
Self-Exploring Language Models for Explainable Link
Forecasting on Temporal Graphs via Reinforcement

Learning

Zifeng Ding1∗ Shenyang Huang2,3,4∗

Zeyu Cao1 Emma Kondrup2,3 Zachary Yang2,3 Xingyue Huang4 Yuan Sui5
Zhangdie Yuan1 Yuqicheng Zhu6 Xianglong Hu7 Yuan He7

Farimah Poursafaei2,3 Michael Bronstein4,8 Andreas Vlachos1†
1University of Cambridge, 2Mila - Quebec AI Institute,

3McGill University, 4University of Oxford,
5National University of Singapore, 6University of Stuttgart, 7Amazon, 8AITHYRA

{zd320, av308}@cam.ac.uk

Abstract

Forecasting future links is a central task in temporal graph (TG) reasoning, requir-
ing models to leverage historical interactions to predict upcoming ones. Traditional
neural approaches, such as temporal graph neural networks, achieve strong per-
formance but lack explainability and cannot be applied to unseen graphs without
retraining. Recent studies have begun to explore using large language models
(LLMs) for graph reasoning, but most of them are constrained to static graphs
or small synthetic TGs and lack the evaluation of the quality of reasoning traces
generated by LLMs. In this work, we present Reasoning-Enhanced Learning for
Temporal Graphs (ReaL-TG), a reinforcement learning framework that fine-tunes
LLMs to perform explainable link forecasting on real-world TGs. ReaL-TG uses
outcome-based reward to encourage models to self-explore reasoning strategies
from graph structure and to produce explanations that directly justify their pre-
dictions. To enable evaluation on LLM-generated reasoning traces, we propose
a new evaluation protocol combining ranking metrics with an LLM-as-a-Judge
system that assesses both the quality of reasoning and the impact of hallucinations.
Experiments with ReaL-TG-4B, obtained by fine-tuning Qwen3-4B under our
framework, show that it outperforms much larger frontier LLMs, including GPT-5
mini, on ranking metrics, while producing high-quality explanations confirmed by
both the LLM judge and human evaluation.

1 Introduction

Temporal graphs (TGs) represent node interactions as links annotated with timestamps [22], making
them well-suited for modeling a wide range of real-world scenarios such as social and transaction
networks [19]. This expressiveness has fueled the growing interest in TG reasoning, which focuses on
capturing the dynamic graphical structures within TGs to support various downstream tasks. A widely
studied task in TG reasoning is future link prediction, also known as link forecasting. It aims to
predict future interactions between nodes based on historical node interactions, which is particularly
useful in practical applications such as recommendation systems [9], community discovery [35] and
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financial analysis [37]. Mainstream methods for link forecasting train neural-based models such as
temporal graph neural networks (TGNNs) [52, 31, 47, 13], memory networks [36, 29], and sequence
modeling units [55, 42, 6] on the training set of a TG, and then apply the trained model to the test
set of the same TG. While effective, they suffer from two key limitations. First, most neural-based
models lack human-readable explanations for their predictions, making it difficult for users to assess
the trustworthiness of the results. Second, they typically require retraining when adapted to a new
TG, and therefore cannot seamlessly generalize to unseen graphs.

Recently, the rapid scaling of language models has made them increasingly effective at generating
coherent text, leading to their widespread adoption in question answering (QA) tasks across diverse
domains. Building on this progress, an emerging line of research investigates whether large language
models (LLMs) can also reason over graphs by prompting them to answer graph-related (such as
link prediction) questions. Compared with traditional graph reasoning methods, LLMs naturally
provide human-readable explanations and exhibit strong zero-shot generalization, suggesting the
potential to handle previously unseen graphs without retraining. Nevertheless, most existing studies
focus on static graphs [1, 32, 10, 2, 15], and only a few have investigated TGs. Among these, several
efforts focus on TGs with textual attributes and demonstrate strong performance [25, 28, 45, 50].
However, such settings carry a risk of data leakage, since textual features—including those directly
relevant to prediction and even the correct answers to the questions—may already have been seen
during pre-training [5]. In contrast, LLM4DyG [57] evaluates LLMs on TG reasoning using fully
synthetic graphs anonymized from text, thereby avoiding leakage. However, its experiments are
restricted to very small scales (up to 20 nodes), limiting the applicability of the findings to realistic
scenarios. Moreover, existing studies largely overlook the evaluation of LLMs’ reasoning outputs.
Strong performance on link prediction metrics such as accuracy does not necessarily imply that
the underlying reasoning traces are correct. In practice, LLMs may generate flawed reasoning or
introduce hallucinations that still lead to the right prediction label, raising concerns about their
reliability.

Building on these observations, we propose Reasoning-Enhanced Learning for Temporal Graphs
(ReaL-TG), a reinforcement learning (RL) framework that fine-tunes LLMs to do perform link
forecasting over TGs. Unlike prior works that rely on textual attributes or synthetic toy datasets,
Real-TG is developed and evaluated on anonymized real-world TGs (where nodes are represented
with numerical IDs without any semantic information) provided by the popular Temporal Graph
Benchmark (TGB) [19], making it both practical and aligned with real application needs. By removing
semantic information from textual attributes, anonymized graphs prevent data leakage and require
the model to reason solely over TG topology, leading to reasoning patterns focusing on the intrinsic
dynamics of TG evolution. During RL, we choose Qwen3 [53] as the base model and adopt Grouped
Regularized Policy Optimization (GRPO) [38] together with an outcome-based reward tailored to
TG link forecasting. This setup not only encourages the model to self-explore reasoning strategies
through its own textual outputs without process-level supervision, but also compels it to produce
human-readable explanations justifying its predictions. In this way, the model is pushed to achieve
both strong predictive accuracy and sound reasoning that supports its answers. To comprehensively
evaluate LLMs in TG link forecasting, we further propose a new evaluation protocol tailored to
this setting. First, we formulate the task as QA, where an LLM must directly generate the set of
nodes it predicts as correct answers. On top of this formulation, we introduce penalized mean
reciprocal rank (pMRR), an extension of MRR [44] that discounts the score when predicted nodes
fall outside the ground-truth set, thereby discouraging over-generation. Second, to assess the quality
of LLM-generated reasoning traces , we design an LLM-as-a-Judge [58] evaluation focusing on three
criteria: faithfulness, logical consistency and answer–explanation alignment.

We summarize our contributions as follows: (i) we propose ReaL-TG, the first framework that
enables LLMs to perform explainable and effective link forecasting on real-world TGs via RL; (ii)
we introduce a new evaluation protocol for TG link forecasting with LLMs that assesses not only
prediction accuracy but also reasoning quality and the impact of hallucinations; (iii) our fine-tuned
model ReaL-TG-4B outperforms much larger frontier LLMs, including GPT-5 mini, on both seen
and unseen graphs. In addition, it produces high-quality explanations.
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Figure 1: Left: The ReaL-TG framework, which enables RL fine-tuning of LLMs to improve
TG forecasting (see Sec. 3). Right: The proposed LLM-as-a-Judge system, which provides a
comprehensive evaluation of LLM reasoning quality in TG link forecasting (see Sec. 4).

2 Preliminaries

A detailed discussion of related works is provided in App. D. We first define TG as follows. Note
that, in this work, we deliberately exclude node and edge features, focusing instead on how LLMs
can reason over TGs solely from their topological structure.

Definition 1 (Temporal Graph) Let N and T denote a set of nodes and timestamps, respectively.
A TG can be represented as a sequence of |G| chronological interactions G = {(ui, vi, ti)}|G|i=1 ⊆
N ×N × T with 0 ≤ t1 ≤ t2 ≤ ... ≤ t|G|, where ui, vi ∈ N are the source and destination node of
the i-th interaction happening at ti ∈ T , respectively.

Inspired by Huang et al. [18], we then define TG link forecasting as a QA task, making it naturally
adaptable to LLMs. We discuss the advantages of this formulation over the traditional one in App. F.

Definition 2 (TG Link Forecasting with LLMs) Assume a TG G ⊆ N × N × T containing all
ground-truth interactions, and let f(·) denote the inference process of an LLM. Given a prediction
query q = (uq, ?, tq) with source node uq ∈ N and timestamp tq ∈ T , together with its history
Htq = {(ui, vi, ti) | ti < tq, (ui, vi, ti) ∈ G}, TG link forecasting requires the model to produce a
text-based answer A specifying the ground truth missing node(s) vq ⊆ N as the predicted missing
destination(s). The answer is obtained byA = f

(
ψ(Htq , q)

)
, where ψ(·, ·) is a function that converts

Htq and q into a prompt consisting of historical graph context and a natural language question
asking about the missing destination node(s).

3 ReaL-TG

The left part of Fig. 1 illustrates our ReaL-TG framework. Given a query q = (uq, ?, tq) and its
history Htq before query timestamp tq , we first apply the Temporal Context Graph Selection (T-CGS)
algorithm to construct a subgraph Gc that is most relevant to q based on Htq . Gc serves as the graph
context from which the LLM extracts information to make predictions. We then verbalize all links
in Gc and combine them with a natural language question derived from q into a prompt template,
denoted as Q. The prompt Q is fed into an LLM for inference, from which we extract the prediction
answer. We compute a link forecasting reward for each prediction with a customized reward function,
and through RL the model self-explores reasoning patterns to improve forecasting in TGs.

Temporal Context Graph Selection. We input graph context as text into the LLM to ensure
explainability, since we require the output reasoning trace to explicitly justify predictions in natu-
ral language (see App. G for further discussion on why we represent graph context as text). We
aim to include as much relevant graph information as possible while excluding redundant details
that do not contribute to prediction. To this end, we propose T-CGS, an algorithm that selects
a temporal context graph for each query q = (uq, ?, tq). Inspired by Li et al. [27], we con-
struct Gc centered around a temporal query node (uq, tq). Starting from (uq, tq), we perform an
α-temporal random walk, where at each step the walk terminates at the current temporal node
(e, t) with probability α ∈ (0, 1), and with probability 1 − α it continues to a node in the his-
torical temporal neighborhood Nei(e,t) = (e′, t′) | (e, e′, t′) or (e′, e, t′) ∈ Ht, t

′ < t of (e, t). If
the walk continues, the transition probability from (e, t) to each (e′, t′) ∈ Nei(e,t) is given by

P(e,t)(e
′, t′) = β|{(e′′,t′′)|(e′′,t′′)∈Nei(e,t),t

′′≥t′}|/
∑|Nei(e,t)|

z=1 βz , where β ∈ (0, 1) is a decay factor.
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The intuition behind it is to assign higher transition probabilities to temporal neighbors that are
closer in time to the current node (e, t), since recent interactions are generally more influential in
information propagation on TGs, as shown in prior works [30, 7, 27]. Based on this setting, we
compute the probability of an α-temporal random walk starting from the query node (uq, tq) and
terminating at one of its k-hop historical neighbors. We then rank all visited temporal nodes by their
termination probabilities and select the top-ranked nodes Nq as the most relevant for answering query
q. To construct the context graph Gc, we retrieve all links in the ground-truth graph that involve nodes
in N q and collect them into Gc. In practice, we set |N q| to 100 and limit the random walk to at most
2 steps, yielding a Gc that contains temporal neighbors of (uq, tq) up to 3 hops away.

Prompt Construction. Given Gc and query q, we construct the prompt Q shown in Fig. 2, which
embeds the graph context and instructs the LLM to produce both predictions and explanatory
reasoning traces. To facilitate extraction, we require the reasoning to be enclosed within <think>
</think> tags and the final predictions within <answer> </answer> tags.

Training Data Collection. We collect 1,000 link forecasting queries from 4 TGB datasets:
tgbl-wiki, tgbl-subreddit, tgbl-coin, and tgbl-flight to construct the training data. Since
each query (uq, ?, tq) may have multiple ground-truth nodes as answers, the total number of in-
volved links is larger than 1,000. Specifically, we sample 225 queries each from tgbl-wiki and
tgbl-subreddit, and 275 queries each from tgbl-coin and tgbl-flight. The latter two datasets
are empirically shown to be more challenging in the original TGB benchmark [19], so we allocate
more training examples to them. For all datasets, queries are sampled in reverse chronological
order from the last training timestamp until the desired size is reached, ensuring richer histories
for constructing temporal context graphs. We skip queries where (i) the T-CGS–selected temporal
context graph does not contain all ground-truth answers or (ii) the temporal context graph exceeds
600 links. This avoids cases where the LLM cannot observe the answer within its prompt, making
fine-tuning meaningless, or where the temporal context graph is so large that it consumes most of
the context window, leaving limited space for reasoning. Finally, for each query we construct a Q
prompt and pair it with its ground-truth missing nodes {vq} to form a training example.

Fine-tuning LLMs with RL. We use GRPO with a customized reward to fine-tune models. For
each query (uq, ?, tq) with a set of ground-truth missing nodes {vq}, the LLM aims to predict as many
ground-truths as possible without introducing spurious nodes. To achieve this, we design a reward
function based on the F1 score, balancing precision (whether all predicted nodes are correct) and
recall (whether all ground-truth nodes are retrieved). Specifically, let the contents between <answer
</answer> tags in the LLM output O be denoted as A<ans>. We parse A<ans> into a set A =
{a<ans>} of predicted nodes and compute a link forecasting reward as r(O) = F1({a<ans>}, {vq}).
This reward depends solely on model outputs, encouraging LLMs to discover transferable reasoning
patterns across graphs without constraining their reasoning traces. Moreover, it is non-parametric,
requiring no additional cost for training a separate reward model. Given the reward, we update model
parameters by maximizing the GRPO objective. We provide more details in App. H.

4 Evaluation Protocol

Prediction Label Evaluation. We first follow [19] to evaluate models with Mean Reciprocal
Rank (MRR). Assume we have M evaluation examples, each consisting of a prompt Qm, a query
(uqm , ?, tqm), and a ground-truth set ηgt

m = {vqm}. The corresponding prediction set is ηpred
m =

{v′qm}, which contains all nodes the LLM predicts as belonging to ηgt
m. We compute MRR as

MRR = 1∑M
m=1 ηgt

m

∑M
m=1

∑ηgt
m

s=1
1

ranksm
. ranksm denotes the rank of the s-th node in ηgt

m. The ranking
is computed as follows. We first assign a score of 0 to all nodes in the dataset, and then set the score
to 1 for nodes included in ηpred

m . Following prior works [16, 12], we use filtered MRR, where the
influence of other correctly predicted nodes is excluded by resetting their scores to 0 when evaluating
a given node. Finally, for each node we compute the mean of its optimistic rank (treating equally
scored nodes as ranked lower) and pessimistic rank (treating them as ranked higher), which gives
ranks

m. Although MRR is a widely used and robust metric for evaluating link prediction, it does
not capture the risk of over-generation in LLMs when the task is framed as QA-style generation.
During reasoning, LLMs often predict all nodes they believe belong to ηgt

m, sometimes accompanied
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by supporting reasoning. While not always undesirable, this behavior can be problematic when
accurate link forecasting is required. To better capture the over-generation phenomenon, we introduce
penalized MRR (pMRR), which follows MRR’s definition but slightly modifies the computation
of ranksm. Specifically, for all nodes in ηpred

m \ ηgt
m, we assign a score of 1.1 instead of 1. This

ensures that incorrectly predicted nodes are ranked above correctly predicted ones, thereby penalizing
over-generation. The more such nodes appear, the stronger the penalty, resulting in a lower pMRR.

Reasoning Trace Evaluation. LLMs naturally benefit from their text generation ability, making
them well-suited for explainable link forecasting. However, no prior work has systematically evaluated
their reasoning traces, i.e., how prediction labels are derived. Such evaluation is crucial because
a trustworthy forecaster should not only produce accurate predictions but also provide reasonable
justifications. Moreover, predictions outside the ground truth are not always undesirable if they
are supported by strong reasoning. In real-world forecasting, ground-truth labels are unavailable
before events actually occur, unlike in experimental setups where metrics such as MRR can be
computed. This makes the evaluation of an LLM forecaster’s reasoning quality even more important.
The most reliable way to assess LLM reasoning is to do human evaluation, however, it is not
scalable. Motivated by the recent success of LLM-as-a-Judge [58], we adopt this approach for
quicker and more scalable assessment, focusing on three criteria: faithfulness, logical consistency,
and answer–explanation alignment. For faithfulness, we evaluate whether the LLM’s reasoning is
supported by the input context graph Gc. The Judge first splits a reasoning trace into a series of
atomic claims, each describing some aspect of the graph context. It then determines the proportion
of claims that are faithful to Gc, i.e., contain no factual errors in describing it. This proportion is
defined as the faithfulness score δf . For logical consistency, we assess whether the reasoning follows
a coherent and valid chain. Here, the Judge disregards faithfulness and focuses solely on whether
the LLM’s reasoning proceeds in a logically sound manner without self-contradiction. The Judge
assigns a score from {0, 1, 2}, with higher values indicating better consistency. This score is then
normalized to [0, 1] and defined as the consistency score δlc. For answer–explanation alignment, we
assess whether the predicted answers are justified by the model’s own reasoning. A predicted node is
considered justified if (i) the reasoning trace contains explicit supporting claims for it, and (ii) those
claims are judged as faithful in the faithfulness evaluation. We define the alignment score δa as the
proportion of predicted nodes that are well-justified. From another perspective, these three scores
can also be viewed as capturing the impact of different types of hallucinations in LLM reasoning.
δf targets factual hallucinations, where the model introduces hallucinated claims about the context
graph. δlc addresses logical inconsistency hallucinations, where the model produces contradictory or
incoherent logic chains. δa reflects justification hallucinations, where predictions are made without
being grounded in faithful reasoning. By jointly evaluating these dimensions, our system provides a
more comprehensive assessment of LLMs’ reasoning quality in explainable link forecasting. We use
GPT-4.1 mini as Judge. See Fig. 3 for the complete prompt, i.e., instruction, for Judge. See the right
part of Fig. 1 for an illustration of the system. We compute the aggregated scores δ̄f , δ̄lc, and δ̄a by
averaging over all evaluation examples, providing an overall measure of reasoning quality.

5 Experiments

We fine-tune a Qwen3-4B with ReaL-TG and name it ReaL-TG-4B. We compare it with baselines on
both seen and unseen graphs using our proposed evaluation protocol. We report the comparative results
of prediction accuracy and reasoning quality among LLMs, along with a performance comparison
between ReaL-TG-4B and traditional TG link forecasting methods as well as the human evaluation
of reasoning traces generated by ReaL-TG-4B. Additional results are provided in appendices: (i)
human evaluation of our LLM-as-a-Judge system (App.L); and (ii) qualitative analysis with two case
studies illustrating how RL improves LLM-based link forecasting (App.M)

Experimental Setup. We collect evaluation data from the test sets of 4 TGB datasets used during
training and from the test sets of 2 unseen datasets (tgbl-uci, tgbl-enron) to assess models’
transferability to unseen graphs To control evaluation cost, we curate a moderately sized dataset for
assessing LLMs in TG link forecasting. We first select the last 1,000 queries from each of the 6 TGB
datasets in reverse chronological order, ensuring that test data are accompanied by abundant historical
information. For each query, we then extract the temporal context graph using T-CGS. Finally, we
filter out queries following the same principles adopted in query skipping when we construct training
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Table 1: Results on prediction label. We omit the tgbl prefix in dataset names. The top two results
are highlighted by first and second. We use pMRR to represent penalized MRR.

Seen Unseen Combined

Dataset wiki subreddit coin flight uci enron Overall

Model MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR MRR pMRR

Qwen3-0.6B 0.338 0.331 0.245 0.238 0.111 0.107 0.121 0.111 0.114 0.108 0.089 0.084 0.171 0.164
Qwen3-4B 0.721 0.682 0.678 0.639 0.368 0.333 0.090 0.072 0.300 0.239 0.174 0.137 0.375 0.339
Qwen3-8B 0.763 0.721 0.731 0.688 0.380 0.343 0.109 0.087 0.364 0.293 0.300 0.243 0.436 0.391
Gemma 3 4B 0.698 0.673 0.686 0.650 0.290 0.235 0.159 0.121 0.328 0.268 0.274 0.223 0.407 0.364
Gemma 3 12B 0.782 0.738 0.718 0.671 0.376 0.302 0.315 0.249 0.390 0.298 0.469 0.381 0.520 0.452
GPT-5 mini 0.714 0.630 0.674 0.596 0.288 0.201 0.286 0.180 0.355 0.266 0.333 0.215 0.456 0.351
Llama3.3-70B 0.759 0.687 0.716 0.644 0.372 0.257 0.323 0.245 0.422 0.347 0.441 0.328 0.521 0.423

ReaL-TG 4B 0.824 0.792 0.765 0.726 0.431 0.401 0.198 0.175 0.607 0.523 0.492 0.435 0.552 0.508

data and get in total 4,246 evaluation data. We provide the evaluation data statistics in Table 4. For
baselines, we evaluate several frontier models, including non-reasoning models (Gemma 3 4B/12B,
Llama 3.3 70B) and reasoning models (Qwen3-0.6B/4B/8B, GPT5-mini). All models are tested with
the same prompts for fair comparison. For non-reasoning models, we use greedy decoding, while
reasoning models are run with their default configurations. See App. I for implementation details.

Results: Prediction Accuracy. We report the results of MRR and pMRR in Table 1. Our main
findings are as follows: (i) within the same model family (e.g., Qwen3-0.6B/4B/8B), larger model
size generally leads to better performance on TG link forecasting; (ii) larger LLMs tend to predict
more nodes as answers (with larger difference between MRR and pMRR), likely because their
stronger capacity allows them to consider more candidate predictions, although this behavior is not
always beneficial for link forecasting; (iii) ReaL-TG-4B outperforms all baselines, including GPT-5
mini and Llama 3.3 70B, across nearly all datasets on both seen and unseen graphs, demonstrating
the effectiveness of the ReaL-TG framework. Although ReaL-TG-4B trails some baselines on
tgbl-flight, we attribute this to the limitations of its base model Qwen3-4B on this dataset; (iv)
ReaL-TG-4B achieves substantial gains over its base model, confirming the effectiveness of our
RL-based training framework. To supplement, we also provide a comparison among ReaL-TG-4B
and several traditional link forecasting methods in App. 5.

Results: Reasoning Quality. We report the reasoning evaluation results in Table 2. The comparison

Table 2: Results on the quality
of reasoning traces.

Model δ̄f δ̄lc δ̄a

Qwen3-4B 0.683 0.700 0.653
Qwen3-8B 0.792 0.808 0.770
Gemma 3 4B 0.595 0.666 0.558
Gemma 3 12B 0.867 0.928 0.771
Llama 3.3 70B 0.878 0.950 0.820

ReaL-TG-4B 0.885 0.880 0.732

includes Qwen3-4B/8B, the Gemma 3 family, and Llama 3.3-70B.
We exclude GPT-5 mini for two reasons: (i) our Judge is GPT-4.1
mini, which may introduce family-bias [41], i.e., assigning higher
judgment scores to other OpenAI models; and (ii) the GPT-5 series
restricts access to full reasoning traces, providing only a summary
of its reasoning, which prevents accurate evaluation of its actual
reasoning behavior. We summarize our key findings as follows:
(i) within the same model family, larger models are more robust to
hallucinations and achieve higher reasoning quality, suggesting a
correlation between prediction accuracy and reasoning quality. (ii)
ReaL-TG-4B demonstrates substantial improvements over its base
model Qwen3-4B in reasoning quality, validating the effectiveness of RL fine-tuning and showing
that the ReaL-TG framework enables LLMs to discover meaningful reasoning patterns useful for
TG link forecasting. (iii) despite these gains, ReaL-TG-4B lags behind larger models in logical
consistency and answer–explanation alignment. We attribute this to the natural advantage of larger
models in producing more robust reasoning traces, particularly in providing consistent logic and
sufficient supporting evidence for predictions. This indicates that applying ReaL-TG to larger base
models would be a promising direction in the future. We give a more detailed discussion to show
how the reasoning quality is influenced by base model size and ReaL-TG in App. K. We also give a
human evaluation on the quality of our LLM-based judging system in App. L.

ReaL-TG-4B vs. Traditional TG Link Forecasting Methods. Table 3 reports results of 3 strong
TGNNs: TGN [36], DyGFormer [55] and TNCN [56], together with the widely used EdgeBank
baseline [33]. We train TGNNs separately on the original training set of each involved dataset on TGB
with their default implementation settings and evaluate all models using MRR. TGNNs formulate TG
link forecasting as a binary classification task, where models are trained to decide whether a potential
link exists, which makes ranking metrics computationally expensive since obtaining a rank requires a
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Table 3: MRR comparison among ReaL-TG-4B and traditional TG link forecasting methods.

Dataset wiki subreddit coin flight uci enron

EdgeBank 0.425 0.271 0.153 0.179 0.202 0.129
TGN 0.464 0.698 Timeout Timeout 0.050 0.281
DyGFormer 0.847 0.659 Timeout Timeout 0.011 0.341
TNCN 0.732 0.739 Timeout Timeout 0.049 0.263

ReaL-TG 4B 0.824 0.765 0.431 0.198 0.607 0.492

forward pass over every node in the node set (see App. F for details). Besides, it is impossible to
evaluate binary classification-based TGNNs with pMRR because they do not return node IDs directly
as answers. To avoid excessive cost, we control the budget for evaluation with a timeout constraint
of 24 hours. Note that for ReaL-TG-4B, tgbl-uci and tgbl-enron are treated as unseen graphs,
whereas for TGNNs, they are trained exclusively on these datasets and are therefore considered seen
graphs. Our results show that the fine-tuned model outperforms strong traditional methods while
providing explicit reasoning to justify its predictions, demonstrating strong potential. Moreover, by
formulating TG link forecasting as QA, our framework enables low-cost prediction in real-world
applications and eliminates the need to train a model from scratch for new TGs.

Human Evaluation: Quality of Reasoning Traces. We recruit 5 annotators to evaluate the quality
of reasoning traces generated by ReaL-TG-4B. A random sample of 50 data examples is selected,
and annotators provide judgment scores for the three criteria following the same instructions given to
the LLM judge. Averaging their annotations yields high scores of 0.885/0.872/0.839 for δ̄f /δ̄lc/δ̄a
(maximum score 1), which closely align with the judge’s scores of 0.909/0.890/0.787. This strong
correlation validates our LLM-as-a-Judge system and also demonstrates the substantial reasoning
capability gained through ReaL-TG fine-tuning. Further annotation details are provided in App. L.

6 Conclusion

In summary, we present ReaL-TG, the first RL-based framework that enables LLMs to perform
explainable and effective link forecasting on TGs. We further introduce a new evaluation protocol,
featuring a new automated ranking metric coupled with a dedicated LLM-as-a-Judge system. Our
experiments show that ReaL-TG allows LLMs to self-explore reasoning strategies for TG link
forecasting, achieving improvements both in prediction accuracy and in generating well-grounded
reasoning traces. We also conduct human evaluation of both the LLM-as-a-Judge system and the
fine-tuned model, validating the effectiveness of our framework and evaluation methodology.
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A Limitations

The capabilities of LLMs fine-tuned with ReaL-TG are inherently limited by the input temporal
context graph. If key predictive signals lie outside the k-hop historical neighborhood considered in
T-CGS, ReaL-TG may struggle to identify the correct solution. Similar limitations are observed in
many TGNN models, which also rely on temporal neighbor sampling to select the most informative
neighbors for aggregation [36, 52]. In addition, LLMs are constrained by their context window size,
which limits the amount of temporal graph information they can process. For instance, the base model
used in our work, Qwen3-4B, has a context window of 32k tokens, making it infeasible to provide
entire real-world TGs as input. We also provide a more detailed discussion about this problem in
App. G.

B Broader Impact

Positive Societal Impact. In this work, we present ReaL-TG, a framework that fine-tunes LLMs
for explanatory TG link forecasting. It is among the first methods to showcase the ability of LLMs to
generate textual explanations for TG-related tasks, which we expect will stimulate broader interest in
adopting LLMs for explainability in temporal graph research. Beyond academic value, explainability
is crucial for industrial practitioners, particularly in high-stakes domains such as fraud detection and
network attack analysis. By enabling LLMs to deliver both accurate predictions and meaningful
explanations, ReaL-TG offers novel insights into the dynamics of evolving networks and opens
promising directions for future work.

Potential Negative Impact. Our work applies LLMs to TG link forecasting, and thus inherits
the well-known risks associated with LLMs. For instance, LLMs are prone to hallucination, often
producing responses that appear plausible but are factually incorrect. While we show that ReaL-TG
can mitigate hallucination to some extent, it cannot eliminate it entirely. Therefore, practitioners
adopting ReaL-TG should remain aware of these behaviors and exercise caution in fully trusting
LLM outputs, especially in safety-critical applications where misuse or overreliance could lead to
adverse outcomes.

C Dataset Access

All datasets used in this work is obtained from the Temporal Graph Benchmark Github repository3.
The TGB package provides download links along with the processed files. Some datasets used in
this work was added in recent updates to TGB such as subreddit, uci and enron. The download
links for the datasets from TGB are as follows: tgbl-wiki4, tgbl-subreddit5, tgbl-coin6,
tgbl-flight7, tgbl-uci8, tgbl-enron9.

3https://github.com/shenyangHuang/TGB
4https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-wiki-v2.zip
5https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-subreddit.zip
6https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-coin-v2.zip
7https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-flight-v2.zip
8https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-uci.zip
9https://object-arbutus.cloud.computecanada.ca/tgb/tgbl-enron.zip
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D Related Work

Here we provide a detailed discussion of related works.

Traditional Link Forecasting Methods. Traditional approaches to TG link forecasting span several
modeling paradigms. Memory-based methods such as TGN [36] maintain evolving node memories
to capture temporal dynamics, often combined with a Graph Neural Network (GNN) to aggregate
graph information. Another line of works, including JODIE [24], TCL [46], DyGFormer [55], and
DyGMamba [6], leverages sequence modeling units such as recurrent neural networks, Transform-
ers [43], and Mamba layers [14] to model temporal dynamics. Heuristic-based approaches like
EdgeBank [33] and Base 3 [23] avoid learnable parameters altogether, instead relying on carefully
designed algorithms to extract relevant information from past interactions. Pure MLP-based methods
such as GraphMixer [4] have also shown promise by directly encoding link information. Finally,
snapshot-based methods like ROLAND [54] and UTG [20] adapt standard GNN architectures to TGs
by modifying their training and inference procedures. While effective on standard benchmarks, these
methods require retraining from scratch (often with hyperparameter tuning) when applied to new
datasets, and they provide no explanations for their predictions, limiting their applicability in settings
where interpretability is critical.

LLMs for Graph Reasoning. A growing body of research explores LLMs’ reasoning abilities
on graph-related tasks. Fatemi et al. [10] show that appropriate graph encodings can improve
performance. Methods such as GraphToken[32], GraphLLM [1], and LLaGA [2] enhance reasoning
by jointly training LLMs with graph representations, while G1 [15] further demonstrates that RL
improves reasoning on static graphs. Recent works have started to examine LLMs’ capabilities on
TGs. LLM4DyG [57] shows that LLMs capture basic spatio-temporal dependencies but struggle
with multi-hop reasoning, and its evaluation is limited to small synthetic TGs. Li et al. [26] explore
in-context learning (ICL) on TGs, showing that performance is highly sensitive to prompt design
and subgraph selection. Concurrently, TGTalker [18] investigates ICL-based link forecasting on
real-world TGs. Despite these advances, none of the existing works addresses how to systematically
evaluate LLMs’ reasoning quality or how to guide them, through training, towards more effective
reasoning strategies for link forecasting on real-world TGs.

LLMs for Temporal Reasoning. Since the rise of LLMs, numerous benchmarks have been
proposed to evaluate their temporal reasoning capabilities across a broad range of skills [34, 3, 48, 21].
However, many of these benchmarks partly depend on real-world knowledge, enabling LLMs to
answer by recalling memorized facts rather than reasoning, which undermines the accuracy of
the evaluation. To address this, recent works introduce benchmarks with anonymized entities to
decouple temporal reasoning from factual knowledge [51, 11, 8]. Following this practice, we leverage
anonymized real-world TGs in our work, removing the influence of textual attributes and potential
risk of data leakage to more accurately reflect LLMs’ temporal reasoning abilities on the intrinsic
dynamics of TG evolution.

E Data Statistics

Table 4 presents the statistics of the evaluation data.

Table 4: Evaluation data statistics. All data are taken from TGB [19] and thus we omit the prefix in
dataset names. Inv. means involved, and T means timestamps. Note that we do not reassign node or
timestamp IDs; instead, we directly use the anonymized IDs provided in TGB.

Dataset # Inv. Nodes # Queries # Inv. Links # Inv. T

wiki 2,844 914 914 17,419
subreddit 8,097 888 888 44,716
coin 9,194 457 482 19,792
flight 5,449 488 952 387
uci 1,227 660 660 8,738
enron 296 839 1,283 3,802
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F Advantages of QA Formulation for TG Link Forecasting

Previous studies typically formulate TG link forecasting as a binary classification task, where models
are trained to determine whether a potential link (uq, vq, tq) exists.

Definition 3 Given a TG G, a source node uq ∈ N , a destination node vq ∈ N , a timestamp tq ∈ T ,
together with the history Htq = {(ui, vi, ti) | ti < tq, (ui, vi, ti) ∈ G}, TG link forecasting aims to
predict whether the interaction (uq, vq, tq) exists.

This makes the computation of ranking metrics such as MRR highly costly. To obtain the rank of a
node e ∈ N , the model must perform a forward pass for every candidate node in N , resulting in a
total of |N | passes that scale with |N | linearly. In contrast, by formulating TG link forecasting as a
QA problem, the model can directly output the predicted nodes in a single forward pass, substantially
reducing computational cost for real-world TGs with large |N |. In TGB [19], for each existing
positive link in the evaluation data, Huang et al. sample a set of negative links with false destination
nodes and compare the model scores assigned to them. Their evaluation does not consider all nodes
in |N |. In contrast, in this work, both MRR and pMRR are computed against the entire node set |N |,
which ensures evaluation completeness and efficiency.

G Can We Inject Graph Context in Other Ways?

A limitation of our approach of injecting graph context purely as text is that the amount of infor-
mation is constrained by the LLM’s context window. Several works instead compress graphs into
low-dimensional representations and jointly fine-tune them with language models [1, 2]. While
effective for downstream tasks, this strategy faces a key limitation for explainable link forecasting. In
principle, one could compress more graph information—including the entire historical graph—into
such representations, giving LLMs maximal input coverage. Although this offers an advantage over
our text-based method, overly compressed representations make it difficult for LLMs to distinguish
relevant information for prediction from redundant details. Furthermore, explainable forecasting
requires human-readable reasoning traces that depend directly on the input graph context. If the
graph is not provided as text, the LLM must also learn to reconstruct graphs from encoded represen-
tations back into natural language during inference, which is possible but would require substantial
methodological advances. We regard the problem of optimally providing graph context for LLMs as
outside the scope of this work, but an important open direction for future research.

H GRPO Details

Given the computed link forecasting reward, we update model parameters by maximizing the GRPO
objective:

JGRPO(θ) = EQ∼P (Q),{Oi}g
i=1∼πθold (O|Q)

1

g

g∑
i=1

1

|Oi|

|Oi|∑
j=1(

min

(
πθ(Oi,j |Q, Oi,<j)

πθold(Oi,j |Q, Oi,<j)
Advi,j , clip

(
πθ(Oi,j |Q, Oi,<j)

πθold(Oi,j |Q, Oi,<j)
, 1− ϵ, 1 + ϵ

)
Advi,j

)
− γDKL

(
πθ ∥πref

))
,

(1)
where P (Q) is the prompt sampling distribution. πθ and πθold denote the current and old policy
models10, respectively. ϵ is a constant that clips the objective to prevent the policy from changing too
drastically in a single update step. γ is a weighting factor for the KL-divergence DKL between πθ
and the pre-trained reference model πref, ensuring the fine-tuned model does not diverge excessively
from the original base model. For each prompt Q, g rollouts {Oi}gi=1 are sampled, each being a full
response, and the objective averages over all |Oi| tokens per rollout. Advi,j denotes the advantage of
the j-th token in the i-th rollout relative to the group of g rollouts, and is defined as

Advi,j =
r(Oi)− µ({r(Oi)}gi=1)

σ({r(Oi)}gi=1)
. (2)

We refer readers to [38] for more details of GRPO.
10In RL, we treat the LLM as a policy model, with the old policy model being the checkpoint before the

current update.
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I Implementation Details

Training. We train ReaL-TG-4B with Qwen3-4B as the base model. We develop ReaL-TG on top
of verl [39], a strong framework for post-training on language models. Our training is performed on
a compute node with 96 Intel(R) Xeon(R) Platinum 8469C CPU cores and 4 × Nvidia H100 GPU
each with 80GB memory. We provide the training hyperparameters in Table 5.

Table 5: Hyperparameter configurations of ReaL-TG-4B during training.
Model # Epoch Batch Size Mini-Batch Size Learning Rate γ Max Response Length # Rollout (g)

ReaL-TG-4B 3 32 16 2e-6 0.001 16,384 5

Evaluation. All evaluations are conducted on the same compute node as used for training. For
the Qwen3 family, we generate responses using verl, following their official repositories: Qwen3-
0.6B11, Qwen3-4B12, and Qwen3-8B13. The Gemma 3 family is run via Hugging Face Transformers
[49], using their official repositories: Gemma-3-4B-it14 and Gemma-3-12B-it15. We also evaluate
Llama-3.3-70B16 under the same setting. For GPT-5-mini, we use OpenAI’s openai-python API.
The specific release we use in our experiments is gpt-5-mini-2025-08-07. All reasoning models are
executed three times with default hyperparameters, and we report the mean results. Non-reasoning
models are run with temperature fixed to 0 for greedy decoding, while all other hyperparameters
follow their default configurations.

Judge Model. We employ GPT-4.1-mini for our LLM-as-a-Judge system, implemented via Ope-
nAI’s openai-python API. Specifically, we use the gpt-4.1-mini-2025-04-14 release in our experiments.
To ensure reproducibility, the model’s temperature is set to 0, and outputs are constrained to JSON
format for reliable parsing of judgment information.

J Full Prompts

Figure 2: Prompt template for LLM to do TG link forecasting in ReaL-TG.

11https://huggingface.co/Qwen/Qwen3-0.6B
12https://huggingface.co/Qwen/Qwen3-4B
13https://huggingface.co/Qwen/Qwen3-8B
14https://huggingface.co/google/gemma-3-4b-it
15https://huggingface.co/google/gemma-3-12b-it
16https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
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Figure 3: Prompt template for LLM-as-a-Judge system.
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K Effect of Base Model Size

In our experiments, we also train a separate model, ReaL-TG-0.6B, based on Qwen3-0.6B. We
evaluate its reasoning traces with our LLM-based Judge and compare them against Qwen3-4B and
ReaL-TG-4B in Table 6. We find that training from a much smaller base model results in significantly
worse reasoning quality: even with our RL framework, a 0.6B model is outperformed by a 4B model
substantially. Moreover, we observe a notable case of reward hacking [40]: in many reasoning traces,
the fine-tuned ReaL-TG-0.6B justifies its predictions by claiming “(uq, vq, tq) has already been seen
in the provided graph context”, which is impossible in a forecasting task. This indicates that the
model attempts to maximize the outcome-based reward by guessing correct answers while providing
a shallow thinking strategy. One major reason is due to the limited reasoning capacity of a tiny model.
During RL training, the fine-tuned model must generate full responses (rollouts) based on its own
reasoning, following a trial-and-error process guided by the achieved reward. If the base model is
too weak, it cannot effectively self-explore more advanced or reasonable reasoning strategies for TG
link forecasting. Our results further suggest that using a larger base model enables much stronger
fine-tuned performance. Nonetheless, we also observe that after fine-tuning with ReaL-TG, the 0.6B
model reaches reasoning quality comparable to Qwen3-4B, highlighting the effectiveness of our RL
framework.

Table 6: Results on the quality of reasoning traces compared with ReaL-TG-0.6B.
Model δ̄f δ̄lc δ̄a

ReaL-TG-0.6B 0.702 0.710 0.674
Qwen3-4B 0.683 0.700 0.653
ReaL-TG-4B 0.885 0.880 0.732

L Human Evaluation and Annotation Details

We recruit 5 human annotators to do evaluation on the quality of our LLM-as-a-Judge system as
well as the reasoning traces output by our fine-tuned ReaL-TG-4B. All annotators are either PhD
students or Postdoctoral Researchers in Computer Science with at least full professional proficiency
in English. All of them consent our usage of their data. The annotation guidelines are provided in
Fig. 4.

Human Evaluation on the Quality of the LLM-as-a-Judge System. To directly assess the
reliability of our LLM-based judging system, we randomly sample 50 evaluation examples and
collect both the responses generated by ReaL-TG-4B and the corresponding judgments from the
system. We then recruit five human annotators to evaluate the quality of these judgments. For each of
the three criteria, annotators assign a score from {0,1,2}, with higher values indicating better judging
quality. The resulting average scores are 1.71 for faithfulness, 1.88 for logical consistency, and 1.71
for answer–explanation alignment (maximum 2), demonstrating excellent judgment quality. Due
to cost constraints, we employ GPT-4.1 mini as the judge, however, judging quality is strongly tied
to the capability of the underlying model [17] and can be further enhanced by switching to a more
advanced judge, such as Gemini 2.5 Pro.

M Qualitative Analysis: How Does RL Help?

From Table 1 and 2, we observe consistent improvements of the ReaL-TG-trained model over its
base model. To illustrate what the model has learned through RL that leads to these gains, we provide
a qualitative analysis based on two case studies, comparing ReaL-TG-4B and Qwen3-4B. In Case
1 (Fig. 5 and 6), we observe that after RL, the model no longer exhausts the context window by
repeating the same content. Instead, it predicts the most plausible destination node by leveraging
interaction recency. In Case 2 (Fig. 5 and 7), we observe that after RL, the model is less prone to
getting stuck in iterative self-reflection and demonstrates greater confidence and effectiveness in
applying reasoning strategies to support its predictions. To summarize, exploration during RL, in
which an LLM tries different strategies for forecasting links depending on the observed graph context,
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Figure 4: Human Annotation guideline. The detailed evaluation procedure is taken from the prompt
template for the LLM-based judging system in Fig. 3.

is essential for improving both prediction accuracy and the quality of reasoning traces. Although base
models already show strong abilities in producing plausible reasoning, they still need to learn how to
adjust their reasoning style to the specific context in which it is applied.

18



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Our claims are supported by extensive experiments in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Yes, we discuss the limitations of the paper in detail in Appendix A.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: No formal theorems or proofs are present in the paper.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: Yes, we provide detailed instructions for reproducibility of our experiments,
data and evaluation settings in Section 3, 4 and 5. Additional details regarding baseline
results are reported in Appendix 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The datasets used for experiment are from the publicly available TGB bench-
mark [19]. The download links to the datasets are also provided in Appendix C. Detailed
instructions for implementation are provided in Section 3, 4 and 5.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All experimental details are provided in Section 3, 4 and 5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: In ReaL-TG we fine-tune pre-trained open-source LLMs for temporal link
prediction and evaluation thus the weights are pre-trained. Therefore, we report our results
without error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We report the detailed compute resources in Appendix I.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Yes, we conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Yes, the positive and negative societal impact of the work is discussed in
Appendix B.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our proposed ReaL-TG is a RL fine-tuning framework for LLMs on temporal
data thus any safeguards on the base LLM used for fine-tuning can be directly applied here
as well.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: Yes, all datasets are downloaded from TGB and the dataset licenses can be
found in the original TGB paper [19], we provide the dataset download links in Appendix C.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our ReaL-TG framework provides a novel way of using RL to fine-tune LLM
for temporal graph link prediction and explanation thus no new asset are released. The
details for our method is found in Section 3.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We conducted a human annotation experiment to evaluate the quality of
reasoning traces generated by ReaL-TG, five human annotators volunteered for this experi-
ments and provided assistance. The detailed instructions for this experiment is included in
Appendix L.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA] .
Justification: Our research do not study human subjects.
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Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: Yes, our ReaL-TG framework uses a pre-trained LLM as an important compo-
nent to fine-tune on. LLM used in ReaL-TG are used for temporal link prediction and link
explanation.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM


Case1
Gc:
(3390, 8648, 833529), (3390, 8648, 927657),
(4272, 8929, 1027429), (4272, 8929, 1027461),
(104, 8648, 1093360), (3390, 8648, 1103097),
(3390, 8648, 1103671), (167, 8648, 1266808),
(167, 8648, 1266809), (866, 8648, 1278569),
(4459, 8648, 1335789), (4459, 8648, 1335874),
(3390, 8929, 1344764), (3390, 8648, 1344818),
(3390, 8648, 1344868), (4459, 8648, 1353699),
(4459, 8648, 1353719), (866, 8648, 1389561),
(866, 8648, 1390132), (866, 8648, 1420514), (997,
8929, 1444089), (997, 8929, 1444395), (997,
8929, 1446670), (997, 8929, 1446795), (997,
8929, 1450527), (423, 8648, 1451994), (3390,
8929, 1461814), (3390, 8648, 1463750), (859,
8648, 1504113), (866, 8648, 1517985), (866,
8648, 1518071), (866, 8648, 1518498), (866,
8648, 1519023), (997, 8929, 1522620), (2727,
8648, 1524334), (866, 8648, 1525088), (866,
8648, 1525235), (5522, 8929, 1525556), (2863,
8929, 1533240), (997, 8929, 1534720), (2863,
8929, 1535928), (2863, 8929, 1535943), (4531,
8929, 1536373), (3390, 8929, 1547848), (3390,
8648, 1549002), (233, 8648, 1575061), (4459,
8648, 1590422), (4459, 8648, 1593828), (611,
8648, 1596720), (5937, 8648, 1606417), (5937,
8648, 1606438), (5937, 8648, 1606461), (5938,
8648, 1607964), (5938, 8648, 1608194), (3390,
8648, 1620262), (997, 8929, 1620278), (997,
8929, 1620574), (997, 8929, 1620852), (997,
8929, 1621381), (997, 8929, 1622753), (997,
8929, 1622892), (5522, 8929, 1624366), (5522,
8929, 1624414), (997, 8929, 1624661), (997,
8929, 1628002), (997, 8929, 1657475), (3390,
8929, 1691346), (997, 8929, 1695077), (997,
8929, 1695521), (3390, 8929, 1696857), (6942,
8929, 2061590), (997, 8929, 2062009), (997,
8929, 2133359), (997, 8929, 2133419), (5522,
8929, 2218607), (7458, 8929, 2262998), (7458,
8929, 2264131), (7458, 8929, 2264356), (7458,
8929, 2264753), (7458, 8929, 2265033), (997,
8929, 2283892), (997, 8929, 2283988), (3390,
8929, 2289548), (8173, 8929, 2646640), (8173,
8929, 2646702), (997, 8929, 2648320), (5522,
8929, 2656128), (997, 8929, 2656490), (8192,
8929, 2659851), (8192, 8929, 2659898), (8192,
8929, 2660147), (8192, 8929, 2660185), (17,
8929, 2660187), (997, 8929, 2663130), (997, 8929,
2663161), (8199, 8929, 2664402), (3390, 8929,
2677842)
q: (3390, ?, 2677935)
{vq}: {8929}

Case 2
Gc:
(574, 8552, 1419500), (574, 8552, 1419845),
(1601, 8552, 1420897), (3458, 8552, 1432139),
(5539, 8552, 1448204), (5539, 8552, 1448331),
(1726, 8552, 1458033), (5204, 8552, 1502319),
(1206, 8552, 1505338), (2466, 8852, 2315899),
(221, 9149, 2439895), (7854, 8852, 2460397),
(3138, 9149, 2473041), (1206, 9149, 2473942),
(499, 9149, 2479422), (1206, 8734, 2481811),
(1206, 8852, 2481993), (499, 9149, 2484302),
(221, 9149, 2489612), (4096, 8734, 2501385),
(5528, 8734, 2501601), (4096, 8734, 2501828),
(1942, 8852, 2502029), (1187, 8734, 2508169),
(1206, 8734, 2508797), (1206, 8734, 2509084),
(1206, 8734, 2509168), (1206, 8734, 2509314),
(1206, 8734, 2509471), (221, 9149, 2515672),
(221, 9149, 2516310), (221, 9149, 2517110), (221,
9149, 2518569), (7959, 8734, 2522021), (221,
8734, 2526640), (221, 8734, 2528137), (1221,
8734, 2531985), (1221, 8734, 2532364), (1221,
8734, 2532652), (1343, 8734, 2536121), (1369,
8734, 2539035), (1206, 8734, 2539495), (1206,
8734, 2539603), (2466, 8852, 2561406), (2210,
8734, 2564667), (7914, 8734, 2566838), (8035,
8552, 2567081), (2761, 8552, 2575312), (1680,
8734, 2579425), (1206, 9149, 2586472), (1206,
9149, 2586707), (8035, 8552, 2591725), (1680,
8734, 2593063), (1680, 8734, 2593653), (1680,
8734, 2593703), (1680, 8734, 2594042), (1680,
8734, 2594277), (1680, 8734, 2594499), (4554,
8734, 2597331), (2723, 8852, 2603595), (2723,
8852, 2603688), (2723, 8852, 2603764), (2723,
8852, 2603801), (2723, 8852, 2603995), (221,
8734, 2606232), (1343, 8734, 2614416), (4752,
9084, 2626153), (1973, 9084, 2626233), (1973,
9084, 2626264), (1973, 9084, 2626290), (2425,
9084, 2626614), (8135, 9084, 2626712), (480,
9084, 2626802), (480, 9084, 2626960), (480, 9084,
2627053), (480, 9084, 2627129), (1206, 9084,
2627443), (1206, 8734, 2628541), (1206, 8734,
2628595), (4085, 8552, 2644290), (1206, 8552,
2646542), (4638, 8852, 2657228), (4638, 8852,
2657343), (4638, 8852, 2657416), (4638, 8852,
2658765), (4638, 8852, 2659045), (4638, 8852,
2661840), (4638, 8852, 2662118), (1206, 8852,
2670794), (1206, 8852, 2670884)
q: (1206, ?, 2670969)
{vq}: {8852}

Figure 5: The verbalized temporal context graph, query, and ground truths in Case 1 and 2. The input
prompts to two cases are derived from combining contents in this figure with the prompt template in
Fig. 2.
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ReaL-TG-4B
<think>
Okay, let’s tackle this problem. The user is asking for
the most likely destination node for a query where the
source node is 3390 and the timestamp is 2,677,935.
First, I need to look at all the historical interactions
involving node 3390 and see if there’s a pattern
or frequent destination nodes around the query
timestamp. The query timestamp is 2,677,935. Let’s
check each entry where the source node is 3390...
Looking at the list, I see an entry: (3390, 8929,
2677842). The timestamp here is 2,677,842, which
is before the query timestamp... So, this interaction
happened recently. The destination node is 8929...
But maybe there are other interactions where source
is 3390... For example, earlier entries: like (3390,
8648, 1620262), (3390, 8929, 1691346), (3390, 8929,
2677842). So, three interactions where source is 3390.
Let’s check their timestamps. The first is at 1,620,262
(before 2.6m), second at 1,691,346 (before 2.6m),
third at 2,677,842 (just before query time). So, the
most recent is with 8929 at 2.6m. So, the answer
would be 8929.
</think>
<answer>
[8929]
</answer>

Qwen3-4B
<think>
Okay, let’s tackle this problem. The user wants to
predict the next destination node for source node 3390
at timestamp 2677935 based on historical interactions.
First, I need to look at all the historical data provided.
Looking through the list, I notice that 3390 is the
source in several interactions. Let me list those out.
The historical entries where the source is 3390 are:
(3390, 8648, 833529)
(3390, 8648, 927657)
(3390, 8929, 1027429)...
(3390, 8648, 1344868)
(3390, 8648, 1344868)
(3390, 8648, 1344868)
(3390, 8648, 1344868)...

Figure 6: Comparison of reasoning traces on the same evaluation data generated by ReaL-TG-4B
and Qwen3-4B on Case 1. The black bold part indicates the effective reasoning strategy used
by ReaL-TG-4B to obtain the correct prediction, whereas the red bold part marks the low-quality
reasoning produced by Qwen3-4B. Qwen3-4B failed to complete its reasoning and instead filled the
context window by repeatedly generating the same link.
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ReaL-TG-4B
<think>
Okay, let’s tackle this problem. The user is asking for
the most likely destination node for a query where the
source node is 1206 and the timestamp is 2,670,969.
They provided a list of historical interactions between
nodes with their timestamps.
First, I need to look at all the historical interactions
involving node 1206 and see if there’s a pattern or
frequent destinations. The latest interaction with
node 1206 is at timestamp 2,670,884 (for destination
8852)... So, the most recent interaction is between
1206 and 8852.
But maybe there are other interactions between
1206 and other nodes that are more frequent? Let
me check all the entries where the source node is
1206.
Looking at the list:
- (1206, 8852, 2670794)
- (1206, 8852, 2670884)
So, the only interaction involving 1206 as the source
is with node 8852, at timestamps 2,670,794 and
2,670,884... So, the answer is just node 8852.
</think>
<answer>
[8852]
</answer>

Qwen3-4B
<think>
Okay, let’s tackle this problem. The user wants to pre-
dict the most likely destination nodes for the source
node 1206 at timestamp 2670969 based on the histori-
cal interactions provided.
First, I need to look at all the historical interactions
involving source node 1206. Let me go through the list
and note down each entry where the source is 1206.
Looking at the data, here are the entries with source
1206:
- (1206, 8734, 2481811)
- (1206, 8852, 2481993)
- (1206, 8734, 2484302)
- (221, 9149, 2489612)
- (1206, 8734, 2498082)
Wait, no, that’s not in the list. Let me check again...
Wait, no. Let me go through each entry step by
step...
Wait, no. Wait, let me check again. The user pro-
vided a long list. Let me parse it correctly. Looking
at the list again, the entries with source 1206:...
Wait, no, that’s not correct. Let me go through the
list again. Looking at the list:...
Wait, no, that’s not correct. Let me check again.
The original list is:...
no, I think I need to check again. Let me look at
the original data again...
no, that’s not in the list. Wait, maybe I’m miscount-
ing. Actually, the original data includes:...
no, I think I’m missing some entries. Let me check
the original data again...
Wait, I think I’m getting confused. Let me go through
the entire list again...
Now, based on the historical interactions, what are
the most common destination nodes for source 1206?
Looking at the historical data for source 1206:
- 8734 appears multiple times.
- 8852 appears multiple times.
- 9149 appears multiple times.
I think I need to stop here and proceed with the data I
have. Assuming that the destination nodes for source
1206 are 8734, 8852, and 9149, and given that the
query is at timestamp 2670969, which is after the
last interaction with 8852 at 2670884, but before
the next interactions with 8852 at 2670794, which
is earlier...
But this is just a guess. Alternatively, if the user has
more entries, but I’m not seeing them. However, the
query is at 2670969, which is after the last interaction
with 8852 at 2670884, so the next possible destination
could be based on the previous interactions.
Given that, the most likely destinations are 8734, 8852,
and 9149.
</think>
<answer>
[8734, 8852, 9149]
</answer>

Figure 7: Comparison of reasoning traces on the same evaluation data generated by ReaL-TG-4B
and Qwen3-4B on Case 2. The black bold part indicates the effective reasoning strategy used
by ReaL-TG-4B to obtain the correct prediction, whereas the red bold part marks the low-quality
reasoning produced by Qwen3-4B. Qwen3-4B is prone to hallucinate incorrect links in the context
graph and becomes entangled in iterative self-reflection, consuming a large number of tokens without
making substantive progress. Ultimately, it abandons the reasoning process and resorts to guessing
answers independently of the context it was struggling with.

28


	Introduction
	Preliminaries
	ReaL-TG
	Evaluation Protocol
	Experiments
	Conclusion
	Limitations
	Broader Impact
	Dataset Access
	Related Work
	Data Statistics
	Advantages of QA Formulation for TG Link Forecasting
	Can We Inject Graph Context in Other Ways?
	GRPO Details
	Implementation Details
	Full Prompts
	Effect of Base Model Size
	Human Evaluation and Annotation Details
	Qualitative Analysis: How Does RL Help?

