µi−1(xi) by how xi is chosen, (35)
= βiσi−1(xi). (36)

We now show the cumulative regret of the problem. Let

I[yX ; fX ] =
1

2

∑
x′
i∈X

log

(
1 +

σ2
i−1(x

′
i)

s2/q̂i

)
, (37)

and
γi = max

X=[x′
1,...,x

′
i]⊂X

I[yX ; fX ] (38)

be the maximum possible information gain across i rounds. We then prove the following result.
Theorem F.5. Let x∗ = argmaxx∈X f(x). With probability at least 1− δ,

N∑
i=1

f(x∗)− f(xi) ≤ sβN

√
8NγN
qmin

. (39)

Proof. This result is similar to previous results for UCB-based methods, e.g., Theorem 3 in Srinivas
et al. (2012) or Corollary 9 in Kirschner & Krause (2018).

With probability at least 1− δ, Lemma F.3 holds. We see that
N∑
i=1

(
f(x∗)− f(xi)

)
=

N∑
i=1

(
f(x∗)− µi−1(xi)

)︸ ︷︷ ︸
Corollary F.4

+
(
µi−1(xi)− f(xi)

)︸ ︷︷ ︸
Lemma F.3

(40)

≤
N∑
i=1

2βiσi−1(xi). (41)

Since
N∑
i=1

σ2
i−1(xi) ≤

N∑
i=1

s2

q̂i

σ2
i−1(xi)

s2/q̂i
(42)

≤ s2

qmin

N∑
i=1

log

(
1 +

σ2
i−1(xi)

s2/q̂i

)
(43)

≤ 2s2

qmin
γN , (44)
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we can rewrite Eq. (41) as

N∑
i=1

(
f(x∗)− f(xi)

)
≤

√√√√ N∑
i=1

4β2
i

√√√√ N∑
i=1

σ2
i−1(xi) by Cauchy-Schwartz, (45)

≤ βN

√
4N

√√√√ N∑
i=1

σ2
i−1(xi) since βi ≤ βN , (46)

≤ sβN

√
8NγN
qmin

by Eq. (44). (47)

Remark F.6 (The regret bound in Thm. F.5 is lower when qmin increases). We investigate the upper
bound in Eq. (47) further to see its dependence on qmin.

For simplicity, we will let K = k(XN ,XN ). First, we see that

log det
(
K + s2Q−1

N

)
= log det s2Q−1

N + log det
(
I + s−2QNK

)
(48)

≤ log det s2Q−1
N + log det

(
I + s−2qmaxK

)
, (49)

which means that

βN = B +

√√√√2 log
det

(
K + s2Q−1

N

)1/2
δ det

(
s2Q−1

N

)1/2 (50)

= B +

√
2 log

1

δ
+ log det

(
K + s2Q−1

N

)
− log det s2Q−1

N (51)

≤ B +

√
2 log

1

δ
+ log det (I + s−2qmaxK). (52)

Furthermore, we see that

γN = max
X=[x′

1,...,x
′
N ]⊂X

1

2

∑
x′
i∈X

log

(
1 +

σ2
i−1(x

′
i)

s2/q̂i

)
(53)

≤ max
X=[x′

1,...,x
′
N ]⊂X

1

2

∑
x′
i∈X

log

(
1 +

σ2
i−1(x

′
i)

s2/qmax

)
. (54)

Therefore we see that both βN and γN are upper bounded by terms which are independent of qmin,
and so the constants in the upper bound provided in Thm. F.5 do not hide any additional dependencies
with respect to qmin. This shows that the upper bound of cumulative regret from Eq. (47) decays at a
rate of 1/

√
qmin.

We will now prove the second half of Thm. 4.1. We first prove the following result.

Lemma F.7. Define c1 ≜
√
2 log(2Nqmax/δ). With probability at least 1− δ, for all i = 1, . . . , N

and all q = 1, . . . , qmax, we have ∣∣ȳi,q − f(xi)
∣∣ ≤ c1s√

q
. (55)

Proof. From Corollary F.2, we know that the ȳi,q is normally distributed with mean f(xi) and
standard deviation s/

√
q. By Chernoff bounds, for each i = 1, . . . , N and each q = 1, . . . , qmax, we

would have ȳi,q − f(xi) > c1s/
√
q, and f(xi) − yi,q > c1s/

√
q where either event happens with

probability no greater than δN/2qmax. This means that with probability no greater than δ/Nqmax,
we have |yi,q − f(xi)| > c1s/

√
q. Therefore, by union bound, we have for all i = 1, . . . , N

and each q = 1, . . . , qmax, we would have |ȳi,q − f(xi)| ≤ c1s/
√
q with probability greater than

1− (δ/Nqmax)(Nqmax) = 1− δ.
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Theorem F.8. Define

τq = c1s

(
1
√
qmin

+
1
√
q

)
. (56)

Then, with probability at least 1−δ, for all i ≤ N , if we have f(xi) < maxj<i f(xj), then q̂i < qmax.

Proof. With probability at least 1− δ, Lemma F.7 applies.

To prove the statement above, we show its contrapositive. Suppose we have q̂i = qmax, or that the trial
for xi does not terminate early. This implies that ȳi,q ≥ maxj<i ȳj,q̂j + τq for all q = qmin, . . . , qmax.
For any q in this range, we would then have

f(xi) ≥ ȳi,q −
c1s√
q

(57)

≥ max
j<i

ȳj,q̂j + τq −
c1s√
q

(58)

≥ max
j<i

f(xj)−
c1s√
qmin

+ τq −
c1s√
q

(59)

= max
j<i

f(xj). (60)

This proves the contrapositive which in turn proves the original statement.

Finally, Thms. F.5 and F.8 can be combined with appropriate union bounds to achieve a more formal
version of Thm. 4.1.

In Fig. 10, we provide a brief empirical demonstration of efficiency gains due to early termination.
We see that when the noise variance is too high, querying the function once per input would give
observations which are too noisy to give good information. Meanwhile, by repeating each query a
maximum number of times, we can obtain a good estimate of the true function and allow the BO
process to arrive at the optimal using few queries. However, we see that when early termination
is allowed, we can still arrive at the optimal input as before, while not requiring all queries to be
repeated the maximum number of times. This shows that early termination allows for efficiency gains
while minimally sacrificing on the actual optimization process.
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Figure 10: Results of BO with early termination (with qmin = 1) on different synthetic functions
where each query has different noise levels. For each case, we show the best queried objective value
(left plot), and the cumulative number of total repeated queries made with each BO round (right plot).

In practice, since it is difficult to determine γN , βN , s, and c1 exactly, we instead fix βi and τq to
some constant. In OPPA, we choose βi = 1 and τq = 10−3. We find that these values work well for
our methods. Furthermore, in our proofs we do not consider the constrained BO setting. Despite
this, the early termination can still be used in practice to achieve good results, which we show in the
experiments.

G PSEUDOCODE OF OPPA

We present the pseudocode for OPPA in Algorithm 3.
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Algorithm 3 OPTIMIZER FOR PARALLELISM CONFIGURATIONS (OPPA)

1: Generate all valid PCsH
2: for i = 1, 2, . . . , N do
3: if i < Nrandom then
4: Select Hi randomly
5: else
6: // Step 1⃝ – Modeling throughput and memory usage
7: Construct µR,i−1 and σ2

R,i−1 according to Eqs. (24) and (25) respectively
8: Construct µM,i−1 and σ2

M,i−1 according to Eqs. (26) and (27) respectively
9: // Step 2⃝ – Selecting the next PC to query

10: Hi ← argmax
H∈H\{H1,...,Hi−1}

cUCBi(H) where cUCBi−1 is defined in Eq. (4)

11: end if
12: // Step 3⃝ – Querying some PC
13: for q = 1, . . . , qmax do
14: Measure training step time as ti,j
15: Compute r̄i,q and σ2

r̄i,q according to Eq. (28)
16: if q ≥ qmin and r̄i,q < maxj<i r̄j,q̂j + τq then
17: break
18: end if
19: end for
20: q̂i ← q to track the number of training steps ran in round i
21: Measure maximum memory usage as mi

22: if time budget exceeded then
23: break
24: end if
25: end for
26: return Hi∗ where i∗ = argmaxi≤N :(mi<M0)∧(q̂i=qmax) r̄i,q̂i

H ADDITIONAL INFORMATION ON EXPERIMENTAL SETUP

H.1 TRAINING AND HARDWARE CONFIGURATIONS

We list the models used in our experiments in Table 2, along with the allotted search time and how
many trials we repeat on them. All models used are based on the transformer architecture, and were
retrieved from Huggingface.

Note that in all of our plots, we plot the median value (with a line) and also the lower and upper
quartiles (with a fainter band over and under the line). We do so since we find that the values are
often asymmetrically skewed, and therefore opted to show the quartile values to more accurately
represent the distribution of these values. Also note that the repeated trials were reduced for larger
models due to restrictions in compute budget.

Table 2: Details of models used in our experiments and the corresponding training scenario

Case Model # Params Batch size Max. seq. length Search Time qmax Repeats
BERT BERT Base Uncased 110M 256 256 20 mins 50 10
Qwen Qwen-2 1.5B 64 1024 20 mins 30 10

LLaMa-1b LLaMa 3 1B 64 1024 60 mins 20 5
LLaMa-7b LLaMa 2 7B 256 1024 60 mins 30 5

Our model training is implemented based on the COLOSSAL-AI framework (Li et al., 2023), which
allows execution of NN training with 3D parallelism with different tunable hyperparameters. We
note, however, that OPPA is also general enough to be applied to any other training framework as
well, whose implementation we leave to future works.

In Table 3, we list the hardware configuration used in our experiments. The hardware configurations
used are based on the resources that are available to the authors.
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Table 3: Configurations of tested hardwares.

Config. Name GPU Model (Memory) GPUs per host # Host Multi-Host Characteristic
8 GPUs NVIDIA RTX A5000 (24GB) 8 1

16 GPUs NVIDIA RTX 3080 (10GB) 8 2 Docker Overlay Network
32 GPUs NVIDIA A100 (40GB) 4 8 High-Performance Compute

H.2 ALGORITHMS RAN

We list the algorithms we have ran along with their implementation details here.

• RANDOM. This involves randomly selecting a PC from H to trial in each round until the
time budget is exhausted.

• XGBOOST (Chen & Guestrin, 2016). This is the method DEEPSPEED (Rasley et al., 2020)
uses to configure the PC, and is adapted to work with the hyperparameters in our PC. The
method involves training an XGBOOST model based on the observed throughput values,
then selecting the next PC to trial as the one whose predicted throughput is the highest. This
is repeated until time budget is exhausted.

• COST-MODEL. This involves using the cost model as described in Apps. D.1 and D.2,
learned based on several randomly selected PCs, to obtain an estimate of throughput and
maximum memory usage, and perform a one-shot selection of the best PC according to the
predictions.

• VANILLA-BO. This performs BO whose GP has constant mean and Matern kernel with
ν = 5/2. The cUCB criterion is used for PC selection. The BO loop is implemented using
BOTORCH (Balandat et al., 2020).

• OPPA. This is the method proposed in Sec. 4, which involves modifying BO to include a
parallelism-informed prior belief and early trial termination (where we fix qmin = 5 unless
stated otherwise).

We note that due to the search space employed forH, we do not consider benchmarks which performs
non-adaptive optimization with a cost model. This is because those methods optimize with respect to
the computation graph rather than the hyperparameters which we discussed in App. C.1, and since
they do not use the same information as OPPA to perform optimization, making it futile to compare
between the two since they focus on optimizing different aspects of training parallelism. Nonetheless,
we provide some comparisons with selected algorithms of such nature, namely Li et al. (2022) and
Lin et al. (2024) in Fig. 8.

I ADDITIONAL RESULTS

I.1 PLOTS OF BEST ACHIEVED THROUGHPUT VERSUS OTHER QUANTITIES

In Fig. 11, we plot the best achieved throughput versus the number of training trials that have been
ran. We see that in this view, OPPA still outperforms other benchmarks. While the margin may be
smaller in some instances, we see that OPPA is able to achieve the good results more consistently as
seen by the error bars when compared to some of the other methods. This also demonstrates that the
prior belief used in OPPA alone would have helped in achieving a better performance regardless of
the early termination mechanism in OPPA.

In Fig. 12, we show the achieved throughput is plotted against the number of training steps performed
in the training trials, showing that the difference in efficiency of OPPA becomes more pronounced.
From these results see that OPPA is both more time efficient and query efficient, which can be useful
when the overhead to perform one trial may become higher, for example when the framework is
adapted to run on a cluster with a job scheduler.

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) BERT, 8 GPUs

10 20
No. trialed PCs

1.6

2.0

2.4

2.8

Be
st

 
(H

) (
s

1 )

(b) Qwen, 8 GPUs

5 10 15
No. trialed PCs

0.36

0.40

0.44

Be
st

 
(H

) (
s

1 )

(c) LLaMa-1b, 16 GPUs

5 10
No. trialed PCs

0.00

0.15

0.30

Be
st

 
(H

) (
s

1 )

(d) LLaMa-7b, 32 GPUs

5 10 15
No. trialed PCs

0.12

0.16

0.20

Be
st

 
(H

) (
s

1 )

Random XGBoost Vanilla-BO O P

Figure 11: Results of the best obtained throughput (higher is better) plotted against the number of
PCs that have been trialed. The lines represent the median value of the best obtained throughput
across five trials, while the error bar represent the quartile values. Note that for the experiments on 32
GPUs, we are unable to run the optimization beyond the allotted time due to resource constraints and
therefore are only able to plot some algorithms for a fewer number of queried PCs.
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Figure 12: Results of the best obtained throughput (higher is better) plotted against the total number
of training steps ran during in the training trials. The lines represent the median value of the best
obtained throughput across five trials, while the error bar represent the quartile values.

I.2 OPTIMAL PCS RECOVERED BY OPPA

In Table 4, we show the PCs that were recovered by OPPA. Note that the optimal PCs chosen match
quite well with intuition, where for smaller models DP tends to be prioritized. Meanwhile for larger
models and training scenarios which are done across multiple machines, PP is prioritized.

Table 4: Example of optimal PCs selected by OPPA in different training scenarios. Values are based
on observations of optimal PCs across multiple repeated trials. A range of value shows that a certain
parameter shows a spread across multiple trials (i.e., no strong preference towards one value), while a
dash shows that the parallelism dimension associated with that hyperparameter is not used.

Hyperparameter BERT, 8 GPUs Qwen, 8 GPUs LLaMa-1b, 16 GPUs LLaMa-7b, 32 GPUs
DP size (dp) 8 4 1 2
TP size (tp) 1 1 1 1
PP size (pp) 1 2 16 16

DP bucket size 1 – 64 1 – 4096 - 1 – 4096
ZeRO stage 0 1 - 1

ZeRO bucket size - 1 – 64 - 64 – 4096
Overlap ZeRO communication - True/False - False

Overlap ZeRO AllGather - True/False - False
# microbatches (mb) - 8 64 32
# model chunks (mc) - 1 – 2 1 1
Overlap P2P for PP - True/False False True/False
Grad. checkpointing True False False False
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I.3 PC OPTIMIZATION FOR VISION MODELS

In Fig. 13, we presented the results for tuning the PC for ViT model (Dosovitskiy et al., 2021). We
see that the results here show that OPPA is able to select better PCs compared to the other methods,
consistent with other results in the paper. This demonstrates that OPPA is able to also generalize to
other models as well.

(a) Versus time spent

0 10 20 30
Time (mins)

1.2

1.4

1.6

1.8

Be
st

 
(H

) (
s

1 )

(b) Versus PCs trialed

10 20
No. trialed PCs

1.2

1.4

1.6

1.8

Be
st

 
(H

) (
s

1 )

(c) Versus training steps

0 500 1000
Training steps

1.2

1.4

1.6

1.8

Be
st

 
(H

) (
s

1 )

Random XGBoost Cost-Model* Vanilla-BO O P

Figure 13: Results for training ViT model (Dosovitskiy et al., 2021) with batch size of 256.

I.4 PREDICTED THROUGHPUT AND MEMORY BY PARALLELISM-INFORMED PRIOR BELIEF

In Figs. 14 to 16, we compare the modeled throughput with the true values in different training
scenarios. We see that in this case, using the prior belief allows for the values to be modeled
adequately well, but more importantly, allow for the PC which achieves the best throughput to also
have the highest values, and therefore be identified correctly. We find that for the BO process, a
surrogate only needs to model the good PCs well in order to select a good PC in the end. Meanwhile,
the GP without prior belief learns the patterns much less efficiently or do not learn them at all. This
correlates well with the results in the main text where standard BO selects a worse PC compared to
OPPA which uses a better prior belief.

In Fig. 17, we compare the modeled maximum memory with the true measured value. In both
cases a GP has been used however with and without a parallelism-informed prior belief since only
VANILLA-BO and OPPA are the only benchmarks we tested which explicitly models the memory
usage. Here, we see that OPPA is able to better model the memory usage due to its use of the prior
belief. This is reflected in the confusion matrices which shows that after training, OPPA is able to
more accurately detect when a certain PC will result in out-of-memory errors.
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Figure 14: Comparison of modeled throughput values versus the true throughput for training of BERT
model on 8 GPUs after 20 PC trials.

To additionally demonstrate the interpretability of the GP modeling for the surrogate, in Table 5,
we show the results for the lengthscales learned by the kernel (as given in Eq. (22)). We see that
hyperparameters that have larger effects on the resulting throughput or are less well-modeled by our
prior belief will typically correspond to the shorter lengthscales. For example, for the training of
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Figure 15: Comparison of modeled throughput values versus the true throughput for training of Qwen
model on 8 GPUs after 20 PC trials.
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Figure 16: Comparison of modeled throughput values versus the true throughput for training of
LLaMa-2 model on 32 GPUs for, in order, OPPA after 10 trials, OPPA after 20 trials, GP after 10
trials and XGBOOST after 10 trials. Note that among the three algorithms only OPPA ran for up to
20 trials given the time constraint.

BERT, we see that the parameters for TP dimension size and for the number of microbatches (for PP)
have shorter lengthscales. This matches our intuition where the throughput would be more sensitive
to the increased TP or PP being used (for the worse). This additional interpretability makes GP a
very suitable candidate for surrogate modeling in this case, since it allows practitioners to be more
aware of the modeling intuition by the surrogate as well as being accurate.

Table 5: Example of the log lengthscales learned by the kernel of the GP for the throughput surrogate
model. The bolded value are to highlight hyperparameters with particularly shorter lengthscales.

Hyperparameter BERT, 8 GPUs Qwen, 8 GPUs
DP size (dp) 1.877 5.233
TP size (tp) -1.071 6.024
PP size (pp) 2.293 -1.849

DP bucket size 3.484 5.994
ZeRO stage 0.434 5.279

ZeRO bucket size 3.402 6.516
Overlap ZeRO communication 3.949 7.581

Overlap ZeRO AllGather 3.822 7.589
# microbatches (mb) -1.322 -1.741
# model chunks (mc) -0.293 0.124
Overlap P2P for PP 3.854 6.974
Grad. checkpointing -0.334 6.586

I.5 EFFECTS OF PRIOR MISSPECIFICATION

To investigate the robustness of our method with respect to a misspecified prior, we conduct experi-
ments to see how OPPA behaves as our cost-model prior becomes increasingly inaccurate. To do so,
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Figure 17: Comparison of modeled maximum memory usage versus the true maximum memory
usage for training of Qwen model on 8 GPUs after 20 PC trials. In each row, the left hand graph
shows the predicted value versus the actual value (with the predictive variance are omitted for clarity),
while the right hand table is the confusion matrix.

we add a perturbation term into our cost function, where we increase the magnitude of the perturbation
term up to about 25% and 50% that of the maximum throughput obtained. We present the median
obtained throughput across 5 random trials in Table 6. We see that even when the cost-function prior
is adversarially constructed (by knowingly adding an incorrect term into the cost function), we are
still able to obtain good performances to the unperturbed cost-model prior even if the convergence
is slightly slower. This suggests that even in this extreme case, the GP is able to correct for the
inaccuracies in the cost-prior effectively.

In practice, prior misspecification typically will due to the cost function not being sufficiently
complex to match the true parallelized training dynamics, because of incomplete or inaccurate
domain knowledge about the true system rather than due to an adversarial construction of the cost
function. This is the case in the cost function we have chosen in our paper, where there is a discrepancy
between the cost function alone and the true throughput as demonstrated in Fig. 6c, resulting from
our cost function not modeling the effects of all hyperparameters in the PC. Under practical scenarios,
we therefore would not expect the results to be as extreme as what we have seen in the presented
results, and that a GP should be able to effectively model the throughput values.

I.6 ADDITIONAL RESULTS FOR ABLATION STUDIES OF COMPONENTS IN OPPA

In Fig. 18, we demonstrate how early termination and parallelism-informed prior belief affect the
overall achieved throughput. First, we see that when parallelism-informed prior belief is used, the
performance is no worse than when no prior belief is used, although this benefit is more pronounced
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Table 6: Effect of perturbing the prior belief on the resulting optimization process. The values
reported are the median throughput obtained for the PC found after certain number of minutes of
running OPPA with the perturbed prior belief function.

Percent perturbation magnitude 10 mins. of search 20 mins. of search
0 (original prior) 0.425 0.446

About 25 0.424 0.447
About 50 0.415 0.447

for the Qwen example, possibly due to the increased complexity in the training setup. meanwhile,
with early termination, we see that the performance is better in terms of time and number of training
steps needed, while not sacrificing the performances when considering the number of PCs that are
trialed to achieve a certain performance. This shows that the benefit gain comes from being able to
shorten the duration of the training trials while not sacrificing the throughput predictions.
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Figure 18: The effects of different components of OPPA on the optimal PC found. In each row, we
present the results in a certain training setup, where we present the obtained throughput versus, from
left to right, the time the algorithm has been ran for, the number of unique PCs trialed, and the number
of training steps that has been ran across all of the trials.

I.7 THE EFFECT OF qmin ON OPPA PERFORMANCE

In Fig. 19, we see how the choice of qmin affects the achieved throughput. For the BERT case, we
see that early termination clearly improves the time required for optimization, as seen where when
qmin = qmax the obtained PC is the worst when all methods are allotted the same amount of time. As
qmin decreases, we see that there is less drop in the amount of time required since each training step is
dominated by the time to setup each PC trials. However, we still see that when we plot the number
of training steps for the optimization, we see that a smaller qmin will require fewer training steps to
arrive at the same optimal PC. However, this trend breaks down when qmin is too small, likely since
the value obtained is too noisy to give good information. Nonetheless, even in this case, we stil obtain
good results. For the Qwen case, similar trends can be seen where reducing qmin is able to reduce the
time and the number of training steps required to find the optimal PC up to a certain point.
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Figure 19: The effects of qmin on the optimal PC found. In each row, we present the results in a
certain training setup, where we present the obtained throughput versus, from left to right, the time
the algorithm has been ran for, the number of unique PCs trialed, and the number of training steps
that has been ran across all of the trials.

J ADDITIONAL DISCUSSIONS REGARDING THE PAPER

J.1 REGARDING THE NOVELTY OF THE PROPOSED METHOD

Here, we highlight some of the novelty of our work beyond being a direct application of Bayesian
optimization (BO), which sets it apart from these works. This has been highlighted in Secs. 3 and 4,
and is done so by (1) using specific characteristics within the PC optimization problem to inform
different design choices for the BO process, and (2) developing a novel BO technique with provable
theoretical guarantees, which is an advancement for BO in itself.

First, we point out that our work identifies specific characteristics of the PC optimization which allows
us to design OPPA to directly tackle these points and obtain strong performances. Unlike a typical
hyperparameter optimization problem, we notice that there are several ways in which optimizing
the PC differs, each allowing us to incorporate appropriate and novel techniques into our framework
beyond using vanilla BO with an updated prior function.

• Designing an appropriate surrogate model and prior for PC optimization which works
across many training scenarios is non-trivial (Sec. 4.1). In our problem setting, we
designed a prior function which is specific enough to capture characteristics of parallelized
NN training based on existing domain knowledge, while still allowing enough flexibility
to adapt to a wide range of possible parallelized training scenarios. This is demonstrated
in our results where the same choice of model and prior is valid on a variety of hardware
configurations, and give strong results across all of them.

• We also utilize black-box constraints to filter out infeasible PCs from the search space
(Secs. 3 and 4.2). In PC optimization, the black-box constraint will naturally arise since
some unknown PCs may result in OOM errors on real machines. We therefore attempt to
automatically learn the feasible space and inform the search process accordingly. This is
unlike vanilla BO which would assume that the feasible set is fully known, and perform the
search accordingly.
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• Since trialing a PC involves sequentially running many training steps to measure the running
time, we also introduce a novel and systematic way to detect suboptimal PCs early and
terminate them to save time (Sec. 4.3). This is designed based on how training throughput
is measured, and whose novel solution is proposed and analyzed (both theoretically and
empirically), as we discuss in the next point.

Second, we introduce a novel BO algorithm where an experiment is sequentially repeated, and
can be terminated early in suboptimal cases (Sec. 4.3 and App. F.3). We inspire this problem via
the optimization of PC in parallelized training, and introduce a principled method to decide when
early trial termination should be done, providing both theoretical justification and empirical results
in PC optimization. This improves on existing BO works which will fix the number of times an
experiment should be repeated before the experiments are performed, and will waste resources on
suboptimal trials. Outside of PC optimization, our method can also be adapted to cases where noisy
measurements should be recorded multiple times to obtain a better estimate such as in real scientific
experiments where trials are often repeated anyway.

J.2 REGARDING THE NECESSITY OF REAL TRAINING TRIALS

We note that while the effect of some hyperparameters in a PC can be estimated reasonably well, this
would not be the case for all hyperparameters (as already stated in Secs. 2 and 3). The only method
to accurately tune these hyperparameters would therefore be based on empirical data from actual
model training. To achieve the best performance for NN training, it is therefore inevitable that we
would have to perform some actual NN training to evaluate the effects of these hyperparameters. This
motivates why adaptive methods which rely on actual time for training is important. This viewpoint
is reflected in real parallelized training frameworks such as DEEPSEED or NEMO where real training
trials are also used to perform PC tuning (as also highlighted in Sec. 2), and also further demonstrated
throughout in our paper to be superior to non-adaptive methods (e.g., as seen in Fig. 8).

Furthermore, in practice, the training time is often long and a relatively short time for PC optimiza-
tion can already give large savings on the overall efficiency of NN training. To more concretely
demonstrate this, in Fig. 5b, we have presented the benefits of optimizing the PC with OPPA before
performing actual training. In our case, the optimization process is done for less than an hour which in
practice, is insignificant compared to the time for training large-scale models. For instance, finetuning
a language model may take several hours or days, while pretraining from scratch often extends to
weeks or even months. When we extrapolate the speed of training process to see how many training
steps can be processed in a few hours, as done in Fig. 5b, we find that the PC chosen by OPPA
can already lead to many more training steps being performed compared to other methods, or even
compared to using a cost model alone to non-adaptively select a PC (which will still require time
to perform optimization nonetheless). This shows that in many practical scenarios where the actual
training would be done for a long period of time, a relatively short time spent on optimizing the PC
can lead to large benefits in computational saving.

K LIMITATIONS AND BROADER IMPACTS

In this work, we have mainly focused on optimizing tunable hyperparameters which are found in
common parallelized training frameworks. While there are many other aspects and search spaces of
parallelization that we could consider, we have instead mainly considered hyperparameters which
would generally be tuned manually by practitioners who want to perform parallelized training. We
believe that Bayesian optimization with an appropriate formulation could also allow our methods
to these other search spaces that may arise as well. Maximizing the throughput during NN training
would allow the same amount of computation to possibly be done in a more efficient manner, both in
terms of time and compute resources. While this may allow faster development of NNs for both good
and bad use cases, overall it would still have a positive impact since it allows for higher efficiency
which reduces waste in computation time and other feasible resources that come with it.
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