
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

CONFIGURING PARALLEL TRAINING OF
NEURAL NETWORKS USING BAYESIAN OPTIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Training of modern large neural networks (NNs) is often done in parallel across
multiple GPUs. While there are existing parallel training frameworks which easily
allow NN training using multi-dimensional parallelism, the challenge remains in
optimizing the balance between size of each parallelism dimensions, and in tuning
the hyperparameters within these parallelism dimensions. Due to a large number of
possible parallelism configurations (PCs) for a given training scenario, it is infea-
sible to perform exhaustive search over all candidates. Existing PC optimization
methods typically either require conducting training trials on a large number of
PCs, each of which can be expensive to perform, or rely on an approximate cost
model which may be inaccurate and hardware-specific. To overcome these issues,
we present OPPA, which combines constrained Bayesian optimization methods
with prior knowledge in the form of a parallelism-informed prior belief, to obtain
an optimal PC using a minimal number of NN training trials. We also propose a
framework for early termination of trails involving suboptimal PCs, whose effi-
ciency gains can be theoretically justified. We show that OPPA finds an optimal PC
more efficiently for training transformers on various multi-GPU systems compared
to the methods used in existing parallel training frameworks.

1 INTRODUCTION

Modern advances in deep learning have arisen from the ability to scale neural networks (NNs) to
larger sizes. In natural language processing, for example, transformer-based models (Vaswani et al.,
2017; Devlin et al., 2019), large language models (LLMs) (Touvron et al., 2023; OpenAI et al., 2024)
and multimodal models (Radford et al., 2021; Liu et al., 2023), composed of millions or even billions
of parameters, have shown tremendous success in tasks such as text classification, text generation,
and language understanding. Due to their size, these large NNs often cannot be trained on standard
machines with a single processor. To scale up the training process, it is necessary to distribute the
NN training workload across a cluster of machines and parallelize the training process. Different
parallelism methods for NN training have been proposed, including data parallelism (Rajbhandari
et al., 2020; Zhao et al., 2023), pipeline parallelism (Huang et al., 2019; Narayanan et al., 2019),
tensor parallelism (Shoeybi et al., 2020), and combinations of these three parallelism methods also
referred to as multi-dimensional parallelism (Rasley et al., 2020; Shoeybi et al., 2020; Li et al., 2023).

In NN training, to fully utilize the given hardware and reduce the computation time, we would like to
maximize the throughput of training, or the number of training steps processed in a given time. The
throughput will depend on the selected parallelism configurations (PCs), which in large-scale parallel
training frameworks (Kuchaiev et al., 2019; Rasley et al., 2020; Shoeybi et al., 2020; Li et al., 2023)
may consist of the size of each parallelism dimension, and various other hyperparameters controlling
how each parallelism dimension is executed. In practice, it is difficult to accurately quantify how
the choice of PC affects the training throughput, as it would depend on the NN architecture, the
training data, the hardware, or the exact implementations of the parallel training framework. While
there are many works on approximating the training throughput of a PC (Li et al., 2022; Zheng
et al., 2022; Zhang et al., 2024), which can consequentially be used to find the optimal PC, these
approximations require strong assumptions on the compute hardware and the specific parallelized
NN training implementation and may not capture all nuances of a parallel training instance, and so
relying on them alone may not be reliable enough to directly inform the optimal PC to select.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Methods that rely on actual throughput
measurements from training trials

throughput

para.
config.

H
para.
config.

cUCB(H)

Construct a
surrogate
for expected
training
throughput

Select a parallelism
configuration to run
in the next trial

Knowledge about
costs of parallel
model training

Methods that
rely on training

throughput
approximations

OPPA (our proposed optimization method)

①
②

Trial a
parallelism
configuration
to get training
throughput

③

Theoretically-backed
early termination
method for parallelism
configurations which
are likely suboptimal

training step

time for step

termination
step

Figure 1: Main idea of OPPA. OPPA combines Bayesian optimization with knowledge on parallel
model training to find the parallelization strategy which achieves the highest training throughput.

In practice, the most reliable method to consider all possible factors during parallelized training
would be to conduct real training trials with each PC on real hardware. Unfortunately, due to the
large number of possible PCs, performing an exhaustive search would be extremely inefficient. To
circumvent this, existing parallel training frameworks will use methods to select a subset of candidate
PCs to trial. However, these methods are still inefficient due to simplistic optimization algorithms
which are unable to adapt to known training throughput measurements and do not utilize on any prior
domain knowledge, therefore still need to run excessively many trials to find a good PC candidate.

To efficiently select the PC that achieves the best throughput, we therefore need the ability to adaptively
select potentially good PCs to trial, while also filtering out poor candidates using information from
trialed PCs and from existing domain knowledge. Given these considerations, it may be possible to
use black-box optimization methods such as Bayesian optimization (BO) (Gelbart et al., 2014; Frazier,
2018). However, naive application of BO is still inefficient, and could be improved if characteristics
of PC trialing and the parallelized training process are taken advantage of by the algorithm.

In this paper, we introduce the OPTIMIZER FOR PARALLELISM CONFIGURATIONS, abbreviated as
OPPA, which is the first algorithm to adaptively optimize the PC for more efficient parallel NN training
and be designed to incorporate domain knowledge and characteristics of parallelized training. The
main idea of OPPA is presented in Fig. 1. In Sec. 3, we first formulate the problem of finding the
optimal PC as a black-box function optimization problem with black-box constraints. In Sec. 4,
we discuss the design choices of OPPA. Here, we develop a surrogate model with a parallelism-
informed prior belief based on knowledge from parallelized NN training that can generalize to many
hardware setup and training scenarios (Sec. 4.1), which is then used to select promising PCs to trial
using constrained BO (Sec. 4.2). We also discuss the process of trialing a PC and propose a novel
BO technique which early terminates trials with suboptimal PC, with theoretical justification and
empirical verification (Sec. 4.3). Finally, we empirically demonstrate the effectiveness of OPPA in
Sec. 5, showing that OPPA can more efficiently find a good PC for training transformers compared to
existing methods and compared to naively using BO without modifications.

2 BACKGROUND AND RELATED WORKS

In this section, we provide an overview of current techniques of parallelized model training on
multiple GPUs, and how optimal parallelism configurations are currently found. We also provide a
brief overview of Bayesian optimization, which is a technique we will use in our proposed method.

2.1 PARALLELIZED NEURAL NETWORK TRAINING

To effectively train large neural networks (NNs), the training workload can be distributed across
multiple GPUs. Different parallelism dimensions split the workload differently, which affect the

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

amount of computation per GPU, amount of communication between each GPU, and the amount of
memory required in each GPU. Here, we briefly discuss some of these existing parallelism techniques.

Data, tensor, and pipeline parallelism. The most basic method to parallelize NN training is data
parallelism (DP) (Li et al., 2020), where a batch of training data is split and distributed to each
devices, separately processed by the local model replica, before gathering the gradients from each
device. While DP is simple, it replicates the model on each device, taking up additional memory. To
solve this, techniques such as the Zero Redundancy Optimizer (ZERO) (Rajbhandari et al., 2020)
in the DEEPSPEED package, or Fully-Sharded Data Parallel (FSDP) (Zhao et al., 2023) have been
proposed to perform some sharding of model parameters or gradients to avoid full model replication.
Furthermore, tensor parallelism (TP) (Shoeybi et al., 2020; Bian et al., 2021) and pipeline parallelism
(PP) (Huang et al., 2019; Narayanan et al., 2019) have been proposed which partition, respectively,
the tensors in the model and the model execution pipelines onto multiple devices. The specific
implementations of DP, TP, and PP can be controlled by different hyperparameters, which may affect,
for example, which tensors are being sharded or how many shards they are partitioned into, which
can affect the overall throughput. The three types of parallelism are discussed further in App. A.

Multi-dimensional parallelism. Many frameworks (Rasley et al., 2020; Shoeybi et al., 2020; Li
et al., 2023) have also since been developed to allow DP, TP, and PP to be used together in the
same training process. These frameworks provide simple interfaces for the users to specify the
desired parallelism configuration (PC), which include the size of each parallelism dimension and
other hyperparameters specific to each parallelism dimension. These frameworks then automatically
handle tensor sharding and execute the parallelized training pipeline as per the specified PC. These
frameworks may also manage training on multi-node setting or even heterogeneous hardware. While
these frameworks allow practitioners to easily specify a PC for training, selecting the optimal PC
for the most efficient training is difficult, since the optimal PC will non-trivially depend on the
GPU specifications, communication bandwidth of the GPU devices, the specific NN architecture or
the training data (Li et al., 2023; Lin et al., 2024; Wagenländer et al., 2024). For example, DP is
ineffective for large models or large batch sizes, since the additional model replications may cause an
out-of-memory errors. Meanwhile, PP is less effective on smaller models, as communication costs
between each pipeline stages may dominate the actual computation of the fragmented pipeline.

Optimization of multi-dimensional parallelism configuration. The most accurate way to find the
optimal PC would be to trial all possible PCs on the actual training hardware to determine which one
results in the highest training throughput. However, this is prohibitively expensive since there can be
a large number of possible PCs, and each trial would itself require computational resource and time
which may be limited on real clusters. To circumvent this, frameworks such as NEMO1 (Kuchaiev
et al., 2019) and DEEPSPEED2 (Rasley et al., 2020) have implemented methods for automatic PC
tuning based on running NN training trials for a few training steps on a number of PCs. The PCs
trialed are often either selected non-adaptively (e.g., based on random selection), or adaptively based
on a simple surrogate function. However, these methods are unable to efficiently use the measured
throughput of trialed PCs to model the true throughput and perform informed optimization, and
therefore still require a large number of training trials to obtain a good PC.

Since running training trials may be expensive, we may consider constructing a surrogate model
to approximate the computation and communication costs for different parallelism strategies (Li
et al., 2022; Zheng et al., 2022; Zhang et al., 2024), which would allow us to use domain knowledge
to filter out suboptimal PCs while performing fewer trials, or even by not trialing any PCs at all.
This methods, however, would require an implicit assumption that the surrogate of the true training
throughput is correct, which may not always be possible because surrogates may be unable to fully
capture the nuances of practical parallel training implementations. Furthermore, a fixed surrogate
model would not be easily extendable to new hyperparameters or parallelism nuances which may
arise in a PC, which is important especially with the ever-growing parallelism training literature.

2.2 BAYESIAN OPTIMIZATION

In order to more efficiently select a PC to trial and to optimize for, we will utilize Bayesian optimiza-
tion (BO) (Frazier, 2018). BO aims to maximize some black-box function f : X → R which is often

1https://docs.nvidia.com/nemo-framework/user-guide/latest/usingautoconfigurator.html
2https://www.deepspeed.ai/tutorials/autotuning/

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Pipeline
Stage 0

Data
Parallel
Rank 0 ZeRO

hyperparams

Bucket sizes

PP also
affected by:

Number of
microbatches

DP also
affected by:

Intra-GPU comm.
DP All-Reduce comm.
TP All-Reduce comm.
PP Point-to-Point comm.

Pipeline
Stage 1

Pipeline
Stage 2

Pipeline
Stage 3

Data
Parallel
Rank 1 etc…

etc…Number of
model chunks

Data parallel (DP)
dimension

Pipeline parallel (PP) dimension

Tensor parallel
(TP) dimension

GPU 8 GPU 10 GPU 12 GPU 14

GPU 9 GPU 11 GPU 13 GPU 15

GPU 0 GPU 2 GPU 4 GPU 6

GPU 1 GPU 3 GPU 5 GPU 7

Figure 2: Left: Visualization of a parallelism configuration, including the hyperparameters that can be
tuned. Right: Visualization of GPU allocation for 3D parallelism according to the dimension sizes.

expensive to query and whose derivative is unknown. The black-box function is modeled a Gaussian
process (GP) (Rasmussen & Williams, 2006), which is characterized by a prior mean µprior(·) and
a kernel function k(·, ·). Given a set of observations, we perform Bayesian inference to obtain a
posterior GP, which is made up of a posterior mean and posterior covariance, encoding the expected
value and the uncertainty of the function respectively. With the posterior GP, the BO procedure selects
an input that maximizes some acquisition function, such as the expected improvement (Jones et al.,
1998) and the upper confidence bound (Srinivas et al., 2012). These acquisition functions balance
between exploring unique inputs that have not been queried to obtain some function estimate, and
exploiting inputs likely to have high function values in order to efficiently recover a global optimum
of f . We provide a more technical overview of GP modeling and BO in App. B.

BO is a widely used to optimize black-box functions which have no closed form and are expensive
to evaluate. This include a wide range of problems, such as experimental design (Lei et al., 2021;
Rainforth et al., 2023) or material design (Zhang et al., 2020). More relevant to our work, BO is also
commonly used for optimizing the NN architecture such that achieves the best performance in a given
task (Snoek et al., 2012). Unlike in this scenario, however, the effects of the hyperparameters in a PC
on the training throughput have better-defined mechanics (even if not completely known), which can
be partially described based on domain knowledge. Modeling via a GP allows incorporation of these
knowledge through a good choice of prior belief, which reduce the number of trials required.

3 PROBLEM SETUP

In this section, we describe the problem setup. For our problem setting, we consider a parallelism
configuration (PC), visualized in Fig. 2, which contains a list of tunable hyperparameters found in
typical parallel training frameworks, and controls various aspects of parallelized NN training. A
subset of hyperparameters in a PC determine the size of each parallelism dimension. In our paper,
we consider 3D parallelism where we use dp, tp, and pp, to indicate the size of the data, tensor,
and pipeline parallelism dimensions respectively. We assume that their product dp · tp · pp is equal
to the number of available GPUs n_gpus. The remaining hyperparameters determine the specific
implementations of each parallelism dimensions, which may include hyperparameters of the ZERO
optimizer which controls the DP implementation, the number of microbatches and model chunks
which control how the PP implementation, or other hyperparameters specific to the parallel training
framework. We discuss these hyperparameters further in App. C.1.

We letH be the set of all possible PCs. The goal of our problem is to find the optimal PC H∗ ∈ H
which results in the highest throughput (i.e., can run the most number of training steps per unit of
time), while fitting in the GPU memory (i.e., the maximum GPU memory required is less than M0).
For some PC H , we letR(H) andM(H) be, respectively, the throughput and the maximum memory
usage when using PC H . Then, our problem of finding the optimal H∗ ∈ H can be formulated as a
constrained maximization problem given by

maximize
H∈H

R(H) s.t. M(H) ≤M0. (1)

To evaluate a PC H , we can perform a short training trial to estimate its throughput and maximum
memory usage. To estimate the throughput of H , we can measure the times t1, t2, . . . , tq over q
training steps, which can then be used to approximate the throughput asR(H) ≈ q−1

∑q
j=1 t

−1
j .

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

0 10 20 30
Train steps

2

4

6

Ti
m

e
fo

r s
te

p
(s

)

Figure 3: Time for each train-
ing step for a few training trials
with different PCs. Each color
represents a different PC used,
and the dashed line represents the
throughput estimate for that PC.

As we demonstrate in Fig. 3, the time to execute each train-
ing step can vary, for example due to setup and compilation
processes at the start of the training, and unpredictable sys-
tem fluctuations which occur throughout training. Therefore,
it is unreliable to predict the training throughput using only
few training steps, but rather should aggregate the values across
multiple training steps. While we can choose to perform qmax
training steps during the trial, we can also choose to termi-
nate the trial early after fewer than qmax training steps, al-
though the estimate of R(H) may also be more inaccurate.
To measure the maximum allocated GPU memory throughout
the training steps, using CUDA-based PYTORCH, this can be
done using the torch.cuda.max_memory_allocated()
function, which records the maximum allocated GPU memory
achieved at any point during training.

When designing our PC optimization algorithm, we also take note
of two additional characteristics of the problem:

A Since R andM are dependent on many factors which may be difficult to model or even
known exactly, we assume that their exact forms are only partially known given the existing
domain knowledge. Therefore, a good surrogate forR andM should be able to incorporate
domain knowledge with some uncertainty modeling based on observed training trials.

B Even though a PC can be (and should be) trialed on real hardware, running a single trial
incurs a high cost. This is especially true with suboptimal PCs since the same number of
training steps on a suboptimal PC would require more time to execute. This motivates us to
design an optimization algorithm such that only promising PCs are trialed, and PCs which
are likely suboptimal are not trialed or are only trialed for a shorter period of time.

4 METHOD

In this section, we describe OPPA, which incorporates BO with domain knowledge on training
parallelism to perform an informed selection of the optimal PC for parallel training. As shown in
Fig. 1, OPPA alternates between three steps; 1⃝ modeling the training throughput and maximum
memory usage based on observed data using a GP with a parallelism-informed prior belief, 2⃝ finding
the best PC to trial next using BO, and 3⃝ conducting NN training trials for some number of training
steps to obtain an estimate of the training throughput and maximum memory usage for a selected PC.

4.1 CONSTRUCTING A SURROGATE MODEL

In Step 1⃝, we attempt to construct a surrogate model to predict the throughput and the memory
usage. As suggested in A , to explicitly model the imperfections in our domain knowledge, we
assume that the true throughputR and maximum memory usageM can be decomposed as

R(H) = R̂(H; θR) + fR(H), M(H) = M̂(H; θM) + fM(H), (2)

where R̂ and M̂ represent the parallelism-informed prior beliefs with hyperparameters θR and
θM constructed based on the domain knowledge on parallelized training, and fR(H) and fM(H)
additional unknown contributions not captured by our domain knowledge.

Parallelism-informed prior belief. The functions R̂ and M̂ aim to estimateR andM respectively
based on existing knowledge about parallel NN training. We do not require R̂ and M̂ to be completely
accurate, but instead only be reasonable estimates and generalize across multiple training scenarios.

For OPPA, to approximate the throughput, we consider the time per training step for the computation
T̂comp and for the communication T̂comm, which can combine to approximate the throughput as
R̂(H; θR) =

[
T̂comp(H; tc) + T̂comm(H;C)

]−1
where θR = {tcomp,C} are learned hyperparameters.

For T̂comp we consider the additional computation time that arise from the pipeline bubble in PP

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Narayanan et al. (2019). Meanwhile, inspired by Xiong et al. (2024), for T̂comm, we consider an
idealized training scenario visualized in Fig. 2 which assumes the model to compose of roughly
identical blocks, and considers the communication from the All-Reduce operations involved in DP
and TP, and point-to-point communications involved in PP. We consider a canonical ring/tree scaling
with hierarchical aggregation such that intra- and inter-host connections are separately modeled, with
the constants for the specific communication types collapsed into C. Further details of this are given
in App. D.1. To model maximum memory usage M̂, we consider the memory required per GPU to
store the NN parameters and to store gradient values for backpropagation, as we detail in App. D.2.

In both prior belief functions, a key design choice is to make the prior belief function general enough
to capture a variety of training scenarios, with a simple analytical form based on looser assumptions
about the model, hardware, and network, and using learnable parameters (as opposed to fixed
constants) to capture approximate cost multipliers which depend on the model and training data
sizes, and intra- and inter-host network communications, each of which vary across different training
scenarios. These design choices allow OPPA to be applicable to training scenarios involving a wide
variety of model and hardware setups, due to the balance between capturing the general effects of
each parallelism dimension, but not being too specific to overfit to any particular training scenario.

Additional contribution terms. Due to the incomplete domain knowledge to fully describe a
parallelized training process, we aim to learn the unaccounted factors fR and fM using real training
trials. To do so, we model fR and fM using Gaussian processes (GPs). The benefit of using a GP is
twofold. First, a GP is typically flexible enough to model unknown functions that may not have an
analytical form. Second, a GP can quantify its uncertainty, which allows the surrogate to determine
how much it knows about the throughput of a certain PC. This allows OPPA to potentially trial PCs
whose throughput it is more uncertain about given the trials conducted.

To model fR and fM, we use a GP with zero mean. This is done so since we assume the additional
contribution is expected to have no additional bias on the estimates of the quantities. For the kernel
function k, we first embed the PC H via an embedding e : H → [0, 1]p which maps each PC to a
p-dimensional vector. Here, we let e(H) be a concatenation of each hyperparameter value in H ,
where each dimension is scaled to be between 0 and 1 according to the feasible values. Given the
embedding, we then use the Matern kernel (Rasmussen & Williams, 2006) with ν = 5/2 where the
distance between two PCs is the Euclidean distance of their corresponding embeddings, with some
kernel hyperparameters θk. The equation for the Matern kernel is given in App. D.3.

Given our prior belief and the modeled additional contribution terms, the decomposition in Eq. (2)
encodes our belief thatR andM is drawn from a GP which is given by

R ∼ GP
(
R̂(· ; θR), k(·, · ; θk)

)
, and M∼ GP

(
M̂(· ; θM), k(·, · ; θk)

)
. (3)

Using measurements from the previous i−1 trials, we find the optimal hyperparameters {θR, θM, θk}
by maximizing the marginal log-likelihood (Rasmussen & Williams, 2006), then perform GP regres-
sion to obtain the posterior belief for the throughput N

(
µR,i−1(H), σ2

R,i−1(H)
)

and the memory
usageN

(
µM,i−1(H), σ2

M,i−1(H)
)

for any PC H that has not been trialed, which would be a normal
distribution with their respective mean and variance whose form we state in App. D.4.

4.2 SELECTING THE NEXT PC TO TRIAL

In Step 2⃝, the next PC to trial is chosen based on the surrogate constructed in 1⃝ using BO. The
next PC Hi ∈ H to trial in round i is chosen to be the PC which maximizes the constrained upper
confidence bound (cUCB) (Srinivas et al., 2012; Wilson et al., 2017), which is given by

cUCBi(H) ≜ Er̂H,i−1,m̂H,i−1

[
XH,i−1 + βi

∣∣XH,i−1 − E[XH,i−1]
∣∣] (4)

where r̂H,i−1 ∼ N
(
µR,i−1(H), σ2

R,i−1(H)
)

and m̂H,i−1 ∼ N
(
µM,i−1(H), σ2

M,i−1(H)
)

are sam-
pled from their respective GPs as modeled from 1⃝, and XH,i−1 = r̂H,i−1·

(
1−sigmoid(m̂H,i−1)

)
.

Note that in the case that memory constraint is not violated (i.e., when sigmoid(m̂H,i−1) ≈ 0),
the objective in Eq. (4) can be reduced to the analytical UCB objective (i.e., cUCBi(H) ≈
µR,i−1(H) + βiσR,i−1(H)). The cUCB criterion considers a balance between exploration of
PCs which have not been trialed, and exploitation of PCs which are similar to those with already high
throughputs (Jones et al., 1998; Gelbart et al., 2014). With this balance, the BO iteration is able to

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

try enough PCs to construct a reasonable surrogate for the functions, while utilizing the remaining
computational resources to trial good PC candidates for to achieve optimal training throughput. This
allows the optimization to be more guided and more efficient, satisfying the requirement in B .

4.3 TRIALING THE NEXT PC

Finally, in step 3⃝, we perform a training trial on the PC Hi chosen in 2⃝ for qmax training steps, and
measure the time taken for each training step as ti,1, . . . , ti,qmax . We then use these measurements to
obtain an estimate of the throughput r̄i,qmax , where r̄i,q = q−1

∑q
j=1 t

−1
i,j , with variance σ2

r̄i,qmax
whose

computation we detail in App. F.1. In practice, as demonstrated earlier in Fig. 3, the actual measured
time for a sequence of training steps may contain outliers which can skew the throughput estimates.
As we discuss in App. F.2, to make our estimate more accurate, we remove outlier values of ti,j
before computing the throughput estimate. Meanwhile, the maximum memory usage mi across all
training steps is measured by torch.cuda.max_memory_allocated().

Early trial termination. In practice, some PCs do not need to be trialed for the full qmax steps, since
fewer training steps are sufficient to determine that the PC is suboptimal. To save time on these
trials, we consider early trial termination, where the training trial only continues if the throughput
estimation is above some threshold. More formally, we define an indicator variable Ii,q given by

Ii,q = 1
[
(q ≤ qmin) ∨

(
r̄i,q ≥ maxl∈{1,...,i−1} r̄l,q̂l + τq

)]
. (5)

Intuitively, Ii,q = 1 when fewer than qmin trials have been conducted, or when the throughput of Hi

is likely to be higher than the throughput values found so far. We can continue the qth training step as
long as Ii,q−1 = 1, and terminate the training trial at the first step q̂i when Ii,q̂i = 0, which is when
we are confident that Hi will not improve the best PC we have found so far. Early termination of
trials will make suboptimal trials terminate earlier, saving computation time in practice, while still
allowing the BO procedure to recover the optimal PC, as we show in the following theorem.

Theorem 4.1 (Informally stated in terms ofR). There exists some {βi}Ni=1 and {τq}qmax
q=1 such that,

with high probability, the cumulative regret is
∑N

i=1

(
R(H∗)−R(Hi)

)
= Õ

(√
N/qmin

)
, and for

all i = 2, . . . , N , ifR(Hi) < maxj∈{1,...,i−1}R(Hj), then q̂i < qmax.

In App. F.3, we prove Thm. 4.1 for a general function which may not be R, and provide some
empirical justification for early termination. Thm. 4.1 shows that sublinear regret can be achieved
even with early termination, which means that OPPA will be able to recover the PC with the best
throughput while allowing efficiency gains in practice. Furthermore, it also shows that PCs whose
throughput is smaller than those of PCs already trialed will likely have their trials terminated early,
therefore allowing OPPA to save resources from trialing suboptimal PCs as mentioned in B . We
present the pseudocode for OPPA incorporating steps 1⃝, 2⃝, and 3⃝ in App. G.

5 EXPERIMENTS

In this section, we present the results for OPPA when used to find the optimal PC for training
transformer models on multi-GPU systems. We consider optimizing PC on different transformer-
based training scenarios and on different hardware configurations with varying number of GPUs. We
focus on transformers since many newer parallelized training frameworks are mainly designed for
these architectures. Detailed setups for the training scenarios are found in App. H.1.

We compare OPPA with several benchmarks, including RANDOM (random selection), XGBOOST
(adaptive selection based on XGBOOST surrogate model (Chen & Guestrin, 2016) and is the current
method used by DEEPSPEED (Rasley et al., 2020)), COST-MODEL (method which solely relies
on the cost model of the throughput), and VANILLA-BO (which uses BO without any additional
modifications). We provide more detailed description of these benchmarks in App. H.2.

We plot the best obtained throughput (in training steps per second) versus how long the optimization
has been run, rather than versus the number of PCs that have been trialed, since each trials take a
different amount of time to run. Nonetheless, plots for the achieved throughput versus the number of
trials run are in App. I.1. The model loss are independent of the chosen PC and thus are not reported.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) BERT, 8 GPUs

0 10 20
Time (mins)

1.6

2.0

2.4

2.8

Be
st

(H

) (
s

1)

(b) Qwen, 8 GPUs

0 10 20
Time (mins)

0.36

0.40

0.44

Be
st

(H

) (
s

1)

(c) LLaMa-1b, 16 GPUs

0 20 40 60
Time (mins)

0.00

0.15

0.30

Be
st

(H

) (
s

1)

(d) LLaMa-7b, 32 GPUs

0 20 40 60
Time (mins)

0.12

0.16

0.20

Be
st

(H

) (
s

1)

Random XGBoost Cost-Model* Vanilla-BO O P

Figure 4: The best obtained throughput (higher is better) versus the duration each algorithm has been
run for. The lines show the median across repeated trials, while the error band show the quartiles.
Figs. 4a and 4b are both ran on a single host, while Figs. 4c and 4d was ran on multiple hosts. Note
that some benchmarks were omitted from Fig. 4d due to computational budget.

Training on single-host setups. We first consider training transformers on a single machine with
8 GPUs. In Fig. 4a, we present the results for finding the optimal PC for training the BERT model
(Devlin et al., 2019). We see that the methods which use BO outperform non-adaptive and even the
other adaptive selection benchmarks. Furthermore, OPPA, which applies a parallelism-informed
prior and early termination to BO, is able to achieve better performances than BO alone. We find
that OPPA automatically prioritizes PCs with only DP and no ZERO optimizer, which matches our
intuition that DP should be adequate for smaller NNs. In Fig. 4b, we consider the Qwen model (Yang
et al., 2024), where OPPA again finds a better PC compared to the other benchmarks. Due to the
larger model, OPPA now prefers a mix of DP and PP with fewer microbatches to reduce the memory
use and synchronization between GPUs. We show the PCs selected by OPPA in App. I.2. We also
demonstrate the generalizability of OPPA for PC optimization on vision models in App. I.3.

(a) Trialed PCs

10 20
No. trialed PCs

0

20

40

Ti
m

e
(m

in
s)

(b) On Real Training

0 10000 20000
Training steps

0

50

100

150
Ti

m
e

(m
in

s)

Figure 5: Efficiency of OPPA. Fig. 5a shows
the number of PCs trialed by each method.
Fig. 5b shows the number of training steps ran
by each algorithm during optimization and
during subsequent NN training (regions below
and above dotted gray line respectively). The
legend is the same as in Fig. 4.

To further visualize the efficiency gains of OPPA,
in Fig. 5a, we see that OPPA is able to trial many
more PCs in a short amount of time compared to
other methods due to terminating suboptimal trials
early to avoid wasting time. When combined with a
parallelism-informed prior belief to efficiently filter
out suboptimal PCs, OPPA is able to return a PC
with higher throughput, which in turn allows many
more training steps to be processed in the subsequent
training even after just 20 minutes of PC optimization,
as shown in Fig. 5b. This demonstrates the necessity
OPPA to achieve faster parallel NN training.

Accuracy of surrogate model. In Figs. 6a and 6b
we compare the throughput predicted by OPPA with
the actual throughput scores. We see that even after
a few trials, the predictions made by our surrogate
already correlate well with the actual throughput. As
we progress, the prediction also becomes more accurate, especially among PCs with high throughput
where more trials are being run, allowing the optimal PC to be efficiently found. On the other hand,
a cost model alone can capture rough trends of R(H) but not all nuances especially between the
better PCs as shown in Fig. 6c, while a GP alone does not allow the surrogate to learn meaningful
interpolations ofR(H) as shown in Fig. 6d. In either of these cases, we see that there is a mismatch
between the predicted optimal PC and the actual optimal PC. We further demonstrate the quality of
the throughput and maximum memory surrogates in App. I.4, and discuss their robustness in App. I.5.

Effects of each components in OPPA. In Fig. 7, we performed ablation studies to isolate the effects
from each proposed components in OPPA. We see that without early termination, BO would spend
more time on suboptimal trials, resulting in a slower search process. Similarly, without the prior
belief, we would be less informed about PCs which may be optimal, requiring more time to find the
optimal PC. Additional results are presented in App. I.6. We also show the effects of qmin on the
performance of OPPA in App. I.7, demonstrating minimal degradation for small qmin.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

(a) OPPA (10 trials)

0.2 0.4
Actual (s 1)

0.1

0.2

0.3

0.4

0.5

Pr
ed

.
 (s

1)

(b) OPPA (20 trials)

0.2 0.4
Actual (s 1)

0.1

0.2

0.3

0.4

0.5

Pr
ed

.
 (s

1)

(c) Cost Model

0.2 0.4
Actual (s 1)

0.1

0.2

0.3

0.4

0.5

Pr
ed

.
 (s

1)

(d) GP

0.2 0.4
Actual (s 1)

0.1

0.2

0.3

0.4

0.5

Pr
ed

.
 (s

1)

Sample PCs Trialed PCs Predicted optimal PC Actual optimal PC

Figure 6: Predicted throughputs from different surrogates versus the measured throughputs for the
Qwen example. Figs. 6a and 6b represent the surrogate from OPPA after 10 and 20 trials respectively,
with error bars showing the uncertainty. Fig. 6c shows the predictions from the cost model alone,
while Fig. 6d shows the predictions from using GPs alone (both after 20 trials).

0 10 20
Time (mins)

0.40

0.44

Be
st

(H

) (
s

1)

Vanilla-BO
BO + Early Term.
BO + Prior Belief
O P

Figure 7: Effect of different com-
ponents of OPPA on the obtained
throughput for the Qwen training.

AMP
NNS
Vanilla-BO

O P

M
et

ho
d

Us
ed

0.14 0.16 0.18 0.20
Actual (s 1)

Figure 8: Obtained R from OPPA
compared to those from cost model-
based methods for LLaMa-7b
training with 32 GPUs. Note the
results reported for BO and OPPA
are the same from Fig. 4d.

Training on multi-host setups. In addition to training on
single-host setups, we also tested OPPA on optimizing the PC
on multi-host setups. In these cases, the additional communi-
cation costs makes the throughput computation less straight-
forward, while larger number of feasible PCs complicates the
optimization problem. We consider two multi-host setups which
have different communication types and performance levels. In
Fig. 4c, we show the results for tuning the PC for training a
LLaMa-3 model (Grattafiori et al., 2024) with 1 billion param-
eters on a commodity cluster with 16 GPUs, which are setups
more commonly found by practitioners with existing hardware
in practice. Meanwhile, Fig. 4d are the results for tuning the
PC to train a LLaMa-2 model (Touvron et al., 2023) with 7
billion parameters on 32 GPUs distributed across 8 machines
in a high-performance computing (HPC) cluster. In both cases,
we find that OPPA is still able to outperform other methods
by a significant margin. Furthermore, OPPA obtains good PCs
consistently (i.e., smaller variance in the resulting throughput),
demonstrating its robustness. We also see that BO-based selec-
tion methods outperform the other algorithms due to its ability
to balance exploration and exploitation, however OPPA is able
to do so more efficiently due to the additional guidance from
prior knowledge and early termination of trials to save time.

In Fig. 8, we also compare OPPA with cost model-based algo-
rithms, namely AMP (Li et al., 2022) and NNSCALER (Lin
et al., 2024). We see that OPPA allow better PCs to be selected
compared to methods based solely on optimizing a cost model.
This demonstrates the advantages of adaptive methods which effectively incorporate the scores ob-
tained from actual training trials as opposed to solely using cost model surrogates, and the non-trivial
modifications made from OPPA which allow for this boost in performance.

6 CONCLUSION

We have presented OPPA, which uses constrained Bayesian optimization techniques with a parallelism-
informed prior distribution to efficiently optimize the parallelization strategy which can achieve the
best training throughput across a variety of hardware configurations. OPPA can be easily applied to
other parallelized training frameworks due to the minimal assumptions on the implementations of
the training parallelism and the simplicity to extend to other hyperparameters. We believe that the
parallelism-informed prior belief could be embedded with more prior knowledge on specific training
implementation or training of specific NN architectures, which should boost OPPA even further to
find a better and possibly more elaborate PC for parallel NN training.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham, An-
drew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-Carlo
Bayesian Optimization. In Proc. NeurIPS, 2020.

Zhengda Bian, Qifan Xu, Boxiang Wang, and Yang You. Maximizing Parallelism in Distributed
Training for Huge Neural Networks. 2021. arXiv:2105.14450.

Tianqi Chen and Carlos Guestrin. XGBoost: A Scalable Tree Boosting System. In Proc. SIGKDD,
2016.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. In Proc. NAACL-HLT, 2019.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
In Proc. ICLR, 2021.

Peter I. Frazier. A Tutorial on Bayesian Optimization. 2018. arXiv:1807.02811.

Michael A. Gelbart, Jasper Snoek, and Ryan P. Adams. Bayesian optimization with unknown
constraints. In Proc. UAI, 2014.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad
Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela
Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem
Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava
Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya
Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang
Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song,
Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary, Dhruv Mahajan,
Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina
Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco Guzmán, Frank Zhang,
Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind Thattai, Graeme Nail, Gregoire
Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu, Hugo Touvron,
Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evtimov, Jack Zhang,
Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet Shah, Jelmer
van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang,
Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz
Malik, Kuenley Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat
Singh, Manohar Paluri, Marcin Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya
Pavlova, Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman
Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang,
Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic,
Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu,
Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira
Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar
Hosseini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,
Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,
Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane
Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,
Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal
Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,
Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan, Xide
Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine Babaei,
Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert, Zheng Yan,
Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain, Adam Kelsey,
Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay Sharma,
Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew
Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita
Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh
Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola,
Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence,
Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu,
Changhan Wang, Changkyu Kim, Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris
Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel
Li, David Adkins, David Xu, Davide Testuggine, Delia David, Devi Parikh, Diana Liskovich,
Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Edward Dowling, Eissa Jamil, Elaine
Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban
Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat
Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella
Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang,
Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha,
Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan
Zhan, Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai
Gat, Jake Weissman, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya,
Jeff Marcus, Jeff Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica
Zhong, Jian Jin, Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan
Torres, Josh Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal,
Katayoun Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran
Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A,
Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca
Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson,
Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally,
Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,
Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,
Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich
Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem
Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,
Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,
Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,
Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ
Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,
Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma, Seiji
Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao Lin,
Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang, Sinong Wang,
Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve Kehoe,
Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara
Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou,
Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish
Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov,
Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian
Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi,
Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao,
Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu
Yang, Zhiwei Zhao, and Zhiyu Ma. The Llama 3 Herd of Models. 2024.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Mia Xu Chen, Dehao Chen, HyoukJoong
Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. GPipe: efficient training of giant

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

neural networks using pipeline parallelism. In Proc. NeurIPS, 2019.

Donald R. Jones, Matthias Schonlau, and William J. Welch. Efficient Global Optimization of
Expensive Black-Box Functions. Journal of Global Optimization, 13(4):455–492, 1998.

Johannes Kirschner and Andreas Krause. Information Directed Sampling and Bandits with Het-
eroscedastic Noise. In Proc. COLT, 2018.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Ginsburg, Samuel
Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, Patrice Castonguay, Mariya Popova,
Jocelyn Huang, and Jonathan M. Cohen. NeMo: a toolkit for building AI applications using Neural
Modules. 2019. arXiv:1909.09577.

Bowen Lei, Tanner Quinn Kirk, Anirban Bhattacharya, Debdeep Pati, Xiaoning Qian, Raymundo
Arroyave, and Bani K. Mallick. Bayesian optimization with adaptive surrogate models for
automated experimental design. npj Computational Materials, 7(1):1–12, December 2021.

Dacheng Li, Hongyi Wang, Eric Xing, and Hao Zhang. AMP: automatically finding model parallel
strategies with heterogeneity awareness. In Proc. NeurIPS, 2022.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke, Jeff
Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. PyTorch distributed: experiences
on accelerating data parallel training. In Proc. VLDB, 2020.

Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang,
and Yang You. Colossal-AI: A Unified Deep Learning System For Large-Scale Parallel Training.
In Proc. ICPP, 2023.

Zhiqi Lin, Youshan Miao, Quanlu Zhang, Fan Yang, Yi Zhu, Cheng Li, Saeed Maleki, Xu Cao,
Ning Shang, Yilei Yang, Weijiang Xu, Mao Yang, Lintao Zhang, and Lidong Zhou. nnScaler:
constraint-guided parallelization plan generation for deep learning training. In Proc. OSDI, 2024.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In Proc.
NeurIPS, 2023.

Anastasia Makarova, Ilnura Usmanova, Ilija Bogunovic, and Andreas Krause. Risk-averse Het-
eroscedastic Bayesian Optimization. In Proc. NeurIPS, 2021.

Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R. Devanur, Gregory R.
Ganger, Phillip B. Gibbons, and Matei Zaharia. PipeDream: generalized pipeline parallelism for
DNN training. In Proc. SOSP, 2019.

OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni
Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, Red Avila, Igor
Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu, Haiming Bao, Mohammad Bavarian,
Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel Bernadett-Shapiro, Christopher Berner, Lenny
Bogdonoff, Oleg Boiko, Madelaine Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks,
Miles Brundage, Kevin Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea
Carlson, Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung Won Chung,
Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas Degry, Noah Deutsch,
Damien Deville, Arka Dhar, David Dohan, Steve Dowling, Sheila Dunning, Adrien Ecoffet, Atty
Eleti, Tyna Eloundou, David Farhi, Liam Fedus, Niko Felix, Simón Posada Fishman, Juston Forte,
Isabella Fulford, Leo Gao, Elie Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel
Goh, Rapha Gontijo-Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua
Gross, Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He, Mike
Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter Hoeschele, Brandon
Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga, Shantanu Jain, Shawn Jain, Joanne
Jang, Angela Jiang, Roger Jiang, Haozhun Jin, Denny Jin, Shino Jomoto, Billie Jonn, Heewoo
Jun, Tomer Kaftan, Lukasz Kaiser, Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar,
Tabarak Khan, Logan Kilpatrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik
Kirchner, Jamie Kiros, Matt Knight, Daniel Kokotajlo, Lukasz Kondraciuk, Andrew Kondrich,

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Aris Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan, Teddy
Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly Lin, Stephanie
Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna Makanju, Kim Malfacini,
Sam Manning, Todor Markov, Yaniv Markovski, Bianca Martin, Katie Mayer, Andrew Mayne,
Bob McGrew, Scott Mayer McKinney, Christine McLeavey, Paul McMillan, Jake McNeil, David
Medina, Aalok Mehta, Jacob Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie
Monaco, Evan Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély,
Ashvin Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeonwoo
Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo, Ashley Pantuliano,
Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Passos, Mikhail Pavlov, Andrew Peng,
Adam Perelman, Filipe de Avila Belbute Peres, Michael Petrov, Henrique Ponde de Oliveira Pinto,
Michael, Pokorny, Michelle Pokrass, Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power,
Elizabeth Proehl, Raul Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis
Real, Kendra Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John Schulman, Daniel
Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker, Pranav Shyam, Szymon
Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina Slama, Ian Sohl, Benjamin Sokolowsky,
Yang Song, Natalie Staudacher, Felipe Petroski Such, Natalie Summers, Ilya Sutskever, Jie Tang,
Nikolas Tezak, Madeleine B. Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston
Tuggle, Nick Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan Ward, Jason
Wei, C. J. Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian Weng, Matt Wiethoff,
Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong, Lauren Workman, Sherwin Wu,
Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo, Kevin Yu, Qiming Yuan, Wojciech Zaremba,
Rowan Zellers, Chong Zhang, Marvin Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang,
William Zhuk, and Barret Zoph. GPT-4 Technical Report. 2024. arXiv:2303.08774.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
Learning Transferable Visual Models From Natural Language Supervision. In Proc. ICML, 2021.

Tom Rainforth, Adam Foster, Desi R. Ivanova, and Freddie Bickford Smith. Modern Bayesian
Experimental Design. 2023. arXiv:2302.14545.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. ZeRO: memory optimizations
toward training trillion parameter models. In Proc. SC, 2020.

Jeff Rasley, Samyam Rajbhandari, Olatunji Ruwase, and Yuxiong He. DeepSpeed: System Optimiza-
tions Enable Training Deep Learning Models with Over 100 Billion Parameters. In Proc. SIGKDD,
2020.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006. ISBN 978-0-262-18253-9.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and Bryan
Catanzaro. Megatron-LM: Training Multi-Billion Parameter Language Models Using Model
Parallelism. 2020. arXiv:1909.08053.

Jasper Snoek, Hugo Larochelle, and Ryan P. Adams. Practical Bayesian optimization of machine
learning algorithms. In Proc. NeurIPS, 2012.

Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias Seeger. Gaussian Process
Optimization in the Bandit Setting: No Regret and Experimental Design. IEEE Transactions on
Information Theory, 58:3250–3265, 2012.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open Foundation and Fine-Tuned Chat Models.
2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. Attention is All you Need. In Proc. NeurIPS, 2017.

Marcel Wagenländer, Guo Li, Bo Zhao, Luo Mai, and Peter Pietzuch. Tenplex: Dynamic Parallelism
for Deep Learning using Parallelizable Tensor Collections. In Proc. SOSP, 2024.

James T. Wilson, Riccardo Moriconi, Frank Hutter, and Marc Peter Deisenroth. The reparameteriza-
tion trick for acquisition functions. 2017.

Dian Xiong, Li Chen, Youhe Jiang, Dan Li, Shuai Wang, and Songtao Wang. Revisiting the Time
Cost Model of AllReduce. 2024. arXiv:2409.04202.

An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong Tang,
Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu, Jingren
Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang,
Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin,
Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Xuejing Liu,
Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang,
Zhifang Guo, and Zhihao Fan. Qwen2 Technical Report. 2024.

Shiwei Zhang, Lansong Diao, Chuan Wu, Zongyan Cao, Siyu Wang, and Wei Lin. HAP: SPMD
DNN Training on Heterogeneous GPU Clusters with Automated Program Synthesis. In Proc.
EuroSys, 2024.

Yichi Zhang, Daniel W. Apley, and Wei Chen. Bayesian Optimization for Materials Design with
Mixed Quantitative and Qualitative Variables. Scientific Reports, (1):4924, 2020.

Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu, Less Wright, Hamid
Shojanazeri, Myle Ott, Sam Shleifer, Alban Desmaison, Can Balioglu, Pritam Damania, Bernard
Nguyen, Geeta Chauhan, Yuchen Hao, Ajit Mathews, and Shen Li. PyTorch FSDP: Experiences
on Scaling Fully Sharded Data Parallel. In Proc. VLDB, 2023.

Lianmin Zheng, Zhuohan Li, Hao Zhang, Yonghao Zhuang, Zhifeng Chen, Yanping Huang, Yida
Wang, Yuanzhong Xu, Danyang Zhuo, Eric P. Xing, Joseph E. Gonzalez, and Ion Stoica. Alpa:
Automating Inter- and Intra-Operator Parallelism for Distributed Deep Learning. In Proc. OSDI,
2022.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A ADDITIONAL DISCUSSION ON PARALLELISM TYPES

Data parallelism. The most basic type of training parallelism is data parallelism (DP) (Li et al., 2020)
where a batch of training data is split into shards and distributed among each devices. These shards
are then fed into the local replicas of the models, before the parameter updates from each devices are
synchronized. While simple and often the fastest, the naive DP approach requires replication of the
model on each devices, which takes up additional storage on each machines. Several methods have
since been proposed to perform DP with sharded models, including the Zero Redundancy Optimizer
(ZERO) introduced by Rajbhandari et al. (2020) in the DEEPSPEED package, and Fully-Sharded Data
Parallel (FSDP) introduced by Zhao et al. (2023). While these frameworks allow for efficient DP
implementations, their effectiveness can still heavily depend on the choice of hyperparameters. For
example, ZERO involves three different stages of optimization which chooses whether the optimizer
states, the model gradients or the model parameters are sharded between each GPUs. The choice of
sharded items affect the amount of data that has to be stored in each GPUs and communicated across
GPUs, which in turn affects the throughput of the training and the memory usage in each GPUs.

Tensor parallelism. Another method for scaling operation is tensor parallelism (TP) where individual
tensors are sharded across multiple devices, so that the matrix multiplication operations are instead
done in a distributed manner, allowing these operations to scale to larger sizes than otherwise that
would fit on a single GPU. TP initially involved splitting a tensor along a single dimension (Shoeybi
et al., 2020), however has since also incorporated sharding tensors across multiple dimensions as
well (Bian et al., 2021).

Pipeline parallelism. In pipeline parallelism (PP) (Huang et al., 2019; Narayanan et al., 2019)
we instead partition the model along its execution pipeline, with each model partitions running
synchronously with microbatches of data. The gradients are accumulated for each microbatches and
updated at the end of each training step. By sharding the model and training data into smaller chunks,
the GPU memory required at any one time becomes lower, allowing for the training of larger models
at the cost of more sequential operation rounds and higher cost of communication between each
GPUs. The tradeoff between training speed and maximum memory usage can be further controlled
based on the size of microbatches and the number of model chunks.

B TECHNICAL PRIMER ON GAUSSIAN PROCESSES AND BAYESIAN
OPTIMIZATION

In this section, we provide a technical overview of Gaussian process (GP) regression and on Bayesian
optimization (BO). The contents are adapted from Rasmussen & Williams (2006); Frazier (2018).

A Gaussian process (GP) GP(µprior, k) with prior mean µprior and kernel k is a random process
where for any subset of input X, its corresponding output is given by a normal distribution f(X) ∼
N
(
µprior(X), k(X,X)

)
. The prior mean µprior(x) describes the expected value of the random function

f(x) at a certain input, while the kernel function k(x, x′) roughly captures the covariance between
f(x) and f(x′).

Assume we have an unknown function f drawn from the GP. Given a set of observations D =
(X, y) = {(x1, y1), . . . , (xn, yn)} where yi = f(xi) + ϵi are noisy observations of the true function
with Gaussian noise ϵi ∼ N (0, λi). Then, when performing Bayesian inference, we can express the
posterior mean and covariance of the GP as

µ(x) = µprior(x) + k(x,X)
(
k(X) + diag(λ)

)−1
(y− µprior(x)) , (6)

σ2(x) = k(x, x)− k(x,X)
(
k(X) + diag(λ)

)−1
k(X, x) . (7)

In practice, the prior mean and kernel may have hyperparameters θ which specify what functions
it is able to model. For example, many kernel functions include lengthscale values which govern
how correlated the function output is when a certain input dimension changes. One method to find
the optimal hyperparameters for the kernel is by finding the hyperparameter which maximizes the
marginal log-likelihood.

In Bayesian optimization (BO), the goal is to find the maxima of the unknown function f . This
function is black-box, and assumed to have no analytical form. To do so, we can learn more about

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

f by querying it at different inputs, and perform Bayesian inference to update our belief on the
unknown function.

Given the current observations Dt = (Xt, yt) = {(x1, y1), . . . , (xt, yt)} in round t of data selection,
GP regression can be performed to obtain a posterior mean µt and posterior variance σ2

t . The next
input to query xt+1 can be chosen as the input which maximizes some acquisition function. Examples
of such acquisition function include the expected improvement (Jones et al., 1998)

EIt(x) = Ey′∼N (µt−1(x),σ2
t−1(x))

[
max(0, y′ − max

y∈yt−1

y)
]

(8)

or the upper confidence bound (Srinivas et al., 2012)

UCBt(x) = µt−1(x) + βtσt−1(x) (9)

where βt > 0 is a constant that may vary with t. In all of these acquisition functions, a tradeoff is
performed between selecting inputs that the GP is uncertain about (i.e., with high σ2

t−1(x)) to learn
more about those unknown region, and selecting inputs in regions where the function value is known
to be higher (i.e., with high µt−1(x)).

C DETAILED DISCUSSION ON THE PROBLEM SETUP

C.1 HYPERPARAMETERS CONSIDERED

in Table 1, we list several hyperparameters which we include in our parallelism configuration and
the range of the values. Note that the hyperparameters are constrained to give a valid PC as well;
for example, we ensure that dp · tp · pp = n_gpus to ensure that each dimension do not exceed
number of GPUs. Some hyperparameters are also set to their default value when not in use; for
example, if pp = 1 (i.e., no PP used) then we restrict mb = mc = 1 such that PCs are not duplicated.
In the code, we generate all possible PCs beforehand so we can ensure that all PCs chosen will be
valid according to the constraints.

Table 1: Tunable hyperparameters in a parallelism configuration.

Hyperparameter Description Feasible Values
DP size (dp) Data parallelism degree [1, n_gpus]
TP size (tp) Tensor parallelism degree [1, n_gpus]
PP size (pp) Pipeline parallelism degree [1, n_gpus]

DP bucket size Size for gradient reduction buckets (MB) [1, 4096]
ZeRO stage ZeRO stage used [0, 3]

ZeRO bucket size Bucket size for ZeRO communication [1, 4096]
Overlap ZeRO communication Whether to overlap ZeRO communication True / False

Overlap ZeRO AllGather Whether to overlap AllGather True / False
microbatches (mb) Number of microbatches per forward pass ≤ batch size
model chunks (mc) Number of model chunks for pipelining ≤ # transformer blocks
Overlap P2P for PP Overlap PP communication or not True / False
Grad. checkpointing Whether gradient checkpointing is enabled True / False

C.2 THROUGHPUT VERSUS TIME PER TRAINING STEP

We explain why we choose to maximize throughput instead of minimizing time per training step.

As an example, suppose we consider three PCs H,H ′, H ′′ where the times per training step are given
by T (H) = 0.3, T (H ′) = 0.4, and T (H ′′) = 0.5. In this case, H would be the best PC out of the
three. We see here the gap of the time per training step between H and H ′ is T (H ′)− T (H) = 0.1,
and the same gap size for H ′ and H ′′ of T (H ′′)− T (H ′) = 0.1. Meanwhile, the gap between the
throughput of the two PCs would beR(H)−R(H ′) = T (H)−1 − T (H ′)−1 = 3.3̄− 2.5 = 0.83̄
andR(H ′)−R(H ′′) = T (H)−1−T (H ′)−1 = 2.5−2 = 0.5. We can see that the gap between the
best PC becomes enhanced when we consider the throughput, when we compare it with the relative
gap size of the training step time.

More concretely, if we have a PC which requires time t per training step, then you can reduce it by an
amount of ∆t, then the throughput would have increased by an amount (∆t)/t2. When t becomes

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

smaller, the change in throughput will also increase but at an increasing rate. This therefore means by
modeling the throughput, the scores of the good PCs will be more clearly separated.

Additionally, we also consider a maximization of throughput since throughput would be bounded by
[0, rmax], rather than the time per training step which would be unbounded on one end, i.e., be in the
interval [tmin,∞), which makes suboptimal PCs easier to handle. Also, we frame our problem as a
maximization in order to be consistent with Bayesian optimization works which typically considers a
maximization problem.

D DETAILED DISCUSSION OF GP SURROGATE IN OPPA

D.1 PARALLELISM-INFORMED PRIOR MEAN FOR THE THROUGHPUT

In this section, we elaborate on how the throughput prior mean is constructed in order to obtain the
form for the parallelism-informed prior mean. In summary, we design the prior to incorporate the
following characteristics.

• Parallelism coverage. We model DP/TP traffic via All-Reduce–style collectives and PP via
point-to-point transfers, using a placement-aware split of intra- and inter-host links. For
computation costs, we also explicitly consider the pipeline bubbles.

• Topology and protocol awareness. The communication term uses canonical ring/tree scaling
with hierarchical aggregation (node-local first, then cross-node), while collapsing ZERO
stages into a single All-Reduce surrogate at the bandwidth level (bytes over the wire are of
the same order) and letting stage-specific latency/overlap differences be absorbed by C (e.g.,
event counts, bucket sizes, communication overhead for each parallelism dimensions, etc.).

• Hardware agnosticism via learning. Rather than hard-coding device/network constants, we
expose a small set of effective coefficients that are learned from a few traces. This keeps
the prior portable across models, data types, and interconnects while preserving the correct
asymptotic trends for dp,tp, and pp.

To estimate the computation time, we assume an idealized machine that allows infinite parallelization,
such that DP and TP are perfectly parallelized. Meanwhile, PP using an interleaved schedule incurs
additional computation time from the microbatches being ran sequentially, and from pipeline bubble
when the first microbatch is being fed through the pipeline (Narayanan et al., 2019). This additional
computation time from PP, visualized in Fig. 9, is roughly equal to

T̂comp(H; tcomp) =
tcomp

n_gpus
·
(
mb+

pp− 1

mc

)
(10)

where mb is the number of microbatches used in PP (set to 1 when PP is not used), mc is the number
of model chunks for PP (also set to 1 when PP is not used), and tc = tf + tb is the total time to
perform the forward and backward passes.

To estimate the communication time, inspired by the model visualized in Fig. 2, we assume that DP
and TP involve All-Reduce communications, and PP P2P communications, where these costs are
modeled separately. We use an extended (α, β, γ) model dicussed by Xiong et al. (2024), and for
the intra- and inter-host communications, we characterize the network performance by the latency
αintra and αinter, the per-byte bandwidth cost βintra and βinter, the incast overhead γintra and γinter, and
the memory access overhead δintra and δinter. We assume that the inter-host communication costs will
be larger than their intra-host counterparts.

For DP and TP, we assume that the Ring All-Reduce implementation is used, where the cost to gather
and scatter data of size N across D machines is given by

CAR(D,N,α, β, γ, δ) = 2(D − 1)α+
D − 1

D
N(2β + γ + 3δ). (11)

For DP, we consider the gradient synchronization from the All-Reduce algorithm. The data size per
GPU for DP All-Reduce, Ndp, is

Ndp = λZ
Mmodel

tp · pp
(12)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1 2 3 4 1 1 2 2 3 3 4 4 1 2 3 4

tf ⋅ (pp − 1)
n_gpus ⋅ mc

tb ⋅ (pp − 1)
n_gpus ⋅ mc

(tf + tb) ⋅ mb

n_gpus

tf
n_gpus ⋅ mc

tb
n_gpus ⋅ mc

Total time

Figure 9: Estimate for computation time for PP where tf and tb are the time required for the forward
and backward stages respectively, for when pp = n_gpus = 4, mb = 4, and mc = 2

where Mmodel is a learnable total model parameter size, and λZ is a tiny fudge for ZERO flavor while
staying in AR-land, and it accounts for param-All-Gather + grad-Reduce-Scatter volume equivalence
with small overhead for ZERO-3.

Suppose Gnode is the number of GPUs per node. The overall communication cost from DP T̂comm,dp

would then depend on the configuration of the network as follows:

• In a hierarchical (multi-host scenario with dp > Gnode) system, the cost is given by

T̂comm,dp(H;C) = CAR(Gnode, Ndp, αintra, βintra, γintra, δintra)

+ CAR(⌈dp/Gnode⌉, Ndp/Gnode, αinter, βinter, γinter, δinter). (13)

• In a flat inter-node (multi-host scenario with dp ≤ Gnode), the cost is given by

T̂comm,dp(H;C) = CAR(dp, Ndp, αinter, βinter, γinter, δinter). (14)

• In a flat intra-node (single-host scenario), the cost is given by

T̂comm,dp(H;C) = CAR(dp, Ndp, αintra, βintra, γintra, δintra). (15)

Depending on the hardware used, the appropriate cost for the scenario can be selected.

For TP, we consider the cost from frequent activation communication (e.g., All-Reduce per layer).
Let Mact,tp be a learnable characteristic data size for one such TP All-Reduce operation. Let
Otp/mb be the learnable number of these operations per microbatch. The total number of TP
communication operations is Ntp,ops = Otp/mb ·mb, and the cost of a single TP All-Reduce operation
is CAR(tp,Mact,tp, αeff, βeff, γeff, δeff) where effective parameters αeff, βeff, γeff, δeff are chosen as
intra-node or inter-node based on whether the tp group spans multiple hosts (i.e., if NH > 1 and
tp > Gnode) or not. Then, the total TP communication cost is the number of communication
operations multiplied by the cost per communication operation, or

T̂comm,tp(H;C) = Ntp,ops · CAR(tp,Mact,tp, αeff, βeff, γeff, δeff). (16)

For PP, we consider the point-to-point (P2P) transfers of activations and gradients between pp
pipeline stages, where the cost to transfer data of size N is given by

CP2P(N,α, β) = α+N · β. (17)

Let Mact,pp be a learnable characteristic data size for one P2P transfer (e.g., the size of an activation
tensor). The number of communication boundaries is pp− 1. Communication occurs for each of mb
microbatches, in both forward (activations) and backward (gradients) directions. The total number of
P2P communications is given by Npp,transfers = max(pp− 1, 0) · 2mb, where a single P2P transfer
uses effective latency αeff and effective per-unit-data cost βpp,eff (derived from base β parameters),
chosen as intra-node or inter-node based on whether communicating stages are on different hosts

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

(approximated if NH > 1). Given this, the overall cost of all communications related to PP would be
given by

T̂comm,pp(H;C) = Npp,transfers · CP2P(Mact,pp, αeff, βpp,eff). (18)

Here, if pp = 1, then T̂comm,pp = 0.

When combining the communication costs for all three types of parallelism, considering in practice
large chunks of communication overlap with compute, we attach non-overlap factors κ and obtain

T̂comm(H;C) = κdp · T̂comm,dp(H;C) + κtp · T̂comm,tp(H;C) + κpp · T̂comm,pp(H;C) (19)

where C are constants related to the various costs which are to be inferred. Given Eqs. (10) and (19),
we can construct the prior mean for throughput to be

R̂(H; {tcomp,C}) =
[
T̂comp(H; tc) + T̂comm(H;C)

]−1
. (20)

D.2 PARALLELISM-INFORMED PRIOR MEAN FOR THE MAXIMUM MEMORY USAGE

We briefly elaborate on the choice of prior mean in Eq. (21). As discussed, we only consider the
memory that is required to store the NN parameters, and those to compute the gradient updates.

For NN parameters, its sharding can be done on the pipeline or on the layers, allowing us to
approximate the GPU memory required for storing the NN parameters to be inversely proportional to
pp · tp. Note that assuming the simplest DP implementation, the NN parameters are duplicated and
stored on each DP dimensions, and so the maximum memory usage is not affected by the DP.

Meanwhile, in the case of backpropagation computation, the maximum memory used will roughly be
proportional to how many model parameters a certain GPU has to perform the forward and backward
passes for, times how many training samples the GPU has to process at any one time. We expect this
quantity to be inversely proportional to the number of total GPUs times the latter to depend on the
number of microbatches used.

Combining these two factors, can write the maximum memory usage as

M̂(H; θM) = min
{
m1 · (pp · tp)−1 +m2 · (n_gpus · mb)−1 +m3, M0

}
(21)

where, m1 captures the memory used for storing model parameters, and m2 captures the memory used
during backpropagation computations, m3 are any other additional memory overheads unaccounted
for by our model, and θM = {m1,m2,m3}. Note that since we cannot measure maximum memory
usage above values of M0, we apply the min function to clip the prior belief function.

D.3 KERNEL

Given the embedding e(H), we use the Matern kernel (Rasmussen & Williams, 2006), which is given
by

k(H,H ′) = σ2
kkMatern,ν

(
e(H), e(H ′); ℓ

)
= σ2

k

21−ν

Γ(ν)

(√
2ν dℓ(H,H ′)

)ν
Kν

(√
2ν dℓ(H,H ′)

)
where Γ is the Gamma function, Kν is the modified Bessel function, σk is the kernel scaling constant,

dℓ(H,H ′) =
(
e(H)− e(H ′)

)⊤
L−2

(
e(H)− e(H ′)

)
(22)

is the distance between two PC embeddings and L = diag(ℓ) = diag([ℓ1 · · · ℓp]) is the lengthscale.

D.4 POSTERIOR DISTRIBUTION OF PREDICTED THROUGHPUT AND MEMORY USAGE

Suppose we are in the ith round. We let Hi = [H1 · · ·Hi] be the list of PCs, r̄i = [r̄1,q̂1 · · · r̄i,q̂i]
and σ2

r̄i = [σ2
r̄1,q̂1
· · ·σ2

r̄i,q̂i
] be the observed throughput and the corresponding variance, and mi =

[m1 · · ·mi] be the observed maximum memory usage values.

Given the data, we first find the optimal hyperaparameters θ = {θR, θM, θk}. This is done by
maximizing the marginal log-likelihood (Rasmussen & Williams, 2006), or

θ = argmax
θ′

log p(r̄i, m̄i|H̄i, θ). (23)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

The posterior mean and variance for the throughput for some PC H ′ can then be defined as

µR,i(H
′) = R̂(Hi; θR) + k(H ′,Hi; θk)

(
k(Hi,Hi; θk) + diag(σ2

r̄i)
)−1(r̄i − R̂(Hi; θR)

)
, (24)

σ2
R,i(H

′) = k(H ′, H ′; θk)− k(H ′,Hi; θk)
(
k(Hi,Hi; θk) + diag(σ2

r̄i)
)−1

k(Hi, H
′; θk), (25)

and the posterior mean and variance for the memory usage for some PC H ′ can then be defined as

µM,i(H
′) = M̂(Hi; θM) + k(H ′,Hi; θk)

(
k(Hi,Hi; θk) + λI

)−1(mi − M̂(Hi; θM)
)
, (26)

σ2
M,i(H

′) = k(H ′, H ′; θk)− k(H ′,Hi; θk)
(
k(Hi,Hi; θk) + λI

)−1
k(Hi, H

′; θk) (27)

where λ is to make the matrix invertible.

E DETAILED DISCUSSION OF PC SELECTION METHOD IN OPPA

E.1 RANDOM SAMPLING FOR ADDITIONAL EXPLORATION

In OPPA, we sometimes select PCs at random for additional exploration. There are two scenarios
which triggers a random selection of PC in OPPA.

1. In the first few chosen PCs. This is because in the beginning there are no PCs which can be
used to infer the hyperparameters for the prior distribution of the GP, therefore a few PCs
are chosen at random to kick-off the modeling process and provide a reasonably diverse set
of samples to infer the hyperparameters well.

2. When too many out-of-memory errors have been encountered in a row. This is because any
out-of-memory trials will not result in a usable training data for the throughput modeling
and possibly minimal data for the maximum memory GP, which does not aid the GP model.
When too many such cases are encountered, we attempt to do random exploration so that
the model can receive some information that can be used to model better with and find new
feasible PCs.

For the random selection process, we select a PC using a weighted random strategy, such that the
probability of obtaining a PC with a certain parallelism dimension size configurations are equal.

F DETAILED DISCUSSION PC TRIALING METHOD

F.1 THROUGHPUT ESTIMATION

Given the time ti,1, . . . , ti,q required for q training steps, we can estimate the throughput and its
predicted variance as

r̄i,q =
1

q

q∑
j=1

1

ti,j
, and σ2

r̄i,q =
1

q

q∑
j=1

(
1

ti,j
− r̄i,q

)2

. (28)

F.2 OUTLIER REMOVAL

As demonstrated in Fig. 3, not all training time measurements will be representative of the true
throughput. We therefore perform two actions. First, we remove the first training step, ti,1, since
it typically corresponds to a warm-up for the training and therefore will usually be an anomaly
measurement. Second, we compute the median and the inter-quartile range (IQR), and remove all
measurements which are away from the median by at least 2× IQR. The remaining training points
are then used to compute Eq. (28).

F.3 REGRET ANALYSIS OF EARLY TRIAL TERMINATION

In this section, we attempt to prove Thm. 4.1. To do so, we will consider a more general case for an
arbitrary unknown function f . We first state the assumptions for the function and the observations,
which follows from other BO works (Srinivas et al., 2012; Makarova et al., 2021; Kirschner & Krause,
2018) however with additional assumptions on repeated observations from the same input.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Assumption F.1. Let f ∼ GP(0, k) be an unknown function drawn from a GP with zero mean and
kernel function k, where the RKHS norm ∥f∥H ≤ B is bounded. The BO procedure is as noted in
Algorithm 2, where in each BO iteration i, an input xi ∈ X is selected, and q̂i ≤ qmax noisy outputs
yi,j = f(xi) + εi,j are returned, where εi,j ∼ N (0, s2) are i.i.d. noise.

We now also show Algorithm 1 which repeats each query qmax times, and our proposed Algorithm 2
which does early termination on some of the rounds. Our theoretical results in this section will
consider Algorithm 2.

Algorithm 1 GP-UCB with Repeated Trials

1: D0 ← ∅
2: for i = 1, . . . , N do
3: Fit GP on Di−1 to obtain mean µi−1 and variance σ2

i−1
4: xi ← argmaxx∈X µi−1(x) + βiσi−1(x)
5: for j = 1, . . . , qmax do
6: Sample yi,j = f(xi) + εi,j
7: end for
8: ȳi,qmax ← q−1

max
∑qmax

j=1 yi,j
9: Di ← Di ∪ {(xi, ȳi,qmax)}

10: end for

Algorithm 2 Modified GP-UCB with Early Trial Termination

1: D0 ← ∅
2: for i = 1, . . . , N do
3: Fit GP on Di−1 to obtain mean µi−1 and variance σ2

i−1
4: xi ← argmaxx∈X µi−1(x) + βiσi−1(x)
5: for j = 1, . . . , qmax do
6: Sample yi,j = f(xi) + εi,j
7: ȳi,j ← j−1

∑j
j′−1 yi,j′

8: D′
i,j′ ← Di ∪ {(xi, ȳi,j)}

9: if ȳi,q < maxj<i ȳj,q̂j + τq then
10: break
11: end if
12: end for
13: Di ← D′

i,j′

14: end for

We first state a result regarding the mean estimator of f(xi).

Corollary F.2. Suppose we define

ȳi,q =
1

q

q∑
j=1

yi,j . (29)

Then, the expected value of x̄i is E[ȳi,q] = f(xi), and its variance bounded by V[ȳi,q] = s2/q.

Proof. The results are direct consequences of the summation of expected values and variances of
independent random variables, and the fact that V[yi,j] = s2 by assumption.

We will first prove the first half of Thm. 4.1. Given the results in Corollary F.2, we next show that we
are able to obtain a GP with good estimate bounds even if some trials are terminated early, i.e., not
ran for up to qmax repeats.

Lemma F.3. Suppose we let

µi(x) = k(x,Xi)
(
k(Xi,Xi) + s2Q−1

i

)−1yi , (30)

σ2
i (x) = k(x, x)− k(x,Xi)

(
k(Xi,Xi) + s2Q−1

i

)−1
k(Xi, x) (31)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where Xi = [x1 · · ·xi], yi = [ȳ1,q̂1 · · · ȳi,q̂i], and Qi = diag([q̂1 · · · q̂i]). If

βi = B +

√√√√2 log
det

(
k(Xi,Xi) + s2Q−1

i

)1/2
δ det

(
s2Q−1

i

)1/2 (32)

then, with probability greater than 1− δ, for all x ∈ X and all i = 1, . . . , N , we have∣∣f(x)− µi−1(x)
∣∣ ≤ βiσi−1(x). (33)

Proof. Given the variance of the mean predictor from Corollary F.2, our scenario can be thought of
as having i observations with heteroscedastic noise with variances of s2/q̂1, . . . , s2/q̂i. The variance
bounds then follow directly from Lemma 7 in Kirschner & Krause (2018) where we substitute
Σi → s2Q−1

i and λ→ 1.

Corollary F.4. Given Lemma F.3, for all x′ ∈ X , we have f(x′)− µi−1(xi) ≤ βiσi−1(xi).

Proof. We see that

f(x′)− µi−1(xi) ≤ µi−1(x
′) + βiσi−1(x

′)− µi−1(xi) by Lemma F.3, (34)
≤ µi−1(xi) + βiσi−1(xi)− µi−1(xi) by how xi is chosen, (35)
= βiσi−1(xi). (36)

We now show the cumulative regret of the problem. Let

I[yX ; fX] =
1

2

∑
x′
i∈X

log

(
1 +

σ2
i−1(x

′
i)

s2/q̂i

)
, (37)

and
γi = max

X=[x′
1,...,x

′
i]⊂X

I[yX ; fX] (38)

be the maximum possible information gain across i rounds. We then prove the following result.
Theorem F.5. Let x∗ = argmaxx∈X f(x). With probability at least 1− δ,

N∑
i=1

f(x∗)− f(xi) ≤ sβN

√
8NγN
qmin

. (39)

Proof. This result is similar to previous results for UCB-based methods, e.g., Theorem 3 in Srinivas
et al. (2012) or Corollary 9 in Kirschner & Krause (2018).

With probability at least 1− δ, Lemma F.3 holds. We see that
N∑
i=1

(
f(x∗)− f(xi)

)
=

N∑
i=1

(
f(x∗)− µi−1(xi)

)︸ ︷︷ ︸
Corollary F.4

+
(
µi−1(xi)− f(xi)

)︸ ︷︷ ︸
Lemma F.3

(40)

≤
N∑
i=1

2βiσi−1(xi). (41)

Since
N∑
i=1

σ2
i−1(xi) ≤

N∑
i=1

s2

q̂i

σ2
i−1(xi)

s2/q̂i
(42)

≤ s2

qmin

N∑
i=1

log

(
1 +

σ2
i−1(xi)

s2/q̂i

)
(43)

≤ 2s2

qmin
γN , (44)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

we can rewrite Eq. (41) as

N∑
i=1

(
f(x∗)− f(xi)

)
≤

√√√√ N∑
i=1

4β2
i

√√√√ N∑
i=1

σ2
i−1(xi) by Cauchy-Schwartz, (45)

≤ βN

√
4N

√√√√ N∑
i=1

σ2
i−1(xi) since βi ≤ βN , (46)

≤ sβN

√
8NγN
qmin

by Eq. (44). (47)

Remark F.6 (The regret bound in Thm. F.5 is lower when qmin increases). We investigate the upper
bound in Eq. (47) further to see its dependence on qmin.

For simplicity, we will let K = k(XN ,XN). First, we see that

log det
(
K + s2Q−1

N

)
= log det s2Q−1

N + log det
(
I + s−2QNK

)
(48)

≤ log det s2Q−1
N + log det

(
I + s−2qmaxK

)
, (49)

which means that

βN = B +

√√√√2 log
det

(
K + s2Q−1

N

)1/2
δ det

(
s2Q−1

N

)1/2 (50)

= B +

√
2 log

1

δ
+ log det

(
K + s2Q−1

N

)
− log det s2Q−1

N (51)

≤ B +

√
2 log

1

δ
+ log det (I + s−2qmaxK). (52)

Furthermore, we see that

γN = max
X=[x′

1,...,x
′
N]⊂X

1

2

∑
x′
i∈X

log

(
1 +

σ2
i−1(x

′
i)

s2/q̂i

)
(53)

≤ max
X=[x′

1,...,x
′
N]⊂X

1

2

∑
x′
i∈X

log

(
1 +

σ2
i−1(x

′
i)

s2/qmax

)
. (54)

Therefore we see that both βN and γN are upper bounded by terms which are independent of qmin,
and so the constants in the upper bound provided in Thm. F.5 do not hide any additional dependencies
with respect to qmin. This shows that the upper bound of cumulative regret from Eq. (47) decays at a
rate of 1/

√
qmin.

We will now prove the second half of Thm. 4.1. We first prove the following result.

Lemma F.7. Define c1 ≜
√
2 log(2Nqmax/δ). With probability at least 1− δ, for all i = 1, . . . , N

and all q = 1, . . . , qmax, we have ∣∣ȳi,q − f(xi)
∣∣ ≤ c1s√

q
. (55)

Proof. From Corollary F.2, we know that the ȳi,q is normally distributed with mean f(xi) and
standard deviation s/

√
q. By Chernoff bounds, for each i = 1, . . . , N and each q = 1, . . . , qmax, we

would have ȳi,q − f(xi) > c1s/
√
q, and f(xi) − yi,q > c1s/

√
q where either event happens with

probability no greater than δN/2qmax. This means that with probability no greater than δ/Nqmax,
we have |yi,q − f(xi)| > c1s/

√
q. Therefore, by union bound, we have for all i = 1, . . . , N

and each q = 1, . . . , qmax, we would have |ȳi,q − f(xi)| ≤ c1s/
√
q with probability greater than

1− (δ/Nqmax)(Nqmax) = 1− δ.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Theorem F.8. Define

τq = c1s

(
1
√
qmin

+
1
√
q

)
. (56)

Then, with probability at least 1−δ, for all i ≤ N , if we have f(xi) < maxj<i f(xj), then q̂i < qmax.

Proof. With probability at least 1− δ, Lemma F.7 applies.

To prove the statement above, we show its contrapositive. Suppose we have q̂i = qmax, or that the trial
for xi does not terminate early. This implies that ȳi,q ≥ maxj<i ȳj,q̂j + τq for all q = qmin, . . . , qmax.
For any q in this range, we would then have

f(xi) ≥ ȳi,q −
c1s√
q

(57)

≥ max
j<i

ȳj,q̂j + τq −
c1s√
q

(58)

≥ max
j<i

f(xj)−
c1s√
qmin

+ τq −
c1s√
q

(59)

= max
j<i

f(xj). (60)

This proves the contrapositive which in turn proves the original statement.

Finally, Thms. F.5 and F.8 can be combined with appropriate union bounds to achieve a more formal
version of Thm. 4.1.

In Fig. 10, we provide a brief empirical demonstration of efficiency gains due to early termination.
We see that when the noise variance is too high, querying the function once per input would give
observations which are too noisy to give good information. Meanwhile, by repeating each query a
maximum number of times, we can obtain a good estimate of the true function and allow the BO
process to arrive at the optimal using few queries. However, we see that when early termination
is allowed, we can still arrive at the optimal input as before, while not requiring all queries to be
repeated the maximum number of times. This shows that early termination allows for efficiency gains
while minimally sacrificing on the actual optimization process.

(a) Branin (s = 1)

0 5 10 15 20
Round

4

3

2

1

M
ax

 o
bj

ec
tiv

e
va

lu
e

0 5 10 15 20
Round

0

200

400

600

800

1000

To
ta

l r
ep

ea
te

d
qu

ei
re

s

Fixing qi = 1
Fixing qi = 50
Early Termination

(b) Hartmann (s = 0.5)

0 10 20 30 40 50
Round

1.5

2.0

2.5

3.0

M
ax

 o
bj

ec
tiv

e
va

lu
e

0 20 40
Round

0

500

1000

1500

2000

2500

To
ta

l r
ep

ea
te

d
qu

ei
re

s

Fixing qi = 1
Fixing qi = 50
Early Termination

Figure 10: Results of BO with early termination (with qmin = 1) on different synthetic functions
where each query has different noise levels. For each case, we show the best queried objective value
(left plot), and the cumulative number of total repeated queries made with each BO round (right plot).

In practice, since it is difficult to determine γN , βN , s, and c1 exactly, we instead fix βi and τq to
some constant. In OPPA, we choose βi = 1 and τq = 10−3. We find that these values work well for
our methods. Furthermore, in our proofs we do not consider the constrained BO setting. Despite
this, the early termination can still be used in practice to achieve good results, which we show in the
experiments.

G PSEUDOCODE OF OPPA

We present the pseudocode for OPPA in Algorithm 3.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Algorithm 3 OPTIMIZER FOR PARALLELISM CONFIGURATIONS (OPPA)

1: Generate all valid PCsH
2: for i = 1, 2, . . . , N do
3: if i < Nrandom then
4: Select Hi randomly
5: else
6: // Step 1⃝ – Modeling throughput and memory usage
7: Construct µR,i−1 and σ2

R,i−1 according to Eqs. (24) and (25) respectively
8: Construct µM,i−1 and σ2

M,i−1 according to Eqs. (26) and (27) respectively
9: // Step 2⃝ – Selecting the next PC to query

10: Hi ← argmax
H∈H\{H1,...,Hi−1}

cUCBi(H) where cUCBi−1 is defined in Eq. (4)

11: end if
12: // Step 3⃝ – Querying some PC
13: for q = 1, . . . , qmax do
14: Measure training step time as ti,j
15: Compute r̄i,q and σ2

r̄i,q according to Eq. (28)
16: if q ≥ qmin and r̄i,q < maxj<i r̄j,q̂j + τq then
17: break
18: end if
19: end for
20: q̂i ← q to track the number of training steps ran in round i
21: Measure maximum memory usage as mi

22: if time budget exceeded then
23: break
24: end if
25: end for
26: return Hi∗ where i∗ = argmaxi≤N :(mi<M0)∧(q̂i=qmax) r̄i,q̂i

H ADDITIONAL INFORMATION ON EXPERIMENTAL SETUP

H.1 TRAINING AND HARDWARE CONFIGURATIONS

We list the models used in our experiments in Table 2, along with the allotted search time and how
many trials we repeat on them. All models used are based on the transformer architecture, and were
retrieved from Huggingface.

Note that in all of our plots, we plot the median value (with a line) and also the lower and upper
quartiles (with a fainter band over and under the line). We do so since we find that the values are
often asymmetrically skewed, and therefore opted to show the quartile values to more accurately
represent the distribution of these values. Also note that the repeated trials were reduced for larger
models due to restrictions in compute budget.

Table 2: Details of models used in our experiments and the corresponding training scenario

Case Model # Params Batch size Max. seq. length Search Time qmax Repeats
BERT BERT Base Uncased 110M 256 256 20 mins 50 10
Qwen Qwen-2 1.5B 64 1024 20 mins 30 10

LLaMa-1b LLaMa 3 1B 64 1024 60 mins 20 5
LLaMa-7b LLaMa 2 7B 256 1024 60 mins 30 5

Our model training is implemented based on the COLOSSAL-AI framework (Li et al., 2023), which
allows execution of NN training with 3D parallelism with different tunable hyperparameters. We
note, however, that OPPA is also general enough to be applied to any other training framework as
well, whose implementation we leave to future works.

In Table 3, we list the hardware configuration used in our experiments. The hardware configurations
used are based on the resources that are available to the authors.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 3: Configurations of tested hardwares.

Config. Name GPU Model (Memory) GPUs per host # Host Multi-Host Characteristic
8 GPUs NVIDIA RTX A5000 (24GB) 8 1

16 GPUs NVIDIA RTX 3080 (10GB) 8 2 Docker Overlay Network
32 GPUs NVIDIA A100 (40GB) 4 8 High-Performance Compute

H.2 ALGORITHMS RAN

We list the algorithms we have ran along with their implementation details here.

• RANDOM. This involves randomly selecting a PC from H to trial in each round until the
time budget is exhausted.

• XGBOOST (Chen & Guestrin, 2016). This is the method DEEPSPEED (Rasley et al., 2020)
uses to configure the PC, and is adapted to work with the hyperparameters in our PC. The
method involves training an XGBOOST model based on the observed throughput values,
then selecting the next PC to trial as the one whose predicted throughput is the highest. This
is repeated until time budget is exhausted.

• COST-MODEL. This involves using the cost model as described in Apps. D.1 and D.2,
learned based on several randomly selected PCs, to obtain an estimate of throughput and
maximum memory usage, and perform a one-shot selection of the best PC according to the
predictions.

• VANILLA-BO. This performs BO whose GP has constant mean and Matern kernel with
ν = 5/2. The cUCB criterion is used for PC selection. The BO loop is implemented using
BOTORCH (Balandat et al., 2020).

• OPPA. This is the method proposed in Sec. 4, which involves modifying BO to include a
parallelism-informed prior belief and early trial termination (where we fix qmin = 5 unless
stated otherwise).

We note that due to the search space employed forH, we do not consider benchmarks which performs
non-adaptive optimization with a cost model. This is because those methods optimize with respect to
the computation graph rather than the hyperparameters which we discussed in App. C.1, and since
they do not use the same information as OPPA to perform optimization, making it futile to compare
between the two since they focus on optimizing different aspects of training parallelism. Nonetheless,
we provide some comparisons with selected algorithms of such nature, namely Li et al. (2022) and
Lin et al. (2024) in Fig. 8.

I ADDITIONAL RESULTS

I.1 PLOTS OF BEST ACHIEVED THROUGHPUT VERSUS OTHER QUANTITIES

In Fig. 11, we plot the best achieved throughput versus the number of training trials that have been
ran. We see that in this view, OPPA still outperforms other benchmarks. While the margin may be
smaller in some instances, we see that OPPA is able to achieve the good results more consistently as
seen by the error bars when compared to some of the other methods. This also demonstrates that the
prior belief used in OPPA alone would have helped in achieving a better performance regardless of
the early termination mechanism in OPPA.

In Fig. 12, we show the achieved throughput is plotted against the number of training steps performed
in the training trials, showing that the difference in efficiency of OPPA becomes more pronounced.
From these results see that OPPA is both more time efficient and query efficient, which can be useful
when the overhead to perform one trial may become higher, for example when the framework is
adapted to run on a cluster with a job scheduler.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

(a) BERT, 8 GPUs

10 20
No. trialed PCs

1.6

2.0

2.4

2.8

Be
st

(H

) (
s

1)

(b) Qwen, 8 GPUs

5 10 15
No. trialed PCs

0.36

0.40

0.44

Be
st

(H

) (
s

1)

(c) LLaMa-1b, 16 GPUs

5 10
No. trialed PCs

0.00

0.15

0.30

Be
st

(H

) (
s

1)

(d) LLaMa-7b, 32 GPUs

5 10 15
No. trialed PCs

0.12

0.16

0.20

Be
st

(H

) (
s

1)

Random XGBoost Vanilla-BO O P

Figure 11: Results of the best obtained throughput (higher is better) plotted against the number of
PCs that have been trialed. The lines represent the median value of the best obtained throughput
across five trials, while the error bar represent the quartile values. Note that for the experiments on 32
GPUs, we are unable to run the optimization beyond the allotted time due to resource constraints and
therefore are only able to plot some algorithms for a fewer number of queried PCs.

(a) BERT, 8 GPUs

0 500 1000
Training steps

1.6

2.0

2.4

2.8

Be
st

(H

) (
s

1)

(b) Qwen, 8 GPUs

0 500
Training steps

0.36

0.40

0.44

Be
st

(H

) (
s

1)

(c) LLaMa-1b, 16 GPUs

0 500 1000
Training steps

0.00

0.15

0.30

Be
st

(H

) (
s

1)

(d) LLaMa-7b, 32 GPUs

0 200
Training steps

0.12

0.16

0.20

Be
st

(H

) (
s

1)

Random XGBoost Vanilla-BO O P

Figure 12: Results of the best obtained throughput (higher is better) plotted against the total number
of training steps ran during in the training trials. The lines represent the median value of the best
obtained throughput across five trials, while the error bar represent the quartile values.

I.2 OPTIMAL PCS RECOVERED BY OPPA

In Table 4, we show the PCs that were recovered by OPPA. Note that the optimal PCs chosen match
quite well with intuition, where for smaller models DP tends to be prioritized. Meanwhile for larger
models and training scenarios which are done across multiple machines, PP is prioritized.

Table 4: Example of optimal PCs selected by OPPA in different training scenarios. Values are based
on observations of optimal PCs across multiple repeated trials. A range of value shows that a certain
parameter shows a spread across multiple trials (i.e., no strong preference towards one value), while a
dash shows that the parallelism dimension associated with that hyperparameter is not used.

Hyperparameter BERT, 8 GPUs Qwen, 8 GPUs LLaMa-1b, 16 GPUs LLaMa-7b, 32 GPUs
DP size (dp) 8 4 1 2
TP size (tp) 1 1 1 1
PP size (pp) 1 2 16 16

DP bucket size 1 – 64 1 – 4096 - 1 – 4096
ZeRO stage 0 1 - 1

ZeRO bucket size - 1 – 64 - 64 – 4096
Overlap ZeRO communication - True/False - False

Overlap ZeRO AllGather - True/False - False
microbatches (mb) - 8 64 32
model chunks (mc) - 1 – 2 1 1
Overlap P2P for PP - True/False False True/False
Grad. checkpointing True False False False

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

I.3 PC OPTIMIZATION FOR VISION MODELS

In Fig. 13, we presented the results for tuning the PC for ViT model (Dosovitskiy et al., 2021). We
see that the results here show that OPPA is able to select better PCs compared to the other methods,
consistent with other results in the paper. This demonstrates that OPPA is able to also generalize to
other models as well.

(a) Versus time spent

0 10 20 30
Time (mins)

1.2

1.4

1.6

1.8

Be
st

(H

) (
s

1)

(b) Versus PCs trialed

10 20
No. trialed PCs

1.2

1.4

1.6

1.8

Be
st

(H

) (
s

1)

(c) Versus training steps

0 500 1000
Training steps

1.2

1.4

1.6

1.8

Be
st

(H

) (
s

1)

Random XGBoost Cost-Model* Vanilla-BO O P

Figure 13: Results for training ViT model (Dosovitskiy et al., 2021) with batch size of 256.

I.4 PREDICTED THROUGHPUT AND MEMORY BY PARALLELISM-INFORMED PRIOR BELIEF

In Figs. 14 to 16, we compare the modeled throughput with the true values in different training
scenarios. We see that in this case, using the prior belief allows for the values to be modeled
adequately well, but more importantly, allow for the PC which achieves the best throughput to also
have the highest values, and therefore be identified correctly. We find that for the BO process, a
surrogate only needs to model the good PCs well in order to select a good PC in the end. Meanwhile,
the GP without prior belief learns the patterns much less efficiently or do not learn them at all. This
correlates well with the results in the main text where standard BO selects a worse PC compared to
OPPA which uses a better prior belief.

In Fig. 17, we compare the modeled maximum memory with the true measured value. In both
cases a GP has been used however with and without a parallelism-informed prior belief since only
VANILLA-BO and OPPA are the only benchmarks we tested which explicitly models the memory
usage. Here, we see that OPPA is able to better model the memory usage due to its use of the prior
belief. This is reflected in the confusion matrices which shows that after training, OPPA is able to
more accurately detect when a certain PC will result in out-of-memory errors.

(a) OPPA

0 1 2
Actual (s 1)

0

1

2

Pr
ed

.
 (s

1)

(b) Cost Model

0 1 2
Actual (s 1)

0

1

2

Pr
ed

.
 (s

1)

(c) GP

0 1 2
Actual (s 1)

0

1

2

Pr
ed

.
 (s

1)

(d) XGBOOST

0 1 2
Actual (s 1)

2

0

2

Re
la

tiv
e

ra
nk

in
g

Sample PCs Trialed PCs Predicted optimal PC Actual optimal PC

Figure 14: Comparison of modeled throughput values versus the true throughput for training of BERT
model on 8 GPUs after 20 PC trials.

To additionally demonstrate the interpretability of the GP modeling for the surrogate, in Table 5,
we show the results for the lengthscales learned by the kernel (as given in Eq. (22)). We see that
hyperparameters that have larger effects on the resulting throughput or are less well-modeled by our
prior belief will typically correspond to the shorter lengthscales. For example, for the training of

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

(a) OPPA

0.2 0.4
Actual (s 1)

0.1

0.2

0.3

0.4

0.5
Pr

ed
.

 (s
1)

(b) Cost Model

0.2 0.4
Actual (s 1)

0.1

0.2

0.3

0.4

0.5

Pr
ed

.
 (s

1)

(c) GP

0.2 0.4
Actual (s 1)

0.1

0.2

0.3

0.4

0.5

Pr
ed

.
 (s

1)

(d) XGBOOST

0.2 0.4
Actual (s 1)

0.4

0.2

0.0

0.2

0.4

Re
la

tiv
e

ra
nk

in
g

Sample PCs Trialed PCs Predicted optimal PC Actual optimal PC

Figure 15: Comparison of modeled throughput values versus the true throughput for training of Qwen
model on 8 GPUs after 20 PC trials.

(a) OPPA (10 trials)

0.0 0.1 0.2 0.3
Actual (s 1)

0.0

0.1

0.2

0.3

Pr
ed

.
 (s

1)

(b) OPPA (20 trials)

0.0 0.1 0.2 0.3
Actual (s 1)

0.0

0.1

0.2

0.3

Pr
ed

.
 (s

1)

(c) GP

0.0 0.1 0.2 0.3
Actual (s 1)

0.0

0.1

0.2

0.3

Pr
ed

.
 (s

1)

(d) XGBOOST

0.0 0.1 0.2 0.3
Actual (s 1)

0.1

0.0

0.1

Re
la

tiv
e

ra
nk

in
g

Sample PCs Trialed PCs Predicted optimal PC Actual optimal PC

Figure 16: Comparison of modeled throughput values versus the true throughput for training of
LLaMa-2 model on 32 GPUs for, in order, OPPA after 10 trials, OPPA after 20 trials, GP after 10
trials and XGBOOST after 10 trials. Note that among the three algorithms only OPPA ran for up to
20 trials given the time constraint.

BERT, we see that the parameters for TP dimension size and for the number of microbatches (for PP)
have shorter lengthscales. This matches our intuition where the throughput would be more sensitive
to the increased TP or PP being used (for the worse). This additional interpretability makes GP a
very suitable candidate for surrogate modeling in this case, since it allows practitioners to be more
aware of the modeling intuition by the surrogate as well as being accurate.

Table 5: Example of the log lengthscales learned by the kernel of the GP for the throughput surrogate
model. The bolded value are to highlight hyperparameters with particularly shorter lengthscales.

Hyperparameter BERT, 8 GPUs Qwen, 8 GPUs
DP size (dp) 1.877 5.233
TP size (tp) -1.071 6.024
PP size (pp) 2.293 -1.849

DP bucket size 3.484 5.994
ZeRO stage 0.434 5.279

ZeRO bucket size 3.402 6.516
Overlap ZeRO communication 3.949 7.581

Overlap ZeRO AllGather 3.822 7.589
microbatches (mb) -1.322 -1.741
model chunks (mc) -0.293 0.124
Overlap P2P for PP 3.854 6.974
Grad. checkpointing -0.334 6.586

I.5 EFFECTS OF PRIOR MISSPECIFICATION

To investigate the robustness of our method with respect to a misspecified prior, we conduct experi-
ments to see how OPPA behaves as our cost-model prior becomes increasingly inaccurate. To do so,

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

(a) OPPA

1 0
Fraction mem.

1.0

0.5

0.0

0.5

Pr
ed

. f
ra

ct
io

n
m

em
.

Predicted Feasible Predicted OOM
Actual Feasible 296 16

Actual OOM 4 84

(b) BO

1 0
Fraction mem.

1.0

0.5

0.0

0.5

Pr
ed

. f
ra

ct
io

n
m

em
.

Predicted Feasible Predicted OOM
Actual Feasible 309 3

Actual OOM 54 34

(c) Cost Model

1 0
Fraction mem.

1.0

0.5

0.0

0.5

Pr
ed

. f
ra

ct
io

n
m

em
.

Predicted Feasible Predicted OOM
Actual Feasible 312 0

Actual OOM 23 65

Figure 17: Comparison of modeled maximum memory usage versus the true maximum memory
usage for training of Qwen model on 8 GPUs after 20 PC trials. In each row, the left hand graph
shows the predicted value versus the actual value (with the predictive variance are omitted for clarity),
while the right hand table is the confusion matrix.

we add a perturbation term into our cost function, where we increase the magnitude of the perturbation
term up to about 25% and 50% that of the maximum throughput obtained. We present the median
obtained throughput across 5 random trials in Table 6. We see that even when the cost-function prior
is adversarially constructed (by knowingly adding an incorrect term into the cost function), we are
still able to obtain good performances to the unperturbed cost-model prior even if the convergence
is slightly slower. This suggests that even in this extreme case, the GP is able to correct for the
inaccuracies in the cost-prior effectively.

In practice, prior misspecification typically will due to the cost function not being sufficiently
complex to match the true parallelized training dynamics, because of incomplete or inaccurate
domain knowledge about the true system rather than due to an adversarial construction of the cost
function. This is the case in the cost function we have chosen in our paper, where there is a discrepancy
between the cost function alone and the true throughput as demonstrated in Fig. 6c, resulting from
our cost function not modeling the effects of all hyperparameters in the PC. Under practical scenarios,
we therefore would not expect the results to be as extreme as what we have seen in the presented
results, and that a GP should be able to effectively model the throughput values.

I.6 ADDITIONAL RESULTS FOR ABLATION STUDIES OF COMPONENTS IN OPPA

In Fig. 18, we demonstrate how early termination and parallelism-informed prior belief affect the
overall achieved throughput. First, we see that when parallelism-informed prior belief is used, the
performance is no worse than when no prior belief is used, although this benefit is more pronounced

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Table 6: Effect of perturbing the prior belief on the resulting optimization process. The values
reported are the median throughput obtained for the PC found after certain number of minutes of
running OPPA with the perturbed prior belief function.

Percent perturbation magnitude 10 mins. of search 20 mins. of search
0 (original prior) 0.425 0.446

About 25 0.424 0.447
About 50 0.415 0.447

for the Qwen example, possibly due to the increased complexity in the training setup. meanwhile,
with early termination, we see that the performance is better in terms of time and number of training
steps needed, while not sacrificing the performances when considering the number of PCs that are
trialed to achieve a certain performance. This shows that the benefit gain comes from being able to
shorten the duration of the training trials while not sacrificing the throughput predictions.

(a) BERT (qmax = 50)

0 10 20
Time (mins)

2.0

2.4

2.8

Be
st

(H

) (
s

1)

10 20
No. trialed PCs

2.0

2.4

2.8

Be
st

(H

) (
s

1)

0 500 1000
Training steps

2.0

2.4

2.8

Be
st

(H

) (
s

1)
(b) Qwen (qmax = 30)

0 10 20
Time (mins)

0.40

0.44

Be
st

(H

) (
s

1)

5 10 15
No. trialed PCs

0.40

0.44

Be
st

(H

) (
s

1)

0 500
Training steps

0.40

0.44

Be
st

(H

) (
s

1)

Vanilla-BO BO + Early Term. BO + Prior Belief O P

Figure 18: The effects of different components of OPPA on the optimal PC found. In each row, we
present the results in a certain training setup, where we present the obtained throughput versus, from
left to right, the time the algorithm has been ran for, the number of unique PCs trialed, and the number
of training steps that has been ran across all of the trials.

I.7 THE EFFECT OF qmin ON OPPA PERFORMANCE

In Fig. 19, we see how the choice of qmin affects the achieved throughput. For the BERT case, we
see that early termination clearly improves the time required for optimization, as seen where when
qmin = qmax the obtained PC is the worst when all methods are allotted the same amount of time. As
qmin decreases, we see that there is less drop in the amount of time required since each training step is
dominated by the time to setup each PC trials. However, we still see that when we plot the number
of training steps for the optimization, we see that a smaller qmin will require fewer training steps to
arrive at the same optimal PC. However, this trend breaks down when qmin is too small, likely since
the value obtained is too noisy to give good information. Nonetheless, even in this case, we stil obtain
good results. For the Qwen case, similar trends can be seen where reducing qmin is able to reduce the
time and the number of training steps required to find the optimal PC up to a certain point.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

(a) BERT (qmax = 50)

0 10 20
Time (mins)

2.0

2.4

2.8

Be
st

(H

) (
s

1)

10 20
No. trialed PCs

2.0

2.4

2.8

Be
st

(H

) (
s

1)

0 200 400 600
Training steps

2.0

2.4

2.8

Be
st

(H

) (
s

1)

(b) Qwen (qmax = 30)

0 10 20
Time (mins)

0.40

0.44

Be
st

(H

) (
s

1)

5 10 15
No. trialed PCs

0.40

0.44

Be
st

(H

) (
s

1)

0 200
Training steps

0.40

0.44

Be
st

(H

) (
s

1)

qmin = 2 qmin = 5 qmin = 10 qmin = 20 qmin = qmax

Figure 19: The effects of qmin on the optimal PC found. In each row, we present the results in a
certain training setup, where we present the obtained throughput versus, from left to right, the time
the algorithm has been ran for, the number of unique PCs trialed, and the number of training steps
that has been ran across all of the trials.

J ADDITIONAL DISCUSSIONS REGARDING THE PAPER

J.1 REGARDING THE NOVELTY OF THE PROPOSED METHOD

Here, we highlight some of the novelty of our work beyond being a direct application of Bayesian
optimization (BO), which sets it apart from these works. This has been highlighted in Secs. 3 and 4,
and is done so by (1) using specific characteristics within the PC optimization problem to inform
different design choices for the BO process, and (2) developing a novel BO technique with provable
theoretical guarantees, which is an advancement for BO in itself.

First, we point out that our work identifies specific characteristics of the PC optimization which allows
us to design OPPA to directly tackle these points and obtain strong performances. Unlike a typical
hyperparameter optimization problem, we notice that there are several ways in which optimizing
the PC differs, each allowing us to incorporate appropriate and novel techniques into our framework
beyond using vanilla BO with an updated prior function.

• Designing an appropriate surrogate model and prior for PC optimization which works
across many training scenarios is non-trivial (Sec. 4.1). In our problem setting, we
designed a prior function which is specific enough to capture characteristics of parallelized
NN training based on existing domain knowledge, while still allowing enough flexibility
to adapt to a wide range of possible parallelized training scenarios. This is demonstrated
in our results where the same choice of model and prior is valid on a variety of hardware
configurations, and give strong results across all of them.

• We also utilize black-box constraints to filter out infeasible PCs from the search space
(Secs. 3 and 4.2). In PC optimization, the black-box constraint will naturally arise since
some unknown PCs may result in OOM errors on real machines. We therefore attempt to
automatically learn the feasible space and inform the search process accordingly. This is
unlike vanilla BO which would assume that the feasible set is fully known, and perform the
search accordingly.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

• Since trialing a PC involves sequentially running many training steps to measure the running
time, we also introduce a novel and systematic way to detect suboptimal PCs early and
terminate them to save time (Sec. 4.3). This is designed based on how training throughput
is measured, and whose novel solution is proposed and analyzed (both theoretically and
empirically), as we discuss in the next point.

Second, we introduce a novel BO algorithm where an experiment is sequentially repeated, and
can be terminated early in suboptimal cases (Sec. 4.3 and App. F.3). We inspire this problem via
the optimization of PC in parallelized training, and introduce a principled method to decide when
early trial termination should be done, providing both theoretical justification and empirical results
in PC optimization. This improves on existing BO works which will fix the number of times an
experiment should be repeated before the experiments are performed, and will waste resources on
suboptimal trials. Outside of PC optimization, our method can also be adapted to cases where noisy
measurements should be recorded multiple times to obtain a better estimate such as in real scientific
experiments where trials are often repeated anyway.

J.2 REGARDING THE NECESSITY OF REAL TRAINING TRIALS

We note that while the effect of some hyperparameters in a PC can be estimated reasonably well, this
would not be the case for all hyperparameters (as already stated in Secs. 2 and 3). The only method
to accurately tune these hyperparameters would therefore be based on empirical data from actual
model training. To achieve the best performance for NN training, it is therefore inevitable that we
would have to perform some actual NN training to evaluate the effects of these hyperparameters. This
motivates why adaptive methods which rely on actual time for training is important. This viewpoint
is reflected in real parallelized training frameworks such as DEEPSEED or NEMO where real training
trials are also used to perform PC tuning (as also highlighted in Sec. 2), and also further demonstrated
throughout in our paper to be superior to non-adaptive methods (e.g., as seen in Fig. 8).

Furthermore, in practice, the training time is often long and a relatively short time for PC optimiza-
tion can already give large savings on the overall efficiency of NN training. To more concretely
demonstrate this, in Fig. 5b, we have presented the benefits of optimizing the PC with OPPA before
performing actual training. In our case, the optimization process is done for less than an hour which in
practice, is insignificant compared to the time for training large-scale models. For instance, finetuning
a language model may take several hours or days, while pretraining from scratch often extends to
weeks or even months. When we extrapolate the speed of training process to see how many training
steps can be processed in a few hours, as done in Fig. 5b, we find that the PC chosen by OPPA
can already lead to many more training steps being performed compared to other methods, or even
compared to using a cost model alone to non-adaptively select a PC (which will still require time
to perform optimization nonetheless). This shows that in many practical scenarios where the actual
training would be done for a long period of time, a relatively short time spent on optimizing the PC
can lead to large benefits in computational saving.

K LIMITATIONS AND BROADER IMPACTS

In this work, we have mainly focused on optimizing tunable hyperparameters which are found in
common parallelized training frameworks. While there are many other aspects and search spaces of
parallelization that we could consider, we have instead mainly considered hyperparameters which
would generally be tuned manually by practitioners who want to perform parallelized training. We
believe that Bayesian optimization with an appropriate formulation could also allow our methods
to these other search spaces that may arise as well. Maximizing the throughput during NN training
would allow the same amount of computation to possibly be done in a more efficient manner, both in
terms of time and compute resources. While this may allow faster development of NNs for both good
and bad use cases, overall it would still have a positive impact since it allows for higher efficiency
which reduces waste in computation time and other feasible resources that come with it.

33

	Introduction
	Background and Related Works
	Parallelized Neural Network Training
	Bayesian Optimization

	Problem Setup
	Method
	Constructing a Surrogate Model
	Selecting the Next PC to Trial
	Trialing the Next PC

	Experiments
	Conclusion
	Additional Discussion on Parallelism Types
	Technical Primer on Gaussian Processes and Bayesian Optimization
	Detailed Discussion on the Problem Setup
	Hyperparameters Considered
	Throughput versus Time Per Training Step

	Detailed Discussion of GP Surrogate in OpPa
	Parallelism-Informed Prior Mean for the Throughput
	Parallelism-Informed Prior Mean for the Maximum Memory Usage
	Kernel
	Posterior Distribution of Predicted Throughput and Memory Usage

	Detailed Discussion of PC Selection Method in OpPa
	Random Sampling For Additional Exploration

	Detailed Discussion PC Trialing Method
	Throughput Estimation
	Outlier Removal
	Regret Analysis of Early Trial Termination

	Pseudocode of OpPa
	Additional Information on Experimental Setup
	Training and Hardware Configurations
	Algorithms Ran

	Additional Results
	Plots of Best Achieved Throughput versus Other Quantities
	Optimal PCs recovered by OpPa
	PC Optimization for Vision Models
	Predicted Throughput and Memory by Parallelism-Informed Prior Belief
	Effects of Prior Misspecification
	Additional Results for Ablation Studies of Components in OpPa
	The effect of qmin on OpPa performance

	Additional Discussions Regarding The Paper
	Regarding The Novelty of the Proposed Method
	Regarding The Necessity of Real Training Trials

	Limitations and Broader Impacts

