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Abstract

We present a unified constructive universal approximation theorem covering a wide1

range of learning machines including both shallow and deep neural networks based2

on the group representation theory. Constructive here means that the distribution3

of parameters is given in a closed-form expression (called the ridgelet transform).4

Contrary to the case of shallow models, expressive power analysis of deep models5

has been conducted in a case-by-case manner. Recently, Sonoda et al. [33, 32]6

developed a systematic method to show a constructive approximation theorem7

from scalar-valued joint-group-invariant feature maps, covering a formal deep8

network. However, each hidden layer was formalized as an abstract group action, so9

it was not possible to cover real deep networks defined by composites of nonlinear10

activation function. In this study, we extend the method for vector-valued joint-11

group-equivariant feature maps, so to cover such real networks.12

1 Introduction13

An ultimate goal of the deep learning theory is to characterize the internal data processing procedure14

inside deep neural networks obtained by deep learning. We may formulate this problem as a functional15

equation problem: Let F denote a class of data generating functions, and let DNN[γ] denote a certain16

deep neural network with parameter γ. Given a function f ∈ F , find an unknown parameter γ so that17

network DNN[γ] represents function f , i.e.18

DNN[γ] = f, (1)

which we call a DNN equation. An ordinary learning problem by empirical risk minimization, such19

as minimizing
∑n
i=1 |DNN[γ](xi) − f(xi)|2 with respect to γ, is understood as a weak form (or a20

variational form) of this equation. Therefore, characterizing the solution space of this equation leads21

to understanding the parameters obtained by deep learning. Following previous studies [21, 3, 28–22

31], we call a solution operator R that satisfies DNN[R[f ]] = f a ridgelet transform. Once such a23

solution operator R is found, we can conclude a universality of the DNN in consideration because the24

reconstruction formula DNN[R[f ]] = f implies for any f ∈ F there exists a DNN that represents f .25

In particular, when R[f ] is found in a closed-form manner, then it leads to a constructive proof of the26

universality since R[f ] could indicate how to assign parameters.27

When the network has only one infinitely-wide hidden layer, though it is not deep but shallow, the28

characterization problem has been well investigated. For example, the learning dynamics and the29

global convergence property (of SGD) are well studied in the mean field theory [22, 25, 20, 5] and the30

Langevin dynamics theory [35], and even closed-form solution operator to a “shallow” NN equation,31

the original ridgelet transform, has already been presented [28–31].32

On the other hand, when the network has more than one hidden layer, the problem is far from33

solved, and it is common to either consider infinitely-deep mathematical models such as Neural34
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ODEs [27, 9, 17, 12, 4], or handcraft inner feature maps depending on the problem. For example,35

construction methods such as the Telgarsky sawtooth function (or the Yarotsky scheme) and bit36

extraction techniques [7, 36–39, 8, 6, 26, 24, 11] have been developed to demonstrate the depth37

separation, super-convergence, and minmax optimality of deep ReLU networks. Various feature maps38

have also been handcrafted in the contexts of geometric deep learning [1] and deep narrow networks39

[19, 13, 18, 14, 23, 16, 2, 15]. Needless to say, there is no guarantee that these handcrafted feature40

maps are acquired by deep learning, so these analyses are considered to be analyses of possible41

worlds.42

Recently, Sonoda et al. [33, 32] discovered a rich class of ridgelet transforms for learning machines43

defined by scalar-valued joint-group-invariant feature maps, covering both depth-2 fully-connected44

networks and the formal deep network (FDN), yielding the first ridgelet transform for deep models.45

Their theory is indeed a breakthrough because it could cover both deep and shallow models simulta-46

neously. However, each hidden layer in the FDN has to be formalized as an abstract group action,47

so it was not possible to cover real deep networks defined by composites of nonlinear activation48

function. In this study, we extend their arguments for vector-valued joint-group-equivariant feature49

maps (Theorem 3 and Corollary 1), so to cover such real networks. As an important example, in50

§ 4.2, we obtained the ridgelet transform for a more realistic DNN, the depth-n fully-connected51

network with an arbitrary activation function (not limited to ReLU), without handcrafting network52

architecture. In other words, it is a constructive proof of the L2(Rm;Rm)-universality of the DNNs,53

and an explicit characterization of the solution space of the DNN equation for more realistic setup.54

Thanks to Schur’s lemma, a basic and useful result in the representation theory, the proof of the main55

theorem is surprisingly simple, yet the scope of application is wide. The significance of this study56

lies in revealing the close relationship between machine learning theory and modern algebra. With57

this study as a catalyst, we expect a major upgrade to machine learning theory from the perspective58

of modern algebra.59

2 Preliminaries60

We quickly introduce the original integral representation and the ridgelet transform, a mathematical61

model of depth-2 fully-connected network and its right inverse. Then, we list a few facts in the group62

representation theory. In particular, Schur’s lemma and the Haar measure play key roles in the proof63

of the main results.64

Notation. For any topological spaceX ,Cc(X) denotes the Banach space of all compactly supported65

continuous functions on X . For any measure space X , Lp(X) denotes the Banach space of all p-66

integrable functions on X . S(Rd) and S ′(Rd) denote the classes of rapidly decreasing functions (or67

Schwartz test functions) and tempered distributions on Rd, respectively.68

2.1 Integral Representation and Ridgelet Transform for Depth-2 Fully-Connected Network69

Definition 1. For any measurable functions σ : R → C and γ : Rm × R → C, put70

Sσ[γ](x) :=

∫
Rm×R

γ(a, b)σ(a · x− b)dadb, x ∈ Rm. (2)

We call Sσ[γ] an (integral representation of) neural network, and γ a parameter distribution.71

The integration over all the hidden parameters (a, b) ∈ Rm × R means all the neurons {x 7→72

σ(a · x − b) | (a, b) ∈ Rm × R} are summed (or integrated, to be precise) with weight γ, hence73

formally Sσ[γ] is understood as a continuous neural network with a single hidden layer. We note,74

however, when γ is a finite sum of point measures such as γp =
∑p
i=1 ciδ(ai,bi) (by appropriately75

extending the class of γ to Borel measures), then it can also reproduce a finite width network76

Sσ[γp](x) =

p∑
i=1

ciσ(ai · x− bi). (3)

In other words, the integral representation is a mathmatical model of depth-2 network with any width77

(ranging from finite to continuous).78

Next, we introduce the ridgelet transform, which is known to be a right-inverse operator to Sσ .79
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Definition 2. For any measurable functions ρ : R → C and f : Rm → C, put80

Rρ[f ](a, b) :=

∫
Rm

f(x)ρ(a · x− b)dx, (a, b) ∈ Rm × R. (4)

We call Rρ a ridgelet transform.81

To be precise, it satisfies the following reconstruction formula.82

Theorem 1 (Reconstruction Formula). Suppose σ and ρ are a tempered distribution (S ′) and a rapid83

decreasing function (S) respectively. There exists a bilinear form ((σ, ρ)) such that84

Sσ ◦Rρ[f ] = ((σ, ρ))f, (5)
for any square integrable function f ∈ L2(Rm). Further, the bilinear form is given by ((σ, ρ)) =85 ∫
R σ

♯(ω)ρ♯(ω)|ω|−mdω, where ♯ denotes the 1-dimensional Fourier transform.86

See Sonoda et al. [29, Theorem 6] for the proof. In particular, according to Sonoda et al. [29,87

Lemma 9], for any activation function σ, there always exists ρ satisfying ((σ, ρ)) = 1. Here, σ88

being a tempered distribution means that typical activation functions are covered such as ReLU, step89

function, tanh, gaussian, etc... We can interpret the reconstruction formula as a universality theorem90

of continuous neural networks, since for any given data generating function f , a network with output91

weight γf = Rρ[f ] reproduces f (up to factor ((σ, ρ))), i.e. S[γf ] = f . In other words, the ridgelet92

transform indicates how the network parameters should be organized so that the network represents93

an individual function f .94

The original ridgelet transform was discovered by Murata [21] and Candès [3]. It is recently extended95

to a few modern networks by the Fourier slice method [34, see e.g.]. In this study, we present a96

systematic scheme to find the ridgelet transform for a variety of given network architecture based on97

the group theoretic arguments.98

2.2 Irreducible Unitary Representation and Schur’s Lemma99

Let G be a locally compact group, H be a nonzero Hilbert space, and U(H) be the group of unitary100

operators on H. For example, any finite group, discrete group, compact group, and finite-dimensional101

Lie group are locally compact, while an infinite-dimensional Lie group is not locally compact. A102

unitary representation π of G on H is a group homomorphism that is continuous with respect to103

the strong operator topology—that is, a map π : G → U(H) satisfying π(gh) = π(g)π(h) and104

π(g−1) = π(g)−1, and for any ψ ∈ H, the map G ∋ g 7→ π(g)[ψ] ∈ H is continuous.105

Suppose M is a closed subspace of H. M is called an invariant subspace when π(g)M ⊂ M for all106

g ∈ G. Particularly, π is called irreducible when it does not admit any nontrivial invariant subspace107

M ≠ {0} nor H. The following theorem is a fundamental result of group representation theory that108

characterizes the irreducibility.109

Theorem 2 (Schur’s lemma). A unitary representation (π,H) is irreducible iff any bounded operator110

T on H that commutes with π is always a constant multiple of the identity. In other words, if111

π(g)T = Tπ(g) for all g ∈ G, then T = c IdH for some c ∈ C.112

See Folland [10, Theorem 3.5(a)] for the proof. We use this as a key step in the proof of our main113

theorem.114

2.3 Calculus on Locally Compact Group115

By Haar’s theorem, if G is a locally compact group, then there uniquely exist left and right invariant116

measures dlg and drg, satisfying for any s ∈ G and f ∈ Cc(G),117 ∫
G

f(sg)dlg =

∫
G

f(g)dlg, and
∫
G

f(gs)drg =

∫
G

f(g)drg.

LetX be aG-space with transitive left (resp. right)G-action g ·x (resp. x ·g) for any (g, x) ∈ G×X .118

Then, we can further induce the left (resp. right) invariant measure dlx (resp. drx) so that for any119

f ∈ Cc(G),120 ∫
X

f(x)dlx :=

∫
G

f(g · o)dlg, resp.
∫
X

f(x)drx :=

∫
G

f(o · g)drg,

where o ∈ X is a fixed point called the origin.121
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Figure 1: An ordinary G-equivariant feature map ϕ : X×Ξ → Y is a subclass of joint-G-equivariant
map where the G-action on parameter domain Ξ is trivial, i.e. g · ξ = ξ

3 Main Results122

We introduce the joint-group-equivariant feature map, and present the ridgelet transforms for learning123

machines defined by joint-group-equivariant feature maps, yielding the universality of deep models.124

Let G be a locally compact group equipped with a left invariant measure dg. Let X and Ξ be125

G-spaces equipped with G-invariant measures dx and dξ, called the data domain and the parameter126

domain, respectively. Particularly, we call the product space X × Ξ the data-parameter domain (like127

time-frequency domain), and call any map ϕ on data-parameter domain X × Ξ a feature map. Let H128

be a separable Hilbert space, let U(H) be the space of unitary operators on H, and let υ : G→ U(H)129

be a unitary representation of G on H. If there is no danger of confusion, we use the same symbol ·130

for the G-actions on X , H, and Ξ (e.g., g · x, g · v, and g · ξ).131

In the main theorem, the irreducibility of the following unitary representation π will be a sufficient132

condition for the universality. LetL2(X;H) denote the space of H-valued square-integrable functions133

on X equipped with the inner product ⟨ϕ, ψ⟩L2(X;H) :=
∫
X
⟨ϕ(x), ψ(x)⟩Hdx. Put134

πg[f ](x) := g · f(g−1 · x), x ∈ X, f ∈ L2(X;H), g ∈ G. (6)

Then, it is a unitary representation ofG on L2(X;H). In fact, πg[πh[f ]](x) = g ·h·f(h−1 ·g−1 ·x) =135

(gh) · f((gh)−1 · x) = πgh[f ](x), and ⟨πg[f1], πg[f2]⟩L2(X;H) =
∫
X
⟨υg[f1](g−1 · x), υg[f2](g−1 ·136

x)⟩Hdx =
∫
X
⟨f1(x), υ∗g [υg[f2]](x)⟩Hdx = ⟨f1, f2⟩L2(X;H).137

In addition, let L2(Ξ) denote the space of C-valued square-integrable functions on Ξ, and let π̂ be138

the left-regular representation of G on L2(Ξ) given by139

π̂g[γ](ξ) := γ(g−1 · ξ), ξ ∈ Ξ, γ ∈ L2(Ξ), g ∈ G. (7)

Similarly to π, π̂ is also a unitary representation.140

Definition 3 (Joint G-Equivariant Feature Map). Let X,Y be data domains, and Ξ be a parameter141

domain (with G-actions). We say a feature map ϕ : X × Ξ → Y is joint-G-equivariant when142

ϕ(g · x, g · ξ) = g · ϕ(x, ξ), (x, ξ) ∈ X × Ξ, (8)

holds for all g ∈ G. In other words, ϕ is a homomorphism (or G-map) of G-sets from X × Ξ to143

Y . So by homG(X × Ξ, Y ), we denote the collection of all joint-G-equivariant maps. Additionally,144

when G-action on Y is trivial, i.e. ϕ(g · x, g · ξ) = ϕ(x, ξ), we say it is joint-G-invariant.145

Remark 1. The joint-G-equivariance extends an ordinary notion of G-equivariance, i.e. ϕ(g · x, ξ) =146

g · ϕ(x, ξ). In fact, G-equivariance is a special case of joint-G-equivariance where G acts trivially on147

parameter domain, i.e. g · ξ = ξ (see also Figure 1).148

In order to construct a (non-joint) group-equivariant network, we must carefully and precisely design149

the network architecture [see, e.g., a textbook of geometric deep learning 1]. On the other hand, we150

can easily and systematically construct joint-G-equivariant network from (not at all equivariant but)151

any map f : X → Y according to the following Lemmas 1 and 2.152

Lemma 1. Suppose group G acts on sets X and Y . Fix an arbitrary map f : X → Y , and put153

ϕ(x, g) := g · f(g−1 · x) for every x ∈ X and g ∈ G. Then, ϕ : X ×G→ Y is joint-G-equivariant.154

Proof. Straightforward. For any g ∈ G, ϕ(g ·x, g ·h) = (gh) · f((gh)−1 · (g ·x)) = g ·ϕ(x, h).155
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Lemma 2 (Depth-n Feature Map ϕ1:n). Given a sequence of G-equivariant feature maps ϕi :156

Xi−1 × Ξi → Xi (i = 1, . . . , n), put ϕ1:n : X0 × Ξ1 × · · · × Ξn → Xn by157

ϕ1:n(x, ξ1, . . . , ξn) := ϕn(•, ξn) ◦ · · · ◦ ϕ1(x, ξ1). (9)

Then, ϕ1:n is G-equivariant. Following the custom of counting the number of parameter domains158

(Ξi)
n
i=1, we say ϕ1:n is depth-n.159

Proof. In fact,160

ϕ1:n(g · x, g · ξ1, . . . , g · ξn) = ϕn(•, g · ξn) ◦ · · · ◦ ϕ2(•, g · ξ2) ◦ ϕ1(g · x, g · ξ1)
= ϕn(•, g · ξn) ◦ · · · ◦ ϕ2(g · •, g · ξ2) ◦ ϕ1(x, ξ1)

...
= ϕn(g · •, g · ξn) ◦ · · · ◦ ϕ2(•, ξ2) ◦ ϕ1(x, ξ1)
= g · ϕn(•, ξn) ◦ · · · ◦ ϕ2(•, ξ2) ◦ ϕ1(x, ξ1)
= g · ϕ1:n(x, ξ1, . . . , ξn).

Definition 4 (ϕ-Network). For any vector-valued map ϕ : X × Ξ → H and scalar-valued map161

γ : Ξ → C, define a vector-valued map X → H by162

NN[γ;ϕ](x) :=

∫
Ξ

γ(ξ)ϕ(x, ξ)dξ, x ∈ X, (10)

where the integral is understood as the Bocher integral.163

We call the integral transform NN[•;ϕ] a ϕ-transform, and each individual image NN[γ;ϕ] a ϕ-network164

for short. The ϕ-network extends the original integral representation. In particular, it inherits the165

concept of integrating all the possible parameters ξ and indirectly select which parameters to use166

by weighting on them, which linearize parametrization by lifting nonlinear parameters ξ to linear167

parameter γ.168

Definition 5 (ψ-Ridgelet Transform). For any H-valued feature map ψ : X × Ξ → H and H-valued169

Borel measurable function f on X , put a scalar-valued integral transform170

R[f ;ψ](ξ) :=

∫
X

⟨f(x), ψ(x, ξ)⟩Hdx, ξ ∈ Ξ. (11)

We call the integral transform R[•;ψ] a ψ-ridgelet transform for short.171

As long as the integrals are convergent, ϕ-ridgelet transform is the dual operator of ϕ-transform, since172

⟨γ, R[f ;ϕ]⟩L2(Ξ) =

∫
X×Ξ

γ(ξ)⟨ϕ(x, ξ), f(x)⟩Hdxdξ = ⟨NN[γ;ϕ], f⟩L2(X;H). (12)

Theorem 3 (Reconstruction Formula). Assume (1) H-valued feature maps ϕ, ψ : X × Ξ → H are173

joint-G-equivariant, (2) composite operator NNϕ ◦ Rψ : L2(X;H) → L2(X;H) is bounded (i.e.,174

Lipschitz continuous), and (3) the unitary representation π defined in (6) is irreducible. Then, there175

exists a bilinear form ((ϕ, ψ)) ∈ C (independent of f ) such that for any H-valued square-integrable176

function f ∈ L2(X;H),177

NNϕ ◦ Rψ[f ] = ((ϕ, ψ))f. (13)

In other words, the ψ-ridgelet transform Rψ is a right inverse operator of ϕ-transform NNϕ as long as178

((ϕ, ψ)) ̸= 0,∞.179

Proof. We write NN[•;ϕ] as NNϕ and R[•;ϕ] as Rϕ for short. By using the unitarity of representation180

υ : G→ U(H), left-invariance of measure dx, and G-equivariance of feature map ψ, for all g ∈ G,181

we have182

Rψ[πg[f ]](ξ) =

∫
X

⟨g · f(g−1 · x), ψ(x, ξ)⟩Hdx =

∫
X

⟨f(x), g−1 · ψ(g · x, ξ)⟩Hdx

=

∫
X

⟨f(x), ψ(x, g−1 · ξ)⟩Hdx = π̂g[Rψ[f ]](ξ). (14)
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Figure 2: Deep H-valued joint-G-equivariant network on G-space X is L2(X;H)-universal when
unitary representation π of G on L2(X;H) is irreducible, and the distribution of parameters for the
network to represent a given map f : X → H is exactly given by the ridgelet transform R[f ]

Similarly,183

NNϕ[π̂g[γ]](x) =

∫
Ξ

γ(g−1 · ξ)ϕ(x, ξ)dξ =
∫
Ξ

γ(ξ)ϕ(x, g · ξ)dξ

=

∫
Ξ

γ(ξ)
(
g · ϕ(g−1 · x, ξ)

)
dξ = πg[NNϕ[γ]](x). (15)

Here, π̂∗ denotes the dual representation of π̂ with respect to L2(Ξ).184

As a consequence, NNϕ ◦ Rψ : L2(X;H) → L2(X;H) commutes with π as below185

NNϕ ◦ Rψ ◦ πg = NNϕ ◦ π̂g ◦ Rψ = πg ◦ NNϕ ◦ Rψ (16)

for all g ∈ G. Hence by Schur’s lemma (Theorem 2), there exist a constant Cϕ,ψ ∈ C such that186

NNϕ ◦ Rψ = Cϕ,ψ IdL2(X). Since NNϕ ◦ Rψ is bilinear in ϕ and ψ, Cϕ,ψ is bilinear in ϕ and ψ.187

In particular, because depth-n feature map ϕ1:n is G-equivariant (Lemma 2), the following depth-n188

H-valued deep network DNN[γ;ϕ1:n] is L2(X;H)-universal.189

Corollary 1 (Deep Ridgelet Transform). For any maps γ : X → C and f ∈ L2(X;H), put190

DNN[γ;ϕ1:n](x) :=

∫
Ξ1×···×Ξn

γ(ξ1, . . . , ξn)ϕn(•, ξn) ◦ · · · ◦ ϕ1(x, ξ1)dξ, x ∈ X, (17)

R[f ;ψ1:n](ξ) :=

∫
Ξ

⟨f(x), ψn(•, ξn) ◦ · · · ◦ ψ1(x, ξn)⟩Hdx, ξ ∈ Ξ1 × · · · × Ξn. (18)

Under the assumptions that DNNϕ1:n
◦ Rψ1:n

is bounded, and that π is irreducible, there exists a191

bilinear form ((ϕ1:n, ψ1:n)) satisfying DNNϕ1:n
◦ Rψ1:n

= ((ϕ1:n, ψ1:n)) IdL2(X;H).192

Again, it extends the original integral representation, and inherits the linearization trick of nonlinear193

parameters ξ by integrating all the possible parameters (beyond the difference of layers) and indirectly194

select which parameters to use by weighting on them.195

4 Example: Depth-n Fully-Connected Network with Arbitrary Activation196

As a concrete example, we present the ridgelet transform for depth-n fully-connected network.197

First, we show the depth-2 case based on a joint-affine-invariant argument, which was originally198

demonstrated by Sonoda et al. [33]. Then, we show the depth-n case based on a joint-equivariant199

argument by extending the original arguments.200

We use the following known facts.201

Lemma 3. The regular representation π of the affine group Aff(m) on L2(Rm) (defined below) is202

irreducible.203

See Folland [10, Theorem 6.42] for the proof.204

Lemma 4. Suppose σ and ρ are a tempered distribution (S ′) and a Schwartz test function, respectively.205

Then, Sσ ◦Rρ : L2(Rm) → L2(Rm) is bounded.206

See Sonoda et al. [29, Lemmas 7 and 8] for the proof.207
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4.1 Depth-2208

Set X := Rm (data domain), Ξ := Rm×R (parameter domain), and G := Aff(m) = GL(m)⋉Rm209

be the m-dimensional affine group, acting on data domain X by210

g · x := Lx+ t, g = (L, t) ∈ GL(m)⋉Rm, x ∈ X. (19)
Addition to this, let π be the regular representation of Aff(m) on L2(X), namely211

π(g)[f ](x) := |detL|−1/2f(L−1(x− t)), f ∈ L2(X) and g = (L, t) ∈ GL(m)⋉Rm. (20)

Further, define a dual action of Aff(m) on the parameter domain Ξ as212

g · (a, b) = (L−⊤a, b+ t⊤L−⊤a), g = (L, t) ∈ GL(m)⋉Rm, (a, b) ∈ Ξ. (21)
Then, we can see the feature map ϕ(x, (a, b)) := σ(a · x− b) is joint-G-invariant. In fact,213

ϕ(g · x, g · (a, b)) = σ
(
L−⊤a · (Lx+ t)− (b+ t⊤L−⊤a)

)
= σ(a · x− b) = ϕ(x, (a, b)).

By Lemma 3, the regular representation π of G = Aff(m) is irreducible. Therefore, by Theorem 3,214

the depth-2 neural network and corresponding ridgelet transform:215

NN[γ](x) =

∫
Rm×R

γ(a, b)σ(a · x− b)dadb, and R2[f ](a, b) =

∫
Rm

f(x)ρ(a · x− b)dx,

satisfy the reconstruction formula NN ◦ R2 = ((σ, ρ)) IdL2(Rm). In Appendix A, we supplemented a216

detailed proof. In Appendix B, we discussed a geometric interpretation of dual G-action (21).217

4.2 Depth-n218

Following Corollary 1, we derive the ridgelet transform for depth-n fully-connected network by219

constructing a joint-equivariant network.220

Let O(m) be the m-dimensional orthogonal group acting on Rm by Qv for Q ∈ O(m) and v ∈ Rm,221

and (re)set G := O(m)×Aff(m) be the product group, acting on the data domain X by222

g · x := Lx+ t, x ∈ X, g = (Q,L, t) ∈ G = O(m)× (GL(m)⋉Rm) . (22)
Namely, we set the O(m)-action on X is trivial. Define a unitary representation π of G on vector-223

valued square-integrable functions L2(X;X) as224

πg[f ](x) := Qf(L−1(x− t)), x ∈ X, g = (Q,L, t) ∈ G,f ∈ L2(X;X). (23)
Lemma 5. The above π : G→ L2(Rm;Rm) is an irreducible unitary representation.225

Proof. Recall that a tensor product of irreducible representations is irreducible. Since both O(m)-226

action on Rm and Aff(m)-action on L2(Rm) are irreducible, and L2(Rm;Rm) is a tensor product227

Rm⊗L2(Rm), so the action π of product groupO(m)×Aff(m) on tensor product Rm⊗L2(Rm) =228

L2(Rm;Rm) is irreducible.229

Following the same arguments in Lemma 1, we first construct a depth-2 joint-G-equivariant network.230

Take an arbitrary square-integrable (not yet joint-G-equivariant) vector-field f0 ∈ L2(X;X). Then,231

the following network is joint-G-equivariant:232

NN(x, ξ) := NN[R2[πξ[f0]]](x) =

∫
Rm×R

QR2[f0](a, b)σ
(
a⊤L−1(x− t)− b

)
dadb, (24)

for every x ∈ X, ξ = (Q,L, t) ∈ O(m) × GL(m) ⋉ Rm. Here R2 is the ridgelet transform for233

depth-2 case (applied for vector-valued function by element-wise manner). This is joint-G-equivariant234

because NN(x, ξ) = πξ[f0](x). Henceforth, we (re)set Ξ := G.235

Finally, we construct a depth-n joint-G-equivariant network by composing the above depth-2 networks236

as below. Write ξ := (ξ1, . . . , ξn) ∈ Ξn for short. For any measurable function γ : Ξn → C and237

vector-field f : Rm → Rm, put238

DNN(x) :=

∫
Ξn

γ(ξ)NN(•, ξn) ◦ · · · ◦ NN(x, ξ1)dξ, x ∈ X (25)

Rn[f ](ξ) :=

∫
X

f(x)⊤NN(•, ξn) ◦ · · · ◦ NN(x, ξ1)dx, ξ ∈ Ξn. (26)

Then, as a consequence of Corollary 1, there exists a constant c ∈ C satisfying DNN ◦ Rn[f ] = cf for239

any f ∈ L2(X;X).240
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5 Example: Formal Deep Network241

We explain the formal deep network (FDN) introduced by Sonoda et al. [32]. Compared to the242

depth-n fully-connected network introduced in the previous section, the FDN (introduced in the243

previous study) is more abstract because the network architecture is not specified. Yet, we consider244

this is still useful for theoretical study of deep networks as it covers a wide range of groups and data245

domains (i.e., not limited to the affine group and the Euclidean space).246

5.1 Formal Deep Network247

Let G be an arbitrary locally compact group equipped with left-invariant measure dg, let X be a248

G-space equipped with left-invariant measure dx, and set Ξ := G with right-invariant measure dξ.249

The key concept is to identify each feature map ϕ : X × Ξ → X with a G-action g : X → X with250

parameter domain Ξ being identified with group G, and the composite of feature maps, say g ◦ h,251

with product gh. Since a group is closed under its operation by definition, the proposed network can252

represent literally any depth such as a single hidden layer g, double hidden layers g ◦ h, triple hidden253

layers g ◦ h ◦ k, and infinite hidden layers g ◦ h ◦ · · · . Besides, to lift the group action on a linear254

space, the network is formulated as a regular action of group G on a hidden layer, say ψ ∈ L2(X).255

Definition 6 (Formal Deep Network). For any functions ψ ∈ L2(X) and γ : Ξ → C, put256

DNN[γ;ψ](x) :=

∫
G1⋊···⋊Gn

γ(ξ1, . . . , ξn) ψ ◦ ξn ◦ · · · ◦ ξ1(x)dξ1 · · · dξn, x ∈ X. (27)

Here, G = G1 ⋊ · · ·⋊Gn denotes the semi-direct product of groups, suggesting that the network257

gets much complex and expressive as it gets deeper.258

To see the universality, define the dual action of G on the parameter domain Ξ = G as259

g · ξ := ξg−1, g ∈ G, ξ ∈ Ξ. (28)

Then, we can see ϕ(x, ξ) := ψ ◦ ξ(x) is joint-G-invariant. In fact,260

ϕ(g · x, g · ξ) = ψ ◦ (g · ξ)(g · x) = ψ ◦ (ξ ◦ g−1)(g(x)) = ψ ◦ ξ(x) = ϕ(x, ξ).

Therefore, by Theorem 3, assuming that the regular representation π : G→ U(L2(X)) is irreducible,261

the ridgelet transform is given by262

R[f ](ξ1, . . . , ξn) =

∫
X

f(x)ψ ◦ ξn ◦ · · · ◦ ξ1(x)dx, (ξ1, . . . , ξn) ∈ G1 ⋊ · · ·⋊Gn (29)

satisfying NN ◦ R = ((σ, ρ)) IdL2(X).263

5.2 Depth Separation264

To enjoy the advantage of abstract formulation, we discuss the effect of depth. For the sake of265

simplicity, we assume G to be a finite group, which may be acceptable given that the data domain266

X in practice is often discretized (or coarse-grained) into finite sets of representative points, say267

X ≈ X := {xi}pi=1, and if so the G-action is also reduced to finite representative actions.268

Following the concept of the formal deep network, we call group G acting on X a network. Let us269

consider depth-1 network G and depth-n network G1⋊ · · ·⋊Gn satisfying G = G1⋊ · · ·⋊Gn. The270

equation indicates that two networks have the same expressive power, because they can implement271

the same class of maps g : X → X .272

Next, let us define the width of a single layer G as the cardinality |G|. This is reasonable because273

the set G parametrizes each map g : X → X . Then, under the assumption that each Gi is simple,274

the depth-n network G1 ⋊ · · ·⋊Gn can express the same class of depth-1 network exponentially-275

effectively, because the total widths are
∑n
i=1 |Gi| = O(n) for depth-n and

∏n
i=1 |Gi| = expO(n)276

for depth-1. This estimate can be interpreted as the classical thought that the hierarchical models277

such as deep networks can represent complex functions combinatorially more efficient than shallow278

models.279
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6 Discussion280

We have developed a systematic method for deriving a ridgelet transform for a wide range of learning281

machines defined by joint-group-equivariant feature maps, yielding the universal approximation282

theorems as corollaries. The previous results by Sonoda et al. [33] was limited to scalar-valued283

joint-invariant functions, which were insufficient to deal with practical learning machines defined by284

composite mappings of vector-valued functions, such as deep neural networks. For example, they285

could only deal with abstract composite structures like formal deep network [32]. By extending their286

argument to vector-valued joint-equivariant functions, we were able to deal with deep structures.287

Traditionally, the techniques used in the expressive power analysis of deep networks were different288

from those used in the analysis of shallow networks, as overviewed in the introduction. Nonetheless,289

our main theorem cover both deep and shallow networks from the unified perspective (joint-group-290

action on the data-parameter domain). Technically, this unification is due to Schur’s lemma, a basic291

and useful result in the representation theory. Thanks to this lemma, the proof of the main theorem is292

simple, yet the scope of application is wide. The significance of this study lies in revealing the close293

relationship between machine learning theory and modern algebra. With this study as a catalyst, we294

expect a major upgrade to machine learning theory from the perspective of modern algebra.295

6.1 Limitations296

In the main theorem, we assume the following: (1) joint-equivariance of feature map ϕ, (2) bound-297

edness of composite operator NN ◦ R, (3) irreducibility of unitary representation π. In addition,298

throughout this study, we assume (4) local compactness of group G, and (5) that the network is given299

by the integral representation.300

As discussed in the main text, satisfying (1) is much easier than (non-joint) equivariance. Also, (2) is301

often a textbook excersise when the specific expression is given. (3) is required for Schur’s lemma, and302

it is often sufficient to synthesize the known results such as the one for the example of depth-n fully-303

connected network. (4) is quite a frequent assumption in the standard group representation theory, but304

it excludes infinite-dimensional groups. When formulated natively, nonparametric learning models305

including DNN can be infinite-dimensional groups. However, from the perspective of learnability,306

it is nonsense to consider too large a model, and it is common to assume regularity conditions307

such as sparsity and low rank in usual theoretical analysis. So, it is natural to impose additional308

regularity conditions for satisfying local compactness. (5) may be rather an advantage because309

there are established techniques to show the cc-universaity of finite models by discretizing integral310

representations. Moreover, there is a fast discretization scheme called the Barron’s rate based on the311

quasi-Monte Carlo method. On the other hand, problems like the minimum width in the field of deep312

narrow networks are analyses of finite parameters, and they could be a different type of parameters.313

Yet, the current mainstream solutions are the information theoretic method by Park et al. [23] and the314

neural ODE method by Cai [2], and both arguments contain the discretization of continuous models.315

Therefore, we may expect a high affinity with the integral representation theory.316

This study is the first step in extending the harmonic analysis method, which was previously applicable317

only to shallow models, to deep models. The above limitations will be resolved in our future works.318

7 Broader Impact319

This work studies theoretical aspects of neural networks for expressing square integrable functions.320

Since we do not propose a new method nor a new dataset, we expect that the impact of this work on321

ethical aspects and future societal consequences will be small, if any. Our work can help understand322

the theoretical benefit and limitations of neural networks in approximating functions. Our work and323

the proof technique improve our understanding of the theoretical aspect of deep neural networks and324

other learning machines used in machine learning, and may lead to better use of these techniques325

with possible benefits to the society.326
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[1] M. M. Bronstein, J. Bruna, T. Cohen, and P. Veličković. Geometric Deep Learning: Grids, Groups, Graphs,328

Geodesics, and Gauges. arXiv preprint: 2104.13478, 2021.329

9

http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478
http://arxiv.org/abs/2104.13478


[2] Y. Cai. Achieve the Minimum Width of Neural Networks for Universal Approximation. In The Eleventh330

International Conference on Learning Representations, 2023.331

[3] E. J. Candès. Ridgelets: theory and applications. PhD thesis, Standford University, 1998.332

[4] R. T. Q. Chen, Y. Rubanova, J. Bettencourt, and D. Duvenaud. Neural Ordinary Differential Equations. In333

Advances in Neural Information Processing Systems, volume 31, pages 6572–6583, Palais des Congrès de334

Montréal, Montréal CANADA, 2018.335

[5] L. Chizat and F. Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models336

using Optimal Transport. In Advances in Neural Information Processing Systems 32, pages 3036–3046,337

Montreal, BC, 2018.338

[6] A. Cohen, R. DeVore, G. Petrova, and P. Wojtaszczyk. Optimal Stable Nonlinear Approximation. Founda-339

tions of Computational Mathematics, 22(3):607–648, 2022.340

[7] N. Cohen, O. Sharir, and A. Shashua. On the Expressive Power of Deep Learning: A Tensor Analysis. In341

29th Annual Conference on Learning Theory, volume 49, pages 1–31, 2016.342

[8] I. Daubechies, R. DeVore, S. Foucart, B. Hanin, and G. Petrova. Nonlinear Approximation and (Deep)343

ReLU Networks. Constructive Approximation, 55(1):127–172, 2022.344

[9] W. E. A Proposal on Machine Learning via Dynamical Systems. Communications in Mathematics and345

Statistics, 5(1):1–11, 2017.346

[10] G. B. Folland. A Course in Abstract Harmonic Analysis. Chapman and Hall/CRC, New York, second347

edition, 2015.348

[11] P. Grohs, A. Klotz, and F. Voigtlaender. Phase Transitions in Rate Distortion Theory and Deep Learning.349

Foundations of Computational Mathematics, 23(1):329–392, 2023.350

[12] E. Haber and L. Ruthotto. Stable architectures for deep neural networks. Inverse Problems, 34(1):1–22,351

2017.352

[13] B. Hanin and M. Sellke. Approximating Continuous Functions by ReLU Nets of Minimal Width. arXiv353

preprint: 1710.11278, 2017.354

[14] P. Kidger and T. Lyons. Universal Approximation with Deep Narrow Networks. In Proceedings of Thirty355

Third Conference on Learning Theory, volume 125 of Proceedings of Machine Learning Research, pages356

2306–2327. PMLR, 2020.357

[15] N. Kim, C. Min, and S. Park. Minimum width for universal approximation using ReLU networks on358

compact domain. In The Twelfth International Conference on Learning Representations, 2024.359

[16] L. Li, Y. Duan, G. Ji, and Y. Cai. Minimum Width of Leaky-ReLU Neural Networks for Uniform Universal360

Approximation. In Proceedings of the 40th International Conference on Machine Learning, volume 202 of361

Proceedings of Machine Learning Research, pages 19460–19470, 2023.362

[17] Q. Li and S. Hao. An Optimal Control Approach to Deep Learning and Applications to Discrete-Weight363

Neural Networks. In Proceedings of The 35th International Conference on Machine Learning, volume 80,364

pages 2985–2994, Stockholm, 2018. PMLR.365

[18] H. Lin and S. Jegelka. ResNet with one-neuron hidden layers is a Universal Approximator. In Advances in366

Neural Information Processing Systems, volume 31, Montreal, BC, 2018.367

[19] Z. Lu, H. Pu, F. Wang, Z. Hu, and L. Wang. The Expressive Power of Neural Networks: A View from the368

Width. In Advances in Neural Information Processing Systems, volume 30, 2017.369

[20] S. Mei, A. Montanari, and P.-M. Nguyen. A mean field view of the landscape of two-layer neural networks.370

Proceedings of the National Academy of Sciences, 115(33):E7665–E7671, 2018.371

[21] N. Murata. An integral representation of functions using three-layered networks and their approximation372

bounds. Neural Networks, 9(6):947–956, 1996.373

[22] A. Nitanda and T. Suzuki. Stochastic Particle Gradient Descent for Infinite Ensembles. arXiv preprint:374

1712.05438, 2017.375

[23] S. Park, C. Yun, J. Lee, and J. Shin. Minimum Width for Universal Approximation. In International376

Conference on Learning Representations, 2021.377

10

https://openreview.net/forum?id=hfUJ4ShyDEU
https://searchworks.stanford.edu/view/9949708
https://papers.nips.cc/paper_files/paper/2018/hash/69386f6bb1dfed68692a24c8686939b9-Abstract.html
https://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport/
https://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport/
https://papers.nips.cc/paper/7567-on-the-global-convergence-of-gradient-descent-for-over-parameterized-models-using-optimal-transport/
http://doi.org/10.1007/s10208-021-09494-z
http://jmlr.csail.mit.edu/proceedings/papers/v49/cohen16.pdf
https://doi.org/10.1007/s00365-021-09548-z
https://doi.org/10.1007/s00365-021-09548-z
https://doi.org/10.1007/s00365-021-09548-z
http://doi.org/10.1007/s40304-017-0103-z
https://doi.org/10.1201/b19172
https://doi.org/10.1007/s10208-021-09546-4
http://iopscience.iop.org/article/10.1088/1361-6420/aa9a90/meta
http://doi.org/10.48550/arxiv.1710.11278
https://proceedings.mlr.press/v125/kidger20a.html
https://openreview.net/forum?id=dpDw5U04SU
https://openreview.net/forum?id=dpDw5U04SU
https://openreview.net/forum?id=dpDw5U04SU
https://proceedings.mlr.press/v202/li23g.html
https://proceedings.mlr.press/v202/li23g.html
https://proceedings.mlr.press/v202/li23g.html
http://proceedings.mlr.press/v80/li18b/li18b.pdf
http://proceedings.mlr.press/v80/li18b/li18b.pdf
http://proceedings.mlr.press/v80/li18b/li18b.pdf
https://proceedings.neurips.cc/paper/2018/hash/03bfc1d4783966c69cc6aef8247e0103-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
https://papers.nips.cc/paper/2017/hash/32cbf687880eb1674a07bf717761dd3a-Abstract.html
http://doi.org/10.1073/PNAS.1806579115
http://doi.org/10.1016/0893-6080(96)00000-7
http://doi.org/10.1016/0893-6080(96)00000-7
http://doi.org/10.1016/0893-6080(96)00000-7
http://arxiv.org/abs/1712.05438
https://openreview.net/forum?id=O-XJwyoIF-k


[24] G. Petrova and P. Wojtaszczyk. Limitations on approximation by deep and shallow neural networks.378

Journal of Machine Learning Research, 24(353):1–38, 2023.379

[25] G. Rotskoff and E. Vanden-Eijnden. Parameters as interacting particles: long time convergence and380

asymptotic error scaling of neural networks. In Advances in Neural Information Processing Systems 31,381

pages 7146–7155, Montreal, BC, 2018.382

[26] J. W. Siegel. Optimal Approximation Rates for Deep ReLU Neural Networks on Sobolev and Besov383

Spaces. Journal of Machine Learning Research, 24(357):1–52, 2023.384

[27] S. Sonoda and N. Murata. Transportation analysis of denoising autoencoders: a novel method for analyzing385

deep neural networks. In NIPS 2017 Workshop on Optimal Transport & Machine Learning (OTML), pages386

1–10, Long Beach, 2017.387

[28] S. Sonoda, I. Ishikawa, and M. Ikeda. Ridge Regression with Over-Parametrized Two-Layer Networks388

Converge to Ridgelet Spectrum. In Proceedings of The 24th International Conference on Artificial389

Intelligence and Statistics (AISTATS) 2021, volume 130, pages 2674–2682. PMLR, 2021.390

[29] S. Sonoda, I. Ishikawa, and M. Ikeda. Ghosts in Neural Networks: Existence, Structure and Role of391

Infinite-Dimensional Null Space. arXiv preprint: 2106.04770, 2021.392

[30] S. Sonoda, I. Ishikawa, and M. Ikeda. Universality of Group Convolutional Neural Networks Based393

on Ridgelet Analysis on Groups. In Advances in Neural Information Processing Systems 35, pages394

38680–38694, New Orleans, Louisiana, USA, 2022.395

[31] S. Sonoda, I. Ishikawa, and M. Ikeda. Fully-Connected Network on Noncompact Symmetric Space396

and Ridgelet Transform based on Helgason-Fourier Analysis. In Proceedings of the 39th International397

Conference on Machine Learning, volume 162, pages 20405–20422, Baltimore, Maryland, USA, 2022.398

[32] S. Sonoda, Y. Hashimoto, I. Ishikawa, and M. Ikeda. Deep Ridgelet Transform: Voice with Koopman399

Operator Proves Universality of Formal Deep Networks. In Proceedings of the 2nd NeurIPS Workshop on400

Symmetry and Geometry in Neural Representations, Proceedings of Machine Learning Research. PMLR,401

2023.402

[33] S. Sonoda, H. Ishi, I. Ishikawa, and M. Ikeda. Joint Group Invariant Functions on Data-Parameter Domain403

Induce Universal Neural Networks. In Proceedings of the 2nd NeurIPS Workshop on Symmetry and404

Geometry in Neural Representations, Proceedings of Machine Learning Research. PMLR, 2023.405

[34] S. Sonoda, I. Ishikawa, and M. Ikeda. A unified Fourier slice method to derive ridgelet transform for a406

variety of depth-2 neural networks. Journal of Statistical Planning and Inference, 233:106184, 2024.407

[35] T. Suzuki. Generalization bound of globally optimal non-convex neural network training: Transportation408

map estimation by infinite dimensional Langevin dynamics. In Advances in Neural Information Processing409

Systems 33, pages 19224–19237, 2020.410

[36] M. Telgarsky. Benefits of depth in neural networks. In 29th Annual Conference on Learning Theory, pages411

1–23, 2016.412

[37] D. Yarotsky. Error bounds for approximations with deep ReLU networks. Neural Networks, 94:103–114,413

2017.414

[38] D. Yarotsky. Optimal approximation of continuous functions by very deep ReLU networks. In Proceedings415

of the 31st Conference On Learning Theory, volume 75 of Proceedings of Machine Learning Research,416

pages 639–649. PMLR, 2018.417

[39] D. Yarotsky and A. Zhevnerchuk. The phase diagram of approximation rates for deep neural networks. In418

Advances in Neural Information Processing Systems, volume 33, pages 13005–13015, 2020.419

A Depth-2 Fully-Connected Neural Network and Ridgelet Transform420

A non group theoretic proof by reducing to a Fourier expression is given in Sonoda et al. [29,421

Theorem 6].422

11

http://jmlr.org/papers/v24/22-1381.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/196f5641aa9dc87067da4ff90fd81e7b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/196f5641aa9dc87067da4ff90fd81e7b-Abstract.html
https://proceedings.neurips.cc/paper_files/paper/2018/hash/196f5641aa9dc87067da4ff90fd81e7b-Abstract.html
http://jmlr.org/papers/v24/23-0025.html
http://jmlr.org/papers/v24/23-0025.html
http://jmlr.org/papers/v24/23-0025.html
https://arxiv.org/pdf/1712.04145.pdf
https://arxiv.org/pdf/1712.04145.pdf
https://arxiv.org/pdf/1712.04145.pdf
http://proceedings.mlr.press/v130/sonoda21a.html
http://proceedings.mlr.press/v130/sonoda21a.html
http://proceedings.mlr.press/v130/sonoda21a.html
http://arxiv.org/abs/2106.04770
http://arxiv.org/abs/2106.04770
http://arxiv.org/abs/2106.04770
https://papers.nips.cc/paper_files/paper/2022/hash/fcc3dc27672a12510babe448d665e152-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/fcc3dc27672a12510babe448d665e152-Abstract-Conference.html
https://papers.nips.cc/paper_files/paper/2022/hash/fcc3dc27672a12510babe448d665e152-Abstract-Conference.html
https://proceedings.mlr.press/v162/sonoda22a.html
https://proceedings.mlr.press/v162/sonoda22a.html
https://proceedings.mlr.press/v162/sonoda22a.html
https://arxiv.org/abs/2310.03529
https://arxiv.org/abs/2310.03529
https://arxiv.org/abs/2310.03529
https://arxiv.org/abs/2310.03530
https://arxiv.org/abs/2310.03530
https://arxiv.org/abs/2310.03530
https://www.sciencedirect.com/science/article/pii/S0378375824000417
https://www.sciencedirect.com/science/article/pii/S0378375824000417
https://www.sciencedirect.com/science/article/pii/S0378375824000417
https://proceedings.neurips.cc/paper/2020/hash/df1a336b7e0b0cb186de6e66800c43a9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/df1a336b7e0b0cb186de6e66800c43a9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/df1a336b7e0b0cb186de6e66800c43a9-Abstract.html
https://proceedings.mlr.press/v49/telgarsky16.html
http://doi.org/10.1016/j.neunet.2017.07.002
https://proceedings.mlr.press/v75/yarotsky18a.html
https://papers.nips.cc/paper/2020/hash/979a3f14bae523dc5101c52120c535e9-Abstract.html


A.1 Proof423

In the following, we identify the group G acting on data domain Rm with the affine group Aff(Rm),424

and introduce the so-called twisted dual group action that leaves a function θ invariant. Then, we see425

the regular action π of G on functions space L2(Rm) commutes with composite Sσ ◦Rρ. Hence, by426

Schur’s lemma, Sσ ◦Rρ is a constant multiple of identity, which concludes the assertion.427

Proof. Let G be the affine group Aff(Rm) = GL(Rm)⋉Rm. For any g = (L, t) ∈ G, let428

g · x := Lx+ t, x ∈ Rm (30)

be its action on Rm, and let429

π(g)[f ](x) := |detL|−1/2f(g−1 · x)
= |detL|−1/2f(L−1(x− t)), f ∈ L2(Rm) (31)

be its left-regular action on L2(Rm).430

Besides, putting431

θ((a, b),x) := a · x− b, (a, b) ∈ Rm × R,x ∈ Rm (32)

we define the twisted dual action of G on Rm × R as432

g · (a, b) := (L−⊤a, b+ a · (L−1t)), (a, b) ∈ Rm × R (33)

so that the following invariance hold:433

θ(g · (a, b), g · x) = θ((a, b),x) = a · x− b. (34)

To see this, use matrix expressions with extended variables434

θ((a, b),x) =
(
a⊤ b

)(Im 0
0 −1

)(
x
1

)
=: ã⊤Ĩx̃, (35)

g̃ · x :=

(
g · x
1

)
=

(
L t
0 1

)(
x
1

)
=: L̃x̃ (36)

and calculate435

ã⊤Ĩx̃ = (ã⊤ĨL̃−1Ĩ−1)Ĩ(L̃x̃) = (ĨL̃−⊤Ĩã)⊤Ĩ(L̃x̃), (37)

which suggests ˜g · (a, b) := ĨL̃−⊤Ĩã, and we have436

ĨL̃−⊤Ĩ =

(
Im 0
0 −1

)(
L t
0 1

)−⊤ (
Im 0
0 −1

)
=

(
Im 0
0 −1

)(
L−⊤ 0

−t⊤L−⊤ 1

)(
Im 0
0 −1

)
=

(
L−⊤ 0

t⊤L−⊤ 1

)
.

Further, we define its regular-action by437

π̂(g)[γ](a, b) := |detL|1/2γ(g−1 · (a, b))
= |detL|1/2γ(L⊤a, b− a · t), (a, b) ∈ Rm × R. (38)

Then we can see that, for all g = (L, t) ∈ G,438

Rρ ◦ π(g) = π̂(g) ◦Rρ, and Sσ ◦ π̂(g) = π(g) ◦ Sσ. (39)

In fact, at every g = (L, t) ∈ G and (a, b) ∈ Rm × R,439

Rρ[π(g)[f ]](a, b) = |detL|−1/2

∫
Rm

f(g−1 · x)ρ(θ((a, b),x))dx

by putting x = g · y = Ly + t with dx = |detL|dy,440

= |detL|1/2
∫
Rm

f(y)ρ(θ((a, b), g · y)))dy
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= |detL|1/2
∫
Rm

f(y)ρ(θ(g−1 · (a, b),y)))dy

= π̂(g)[Rρ[f ]](a, b). (40)

Similarly, at every g = (L, t) ∈ G and x ∈ Rm,441

Sσ[π̂(g)[γ]](x) = |detL|1/2
∫
Rm×R

γ(g−1 · (a, b))σ(θ((a, b),x))dadb

by putting (a, b) := g · (ξ, η) = (L−⊤ξ, η + ξ · (L−1t)) with dadb = |detL|dξdη,442

= |detL|−1/2

∫
Rm×R

γ(ξ, η)σ(θ(g · (ξ, η),x))dξdη

= |detL|−1/2

∫
Rm×R

γ(ξ, η)σ(θ((ξ, η), g−1 · x))dξdη

= π(g)[Sσ[γ]](x). (41)

Hence Sσ ◦Rρ commutes with π(g) because443

Sσ ◦Rρ ◦ π(g) = Sσ ◦ π̂(g) ◦Rρ = π(g) ◦ Sσ ◦Rρ.

Since Sσ ◦ Rρ : L2(Rm) → L2(Rm) is bounded (Lemma 4), and (π, L2(Rm)) is an irreducible444

unitary representation of G (Lemma 3), Schur’s lemma (Theorem 2) yields that there exist a constant445

Cσ,ρ ∈ C such that446

Sσ ◦Rρ[f ] = Cσ,ρf (42)

for all f ∈ L2(Rm).447

Finally, by directly computing the left-hand-side, namely Sσ ◦Rρ[f ], we can verify that the constant448

Cσ,ρ is given by449

Cσ,ρ = ((σ, ρ)) := (2π)m−1

∫
R
σ♯(ω)ρ♯(ω)|ω|−mdω. (43)

450

A.2 Proof for (33)451

Use matrix expressions with extended variables452

θ((a, b),x) =
(
a⊤ b

)(Im 0
0 −1

)(
x
1

)
=: ã⊤Ĩx̃, (44)

g̃ · x :=

(
g · x
1

)
=

(
L t
0 1

)(
x
1

)
=: L̃x̃ (45)

and calculate453

ã⊤Ĩx̃ = (ã⊤ĨL̃−1Ĩ−1)Ĩ(L̃x̃) = (ĨL̃−⊤Ĩã)⊤Ĩ(L̃x̃), (46)

which suggests ˜g · (a, b) := ĨL̃−⊤Ĩã, and we have454

ĨL̃−⊤Ĩ =

(
Im 0
0 −1

)(
L t
0 1

)−⊤ (
Im 0
0 −1

)
=

(
Im 0
0 −1

)(
L−⊤ 0

−t⊤L−⊤ 1

)(
Im 0
0 −1

)
=

(
L−⊤ 0

t⊤L−⊤ 1

)
.
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A.3 Proof for (39)455

In fact, at every g = (L, t) ∈ G and (a, b) ∈ Rm × R,456

Rρ[π(g)[f ]](a, b) = |detL|−1/2

∫
Rm

f(g−1 · x)ρ(θ((a, b),x))dx

by putting x = g · y = Ly + t with dx = |detL|dy,457

= |detL|1/2
∫
Rm

f(y)ρ(θ((a, b), g · y)))dy

= |detL|1/2
∫
Rm

f(y)ρ(θ(g−1 · (a, b),y)))dy

= π̂(g)[Rρ[f ]](a, b). (47)

Similarly, at every g = (L, t) ∈ G and x ∈ Rm,458

Sσ[π̂(g)[γ]](x) = |detL|1/2
∫
Rm×R

γ(g−1 · (a, b))σ(θ((a, b),x))dadb

by putting (a, b) := g · (ξ, η) = (L−⊤ξ, η + ξ · (L−1t)) with dadb = |detL|dξdη,459

= |detL|−1/2

∫
Rm×R

γ(ξ, η)σ(θ(g · (ξ, η),x))dξdη

= |detL|−1/2

∫
Rm×R

γ(ξ, η)σ(θ((ξ, η), g−1 · x))dξdη

= π(g)[Sσ[γ]](x). (48)

460

B Geometric Interpretation of Dual Action for Original Ridgelet Transform461

We explain a geometric interpretation of the dual action (33) in the previous section. We note that462

in general θ does not require any geometric interpretation as long as it is joint group invariant on463

data-parameter domain.464

For each (a, b) ∈ Rm ×R, put ξ(a, b) := {x ∈ Rm | a · x− b = 0}. Then it is a hyperplane in Rm465

through point x0 = ba/|a|2 with normal vector u := a/|a|.466

o

ξ(a, b)

u
y0

y

ξ(a,a · x)

x

x0
yx

Figure 3: The invariant ϕ((a, b),x) = σ(a · x− b) is the euclidean distance between point x and
hyperplane ξ(a, b) followed by scaling and nonlinearity σ

For any point y in the hyperplane ξ(a, b), by definition a · y = b, thus467

a · x− b = a · (x− y). (49)

But this means a · x− b is a scaled distance between point x and hyperplane ξ(a, b),468

= |a|dE(x, ξ(a, b)), (50)
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and further a scaled distance between hyperplanes ξ(a,a · x) through x with normal a/|a| and
ξ(a, b),469

= |a|dE(ξ(a,a · x), ξ(a, b)). (51)

Now, we can interpret the invariant θ((a, b),x) := a · x− b in a geometric manner, that is, it is the470

distance between point and hyperplane, or between hyperplanes. We note that we can regard entire471

σ(a · x− b)—the distance modulated by both scaling and nonlinearity—as the invariant, say ϕ.472

Furthermore, the dual action g · (a, b) is understood as a parallel translation of hyperplane ξ(a, b) to473

ξ(g · (a, b)) so as to leave the scaled distance θ invariant, namely474

dE(g · x, g · ξ(a, b)) = dE(x, ξ(a, b)). (52)

Indeed, for any g = (L, t) ∈ G,475

g · ξ(a, b) = {g · x | a · x− b = 0}
= {y | a · (g−1 · y)− b = 0} (by letting y = g · x)

= {y | (L−⊤) · y − (b+ a · (L−1t)) = 0}
= ξ(g · (a, b)),

meaning that the hyperplane with parameter (a, b) translated by g is identical to the hyperplane with476

parameter g · (a, b).477

To summarize, in the case of fully-connected neural network (and its corresponding ridgelet trans-478

form), the invariant is a modulated distance σ(a ·x− b), and the dual action is the parallel translation479

of hyperplane so as to keep the distance invariant. Further, from this geometric perspective, we can480

rewrite the fully-connected neural network in a geometric manner as481

S[γ](x) :=

∫
R×Ξ

γ(ξ)σ(adE(x, ξ))dadξ, (53)

where a ∈ R denotes signed scale and Ξ denotes the space of all hyperplanes (not always through482

the origin). Since each hyperplane is parametrized by normal vectors u ∈ m−1 and distance p ≥ 0483

from the origin, we can induce the product of spherical measure du and Lebesgue measure dp as a484

measure dξ on the space Ξ of hyperplanes.485
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