
Time Series Generation Under Data Scarcity:
A Unified Generative Modeling Approach

Tal Gonen∗ Itai Pemper∗ Ilan Naiman Nimrod Berman Omri Azencot
Faculty of Computer and Information Science

Ben-Gurion University of The Negev
{talgon, itaipem, naimani, bermann}@post.bgu.ac.il

azencot@bgu.ac.il

Abstract

Generative modeling of time series is a central challenge in time series analysis,
particularly under data-scarce conditions. Despite recent advances in generative
modeling, a comprehensive understanding of how state-of-the-art generative models
perform under limited supervision remains lacking. In this work, we conduct the
first large-scale study evaluating leading generative models in data-scarce settings,
revealing a substantial performance gap between full-data and data-scarce regimes.
To close this gap, we propose a unified diffusion-based generative framework
that can synthesize high-fidelity time series across diverse domains using just a
few examples. Our model is pre-trained on a large, heterogeneous collection of
time series datasets, enabling it to learn generalizable temporal representations. It
further incorporates architectural innovations such as dynamic convolutional layers
for flexible channel adaptation and dataset token conditioning for domain-aware
generation. Without requiring abundant supervision, our unified model achieves
state-of-the-art performance in few-shot settings—outperforming domain-specific
baselines across a wide range of subset sizes. Remarkably, it also surpasses all
baselines even when tested on full datasets benchmarks, highlighting the strength
of pre-training and cross-domain generalization. We hope this work encourages
the community to revisit few-shot generative modeling as a key problem in time
series research and pursue unified solutions that scale efficiently across domains.
Code is available at https://github.com/azencot-group/ImagenFew.

1 Introduction

Many engineering and scientific domains face challenges in collecting high-quality time series
data due to cost, privacy, and other barriers. In seismology, earthquake recordings are sparse and
geographically limited [57]; climate research requires expensive, long-term sensor deployments [30];
and biomedical data like ECGs often suffer from under-representation and privacy constraints [15, 49].
These limitations hinder the development of robust machine learning models, which typically rely on
large, diverse datasets. A promising alternative to large-scale time series collection is the training of
generation models [73, 51, 50, 74]. These models aim to capture both the distribution of features at
each time step and the complex temporal dynamics across time. Once trained to approximate the
underlying data distribution, such models enable the generation of novel, reliable data samples related
to the original dataset. While generative modeling offers a promising way to alleviate data scarcity,
existing models are often designed and evaluated under the assumption of abundant training data.
In particular, despite the growing interest in generative approaches, their performance in low-data
settings, which reflect many real-world scientific applications, remains largely unexplored.

∗Equal Contribution

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/azencot-group/ImagenFew


In this context, our first main contribution is a systematic evaluation of state-of-the-art time series
generation models under low-data conditions. We introduce a novel benchmark that brings together
datasets from diverse real-world domains, including finance, climate, and biomedicine, and simulate
data-scarce scenarios by limiting training to a small fraction of each dataset (e.g., 5%) [11]. This
benchmark allows us to assess the resilience of generative models when data is limited, mirroring
the constraints commonly faced in practical applications. Our results reveal a consistent drop in
generation quality under such conditions, highlighting that current approaches struggle to maintain
good performance with limited data. This finding underscores the pressing need for more robust
methods that can operate effectively in low-data regimes.

Existing time series generation models are typically trained separately for each dataset or problem
domain [73, 51, 50, 74, 34], a paradigm that proves restrictive in scenarios characterized by limited
data availability. Inspired by the success of unified training approaches for vision [39], language [8],
and non-generative tasks in time series [24, 11, 70, 17], we extend this paradigm to generative
modeling under data-scarce conditions. Rather than training separate models for each dataset, we
aim to build a single generative model exposed to a wide range of domains, including energy,
finance, climate, and traffic, to encourage cross-domain generalization and few-shot generation. We
hypothesize that such diversity enables the model to learn transferable temporal structures, improving
its ability to generate high-quality samples even when only a few training examples are available.

To realize this goal, our second main contribution is the development of a unified generative model
for time series data, trained across a heterogeneous set of domains. We first pre-train our model
on a large, diverse time series corpus, and then fine-tune it on downstream generative tasks with
limited data. Our architecture builds on the ImagenTime framework [50], which maps time series to
invertible image representations, enabling the use of diffusion-based generation in the image domain.
To seamlessly handle datasets with varying channel dimensions, we propose a Dynamic Convolution
(DyConv) layer that interpolates the weights of the channel dimension, ensuring a unified architecture
even when test-time inputs differ in channels structure. Finally, to enable domain-specific sampling
in our multi-domain trained model, we introduce a dataset token mechanism that conditions the
diffusion process on domain-specific information.

Our third main contribution is the empirical demonstration of significant improvements over existing
methods. Our approach maintains strong performance when trained on only 15%, 10%, or even
5% of the original dataset. We further evaluate our model under extreme low-resource conditions,
where only 10, 25 and 50 training examples are available, and observe that it continues to produce
high-quality samples. Specifically, our unified model achieves, on average, over 47.65% and 23.94%
performance gains on Discriminative Score and contextFID, respectively, compared to state-of-the-art
baselines across multiple datasets and data-limited scenarios. Beyond performance metrics, we
conduct in-depth analyses, including scaling law experiments, to better understand the relationship
between data volume, model capacity, and generalization. We believe that our model, extensive
empirical evaluation, and the proposed benchmark, can serve as a foundation for further research and
drive progress in time series generation under data-constrained environments.

2 Related Work
Generative modeling of time series. There are three major existing paradigms for generative
modeling of time series data. The first is based on Generative Adversarial Networks (GANs) [26],
which have been applied to capture temporal dynamics through adversarial learning [73, 34]. A
second line of work employs Variational Autoencoders (VAEs) [38], leveraging probabilistic latent
representations to model sequential structure [51, 42, 19]. More recently, the success of diffusion
models in domains such as image [28, 62, 61, 63, 4, 36, 6], audio generation [40, 44] and other
domains [29, 5, 76] has sparked growing interest in their adaptation to time series [16, 74, 50, 22].
Despite these advances, existing models have largely been developed and evaluated under the
assumption of abundant training data. None of these approaches has systematically investigated
performance under severe data scarcity, a condition common in many real-world domains such as
healthcare, seismology, and climate science. In contrast, our work demonstrates the feasibility of
time series generation under extreme low-data conditions, highlighting its practical relevance and
robustness in real-world deployment scenarios.

Unified training of time series. Recent advances in foundation models, such as large language
models [8, 67, 65] and vision transformers [39, 45], demonstrate the power of training on large-scale,

2



diverse datasets to enable broad generalization across tasks with minimal fine-tuning [7]. Motivated by
this success, researchers have begun exploring analogous approaches in time series analysis, aiming
to develop models with similar general-purpose capabilities. One stream of research investigates how
to adapt pre-trained language models for time series tasks [77, 27, 10, 35, 13]. Another stream of
work focuses on designing specialized architectures that can handle the heterogeneity of time series
data [17, 71, 24, 11]. For example, TimesNet [71] extracts frequency-aware representations using
Fourier-based transformations to better capture multi-scale temporal patterns. UniTS [24] employs a
modified transformer block to capture universal time series representations, enabling transferability
from a heterogeneous, multi-domain pre-training dataset, and TimesFM [17] is based on pre-training
a decoder-style attention model using a large time series corpus. In spite of the significant progress
in time series tasks such as forecasting, classification, and anomaly detection, generative modeling
for time series are typically trained on and adapted to individual datasets. In this work, we take a
step toward unifying generative modeling through pre-training, introducing a unified model for time
series generation. Our goal is to develop a single, versatile model that can generalize across domains
and perform effectively on extremely small datasets, requiring only minimal fine-tuning.

3 Background

Problem formulation. Let a time series be defined as a sequence of real-valued vectors observed
at discrete time steps, x1:T = (x1, x2, . . . , xT ), where each xt ∈ Rd. We are given a small dataset
Ddata = {x(i)

1:T }Ni=1 of samples drawn from an unknown distribution p(x1:T ). When N is small
enough that generative models struggle to learn meaningful temporal structure, we define it as the
few-shot setting. This typically corresponds to datasets containing tens of examples, or less than one
order of magnitude below the size commonly used to train deep time series models. The goal is to
learn a generative model pθ(x1:T ) such that pθ(x1:T ) ≈ p(x1:T ), despite the limited size of Ddata.

ImagenTime [50] is a diffusion-based framework for time series generation that leverages advances
in high-resolution image synthesis. It first maps time series into 2D images using, e.g., a delay
embedding transformation. In delay embedding, a univariate or multivariate time series is mapped
into an image by extracting local patches over the temporal axis and organizing them spatially.
Mapping a time series to the image domain enables the use of powerful vision diffusion models for
generative modeling. After generation in the image space, the samples are mapped back to the time
series domain via an inverse delay embedding. This approach bypasses architectural constraints of
temporal models and achieves strong performance in both unconditional and conditional generation
tasks. In our work, we adopt ImagenTime as the generative backbone due to its high sample fidelity
and compatibility with few-shot adaptation.

4 Benchmarking Few-Shot Capabilities of Generative Models

We study state-of-the-art time series generators in the few-shot regime, where only a limited collection
Ddata = {x(i)

1:T }Ni=1 is available, with small N (from tens to hundreds of examples). Our comparison
spans the three major generative paradigms: VAEs, GANs, and diffusion models. We evaluate four
strong recent representatives of these approaches: TimeGAN [73], KoVAE [51], DiffusionTS [74],
and ImagenTime [50]. All four have achieved impressive results on well-established benchmarks
when trained on abundant data; here, we test how well those results transfer to data-scarce settings.

Benchmark datasets and evaluation metrics. To evaluate their performance, we collect a suite
of 12 real-world and synthetic datasets covering a wide spectrum of domains, temporal dynamics,
and channel dimensionalities: MuJoCo [66], ETTm1, ETTm2, ETTh2 [75], Sine, Weather [69],
ILI [12], Saugeen River Flow [47], ECG200 [53], SelfRegulationSCP1 [2], AirQuality [72], and
StarLightCurves [56]. We provide detailed statistics and preprocessing steps in App. A.2. To simulate
data scarcity, we subsample each dataset using two complementary strategies: percentage-based
sampling, retaining 5%, 10%, or 15% of the sequences; and fixed-count sampling, limiting the
training set to {#10, #25, #50} sequences. Unlike genuinely tiny datasets, this design lets us compare
generated samples with held-out real data from the same distribution. We assess generation quality
with three widely adopted measures for time series: Discriminative Score [73], Predictive Score [73],
and contextFID [33]. These metrics respectively quantify (i) the distinguishability of generated from

3



Ours ImagenTime DiffTS KoVAE TimeGAN

A

Train subset size

m
ea

n
D

is
c.

B

Train subset size

co
nt

ex
tF

ID

Figure 1: We compare five models in a few-shot scenario using Discriminative Score (A) and
contextFID (B), where in both, lower-is-better. Our model consistently outperforms others across all
subset sizes, with clear gains on smaller subsets. TimeGAN consistently reports contextFID scores
above 6.5 across all subset sizes, which is why it is not visible in the visualization shown in Fig. (B).

real samples, (ii) the preservation of temporal dependencies important for prediction, and (iii) the
proximity of contextual embeddings between synthetic and real sequences. Formal definitions and
implementation details are given in App. B.3.

Results. We train all models across all setups (one model per subset) and present the partial results
in Fig. 1. The plots show that state-of-the-art (SOTA) models experience significant performance
degradation in data-scarce settings. More comprehensive results are provided in Tab. 1. These findings
confirm that few-shot generation remains a major challenge for current SOTA models. A commonly
proposed approach to mitigate data scarcity is data augmentation [37, 60]. However, in the context
of time series, augmentation techniques may harm performance when the underlying distributional
biases are not aligned [68, 52]. Instead, we draw inspiration from the promising performance of
unified training frameworks in zero- and few-shot time-series forecasting [24, 11, 70, 17]. Building
on these advances, we extend the unified-training paradigm to the generative setting and develop a
model pθ(x1:T | Ddata) that can effectively adapt to the few-shot target distribution and approximate
p(x1:T ) for novel time series generation tasks.

5 Our Unified Generative Time Series Model

Existing methods for time series generation typically train a dedicated model for each specific dataset
or domain [73, 51, 50, 74, 34]. While effective when abundant training data is available, such
strategies become impractical in low-data settings, where the low number of examples limits the
model’s ability to produce high-quality samples (Sec. 4). To address this, we propose a unified
generative modeling framework that trains a single model across a heterogeneous collection of time
series datasets spanning multiple domains, including finance, energy, climate, traffic, and biomedical
signals, see App. A.1. The key idea is that exposure to a broad range of temporal structures and
statistical properties during pre-training enables the model to learn domain-agnostic representations
of time series dynamics. This, in turn, improves the model’s ability to generate high-quality samples
even when only a few examples from a new target domain are available. Analogous to the way
foundation models in vision and language benefit from large-scale, diverse pre-training [55, 8, 54],
we hypothesize that a unified time series generative model can generalize more effectively under
few-shot conditions by leveraging prior knowledge acquired from diverse sources.

Modeling. Similarly to ImagenTime [50], our approach builds upon an image-based framework [36].
We adopt this image-based generative backbone for several key reasons: (1) it achieves state-of-the-art
results in unconditional and conditional time series generation; (2) it exhibits strong generalization
capabilities across a wide range of sequence lengths, including very long horizons; and (3) it benefits
directly from rapid progress in the vision diffusion community, allowing continual improvements
in generative quality through better backbone models. We illustrate the core components of our
generative modeling framework in Fig. 2. For each sample in the train set, x1:T = (x1, x2, . . . , xT ),
where each xt ∈ Rd and d is the channel number, we convert it through a delay embedding

4



Channels

Data Token

UN
et

Dy
Co

nv

Dy
Co

nv

Inference

Padding

Figure 2: In our architecture, time series data from a wide range of domains are first transformed
into image representations. Then, their noisy version and their data tokens are processed by a neural
network equipped with dynamic convolutions (DyConvs), which accommodate varying channel sizes.
Finally, only during inference, the generated images are transformed back into time series data.

transformation, T , into an image T (x1:T ) = x0
img ∈ RC×H×W . We additionally pad the resulting

image to a square shape. We follow EDM [36] and ImagenTime [50] frameworks, adding noise
ε ∼ N (0, σ2I) to x0

img, xσ
img = x0

img + ε, where σ is the noise schedule. Then, the objective of the
model is to clean the noise via the following loss function:

L = Eσ,x0
img,ε

[λ(σ)
∥∥Γθ(x

σ
img;σ)− x0

img

∥∥2
2
] , (1)

where λ(σ) is a weighting function and Γθ is defined as follows:

Γθ(x
σ
img;σ) = cskip(σ)x

σ
img + cout(σ)Nθ(cin(σ)x

σ
img; cnoise(σ); y) , (2)

where Nθ is a neural network. cskip modulates the skip connection, cin and cout scale the input and
output magnitudes, and cnoise maps noise level σ into a conditioning input for Nθ. For robust training,
we use the same values as in EDM’s preconditioning [36]. We feed the network with an additional
optional dataset token input y, explained next. Unlike [50], we apply a dynamic binary mask to the
padded input sequences. The mask is adjusted at runtime based on the actual sequence length, marking
valid time steps and excluding padded regions. This allows the model to distinguish meaningful
data from padding and ensures that, during training, it learns to focus exclusively on valid regions
while effectively ignoring padded values. This mechanism enables the model to be pre-trained on
sequences of a fixed length and subsequently fine-tuned on sequences of different lengths, supporting
time series generation of variable-length inputs without architectural modifications or additional
pre-training. In contrast to traditional approaches [50, 73, 74], which typically rely on fixed-length
inputs or require retraining for each length, our method naturally supports cross-temporal resolution
transfer. Additional implementation details of the masking mechanism are provided in Appendix B.1.
This capability is empirically validated by our experiments in Section 6.2, which show that models
pre-trained on one sequence length maintain strong performance when fine-tuned on different lengths.

DyConv. Unlike prior generative time series models, our model must flexibly handle varying input
and output channel sizes. A common workaround involves setting a maximum number of channels
and padding all samples to match this size—similar to how we standardized the time axis. While
simple, this approach (1) restricts the few-shot training regime since the input channel is constrained
to a fixed size, and (2) wastes computation on datasets with fewer channels. We address this by
DyConv, a dynamic convolutional layer for adaptive channel handling. Inspired by DyLinear [24], we
use a single learnable canonical kernel of shape [K,K,C0, C1], where K is the kernel size and C0, C1

are fixed reference dimensions. At runtime, the kernel is resized via bicubic interpolation to match
each dataset’s actual channel dimensions. Formally, let the input be x ∈ RCin×H×W and the target
channel size Cout. DyConv constructs a kernel Winterp ∈ RK×K×Cin×Cout via bicubic interpolation
over the channel dimensions of a canonical kernel W :

DyConv(x;W ) = Conv2D (x, Interp(W,Cin, Cout)) , (3)

with a similar interpolation applied to the bias. Unlike standard convolutions, DyConv allows a
single parameter set to generalize across datasets with varying input/output channels. In our UNet,
DyConv is used both to map inputs to a shared embedding space and to project outputs back to the
original dimensionality. This enables handling of multivariate time series with differing variable

5



counts, without architecture changes. In Sec. 6.5, we show that training with DyConv significantly
outperforms naïve channel padding, offering improved efficiency and avoiding the constraints imposed
by padding. Further details and ablation results are provided in App. B.1 and App. C.1.

Dataset token. To enable multi-domain sampling, we introduce a dataset token mechanism that
conditions the diffusion process on domain-specific information. Each dataset is assigned a unique
token that acts as an identifier of its source domain. During both training and generation, this token
is mapped to a learnable embedding and injected into the denoising network via the adaptive group
normalization (AdaGN) module [20]. This embedding is incorporated into the intermediate features
of the diffusion model, allowing it to modulate its behavior based on the dataset context. Through this
mechanism, the model captures dataset-specific characteristics while still leveraging shared temporal
patterns across domains. At inference time, the dataset token continues to guide the generative
process, ensuring that samples are drawn from the correct target distribution corresponding to the
desired domain. Additionally, we experiment with training and fine-tuning without the data token.
Interestingly, while pre-training without the dataset token is still effective when fine-tuning occurs,
we cannot reliably sample from the pre-trained model without a fine-tuning stage, see Sec. 6.5.

Pre-training. We pre-train our model across a wide collection of time series datasets. This unified
pre-training exposes the model to a broad range of temporal structures and input dimensionalities,
encouraging the learning of transferable representations that are useful in data-scarce settings. Specifi-
cally, we utilize the datasets: Stocks, Energy [9], ETTh1 [75], Exchange [41], MSL [32], SMAP [32],
PSM [1], SMD [64], ECG5000 [25], NonInvasiveFetalECGThorax1 [59], SelfRegulationSCP2 [2],
Blink [14], ElectricDevices [43], Trace [58], FordB [18], UWaveGestureLibrary [46], EMOPain [21],
Chinatown [18], and SharePriceIncrease [48]. These datasets combine commonly used collections
from various tasks in UniTS [24] with datasets from generative modeling research [50, 74]. In our
approach, all of these datasets are jointly employed during the pre-training phase, encompassing
approximately 300,000 time series in total. During pre-training, we utilize the full corpus over 1,000
epochs with a learning rate of 10−4, conducted in a distributed setup across two NVIDIA RTX 4090
GPUs, requiring roughly 4 hours of training time.

Fine-tuning for few-shot generation. To address data scarcity in novel domains, we fine-tune the
model with a dedicated dataset token for each new dataset encountered. This token is mapped to a
learnable embedding that represents the identity of the new domain. The embedding is initialized
randomly and optimized jointly with the rest of the model during fine-tuning. It serves as a signal
to distinguish the target dataset from those seen during pre-training, thereby guiding the model
to generate samples that reflect the unique characteristics of the new distribution. Fine-tuning is
performed on a small subset of the target dataset, in accordance with our few-shot benchmark protocol.
This enables the model to quickly adapt its generative behavior to the new domain, supporting strong
generalization in low-resource scenarios. We also experimented with other fine-tuning strategies, such
as freezing all weights except the biases or applying Low-Rank Adaptation (LoRA) [31]. However,
we observe poor results compared to our fine-tuning, see a detailed analysis in App. C.2.

6 Experiments

In this section, we empirically evaluate the performance and key aspects of our model. We start by
evaluating its performance on the novel few-shot generation benchmark against the SOTA baselines
(Sec. 6.1). Then, we also show our robustness when evaluated on varying-length data (Sec. 6.2). Next,
we explore the effects of model scale and its generalization abilities to longer sequences (Sec. 6.3).
Finally, we perform ablation studies on the main properties of our method (Sec. 6.5).

6.1 Few-Shot Benchmark for Time Series Generation
To assess the effectiveness of our unified generative model in low-data regimes, we conduct a
comprehensive few-shot generation study using the same target datasets introduced in Sec. 4. Our
pre-trained model is fine-tuned on each dataset and evaluated against the baselines from Sec. 3:
ImagenTime [50], DiffusionTS [74], KoVAE [51], and TimeGAN [73]. We report the averaged
Discriminative Score (Disc.), Predictive Score (Pred.), and contextFID (c-FID) in Tab. 1. Across all
subset sizes and evaluation metrics, our method consistently outperforms the baselines, demonstrating
strong performance in both percentage-based and count-based few-shot settings. Remarkably, our

6



Table 1: Full and few-shot results across subset scales. We report Discriminative Score (Disc.),
Predictive Score (Pred.), and contextFID (c-FID)↓. For each subset size, values reflect averages
across all evaluation datasets. Our method, ImagenFew (pre-trained then fine-tuned on sequence
length 24), consistently outperforms all baselines. Bold marks best, underline second-best.

Subset Metric ImagenFew ImagenTime DiffTS KoVAE TimeVAE TimeGAN Improvement

100%
Disc. 0.027 0.113 0.203 0.356 0.185 0.379 76.1%
Pred. 0.448 0.452 0.457 0.482 0.455 0.520 0.88%
c-FID 0.866 1.390 1.78 5.351 3.068 7.912 37.69%

5%
Disc. 0.110 0.321 0.248 0.389 0.239 0.388 53.97%
Pred. 0.458 0.469 0.479 0.485 0.467 0.499 1.93%
c-FID 0.674 3.464 2.087 5.232 1.747 11.055 61.42%

10%
Disc. 0.083 0.248 0.233 0.375 0.232 0.402 64.22%
Pred. 0.452 0.458 0.469 0.491 0.466 0.494 1.31%
c-FID. 0.578 2.757 1.944 5.326 1.692 14.057 65.84%

15%
Disc. 0.066 0.236 0.229 0.363 0.215 0.384 69.30%
Pred. 0.451 0.458 0.464 0.484 0.465 0.486 1.52%
c-FID. 1.086 2.211 2.064 5.644 1.303 8.290 16.66%

#10
Disc. 0.259 0.357 0.362 0.427 0.312 0.382 16.99%
Pred. 0.489 0.492 0.525 0.514 0.510 0.467 -4.71%
c-FID. 3.800 5.393 4.984 6.166 2.383 28.572 -59.46%

#25
Disc. 0.190 0.350 0.338 0.407 0.260 0.376 43.78%
Pred. 0.467 0.469 0.498 0.515 0.473 0.538 0.42%
c-FID. 1.582 4.599 3.980 5.934 1.874 7.277 15.58%

#50
Disc. 0.149 0.342 0.313 0.397 0.239 0.367 37.66%
Pred. 0.460 0.466 0.493 0.502 0.475 0.472 1.28%
c-FID. 0.987 3.639 3.626 5.816 1.75 9.744 43.60%

unified model, even when fine-tuned on only 5% of the data, outperforms ImagenTime [50] trained on
the full dataset and achieves average performance gains of 55.72% and 54.25% in discriminative and
contextFID scores, respectively, over all competing models. Beyond few-shot scenarios, our approach
also excels in data-rich settings. Fine-tuning our pre-trained model on large datasets yields further
performance gains, highlighting the benefits of pre-training across diverse domains. This suggests that
our model acquires a robust inductive bias that enables superior generalization compared to models
trained from scratch. These findings underscore the versatility and strength of our unified generative
framework, particularly in few-shot generation. However, some datasets, such as Weather [69]
and ECG200 [2], remain challenging under limited data conditions, as seen in the full results table
provided in App. C.6.

6.2 Pre-training with Varying Sequence Lengths
We examine how the pre-training sequence length influences downstream fine-tuning performance.
We pre-trained four models using fixed sequence lengths of 12, 24, 36, and 64 time steps, following
the protocol described in Sec. 5. Each model was fine-tuned and evaluated on six datasets: ECG200,
ETTh2, ETTm1, ETTm2, ILI, and a synthetic sine wave, using sequence lengths of 12, 24, 36, and

12 24 36 64
0.15

0.20

0.25

0.30

0.35
W/o PT
Our(12)
Our(24)
Our(36)
Our(64)

A
Sequence length comparison

Sequence length

m
ea

n
D

is
c.

0 200 400 600 800 1000
0.08

0.10

0.12

0.14
Padding
DyConv

B
GFLOPs comparison

Pre-train max. channels

G
FL

O
Ps

Figure 3: (A) Length generalization capabilities comparing five models, including four pre-trained
on fixed sequence lengths and one without pre-training (w/o PT). Our(t) models were pre-trained
exclusively on sequences with t steps. (B) Computational complexity measured in GFLOPs.

7



64. For comparison, we include models trained from scratch (w/o PT baseline). Performance is
reported as the average discriminative score under a few-shot generation setup using 5%, 15%, #25,
and #50 of the available samples. Results are shown in Fig. 3A. On sequence lengths of 12, 24,
and 36, all pre-trained models achieve consistently strong performance, significantly outperforming
the baseline. As sequence length increases and thus, making the task more difficult, the baseline
performance degrades markedly, whereas pre-trained models remain robust. At length 64, the model
pre-trained on that specific length substantially outperforms those pre-trained on shorter sequences.
These results demonstrate that our method not only generalizes well in low-data regimes, but also
transfers effectively across different temporal resolutions, an essential property for real-world time
series applications.

6.3 Pre-training Impact Across Model Scales
We now explore the influence of model size on fine-tuning performance, focusing on the more
challenging setup introduced in the previous section, where we observed strong results on generating
time series of length 64. To this end, we pre-train four models with increasing parameter counts:
Base (6M), Medium (15M), Large (26M), and XL (40M), using an identical pre-training protocol.
Each model is subsequently fine-tuned and evaluated across all downstream tasks, with the generation
target fixed to 64 time steps. For comparison, we also include models trained without pre-training
(“w/o PT”). We report Discriminative Score (Disc.), Predictive Score (Pred.), and contextFID (c-FID),
with all results averaged over datasets and subset-size conditions to reveal general performance trends.
This setup enables us to assess how model capacity and pre-training interact in the few-shot regime.

Table 2: Model size ablation comparing fine-tuned (FT)
models with those trained without pre-training (w/o PT).

Base Medium Large XL XL−→S Det.

D
is

c. FT 0.15 0.16 0.13 0.13 -14.02%
w/o PT 0.35 0.35 0.26 0.27 -23.29%

c-
FI

D FT 4.85 5.03 4.56 4.51 -7.37%
w/o PT 15.87 15.36 8.12 8.15 -48.62%

Pr
ed

. FT 0.4993 0.4974 0.4959 0.4965 -0.57%
w/o PT 0.5043 0.5036 0.5007 0.5023 -0.40%

Tab. 2 summarizes the effect of model
size on fine-tuning performance for
64-step time series generation in the
few-shot setting. Several key trends
emerge: (1) Fine-tuned models consis-
tently outperform their w/o PT counter-
parts across all scales. (2) Discrimina-
tive Score improves with model size un-
der both training modes, with the fine-
tuned Large model achieving the best
score (0.130). Interestingly, the XL
model performs slightly worse than the
Large model, suggesting diminishing re-
turns at higher capacity. (3) c-FID follows a similar trend, with pre-training yielding substantial
gains, especially for smaller models. (4) Predictive Scores remain relatively stable across scales,
with a slight improvement for larger pre-trained models. (5) Pre-training also reduces the sensitivity
of performance to scale, as shown by the XL−→S Det. column. For example, c-FID in w/o PT
deteriorates by 48.62% when moving from XL to Base, while fine-tuned models show much smaller
gaps. Overall, pre-training allows smaller models to approach the performance of larger ones.

Table 3: Out-of-domain fine-tuning. The models are tested on a sequence length of 24.
Disc. ↓ c-FID ↓

Dataset Method 5% 10% 15% 10# 25# 50# 5% 10% 15% 10# 25# 50#

Stocks ImagenFew 0.018 0.017 0.018 0.138 0.119 0.054 0.132 0.090 0.054 0.379 0.430 0.183
ImagenTime 0.204 0.306 0.316 0.275 0.206 0.247 0.846 0.742 0.691 3.267 2.616 1.845

Exchange ImagenFew 0.046 0.036 0.044 0.352 0.279 0.178 0.137 0.119 0.124 2.574 2.222 0.833
ImagenTime 0.470 0.470 0.473 0.496 0.476 0.491 3.552 3.366 3.285 8.132 5.901 4.639

6.4 Out-of-domain Generalization

We evaluate our model’s ability to generalize to unseen domains. To achieve this, we intentionally
excluded financial datasets (Stocks and Exchange) from the pre-training phase. Subsequently, we
fine-tuned our model, ImagenFew, separately on each of these out-of-domain datasets. The results,
compared against the ImagenTime baseline, are presented in Table 3. In this setting, we find that
ImagenFew significantly outperforms ImagenTime across all metrics and experimental setups on
both the Stocks and Exchange datasets. This strong performance is particularly noteworthy given
that our model had no prior exposure to financial data during pre-training. This suggests our unified
approach is a promising step toward cross-domain generalization, where knowledge from source
domains can be effectively transferred to a new, unseen one.

8



Table 4: Ablation study on the effect of DyConv. We compare against a padding-based baseline with
equivalent capacity (6M parameters). Results are averaged across all evaluation datasets.

5% 10% 15% #10 #25 #50
Metric ImagenFew Baseline ImagenFew Baseline ImagenFew Baseline ImagenFew Baseline ImagenFew Baseline ImagenFew Baseline

Disc. ↓ 0.110 0.291 0.083 0.250 0.066 0.240 0.259 0.381 0.190 0.372 0.149 0.355
Pred. ↓ 0.458 0.462 0.452 0.460 0.451 0.458 0.489 0.489 0.467 0.474 0.460 0.466
c-FID ↓ 0.674 4.190 0.578 4.864 1.086 3.532 3.800 7.889 1.582 5.940 0.987 5.905

Table 5: Few-shot evaluation with and without dataset token conditioning.
5% 10% 15% #10 #25 #50

Metric Cond. Uncond. Cond. Uncond. Cond. Uncond. Cond. Uncond. Cond. Uncond. Cond. Uncond.

Disc. ↓ 0.11 0.10 0.08 0.08 0.06 0.06 0.25 0.25 0.19 0.18 0.14 0.15
Pred. ↓ 0.45 0.45 0.45 0.45 0.45 0.45 0.48 0.49 0.46 0.46 0.46 0.46
c-FID ↓ 0.67 0.79 0.57 0.55 1.08 1.16 3.80 2.42 1.58 1.23 0.98 0.98

6.5 Ablation of Main Properties

We investigate the effect of our dynamic channel adaptation module (DyConv) and dataset token. We
begin by evaluating whether DyConv is necessary for handling varying input sizes and improving
few-shot performance. In the App. C.1, we analyze how its internal configuration, specifically, the
number of input and output channels, affects generative quality.

DyConv vs. padded baseline. To evaluate the necessity of DyConv, we conduct an ablation study
in which the module is removed and replaced with static channel padding. Specifically, all input
sequences are zero-padded to match the maximum channel dimensionality observed during pre-
training. The remainder of the architecture, including the dataset token mechanism, is left unchanged,
and the total number of parameters is matched to our main model. The padded baseline is pre-trained
using the same procedure described in Sec. 5. To ensure a fair comparison, we introduce a masking
mechanism in the loss function such that the denoising network is only penalized for predicting
valid (unpadded) dimensions. This isolates the effect of DyConv from other architectural factors.
The results, averaged across all evaluation datasets, are presented in Tab. 4. Our model consistently
outperforms the padded baseline across all metrics, with especially large gains in Discriminative
Score and contextFID. These results demonstrate that DyConv is not only effective but essential.
Beyond enabling the handling of varying channel sizes, DyConv contributes a significant performance
boost, making it a critical component of our architecture. In contrast, padding-based approaches are
inherently constrained by the fixed dimensionality used during pre-training, limiting their ability to
generalize in real-world, multi-domain scenarios where input structures vary significantly.

Effect of dataset token. We analyze the impact of dataset token guidance during both pre-training
and fine-tuning. Table 5 compares models fine-tuned with and without the token (Cond. vs. Uncond.)
across all benchmark datasets. Interestingly, both variants achieve similar downstream performance,
indicating that once the model is adapted to a specific dataset, the token becomes largely redundant for
fine-tuning. This suggests that the model acquires domain-agnostic temporal representations during
pre-training, which transfer effectively under limited supervision. In contrast, the dataset token plays
a central role during pre-training. It enables the model to learn separate distributional modes across
multiple datasets, allowing us to reliably sample from each distribution and evaluate the quality of
pre-training. It also allows users to leverage the pre-trained model as an invested resource, enabling
targeted sampling without additional fine-tuning. To quantify this effect, we compare the generation
performance on the pre-training datasets when models are trained with and without the token. Without
the token, the model samples from a mixture of all training distributions, leading to lower-quality
and less coherent generations. Averaged across all pre-training datasets, the Discriminative Score
and context-FID drop from 0.193 and 4.84 (with token) to 0.252 and 11.07 (without token), as
shown in Table 21. This demonstrates the key role of the token in resolving distributional ambiguity
during pre-training, enabling domain-specific sampling and improving generation fidelity. While the
token has little impact during fine-tuning on a single dataset, it remains essential for both evaluating
pre-training and enabling controlled generation in mixed or unseen data settings.

6.6 Runtime and Memory Consumption

In our model, DyConv accommodates varying channel sizes while maintaining complete indepen-
dence between the current sequence’s channel size and the pre-train maximum channel size. This

9



design stands in contrast to the naïve padding-based approach, which inherently introduces a depen-
dency between the two. In this section, we evaluate the computational cost of processing a single
sequence of length 24 with the average channel number encountered during pre-training under both
setups, as a function of the maximum number of channels used during pre-training. Fig. 3B illustrates
a linear correlation between the number of pre-training maximum channels and the computational cost
(in GFLOPs) for the naïve padding solution. In contrast, DyConv exhibits a constant computational
cost regardless of the channel count. In a single pre-training iteration, as described in Sec. 5, with a
batch size of 2048 on an NVIDIA A6000 GPU, DyConv consumes approximately 0.18 GB of memory
on average. Under the same setup, the naïve padding approach consumes 2.01 GB, representing a
substantially higher memory footprint.

7 Conclusion

Recent literature has introduced multiple approaches for time series generation based on GANs,
VAEs, and Diffusion models. However, our research demonstrates that the performance of these
models deteriorates significantly as the number of available training samples decreases, a common
constraint in real-world time series applications where generative modeling is invaluable. This paper
addresses this limitation by proposing a two-stage modeling framework. The first stage involves
unified pre-training across multiple datasets, followed by a second stage where the model is fine-tuned
for specific generative tasks under data-scarce conditions. In contrast to conventional approaches
where models are trained on individual datasets, our method exposes the model to a diverse range
of temporal structures and statistical properties during pre-training. This exposure facilitates the
learning of domain-agnostic representations of time series dynamics. We validate the efficacy of
our methodology through a novel benchmark specifically designed for this task and systematically
analyze its key properties through comprehensive ablation studies. Our unified generative model
achieves state-of-the-art performance in few-shot time series generation, outperforming all baselines
by over 55% in discriminative and contextFID scores, even when fine-tuned on just 5% of the data.
Additionally, we demonstrate strong robustness across sequence lengths and model scales, with
DyConv and dataset token guidance proving essential for efficiency and generalization in real-world,
multi-domain scenarios. In conclusion, we believe that this approach has the potential to facilitate
the development of large pre-trained models for time series generation, similar to the transformative
advancements witnessed in image and language domains.

8 Broader Impact

Our framework advances time-series generation by pre-training a unified model across multiple
datasets, promising significant gains in data synthesis, especially in data-scarce scenarios. For ex-
ample, using our approach, geophysicists can generate more high-fidelity examples of earthquake
waveforms in locations with rare seismic events, improving hazard assessment models. In healthcare,
researchers could generate synthetic, yet realistic, electronic health records to study disease progres-
sion without compromising patient privacy, or augment datasets for training diagnostic models for
rare diseases where real-world data is limited.

At the same time, because the model spans high-stakes domains like finance and biomedical data,
its power to generate high-fidelity sequences also heightens significant societal risks. The potential
for misuse of synthetic data is substantial; for instance, the same technology that helps medical
researchers could be used to create fraudulent clinical trial data, potentially leading to the approval of
ineffective treatments. Beyond direct misuse, a critical danger lies in the overreliance on generated
samples, as models trained on augmented datasets may become less robust to the noisy, unpredictable
nature of real-world data. Furthermore, there is a risk of downstream model degradation due to
hallucinations—the generative model may produce data with subtle, unrealistic artifacts that, while
plausible-looking, cause subsequent models to fail in unforeseen ways.

Acknowledgments

This research was partially supported by the Lynn and William Frankel Center of the Computer
Science Department, Ben-Gurion University of the Negev, an ISF grant 668/21, an ISF equipment
grant, and by the Israeli Council for Higher Education (CHE) via the Data Science Research Center,
Ben-Gurion University of the Negev, Israel.

10



References
[1] A. Abdulaal, Z. Liu, and T. Lancewicki. Practical approach to asynchronous multivariate time series

anomaly detection and localization. In Proceedings of the 27th ACM SIGKDD Conference on Knowledge
Discovery & Data Mining, KDD ’21, page 2485–2494, New York, NY, USA, 2021. Association for
Computing Machinery.

[2] A. Bagnall, H. A. Dau, J. Lines, M. Flynn, J. Large, A. Bostrom, P. Southam, and E. Keogh. The UEA
multivariate time series classification archive, 2018. arXiv preprint arXiv:1811.00075, 2018.

[3] E. Ben Zaken, Y. Goldberg, and S. Ravfogel. BitFit: Simple parameter-efficient fine-tuning for transformer-
based masked language-models. In Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 1–9. Association for Computational Linguistics,
2022.

[4] N. Berman, O. Joglekar, E. Kosman, D. Di Castro, and O. Azencot. Towards general modality translation
with contrastive and predictive latent diffusion bridge. In Advances in Neural Information Processing
Systems (NeurIPS) 39, 2025.

[5] N. Berman, E. Kosman, D. D. Castro, and O. Azencot. Reviving life on the edge: Joint score-based graph
generation of rich edge attributes. Trans. Mach. Learn. Res., 2024.

[6] N. Berman, I. Naiman, M. Eliasof, H. Zisling, and O. Azencot. One-step offline distillation of diffusion-
based models via Koopman modeling. In Advances in Neural Information Processing Systems (NeurIPS)
39, 2025.

[7] R. Bommasani, D. A. Hudson, E. Adeli, R. Altman, S. Arora, S. von Arx, M. S. Bernstein, J. Bohg,
A. Bosselut, E. Brunskill, et al. On the opportunities and risks of foundation models. arXiv preprint
arXiv:2108.07258, 2021.

[8] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Neelakantan, P. Shyam, G. Sastry,
A. Askell, et al. Language models are few-shot learners. Advances in neural information processing
systems, 33:1877–1901, 2020.

[9] L. M. Candanedo, V. Feldheim, and D. Deramaix. Data driven prediction models of energy use of
appliances in a low-energy house. Energy and Buildings, 140:81–97, 2017.

[10] D. Cao, F. Jia, S. O. Arik, T. Pfister, Y. Zheng, W. Ye, and Y. Liu. TEMPO: Prompt-based generative
pre-trained transformer for time series forecasting. In The Twelfth International Conference on Learning
Representations, 2024.

[11] D. Cao, W. Ye, Y. Zhang, and Y. Liu. TimeDiT: General-purpose diffusion transformers for time series
foundation model. arXiv preprint arXiv:2409.02322, 2024.

[12] CDC. Illness. https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html. Accessed:
2025-05-06.

[13] C. Chang, W.-Y. Wang, W.-C. Peng, and T.-F. Chen. LLM4TS: Aligning pre-trained llms as data-efficient
time-series forecasters. ACM Transactions on Intelligent Systems and Technology, 16(3):1–20, 2025.

[14] K. Chicaiza and M. Benalcázar. A brain-computer interface for controlling iot devices using eeg signals.
In 2021 IEEE ETCM, pages 1–6, 2021.

[15] C. T. Chung, S. Lee, E. King, T. Liu, A. A. Armoundas, G. Bazoukis, and G. Tse. Clinical signifi-
cance, challenges and limitations in using artificial intelligence for electrocardiography-based diagnosis.
International journal of arrhythmia, 23(1):24, 2022.

[16] A. Coletta, S. Gopalakrishnan, D. Borrajo, and S. Vyetrenko. On the constrained time-series generation
problem. Advances in Neural Information Processing Systems, 36:61048–61059, 2023.

[17] A. Das, W. Kong, R. Sen, and Y. Zhou. A decoder-only foundation model for time-series forecasting. In
Forty-first International Conference on Machine Learning, 2024.

[18] H. A. Dau, A. Bagnall, K. Kamgar, C.-C. M. Yeh, Y. Zhu, S. Gharghabi, C. A. Ratanamahatana, and
E. Keogh. The UCR time series archive. IEEE/CAA Journal of Automatica Sinica, 6(6):1293–1305, 2019.

[19] A. Desai, C. Freeman, Z. Wang, and I. Beaver. Timevae: A variational auto-encoder for multivariate time
series generation. arXiv preprint arXiv:2111.08095, 2021.

11

https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html


[20] P. Dhariwal and A. Q. Nichol. Diffusion models beat GANs on image synthesis. In A. Beygelzimer,
Y. Dauphin, P. Liang, and J. W. Vaughan, editors, Advances in Neural Information Processing Systems,
2021.

[21] J. O. Egede, S. Song, T. A. Olugbade, C. Wang, A. Williams, H. Meng, M. Aung, N. D. Lane, M. Valstar,
and N. Bianchi-Berthouze. Emopain challenge 2020: Multimodal pain evaluation from facial and bodily
expressions, 2020.

[22] G. Fadlon, I. Arbiv, N. Berman, and O. Azencot. A diffusion model for regular time series generation
from irregular data with completion and masking. In Advances in Neural Information Processing Systems
(NeurIPS) 39, 2025.

[23] J.-Y. Franceschi, A. Dieuleveut, and M. Jaggi. Unsupervised scalable representation learning for multivari-
ate time series. Advances in neural information processing systems, 32, 2019.

[24] S. Gao, T. Koker, O. Queen, T. Hartvigsen, T. Tsiligkaridis, and M. Zitnik. UniTS: A unified multi-task
time series model. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,
2024.

[25] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B.
Moody, C.-K. Peng, and H. E. Stanley. Physiobank, physiotoolkit, and physionet: components of a new
research resource for complex physiologic signals. circulation, 101(23):e215–e220, 2000.

[26] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and
Y. Bengio. Generative adversarial nets. Advances in neural information processing systems, 27, 2014.

[27] N. Gruver, M. Finzi, S. Qiu, and A. G. Wilson. Large language models are zero-shot time series forecasters.
Advances in Neural Information Processing Systems, 36:19622–19635, 2023.

[28] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Advances in Neural Information
Processing Systems, volume 33, pages 6840–6851, 2020.

[29] J. Ho, T. Salimans, A. Gritsenko, W. Chan, M. Norouzi, and D. J. Fleet. Video diffusion models. Advances
in neural information processing systems, 35:8633–8646, 2022.

[30] A. Hsu, W. Khoo, N. Goyal, and M. Wainstein. Next-generation digital ecosystem for climate data mining
and knowledge discovery: a review of digital data collection technologies. Frontiers in big Data, 3:29,
2020.

[31] E. J. Hu, yelong shen, P. Wallis, Z. Allen-Zhu, Y. Li, S. Wang, L. Wang, and W. Chen. LoRA: Low-rank
adaptation of large language models. In International Conference on Learning Representations, 2022.

[32] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Soderstrom. Detecting spacecraft anomalies
using lstms and nonparametric dynamic thresholding. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery &; Data Mining, KDD ’18, page 387–395. ACM, July
2018.

[33] P. Jeha, M. Bohlke-Schneider, P. Mercado, S. Kapoor, R. S. Nirwan, V. Flunkert, J. Gasthaus, and
T. Januschowski. Psa-gan: Progressive self attention gans for synthetic time series. In The Tenth
International Conference on Learning Representations, 2022.

[34] J. Jeon, J. Kim, H. Song, S. Cho, and N. Park. GT-GAN: General purpose time series synthesis with
generative adversarial networks. Advances in Neural Information Processing Systems, 35:36999–37010,
2022.

[35] M. Jin, S. Wang, L. Ma, Z. Chu, J. Y. Zhang, X. Shi, P.-Y. Chen, Y. Liang, Y.-F. Li, S. Pan, and Q. Wen.
Time-LLM: Time series forecasting by reprogramming large language models. In The Twelfth International
Conference on Learning Representations, 2024.

[36] T. Karras, M. Aittala, T. Aila, and S. Laine. Elucidating the design space of diffusion-based generative
models. Advances in neural information processing systems, 35:26565–26577, 2022.

[37] I. Kaufman and O. Azencot. First-order manifold data augmentation for regression learning. In Forty-first
International Conference on Machine Learning, ICML, 2024.

[38] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In International Conference on Learning
Representations (ICLR), 2014.

12



[39] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead, A. C. Berg,
W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF international conference on computer
vision, pages 4015–4026, 2023.

[40] Z. Kong, W. Ping, J. Huang, K. Zhao, and B. Catanzaro. Diffwave: A versatile diffusion model for audio
synthesis. In International Conference on Learning Representations, 2021.

[41] G. Lai, W.-C. Chang, Y. Yang, and H. Liu. Modeling long- and short-term temporal patterns with
deep neural networks. The 41st International ACM SIGIR Conference on Research & Development in
Information Retrieval, 2017.

[42] H. Li, S. Yu, and J. Principe. Causal recurrent variational autoencoder for medical time series generation.
In Proceedings of the AAAI conference on artificial intelligence, volume 37, pages 8562–8570, 2023.

[43] J. Lines, A. Bagnall, P. Caiger-Smith, and S. Anderson. Classification of household devices by electricity
usage profiles. In Advances in Intelligent Data Analysis XI (IDA), volume 6936, pages 403–412, 2011.

[44] H. Liu, Z. Chen, Y. Yuan, X. Mei, X. Liu, D. Mandic, W. Wang, and M. D. Plumbley. AudioLDM:
Text-to-audio generation with latent diffusion models. In A. Krause, E. Brunskill, K. Cho, B. Engelhardt,
S. Sabato, and J. Scarlett, editors, Proceedings of the 40th International Conference on Machine Learning,
volume 202 of Proceedings of Machine Learning Research, pages 21450–21474. PMLR, 23–29 Jul 2023.

[45] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances in neural information processing
systems, 36:34892–34916, 2023.

[46] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uWave: Accelerometer-based personalized gesture
recognition and its applications. Pervasive and Mobile Computing, 5:657–675, 2009.

[47] A. McLeod and H. Gweon. Optimal deseasonalization for monthly and daily geophysical time series.
Journal of Environmental statistics, 4(11):1–11, 2013.

[48] M. Middlehurst, P. Schäfer, and A. Bagnall. Bake off redux: a review and experimental evaluation of
recent time series classification algorithms. Data Mining and Knowledge Discovery, 38(4):1958–2031,
Apr. 2024.

[49] R. Missel, P. K. Gyawali, J. V. Murkute, Z. Li, S. Zhou, A. AbdelWahab, J. Davis, J. Warren, J. L. Sapp,
and L. Wang. A hybrid machine learning approach to localizing the origin of ventricular tachycardia using
12-lead electrocardiograms. Computers in biology and medicine, 126:104013, 2020.

[50] I. Naiman, N. Berman, I. Pemper, I. Arbiv, G. Fadlon, and O. Azencot. Utilizing image transforms and
diffusion models for generative modeling of short and long time series. Advances in Neural Information
Processing Systems, 37:121699–121730, 2024.

[51] I. Naiman, N. B. Erichson, P. Ren, M. W. Mahoney, and O. Azencot. Generative modeling of regular
and irregular time series data via Koopman VAEs. In The Twelfth International Conference on Learning
Representations, 2024.

[52] L. Nochumsohn and O. Azencot. Data augmentation policy search for long-term forecasting. Transactions
on Machine Learning Research, 2025.

[53] R. T. Olszewski. Generalized feature extraction for structural pattern recognition in time-series data.
Carnegie Mellon University, 2001.

[54] M. Oquab, T. Darcet, T. Moutakanni, H. V. Vo, M. Szafraniec, V. Khalidov, P. Fernandez, D. Haziza,
F. Massa, A. El-Nouby, M. Assran, N. Ballas, W. Galuba, R. Howes, P. Huang, S. Li, I. Misra, M. Rabbat,
V. Sharma, G. Synnaeve, H. Xu, H. Jégou, J. Mairal, P. Labatut, A. Joulin, and P. Bojanowski. DINOv2:
Learning robust visual features without supervision. Trans. Mach. Learn. Res., 2024.

[55] A. Radford, J. W. Kim, C. Hallacy, A. Ramesh, G. Goh, S. Agarwal, G. Sastry, A. Askell, P. Mishkin,
J. Clark, et al. Learning transferable visual models from natural language supervision. In International
conference on machine learning, pages 8748–8763. PmLR, 2021.

[56] U. Rebbapragada, P. Protopapas, C. E. Brodley, and C. Alcock. Finding anomalous periodic time series:
An application to catalogs of periodic variable stars. Machine Learning, 74(3):281–313, Dec. 2008.

[57] P. Ren, R. Nakata, M. Lacour, I. Naiman, N. Nakata, J. Song, Z. Bi, O. A. Malik, D. Morozov, O. Azencot,
et al. Learning physics for unveiling hidden earthquake ground motions via conditional generative modeling.
arXiv preprint arXiv:2407.15089, 2024.

13



[58] D. Roverso. Plant diagnostics by transient classification: The aladdin approach. International Journal of
Intelligent Systems, 17, 2002.

[59] I. Silva, J. Behar, R. Sameni, T. Zhu, J. Oster, G. D. Clifford, and G. B. Moody. Noninvasive fetal ecg: The
physionet/computing in cardiology challenge 2013. In Computing in Cardiology, pages 149–152, 2013.

[60] I. K. Sirot and O. Azencot. Curvature enhanced manifold sampling. In Forty-first International Conference
on Machine Learning, ICML, 2025.

[61] J. Song, C. Meng, and S. Ermon. Denoising diffusion implicit models. In International Conference on
Learning Representations, 2021.

[62] Y. Song and S. Ermon. Generative modeling by estimating gradients of the data distribution. Advances in
neural information processing systems, 32, 2019.

[63] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. Score-based generative mod-
eling through stochastic differential equations. In International Conference on Learning Representations
(ICLR), 2021.

[64] Y. Su, Y. Zhao, C. Niu, R. Liu, W. Sun, and D. Pei. Robust anomaly detection for multivariate time series
through stochastic recurrent neural network. In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, KDD ’19, pages 2828–2837. ACM, 2019.

[65] G. Team, R. Anil, S. Borgeaud, J.-B. Alayrac, J. Yu, R. Soricut, J. Schalkwyk, A. M. Dai, A. Hauth,
K. Millican, et al. Gemini: a family of highly capable multimodal models. arXiv preprint arXiv:2312.11805,
2023.

[66] E. Todorov, T. Erez, and Y. Tassa. Mujoco: A physics engine for model-based control. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 5026–5033, 2012.

[67] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M.-A. Lachaux, T. Lacroix, B. Rozière, N. Goyal, E. Hambro,
F. Azhar, et al. Llama: Open and efficient foundation language models. arXiv preprint arXiv:2302.13971,
2023.

[68] Q. Wen, L. Sun, F. Yang, X. Song, J. Gao, X. Wang, and H. Xu. Time series data augmentation for deep
learning: A survey. In Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence,
IJCAI, pages 4653–4660. ijcai.org, 2021.

[69] Wetterstation. Weather. https://www.bgc-jena.mpg.de/wetter/.

[70] G. Woo, C. Liu, A. Kumar, C. Xiong, S. Savarese, and D. Sahoo. Unified training of universal time
series forecasting transformers. In Proceedings of the 41st International Conference on Machine Learning,
ICML’24. JMLR.org, 2024.

[71] H. Wu, T. Hu, Y. Liu, H. Zhou, J. Wang, and M. Long. Timesnet: Temporal 2d-variation modeling for
general time series analysis. In The Eleventh International Conference on Learning Representations, 2023.

[72] X. Yi, Y. Zheng, J. Zhang, and T. Li. ST-MVL: Filling missing values in geo-sensory time series data. In
Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence (IJCAI), IJCAI’16,
pages 2704–2710, New York, NY, USA, 2016. AAAI Press.

[73] J. Yoon, D. Jarrett, and M. Van der Schaar. Time-series generative adversarial networks. Advances in
neural information processing systems, 32, 2019.

[74] X. Yuan and Y. Qiao. Diffusion-TS: Interpretable diffusion for general time series generation. In The
Twelfth International Conference on Learning Representations, 2024.

[75] H. Zhou, S. Zhang, J. Peng, S. Zhang, J. Li, H. Xiong, and W. Zhang. Informer: Beyond efficient
transformer for long sequence time-series forecasting. In Proceedings of the AAAI conference on artificial
intelligence, volume 35, pages 11106–11115, 2021.

[76] L. Zhou, Y. Du, and J. Wu. 3d shape generation and completion through point-voxel diffusion. In
Proceedings of the IEEE/CVF international conference on computer vision, pages 5826–5835, 2021.

[77] T. Zhou, P. Niu, L. Sun, R. Jin, et al. One fits all: Power general time series analysis by pretrained lm.
Advances in neural information processing systems, 36:43322–43355, 2023.

14

https://www.bgc-jena.mpg.de/wetter/


NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The related work, background, benchmarking, method and experiments sec-
tions support the claims made in abstract and introduction.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 6.1, which presents one of our main contributions, contains a discussion
about currently challenging datasets in the fine-tuning corpus.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

15



Answer: [NA]

Justification: We don’t show any theoretical results.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All models and hyper-parameters are extensively reported in the appendix. In
addition, the code will be publicly available at the end of the double-blind process.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

16



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: All datasets are public and referenced, and the code will be publicly available
at the end of the double-blind process.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All information provided inside Experimental settings section in appendix.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes, provided in the appendix section.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

17

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Provided in both 5 subsection about pre-training and section 6.5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

18

https://neurips.cc/public/EthicsGuidelines


• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pre-trained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Framework received a section in related work and method. Additional infor-
mation such as datasets, etc. were referenced.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

19

paperswithcode.com/datasets


• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage

20



Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

21

https://neurips.cc/Conferences/2025/LLM


A Additional Dataset Details

We provide detailed descriptions of the datasets used in our framework, divided into two groups: those
used for large-scale pre-training and those used for evaluating few-shot generation. The datasets
span a broad range of domains, temporal structures, and channel dimensionalities, and include both
real-world and synthetic sources. These datasets originate from a variety of source tasks, including
classification, forecasting, and anomaly detection. In our setting, however, we do not make use of the
task-specific labels or objectives. Instead, we treat all datasets uniformly as raw multivariate time
series, enabling a consistent generative modeling framework across diverse data types.

Name # Samples Task # Variables Domain
Stock 3661 Generation 6 Finance
Energy 19711 Generation 28 Energy
ETTh1 8617 Forecasting 7 Energy
Exchange 5288 Forecasting 8 Finance
MSL 58294 Anomaly Detection 55 Space
SMAP 132458 Anomaly Detection 25 Space
PSM 135160 Anomaly Detection 25 Cloud
SMD 7084 Anomaly Detection 38 Cloud
ECG5000 200 Classification 1 ECG
NonInvasiveFetalECGThorax1 120 Classification 1 ECG
SelfRegulationSCP2 500 Classification 7 EEG
Blink 1800 Classification 4 EEG
ElectricDevices 8926 Classification 1 Sensors
Trace 100 Classification 1 Sensors
FordB 3636 Classification 1 Sensors
UWaveGestureLibrary 2238 Classification 3 Human Activity
EMOPain 968 Classification 30 Human Activity
Chinatown 20 Classification 1 Traffic
SharePriceIncrease 965 Classification 1 Finance

Table 6: Summary of pre-training datasets including number of samples, task type, number of
variables, and domain. All datasets are framed as generation tasks.

A.1 Pre-training Datasets

The following datasets are used for unified pre-training of the diffusion model described in Sec. 5.
These datasets cover a wide variety of domains, sequence characteristics, and input sizes, allowing
the model to learn generalizable representations. A summary of the pre-training datasets, including
the number of samples, original task type, channel size, and domain, is provided in Table 6.

Stocks. The Stocks dataset [73] consists of daily historical Google stock data from 2004 to 2019,
comprising six channels: high, low, opening, closing, adjusted closing prices, and trading volume.
The data is largely non-periodic and exhibits random-walk behavior typical of financial time series.

Energy. The Energy dataset is a multivariate appliance energy prediction dataset [9], featuring
28 channels with correlated features. It exhibits noisy periodicity and contains continuous-valued
measurements typical of real-world energy consumption data.

ETTh1. ETTh1 is part of the Electricity Transformer Temperature (ETT) dataset collection [75],
described in App. A.2. It provides hourly readings of transformer load and oil temperature, and is
characterized by strong periodic and seasonal patterns.

Exchange. The Exchange dataset [41] contains daily exchange rates of eight foreign currencies
- Australia, United Kingdom, Canada, Switzerland, China, Japan, New Zealand, and Singapore,
spanning the years 1990 to 2016. This dataset captures long-term financial trends and exhibits
moderate temporal variability.

22



MSL. The MSL dataset [32] includes labeled anomalies from the Mars Science Laboratory Curios-
ity rover. It features both point and contextual anomalies identified from spacecraft telemetry.

SMAP. The SMAP dataset [32] contains labeled telemetry anomalies from NASA’s Soil Moisture
Active Passive satellite. Anomalies are categorized as point or contextual, based on their temporal
characteristics.

PSM. The PSM dataset [1] contains multivariate server telemetry data collected from multiple
application nodes at eBay. It consists of anonymized system-level metrics and is used to evaluate
asynchronous multivariate time series anomaly detection methods.

SMD. The SMD dataset [64] consists of multivariate monitoring data collected over five weeks
from production server machines in a large Internet company. Each machine is treated as a separate
entity with its own training and test split and labeled anomalies. The dataset is commonly used to
evaluate anomaly detection under operational server conditions.

ECG5000. The ECG5000 dataset [25] is sourced from PhysioNet and contains pre-processed
heartbeat segments extracted from a long ECG recording of a patient with severe congestive heart
failure. Each heartbeat is resampled to a fixed length and annotated into one of five classes using
automated labeling.

NonInvasiveFetalECGThorax1. The NonInvasiveFetalECGThorax1 dataset [59] from PhysioNet
contains abdominal ECG recordings used for noninvasive fetal monitoring. Signals were collected
from the thorax of pregnant subjects and are used to study fetal QRS detection in the presence of
dominant maternal ECG signals.

SelfRegulationSCP2. The SelfRegulationSCP2 dataset [2] contains EEG recordings from an
artificially respirated ALS patient performing a brain–computer interface (BCI) task. The subject
was instructed to regulate slow cortical potentials to move a cursor up or down, guided by visual and
auditory cues. Each trial consists of a 4.5-second segment sampled at 256 Hz.

Blink. The Blink dataset [14] contains EEG recordings collected during a binary classification
task involving short and long blinks. Each subject was instructed to blink for 2 seconds, with data
collected across multiple trials. The EEG was sampled at 255 Hz over a 2-second window per blink.

ElectricDevices. The ElectricDevices dataset [43] was collected as part of the UK’s Powering the
Nation study, aimed at analyzing household electricity usage to inform carbon reduction strategies. It
contains electricity consumption readings from 251 households, sampled at two-minute intervals.

Trace. The Trace dataset [58] is a synthetic 4-class subset derived from the Transient Classification
Benchmark, simulating instrumentation failures in a nuclear power plant. It was originally designed
to support research in diagnostic systems for industrial processes. All instances are z-normalized and
interpolated to a uniform length.

FordB. The FordB dataset [18] originates from a classification challenge at the IEEE World
Congress on Computational Intelligence (2008). It contains engine noise recordings used to detect
the presence or absence of a specific automotive subsystem symptom. Training data were collected
under normal operating conditions, while test data include added noise.

UWaveGestureLibrary. The UWaveGestureLibrary dataset [46] contains accelerometer recordings
of eight predefined gestures captured along the X, Y, and Z axes. The dataset was collected for
personalized gesture recognition using mobile devices.

EMOPain. The EMOPain dataset [21] includes motion capture and physiological recordings from
participants—both healthy individuals and those with chronic lower back pain—performing physical
exercises that mimic daily activities. The dataset supports research in multimodal pain recognition
and behavioral analysis.

23



Chinatown. The Chinatown dataset [18] contains time series of pedestrian counts recorded in
Melbourne’s Chinatown-Swanston Street (North) throughout 2017. Each series represents a day’s
pedestrian volume, and the task is to classify whether the day is a weekday or a weekend. The dataset
was collected as part of a city-wide initiative to monitor and plan urban foot traffic.

SharePriceIncrease. The SharePriceIncrease dataset [48] consists of 60-day time series represent-
ing daily percentage changes in the closing prices of NASDAQ-100 companies prior to quarterly
earnings reports. The task is to predict whether a stock’s price will rise by more than 5% following
the announcement. Labels are based on post-announcement movement, and the dataset includes a
mix of positive and negative examples derived from real-world financial data.

A.2 Few-shot Evaluation Datasets

Name # Samples Task Variables Domain
MuJoCo 3000 Simulation 28 Physics
ETTm1 34369 Forecasting 7 Electricity
ETTm2 34273 Forecasting 7 Electricity
ETTh2 8353 Forecasting 7 Electricity
Sine 10000 Synthetic Generation 6 Simulated
Weather 36696 Forecasting 21 Weather
ILI 581 Forecasting 7 Healthcare
SaugeenRiverFlow 18921 Forecasting 1 Weather
ECG200 200 Classification 1 ECG
SelfRegulationSCP1 268 Classification 6 EEG
StarLightCurves 1000 Classification 1 Sensor
AirQuality 9357 Generation 13 Nature

Table 7: Summary of evaluation datasets used for few-shot generation, including number of samples,
task type, number of variables, and domain. All datasets are framed as generation tasks.

We evaluate few-shot generalization on 12 datasets selected to cover diverse domains, temporal
dynamics, and input dimensionalities. We treat all datasets as unconditional generative modeling
tasks, even if they were originally used for tasks like classification or forecasting. A summary of all
evaluation datasets, including the number of samples, task, number of channels, and domain type, is
provided in Table 7.

MuJoCo. The Multi-Joint dynamics with Contact (MuJoCo) dataset [66] consists of simulated
physical trajectories in robotic environments. Each sequence captures multivariate joint positions,
velocities, and contact forces. It is commonly used in control and reinforcement learning settings.

ETTm1, ETTm2, ETTh2. The Electricity Transformer Temperature (ETT) datasets [75] contain
load and oil temperature readings collected from electricity transformers at regular intervals. ETTm1
and ETTm2 are sampled at the minute level, while ETTh2 is sampled hourly. These datasets exhibit
strong periodicity and seasonal patterns.

Sine. The Sine dataset is a synthetic multivariate time series dataset, where each sample consists of
six channels indexed by i. Each time series is generated according to x

(i)
t (j) = sin(ηt+ θ), where

the frequency η and phase θ are independently sampled from a uniform distribution: η, θ ∼ U [0, 0.1].
Both η and θ vary across samples and channels, resulting in diverse temporal patterns.

Weather. The Weather dataset [69] includes 21 meteorological variables recorded every 10 minutes
over the full year of 2020. Features include air temperature, humidity, wind speed, and other
environmental indicators.

ILI. The Influenza-Like Illness (ILI) dataset [12] contains weekly records of patient visits for ILI
symptoms, reported by the CDC in the United States from 2002 to 2021. Each value reflects the ratio
of ILI cases to total patient visits.

24



Saugeen River Flow. The Saugeen dataset [47] is a long univariate time series recording the daily
average river flow (in m3/s) at Walkerton, Canada, from 1915 to 1979.

ECG200. The ECG200 dataset [53] contains univariate electrocardiogram signals representing one
heartbeat per sequence, labeled as normal or abnormal. It is a standard benchmark for time series
classification.

SelfRegulationSCP1. The SelfRegulationSCP1 dataset [2] includes multichannel EEG signals
recorded during a Brain–Computer Interface (BCI) task. The subject was instructed to self-regulate
slow cortical potentials (SCPs) to move a cursor. Each trial consists of 3.5-second EEG segments
sampled at 256 Hz across six electrodes.

StarLightCurves. The StarLightCurves dataset [56] contains univariate astronomical light curves
of fixed length 1024. Each curve represents the brightness of a celestial object over time and is
labeled into one of three variability-based categories.

AirQuality. The AirQuality dataset [72] contains hourly averaged readings from five metal oxide
chemical sensors integrated into an air quality chemical multisensor device. The device was deployed
at road level in a heavily polluted area of an Italian city. Data were collected continuously from
March 2004 to February 2005, resulting in the longest freely available on-field record of chemical
sensor responses related to air quality.

25



B Experimental Setting

This section provides detailed information about our model architecture, training procedures, hyper-
parameters, and evaluation methodology. We split our discussion into pre-training and fine-tuning
phases to reflect the two-stage setup used in all experiments.

B.1 Model Architecture

Our generative model follows a denoising diffusion framework built on image-based architectures,
specifically extending the Elucidated Diffusion Model (EDM) [36] and ImagenTime [50]. The
model maps multivariate time series into image-like tensors via delay embedding, enabling reuse of
visual backbone structures such as UNet. It incorporates two key additions: (1) a Dynamic Channel
Adaptation module (DyConv) for handling varying channel counts across datasets, and (2) a dataset
token for domain-specific conditioning. These innovations make our model suitable for unified
pre-training across diverse domains.

Delay embedding. Following [50], given an input time series x ∈ RL×K with K channels and
length L, we convert each univariate channel into a local trajectory matrix using delay embedding.
For a skip parameter m and column window size n, the transformation constructs a matrix:

X =


x1 xm+1 · · · xL−n

x2 xm+2 · · · xL−n+1

...
...

. . .
...

xn xm+n · · · xL

 ∈ Rn×q ,

where q = ⌈L−n
m ⌉. Each of the K channels is processed this way and stacked into a tensor

ximg ∈ RK×n×q , which is then zero-padded to a square shape RK×n×n to fit the image backbone.

UNet backbone. The image ximg is passed through a 2D UNet, similar to those used in diffusion
models for vision. The architecture features residual blocks, downsampling and upsampling paths,
and additional attention layers applied at specific resolutions. Temporal information is encoded using
a noise-level embedding based on the EDM [36] design, and optional dataset-level context is injected
via adaptive normalization layers.

Dynamic channel adaptation (DyConv). To support variable input/output channel dimensions
across datasets, we introduce DyConv—a dynamic 2D convolution module. DyConv defines a
canonical learnable convolutional kernel W ∈ RK×K×C0×C1 , where K = 3 is the spatial kernel size
and C0 = C1 = 128 are fixed reference channel dimensions. At runtime, the kernel is resized via
bicubic interpolation over the channel dimensions to produce Winterp ∈ RK×K×Cin×Cout , matching
the actual dataset. The same interpolation applies to the bias. DyConv is used at the first and last
layers of the UNet to map between dataset-specific inputs/outputs and a shared latent channel space.
This mechanism allows a single model to operate on datasets with widely varying dimensionality
without re-training.

Dataset tokens. To enable domain-specific conditioning, each dataset is assigned a unique learnable
token. During training and generation, the token is embedded and injected into the denoising model
via AdaGN layers [20], modulating intermediate activations based on dataset identity. This mechanism
improves sample fidelity and enables multi-domain generation from a single model (see Sec.6.5).
When evaluating without dataset tokens (unconditional setting), the model operates without this
guidance.

Dynamic Masking Implementation. To support variable-length inputs within a fixed-size image
representation, we generate a binary mask that identifies valid (non-padded) regions of each input.
Specifically, after applying delay embedding and zero-padding to a fixed spatial size, we apply the
same transformation to an all-ones tensor, producing a mask that aligns with the padded image. This
mask dynamically adapts to the sequence length of each sample, while the overall image size remains
fixed. During training, noise is added to the entire image, but the loss is computed only over the valid
pixels, ensuring that the model focuses on meaningful regions and ignores padded areas.

26



B.2 Training Procedure

We detail the procedure for each stage of our two-step framework and provide the complete pseu-
docode for both the pre-training and few-shot phases in Algorithm 1.

Algorithm 1: Unified diffusion pre-training and few-shot adaptation

Input: {D(m)}Mm=1: heterogeneous datasets; T : time-to-image transform; Nθ: diffusion model;
Tok: dataset token table; Σ: noise schedule; η: learning rate

Output: Learned parameters θ

1: Multi-domain Pre-training;
2: foreach training step do
3: B ← sample_batch({D(m)}Mm=1);

; ▷ Sample batch of series and dataset indices
4: foreach (x,m) ∈ B do
5: y← Tok[m] ; ▷ Retrieve token for dataset m
6: x0

img ← pad_square(T (x)) ; ▷ Transform and pad to image
7: σ ← sample(Σ), ε ∼ N (0, σ2I) ; ▷ Sample noise level
8: xt

img ← x0
img + ε ; ▷ Apply noise

9: x̂← Nθ(x
t
img, σ,y) ; ▷ Predict clean image

10: L ← λ(σ)∥x̂− x0
img∥22 ; ▷ Compute preconditioned loss

11: (θ,Tok)← AdamW(θ,Tok,∇L, η) ; ▷ Parameter update

12: Few-shot Adaptation;
13: Initialize new token y∗ for Dnew ; ▷ Allocate for new domain
14: foreach fine-tuning step do
15: B ← sample_batch(Dnew) ; ▷ Sample few-shot batch
16: foreach x ∈ B do
17: Repeat lines 5–11 with y← y∗ ; ▷ Use domain token for adaptation

B.2.1 Pre-training Procedure

We pre-train our unified diffusion model across a diverse collection of time series datasets (see
Table 6). This stage exposes the model to a wide spectrum of temporal dynamics, data modalities,
and channel dimensionalities, encouraging it to develop transferable representations that generalize
well under data scarcity. During pre-training, each sample is first converted into an image via delay
embedding (see Section B.1), padded to a square resolution, and then diffused using Gaussian noise
as defined in the Elucidated Diffusion Models (EDM) framework [36]. We apply our proposed
DyConv layer to dynamically adapt to varying channel dimensions across datasets and condition the
denoising network on a dataset token, allowing the model to incorporate domain-specific signals
without requiring separate models per dataset. To improve stability and generalization, we maintain
an exponential moving average (EMA) of the model weights throughout training. All training
runs use two NVIDIA RTX 4090 GPUs and complete in approximately 4 hours. Following EDM
preconditioning, noise levels are sampled from a fixed log-normal noise schedule. The full pre-
training workflow, is described in Algorithm 1 (Multi-domain Pre-training). All hyperparameters
specific to the pre-training phase are listed in Table 8, while the core architectural parameters, shared
between both pre-training and fine-tuning, are summarized in Table 9.

B.2.2 Training Loss

Our approach to defining the loss function for our diffusion process follows the methodologies
presented in EDM [36] and ImagenTime [50]. More specifically, the objective of the model is to
clean the noise via the following loss function:

L = Eσ,x0
img,ε

[λ(σ)
∥∥Γθ(x

σ
img;σ)− x0

img

∥∥2
2
] , (4)

where λ(σ) is a weighting function and Γθ is defined as follows:

Γθ(x
σ
img;σ) = cskip(σ)x

σ
img + cout(σ)Nθ(cin(σ)x

σ
img; cnoise(σ); y) , (5)

27



Table 8: Pre-training hyperparameters.
Parameter Value
Optimizer AdamW
Learning rate 1× 10−4

Batch size 2048
Epochs 1,000
EMA decay 0.9999
Weight decay 1× 10−5

Table 9: Model architecture hyperparameters used in both pre-training and fine-tuning.
Component Value
Delay embedding skip (m) 8
Delay embedding width (n) 8
Image resolution 8× 8
UNet base channels 32
Channel multipliers [1, 2, 2, 4]
Attention resolutions [8, 4, 2]
Diffusion steps 36
DyConv kernel size 3× 3
DyConv canonical shape [3, 3, 128, 128]
DyConv interpolation Bicubic (channel dimensions)

where Nθ is a neural network. cskip modulates the skip connection, cin and cout scale the input and
output magnitudes, and cnoise maps noise level σ into a conditioning input for Nθ. For robust training,
we use the same values as in EDM’s preconditioning [36], where the terms cskip(σ), cin(σ), cout(σ),
and cnoise(σ) are all functions of σ:

• cskip(σ) =
σ2

data
σ2+σ2

data

• cout(σ) =
σ·σ2

data√
σ2+σ2

data

• cin(σ) =
1√

σ2+σ2
data

• cnoise(σ) =
1
4 ln(σ)

We use σdata = 0.5 as a fixed parameter, and σ(t) controls the noise level over time. These terms
help stabilize the loss, which can vary with σ. Substituting Eq. 5 into Eq. 4 yields a per-sample loss
weight. To balance this, EDM sets λ(σ) = 1/cout(σ)

2, also ensuring uniform initial loss across the σ
range. Finally, we feed the network with an additional optional dataset token input y.

B.2.3 Few-Shot Generation Adaptation

To adapt the pre-trained diffusion model to novel domains with limited supervision, we perform
fine-tuning using a dedicated dataset token for each new dataset. For every unseen domain, we
initialize a new token embedding that uniquely identifies the dataset (see Section B.1). This token is
learned jointly with the model parameters during fine-tuning, guiding the generative process toward
the target distribution while reusing the temporal representations acquired during pre-training. All
architectural components, including delay embedding and DyConv, are retained during fine-tuning.
Fine-tuning is performed for each small new dataset (see Table 7), in accordance with our few-shot
benchmark protocol, and the same configuration is used across all datasets for consistency. The
model is trained for 1,000 epochs. Note that due to the small size of this dataset, training is fast, and
empirically we find that 100 epochs are sufficient for most cases. An exponential moving average
(EMA) of the model weights is maintained throughout the fine-tuning phase to improve stability and
sample quality. Due to the data-scarce nature of our few-shot settings, the effective batch size is set to
the minimum of 2048 and the number of available samples in the dataset. All datasets are fine-tuned

28



using the same configuration. The overall adaptation procedure follows the workflow in Algorithm 1
(Few-shot Adaptation), with the new dataset token initialized and optimized during fine-tuning. All
hyperparameters specific to the fine-tuning phase are listed in Table 10.

Table 10: Training hyperparameters used during the fine-tuning phase.

Hyperparameter Value
Optimizer AdamW
Learning rate 1× 10−4

Epochs 1,000
Batch size min(2048, # training samples)
EMA decay 0.9999
Weight decay 1× 10−5

B.3 Evaluation Protocol

We extend standardized time series generation metrics [73, 33] to broaden their applicability, allowing
for consistent evaluation across both the original setup and few-shot learning setup. For each target
dataset, we fine-tune the pre-trained model using either a small percentage of the training data (5%,
10%, 15%) or a fixed number of examples (10, 25, 50). In all cases, after fine-tuning, we evaluate the
model by generating samples in equal number to the original size of the test set for each dataset. This
ensures a fair comparison between generated and real data distributions and avoids bias from test-set
size variability. We employ the following three metrics to evaluate different aspects of generative
performance:

1. Discriminative Score. To quantitatively evaluate the similarity between real and generated
time series data, we adopt the framework proposed by [73]. Specifically, we train a post-hoc
LSTM-based time series classifier to distinguish between sequences originating from the
original dataset (labeled as real) and those from the generated dataset (labeled as synthetic).
The model is trained in a standard supervised learning setup, and the classification error on
a held-out test set serves as a measure of distributional similarity. We then subtract this error
from 0.5, such that a score of 0 indicates perfect indistinguishability, while higher scores
reflect greater divergence.

2. Predictive Score. To assess the predictive utility of the generated data, we again follow
an evaluation protocol proposed by [73], which tests whether synthetic data can support
forecasting tasks. Specifically, we train an LSTM model on the synthetic dataset to perform
next-step prediction: given a sequence of past time steps, the model forecasts the next
temporal vector. The trained model is then evaluated on the original dataset using mean
absolute error (MAE) as the performance metric. A low MAE indicates that the synthetic data
captures the conditional temporal dynamics of the original data well enough to generalize to
real sequences.

3. Context-FID. To measure global and contextual realism, we use the Context-Fréchet
Inception Distance (Context-FID) [33]. This is an adaptation of the FID score used in image
generation, but tailored for time series. Rather than using image-based features, Context-FID
uses embeddings extracted from a contrastively trained encoder [23], separately trained
for each dataset to capture temporal context. The final score reflects the Fréchet distance
between the embedding distributions of real and synthetic samples. Lower values correspond
to higher-quality generations.

29



C Additional Experiments

C.1 Impact of Canonical Kernel Size in DyConv

To understand how the internal dimensionality of DyConv affects performance, we conduct an
ablation study varying the size of the canonical kernel. All models share the same architecture and
pre-training procedure (Sec. 5), differing only in the channel dimensions of DyConv’s canonical
kernel. Specifically, we vary the shape [K,K,C0, C1] while keeping the kernel size fixed at K = 3.
Each configuration is denoted DyConv[C0, C1], and evaluated on the same few-shot benchmark. As
shown in Table 11, The configurations DyConv[32,128] and DyConv[128,128] achieve similarly
strong results, exhibiting low values in both discriminative score and contextFID. Interestingly,
even the smaller DyConv[16,128] performs reasonably well, albeit with reduced effectiveness. In
contrast, the smallest configuration, DyConv[1,128], shows a clear degradation across both metrics,
highlighting the necessity of adequate parameterization. These findings support the conclusion that
increasing the capacity of DyConv may yield better performance, with diminishing performance
observed in extremely limited parameter regimes.

Table 11: Ablation study on the effect of DyConv’s internal channel dimensions.
Config Disc. c-FID # Parameters
[1, 128] 0.381 16.74 1,280
[16, 128] 0.149 1.945 18,560
[32, 128] 0.138 1.612 36,992
[128, 128] 0.143 1.451 147,584

C.2 Effect of Fine-tuning Methods

We investigate two parameter-efficient fine-tuning (PEFT) strategies applied to our pre-trained
diffusion model: Low-Rank Adaptation (LoRA) and Bias-Only tuning (BitFit). Both approaches
aim to reduce the number of trainable parameters while enabling adaptation to new datasets in the
few-shot regime. In the LoRA setup [31], we inject trainable low-rank matrices into the attention
layers of our UNet architecture, specifically into the projection matrices Wq, Wk, Wv, and Wo of
each attention block, using a rank of r = 16. This configuration introduces only 126K trainable
parameters. In the Bias-Only setup [3], all weights are frozen, and only the bias terms across all
layers are updated, resulting in approximately 300K trainable parameters. As shown in Table 14,
full fine-tuning consistently outperforms both LoRA and Bias-Only tuning across all subset sizes
and all evaluation metrics, including contextFID, Discriminative Score, and Predictive Score. While
LoRA and BitFit offer substantial parameter savings, their performance lags significantly behind full
fine-tuning. This underscores the trade-off between efficiency and effectiveness in few-shot scenarios.

C.3 Evaluating Sequence-Native Baselines Under the Few-Shot Setting

To further examine the role of the underlying backbone architecture, we conducted an additional
experiment comparing our image-based framework to sequence-native generative models. Specif-
ically, we considered DiffusionTS [74] and KoVAE [51], both of which operate directly in the
temporal domain without converting sequences into images. Following the protocol of Section 6.1 ,
we pre-trained both baselines on the same heterogeneous corpus as our model and fine-tuned them
under identical few-shot conditions. Table 12 reports the averaged Discriminative Score (Disc.),
Predictive Score (Pred.), and contextFID (c-FID) across both percentage-based and fixed-count subset
regimes. Across all subset sizes and evaluation metrics, our model consistently achieves the best
results, demonstrating the effectiveness of the image-based backbone in few-shot regimes compared
to sequence-native alternatives.

C.4 Dataset Token Robustness Under Overlapping Domains

To evaluate the effectiveness of dataset token conditioning when domains are closely related, we
pre-trained two variants of our model using only the ETT dataset family (ETTh1, ETTh2, ETTm1,
ETTm2): one with dataset token conditioning and one without. Both models were evaluated on the

30



Table 12: Few-shot generation performance comparison between our unified model (pre-trained on
sequence length 24) and sequence-native baselines. Lower is better for all metrics.

Subset size Metric Ours (24) DiffusionTS KoVAE

5%
Disc. 0.110 0.244 0.331
Pred. 0.458 0.471 0.500
c-FID 0.674 2.668 3.719

10%
Disc. 0.083 0.223 0.342
Pred. 0.452 0.464 0.491
c-FID 0.578 2.432 3.874

15%
Disc. 0.066 0.223 0.338
Pred. 0.451 0.466 0.486
c-FID 1.086 2.475 3.549

#10
Disc. 0.259 0.347 0.375
Pred. 0.489 0.516 0.517
c-FID 3.800 4.702 5.522

#25
Disc. 0.190 0.310 0.352
Pred. 0.467 0.492 0.499
c-FID 1.582 3.817 3.844

#50
Disc. 0.149 0.287 0.354
Pred. 0.460 0.480 0.491
c-FID 0.987 3.116 4.001

same ETT datasets without fine-tuning. This setup allows us to assess whether the dataset token can
help disambiguate subtle inter-dataset variations during sampling. The results are summarized in
Table 13.

Table 13: Evaluation of pre-trained models on the ETT dataset family with and without dataset token
conditioning. Lower is better for all metrics.

Dataset Metric w/ Dataset Token w/o Dataset Token

ETTh1
Disc. 0.033 0.344
Pred. 0.646 0.674
c-FID 0.108 5.687

ETTh2
Disc. 0.027 0.263
Pred. 0.681 0.707
c-FID 0.086 3.360

ETTm1
Disc. 0.007 0.232
Pred. 0.675 0.690
c-FID 0.0210 2.920

ETTm2
Disc. 0.007 0.236
Pred. 0.694 0.718
c-FID 0.0249 1.248

Across all four datasets, using the dataset token yields substantially better scores across all metrics
compared to the model trained without it. This demonstrates that dataset token conditioning remains
robust even in domains with overlapping or ambiguous boundaries, enabling the model to effectively
distinguish subtle distributional differences during generation.

C.5 Datasets Analysis

We investigate why our model fails to fine-tune effectively on certain datasets, such as Weather
and ECG200, which remain challenging. We hypothesize that this difficulty stems from a failure to
generalize to frequency distributions that were not encountered during pre-training.

31



Figure 4: Wasserstein distance between dataset frequency distributions.

To test this hypothesis, we analyzed the frequency content of all datasets. We applied the Fast
Fourier Transform (FFT) to every signal in both our pre-training and fine-tuning collections. For
each dataset, we then computed a mean amplitude spectrum, α, by averaging the amplitude vectors
of all its signals:

α =
1

N

N∑
i=1

αi

where N is the number of signals in the dataset and αi is the amplitude spectrum vector for the i-th
signal.

This vector α serves as a signature for the dataset’s average frequency distribution. To quantify the
dissimilarity in frequency content, we compute the Wasserstein distance between their respective
normalized mean spectra. We denote this as W (D, D̃), where D and D̃ are two different datasets
from the collection of pre-trained and fine-tuned datasets. As shown in Fig. 4, our hypothesis is
partially supported. The ECG200 dataset, on which our model performs poorly, exhibits a large
frequency distance relative to other datasets. However, Weather, another dataset where the model
fails, shows a relatively small distance. This suggests that factors other than frequency distribution
may be responsible for its low performance. Finally, while NonInvasiveFetalECGThorax1 has the
largest distance from all other datasets, this does not negatively affect performance, as it was included
in the pre-training set.

C.6 Full Results of Main Table

In this section, we present the complete results of our few-shot benchmark. Tables 15, 16, 17, 18, 19,
20 report the Discriminative, Predictive, and contextFID scores across all datasets (each table contains
two datasets, together the tables represent all) and training subset sizes. Our model demonstrates
marginal improvements over competing methods on several datasets, including ETTh2, ETTm1,
ILI, and SelfRegulationSCP1, among others. Overall, it achieves the highest performance in 141

32



out of 168 cases in Discriminative and contextFID metrics combined. For brevity, we use acronyms
for some datasets: SRF denotes SaugeenRiverFlow, SCP1 denotes SelfRegulationSCP1, and SLC
denotes StarLightCurves.

C.7 Full results on pre-training datasets: Cond. vs. Uncond.

Table 21 provides the complete results on all pre-training datasets, comparing models trained with
and without dataset token conditioning (Cond. vs. Uncond.). These evaluations were performed
directly on the pre-training datasets without any further fine-tuning. The results demonstrate that
conditioning with dataset tokens leads to consistently improved performance across most datasets and
metrics, particularly in terms of contextFID and Discriminative Score. This reinforces the importance
of explicit dataset-specific conditioning during pre-training for improving generation quality and
alignment to the target distribution.

Table 14: Ablation study on fine-tuning methods. We compare LoRA (126K) and Bias-Only (300K)
tuning across multiple subset sizes. Lower is better. Bold indicates best.

Subset Size Metric Full FT (6M) LoRA (126K) Bias-Only (300K)

5%
Disc. score 0.110 0.317 0.340
Pred. score 0.458 0.495 0.508
contextFID 0.674 5.824 8.745

10%
Disc. score 0.083 0.312 0.332
Pred. score 0.452 0.469 0.489
contextFID 0.578 5.297 8.397

15%
Disc. score 0.066 0.302 0.337
Pred. score 0.451 0.489 0.488
contextFID 1.086 6.232 7.435

#10
Disc. score 0.259 0.332 0.363
Pred. score 0.489 0.496 0.544
contextFID 3.800 7.396 9.417

#25
Disc. score 0.190 0.323 0.347
Pred. score 0.467 0.484 0.514
contextFID 1.582 6.267 9.173

#50
Disc. score 0.149 0.326 0.343
Pred. score 0.460 0.494 0.517
contextFID 0.987 6.345 9.882

33



Table 15: Main Table Results - Part 1. The table reports discriminative and predictive scores along
with their standard deviations, as well as the contextFID score.

dataset Subset Metric Our[24] ImagenTime DiffTS KoVAE TimeGAN

AirQuality 5% Disc. .065±.04 .49±.0 .177±.01 .458±.03 .441±.04
Pred. .011±.0 .019±.01 .007±.0 .043±.0 .003±.0
c-FID 0.441 6.858 0.721 3.971 1.317

10% Disc. .085±.07 .451±.01 .171±.01 .428±.04 .322±.12
Pred. .01±.0 .009±.0 .006±.0 .041±.0 .005±.0
c-FID 0.419 1.476 0.657 3.336 2.995

15% Disc. .066±.06 .46±.01 .174±.01 .422±.02 .445±.04
Pred. .009±.0 .009±.0 .006±.0 .04±.0 .002±.0
c-FID 0.421 1.65 0.583 3.571 2.089

100% Disc. .065±.03 .087±.04 .116±.0 .333±.03 .43±.07
Pred. .006±.0 .009±.0 .005±.0 .039±.0 .004±.0
c-FID 0.284 0.401 0.282 2.589 2.566

10# Disc. .374±.03 .494±.01 .406±.02 .488±.0 .286±.12
Pred. .041±.0 .044±.0 .044±.0 .044±.0 .002±.0
c-FID 1.359 4.43 5.713 3.994 2.415

25# Disc. .322±.18 .426±.14 .374±.12 .483±.01 .387±.09
Pred. .019±.0 .017±.0 .038±.01 .044±.0 .023±.01
c-FID 1.099 3.184 3.363 4.221 2.89

50# Disc. .303±.15 .406±.14 .393±.04 .483±.01 .365±.12
Pred. .019±.0 .014±.0 .016±.0 .044±.0 .004±.0
c-FID 0.841 2.706 2.599 3.433 1.603

ECG200 5% Disc. .098±.05 .115±.06 .292±.07 .383±.04 .463±.09
Pred. 1.061±.0 1.061±.0 1.061±.0 1.062±.0 .455±.0
c-FID 0.866 0.793 2.15 4.199 40.207

10% Disc. .128±.08 .08±.05 .328±.07 .338±.06 .385±.06
Pred. 1.061±.0 1.061±.0 1.061±.0 1.062±.0 .994±.0
c-FID 0.884 0.605 2.401 3.51 11.225

15% Disc. .037±.03 .065±.05 .32±.06 .297±.08 .398±.14
Pred. 1.062±.0 1.061±.0 1.06±.0 1.062±.0 .916±.0
c-FID 0.315 0.41 2.471 3.226 24.112

100% Disc. .037±.03 .072±.04 .347±.06 .307±.14 .39±.13
Pred. 1.062±.0 1.063±.0 1.062±.0 1.063±.0 .869±.0
c-FID 4.194 4.169 2.431 1.661 6.445

10# Disc. .117±.06 .117±.05 .35±.07 .35±.06 .385±.06
Pred. 1.061±.0 1.061±.0 1.06±.0 1.062±.0 .994±.0
c-FID 0.496 0.805 2.859 3.983 11.225

25# Disc. .063±.05 .072±.04 .345±.07 .32±.07 .372±.12
Pred. 1.063±.0 1.062±.0 1.061±.0 1.063±.0 .972±.0
c-FID 0.148 0.232 2.03 2.338 9.289

50# Disc. .06±.02 .063±.04 .318±.1 .27±.13 .333±.15
Pred. 1.062±.0 1.062±.0 1.093±.0 1.062±.0 1.048±.0
c-FID 0.113 0.172 2.493 1.662 9.121

34



Table 16: Main Table Results - Part 2. The table reports discriminative and predictive scores along
with their standard deviations, as well as the contextFID score.

dataset Subset Metric Our[24] ImagenTime DiffTS KoVAE TimeGAN

ETTh2 5% Disc. .034±.01 .296±.1 .27±.02 .474±.01 .49±.0
Pred. .688±.0 .707±.0 .742±.01 .795±.01 .921±.04
c-FID 0.175 0.691 2.112 5.322 13.861

10% Disc. .024±.01 .257±.1 .268±.02 .461±.01 .485±.01
Pred. .688±.0 .698±.0 .72±.01 .819±.01 .834±.02
c-FID 0.148 0.704 1.653 4.621 17.031

15% Disc. .017±.01 .296±.1 .271±.01 .458±.0 .458±.01
Pred. .684±.0 .703±.0 .716±.01 .826±.0 .725±.01
c-FID 0.122 0.582 1.709 4.912 7.399

100% Disc. .015±.01 .025±.01 .27±.03 .47±.01 .491±.0
Pred. .676±.0 .684±.0 .703±.01 .837±.01 .929±.04
c-FID 0.07 0.145 1.613 4.739 15.177

10# Disc. .266±.04 .432±.08 .332±.06 .495±.0 .484±.02
Pred. .717±.01 .728±.0 .751±.0 .804±.01 .836±.01
c-FID 1.718 3.173 3.662 5.996 62.157

25# Disc. .186±.02 .389±.08 .338±.04 .495±.0 .451±.04
Pred. .703±.0 .722±.0 .747±.02 .831±.01 1.208±.07
c-FID 1.113 1.821 2.455 5.417 16.998

50# Disc. .15±.02 .44±.03 .29±.05 .495±.0 .483±.02
Pred. .705±.0 .721±.0 .752±.01 .755±.01 .907±.03
c-FID 0.565 1.404 2.143 5.825 35.516

ETTm1 5% Disc. .015±.01 .386±.11 .317±.02 .47±.01 .455±.02
Pred. .681±.0 .698±.0 .699±.01 .722±.01 .924±.02
c-FID 0.042 1.036 1.9 4.823 4.671

10% Disc. .011±.01 .071±.02 .315±.02 .473±.01 .46±.01
Pred. .68±.0 .686±.0 .691±.0 .732±.01 .892±.03
c-FID 0.044 0.223 1.937 4.33 7.64

15% Disc. .013±.0 .034±.01 .321±.01 .466±.01 .461±.03
Pred. .678±.0 .681±.0 .704±.0 .725±.0 .526±.01
c-FID 0.029 0.097 1.937 4.461 10.099

100% Disc. .004±.0 .01±.0 .324±.02 .458±.01 .446±.05
Pred. .675±.0 .675±.0 .707±.01 .723±.01 .775±.03
c-FID 0.011 0.025 1.867 4.876 4.543

10# Disc. .342±.03 .449±.03 .441±.01 .492±.0 .46±.03
Pred. .847±.02 .778±.0 .912±.01 .752±.01 .708±.01
c-FID 4.325 4.944 4.731 6.749 7.268

25# Disc. .216±.02 .496±.0 .378±.03 .476±.01 .463±.03
Pred. .742±.01 .708±.0 .903±.02 .734±.01 .701±.02
c-FID 1.623 5.115 2.929 4.695 5.186

50# Disc. .148±.01 .493±.0 .384±.02 .471±.01 .464±.02
Pred. .694±.0 .703±.0 .833±.02 .718±.0 .691±.01
c-FID 0.651 3.77 2.317 4.943 11.111

35



Table 17: Main Table Results - Part 3. The table reports discriminative and predictive scores along
with their standard deviations, as well as the contextFID score.

dataset Subset Metric Our[24] ImagenTime DiffTS KoVAE TimeGAN

ETTm2 5% Disc. .021±.01 .444±.01 .241±.02 .452±.01 .4±.08
Pred. .7±.0 .727±.0 .736±.01 .793±.01 .706±.02
c-FID 0.071 0.995 1.593 5.077 5.184

10% Disc. .011±.01 .065±.02 .234±.01 .437±.01 .482±.01
Pred. .697±.0 .71±.0 .72±.01 .808±.02 1.106±.08
c-FID 0.044 0.346 1.541 4.738 6.915

15% Disc. .013±.0 .041±.01 .233±.02 .407±.02 .475±.01
Pred. .7±.0 .705±.0 .725±.01 .753±.0 .677±.02
c-FID 0.06 0.203 1.529 3.528 10.711

100% Disc. .004±.0 .011±.0 .228±.03 .378±.04 .478±.01
Pred. .693±.0 .694±.0 .713±.0 .751±.0 .867±.01
c-FID 0.016 0.038 1.701 3.643 7.742

10# Disc. .343±.01 .371±.01 .378±.02 .487±.01 .495±.0
Pred. .771±.01 .796±.02 .812±.02 .806±.01 .875±.06
c-FID 3.679 4.72 4.015 9.069 179.951

25# Disc. .211±.02 .487±.0 .346±.06 .479±.01 .394±.04
Pred. .731±.01 .773±.0 .75±.01 .785±.01 .831±.01
c-FID 1.644 4.257 2.836 5.458 7.136

50# Disc. .135±.02 .472±.01 .276±.02 .475±.01 .455±.04
Pred. .721±.0 .749±.0 .768±.01 .793±.02 .662±.02
c-FID 0.981 2.527 2.469 5.776 11.327

ILI 5% Disc. .194±.04 .483±.02 .393±.04 .489±.01 .445±.03
Pred. .563±.0 .582±.0 .571±.0 .61±.01 .556±.02
c-FID 1.135 5.51 3.274 5.828 8.697

10% Disc. .113±.04 .459±.05 .399±.02 .493±.0 .439±.02
Pred. .555±.0 .575±.0 .576±.01 .605±.01 .57±.03
c-FID 0.489 3.29 3.286 6.098 4.965

15% Disc. .077±.04 .447±.04 .403±.03 .49±.01 .389±.08
Pred. .554±.0 .572±.0 .564±.01 .606±.01 .581±.01
c-FID 0.416 2.56 2.805 6.039 4.594

100% Disc. .064±.03 .388±.12 .368±.02 .489±.01 .407±.03
Pred. .554±.0 .573±.0 .552±.0 .605±.0 .617±.02
c-FID 0.329 2.229 1.989 7.5 4.15

10# Disc. .29±.05 .491±.01 .435±.02 .493±.01 .458±.04
Pred. .573±.01 .628±.01 .66±.02 .607±.01 .453±.01
c-FID 2.115 7.82 5.406 6.576 6.275

25# Disc. .194±.04 .489±.01 .425±.03 .495±.0 .448±.03
Pred. .567±.01 .586±.0 .585±.01 .628±.01 .536±.01
c-FID 0.996 5.939 4.085 6.809 8.127

50# Disc. .121±.03 .479±.01 .376±.05 .493±.01 .431±.02
Pred. .555±.0 .58±.0 .574±.01 .62±.01 .62±.0
c-FID 0.615 4.102 3.081 6.093 5.333

36



Table 18: Main Table Results - Part 4. The table reports discriminative and predictive scores along
with their standard deviations, as well as the contextFID score. SRF denotes SaugeenRiverFlow and
SCP1 denotes SelfRegulationSCP1.

dataset Subset Metric Our[24] ImagenTime DiffTS KoVAE TimeGAN

SRF 5% Disc. .002±.0 .011±.01 .147±.02 .137±.09 .08±.06
Pred. .604±.0 .605±.0 .602±.0 .605±.0 .744±.0
c-FID 0.016 0.102 1.134 2.44 2.416

10% Disc. .004±.0 .008±.0 .13±.01 .122±.08 .354±.07
Pred. .604±.0 .604±.0 .602±.0 .605±.0 .038±.0
c-FID 0.012 0.066 1.154 2.211 78.061

15% Disc. .006±.0 .007±.0 .123±.01 .109±.04 .095±.06
Pred. .605±.0 .604±.0 .603±.0 .604±.0 .762±.0
c-FID 0.038 0.033 1.087 1.494 0.961

100% Disc. .004±.0 .003±.0 .111±.01 .094±.05 .067±.03
Pred. .605±.0 .605±.0 .603±.0 .603±.0 .726±.0
c-FID 0.007 0.005 0.988 1.531 4.384

10# Disc. .051±.02 .064±.03 .368±.14 .24±.01 .14±.07
Pred. .605±.0 .604±.0 .602±.0 .601±.0 .473±.0
c-FID 0.815 0.706 6.409 2.732 22.553

25# Disc. .045±.02 .02±.02 .304±.13 .202±.06 .117±.06
Pred. .603±.0 .604±.0 .603±.0 .606±.0 .474±.0
c-FID 0.417 0.308 7.291 3.254 3.111

50# Disc. .013±.01 .015±.01 .287±.12 .187±.11 .16±.08
Pred. .605±.0 .604±.0 .602±.0 .604±.0 .402±.0
c-FID 0.179 0.233 7.597 3.519 2.612

SCP1 5% Disc. .239±.06 .332±.06 .347±.04 .452±.02 .433±.07
Pred. .468±.01 .491±.02 .564±.04 .451±.01 .624±.03
c-FID 1.159 2.97 3.671 8.329 8.149

10% Disc. .083±.05 .312±.15 .275±.05 .409±.03 .428±.03
Pred. .437±.0 .431±.0 .534±.02 .462±.01 .52±.02
c-FID 0.959 2.237 2.912 8.69 5.403

15% Disc. .067±.04 .22±.1 .274±.03 .405±.03 .418±.03
Pred. .433±.0 .433±.0 .472±.02 .469±.01 .558±.02
c-FID 0.575 2.821 2.546 8.36 4.99

100% Disc. .061±.04 .284±.14 .123±.03 .382±.04 .399±.04
Pred. .424±.0 .431±.0 .438±.01 .439±.01 .415±.01
c-FID 0.467 1.593 1.372 6.34 3.75

10# Disc. .269±.04 .364±.05 .411±.03 .434±.02 .407±.07
Pred. .46±.01 .462±.01 .568±.05 .466±.01 .343±.02
c-FID 1.293 2.958 3.433 6.792 4.702

25# Disc. .142±.04 .426±.07 .304±.04 .396±.02 .448±.04
Pred. .439±.0 .431±.0 .487±.02 .459±.01 .702±.02
c-FID 0.808 2.582 2.304 7.037 5.965

50# Disc. .052±.03 .404±.09 .281±.04 .427±.02 .36±.08
Pred. .433±.0 .432±.0 .467±.01 .461±.01 .434±.01
c-FID 0.694 3.042 2.726 9.436 5.766

37



Table 19: Main Table Results - Part 5. The table reports discriminative and predictive scores along
with their standard deviations, as well as the contextFID score. SLC denotes StarLightCurves.

dataset Subset Metric Our[24] ImagenTime DiffTS KoVAE TimeGAN

SLC 5% Disc. .042±.03 .026±.02 .096±.03 .225±.09 .04±.02
Pred. .518±.0 .501±.0 .545±.0 .502±.0 .474±.0
c-FID 0.201 0.053 0.406 3.147 0.295

10% Disc. .013±.01 .017±.01 .07±.03 .199±.07 .058±.03
Pred. .497±.0 .498±.0 .514±.0 .504±.0 .407±.0
c-FID 0.01 0.037 0.224 2.902 0.234

15% Disc. .013±.01 .017±.01 .056±.03 .192±.07 .08±.03
Pred. .498±.0 .5±.0 .508±.0 .506±.0 .592±.0
c-FID 0.008 0.056 0.128 3.608 0.248

100% Disc. .021±.02 .018±.01 .036±.02 .24±.08 .047±.02
Pred. .497±.0 .498±.0 .501±.0 .508±.0 .623±.0
c-FID 0.009 0.005 0.096 1.997 0.302

10# Disc. .018±.02 .066±.04 .043±.03 .31±.04 .133±.05
Pred. .498±.0 .526±.0 .497±.0 .55±.0 .519±.0
c-FID 0.094 0.26 0.262 4.833 1.865

25# Disc. .046±.04 .026±.01 .065±.04 .263±.08 .06±.03
Pred. .515±.0 .498±.0 .498±.0 .519±.0 .591±.0
c-FID 0.346 0.04 0.54 3.338 0.176

50# Disc. .018±.02 .017±.01 .14±.06 .226±.07 .04±.02
Pred. .503±.0 .497±.0 .576±.0 .502±.0 .474±.0
c-FID 0.066 0.048 0.438 2.968 0.295

Weather 5% Disc. .479±.01 .499±.0 .416±.01 .499±.0 .5±.0
Pred. .061±.0 .079±.0 .07±.0 .08±.0 .231±.01
c-FID 3.679 9.092 7.425 12.823 39.294

10% Disc. .433±.01 .498±.0 .421±.0 .498±.0 .5±.0
Pred. .06±.0 .07±.0 .07±.0 .104±.01 .226±.0
c-FID 3.631 13.005 7.19 17.045 30.8

15% Disc. .41±.03 .495±.0 .417±.01 .498±.0 .494±.01
Pred. .059±.0 .067±.0 .069±.0 .08±.0 .157±.0
c-FID 10.86 7.214 9.683 22.476 29.475

100% Disc. .034±.01 .204±.06 .415±.0 .499±.0 .498±.0
Pred. .055±.0 .058±.0 .07±.0 .087±.01 .081±.0
c-FID 4.97 7.2 8.871 23.638 41.502

10# Disc. .483±.01 .499±.0 .492±.01 .5±.0 .494±.0
Pred. .087±.0 .093±.01 .103±.01 .246±.01 .022±.0
c-FID 26.481 15.305 15.016 14.954 35.694

25# Disc. .499±.0 .5±.0 .482±.01 .5±.0 .499±.0
Pred. .068±.0 .07±.0 .082±.0 .327±.03 .042±.01
c-FID 8.1 13.339 12.78 20.065 22.921

50# Disc. .497±.0 .499±.0 .463±.01 .499±.0 .49±.02
Pred. .064±.0 .07±.0 .076±.0 .277±.04 .026±.0
c-FID 5.999 10.353 14.377 18.868 23.114

38



Table 20: Main Table Results - Part 6. The table reports discriminative and predictive scores along
with their standard deviations, as well as the contextFID score.

dataset Subset Metric Our[24] ImagenTime DiffTS KoVAE TimeGAN

mujoco 5% Disc. .111±.02 .499±.0 .213±.03 .47±.02 .416±.02
Pred. .04±.0 .065±.0 .044±.0 .062±.0 .083±.0
c-FID 0.249 11.233 0.556 5.231 1.638

10% Disc. .074±.02 .499±.0 .142±.02 .447±.03 .412±.06
Pred. .04±.0 .062±.0 .04±.0 .052±.0 .073±.0
c-FID 0.248 8.841 0.312 4.598 1.3

15% Disc. .059±.03 .497±.0 .121±.02 .434±.03 .408±.05
Pred. .038±.0 .063±.0 .039±.0 .046±.0 .072±.01
c-FID 0.163 8.674 0.252 4.307 1.372

100% Disc. .008±.01 .25±.07 .086±.01 .455±.01 .411±.1
Pred. .033±.0 .042±.0 .036±.0 .045±.0 .077±.0
c-FID 0.031 0.85 0.16 4.078 1.552

10# Disc. .38±.02 .499±.0 .379±.1 .496±.0 .338±.09
Pred. .09±.0 .066±.0 .142±.02 .132±.01 .109±.0
c-FID 2.25 13.939 4.263 5.856 2.023

25# Disc. .294±.03 .5±.0 .38±.02 .491±.01 .371±.04
Pred. .063±.0 .06±.0 .052±.0 .087±.0 .106±.0
c-FID 2.076 14.019 3.524 6.4 1.891

50# Disc. .204±.02 .499±.0 .3±.03 .491±.0 .327±.14
Pred. .054±.0 .065±.0 .048±.0 .093±.0 .129±.0
c-FID 0.848 11.878 2.051 5.419 1.251

sine 5% Disc. .019±.01 .267±.07 .07±.02 .162±.04 .492±.0
Pred. .096±.0 .096±.0 .102±.0 .095±.0 .264±.0
c-FID 0.051 2.232 0.105 1.597 6.93

10% Disc. .014±.01 .257±.1 .039±.01 .199±.06 .494±.0
Pred. .094±.0 .095±.0 .098±.0 .095±.0 .267±.01
c-FID 0.048 2.257 0.056 1.827 2.12

15% Disc. .014±.01 .257±.11 .041±.01 .181±.05 .495±.0
Pred. .094±.0 .096±.0 .098±.0 .094±.0 .269±.01
c-FID 0.025 2.233 0.038 1.746 3.431

100% Disc. .009±.01 .008±.01 .018±.01 .173±.04 .495±.0
Pred. .094±.0 .094±.0 .097±.0 .094±.0 .263±.01
c-FID 0.005 0.019 0.015 1.619 2.843

10# Disc. .18±.02 .437±.04 .311±.01 .336±.04 .499±.0
Pred. .12±.0 .119±.0 .144±.0 .098±.0 .266±.01
c-FID 0.974 5.662 4.035 2.457 6.733

25# Disc. .068±.04 .37±.1 .314±.03 .284±.05 .5±.0
Pred. .098±.0 .097±.0 .172±.05 .1±.0 .267±.01
c-FID 0.614 4.356 3.621 2.173 3.636

50# Disc. .087±.01 .312±.09 .246±.01 .25±.08 .499±.0
Pred. .099±.0 .097±.0 .113±.0 .096±.0 .266±.01
c-FID 0.292 3.429 1.222 1.851 9.881

39



Table 21: Full results on pre-training datasets: conditional (with dataset token) vs. unconditional
(without dataset token). Results are reported without any additional fine-tuning on the individual
datasets.

Dataset Metric Cond. Uncond.
Blink contextFID 0.320 0.268

Disc score 0.028 0.050

Chinatown contextFID 0.157 27.923
Disc score 0.188 0.175

ECG5000 contextFID 0.033 4.920
Disc score 0.016 0.176

EMOPain contextFID 5.877 5.433
Disc score 0.491 0.492

ETTh1 contextFID 0.474 1.309
Disc score 0.159 0.232

ElectricDevices contextFID 0.097 2.677
Disc score 0.009 0.119

Exchange contextFID 0.160 0.353
Disc score 0.014 0.096

FordB contextFID 0.017 2.448
Disc score 0.008 0.093

MSL contextFID 28.504 29.708
Disc score 0.500 0.500

NonInvasiveFetalECGThorax1 contextFID 0.009 5.701
Disc score 0.013 0.427

PSM contextFID 1.468 8.195
Disc score 0.493 0.267

SMAP contextFID 22.069 29.311
Disc score 0.499 0.423

SMD contextFID 17.111 22.482
Disc score 0.499 0.499

SelfRegulationSCP2 contextFID 0.877 10.772
Disc score 0.058 0.268

SharePriceIncrease contextFID 0.145 2.070
Disc score 0.019 0.163

Trace contextFID 0.044 48.133
Disc score 0.083 0.215

UWaveGestureLibrary contextFID 0.118 0.304
Disc score 0.071 0.052

energy contextFID 14.291 8.080
Disc score 0.500 0.500

stock contextFID 0.162 0.244
Disc score 0.034 0.051

40


	Introduction
	Related Work
	Background
	Benchmarking Few-Shot Capabilities of Generative Models
	Our Unified Generative Time Series Model
	Experiments
	Few-Shot Benchmark for Time Series Generation
	Pre-training with Varying Sequence Lengths
	Pre-training Impact Across Model Scales
	Out-of-domain Generalization
	Ablation of Main Properties
	Runtime and Memory Consumption

	Conclusion
	Broader Impact
	Additional Dataset Details
	Pre-training Datasets
	Few-shot Evaluation Datasets

	Experimental Setting
	Model Architecture
	Training Procedure
	Pre-training Procedure
	Training Loss
	Few-Shot Generation Adaptation

	Evaluation Protocol

	Additional Experiments
	Impact of Canonical Kernel Size in DyConv
	Effect of Fine-tuning Methods
	Evaluating Sequence-Native Baselines Under the Few-Shot Setting
	Dataset Token Robustness Under Overlapping Domains
	Datasets Analysis
	Full Results of Main Table
	Full results on pre-training datasets: Cond. vs. Uncond.


