
Under review as a conference paper at ICLR 2022

SONG: SELF-ORGANIZING NEURAL GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent years have seen a surge in research on combining deep neural networks
with other methods, including decision trees and graphs. There are at least three
advantages of incorporating decision trees and graphs: they are easy to interpret
since they are based on sequential decisions, they can make decisions faster, and
they provide a hierarchy of classes. However, one of the well-known drawbacks of
decision trees, as compared to decision graphs, is that decision trees cannot reuse
the decision nodes. Nevertheless, decision graphs were not commonly used in
deep learning due to the lack of efficient gradient-based training techniques. In this
paper, we fill this gap and provide a general paradigm based on Markov processes,
which allows for efficient training of the special type of decision graphs, which we
call Self-Organizing Neural Graphs (SONG). We provide an extensive theoretical
study of SONG, complemented by experiments conducted on Letter, Connect4,
MNIST, CIFAR, and TinyImageNet datasets, showing that our method performs
on par or better than existing decision models.

1 INTRODUCTION

Neural networks (NNs) and decision trees (DTs) are two exceptionally powerful machine learning
models with a rich and successful history in machine learning. However, they typically come
with mutually exclusive benefits and limitations. NNs outperform conventional pipelines by jointly
learning to represent and classify data (Krizhevsky et al., 2012). However, they are widely opaque
and suffer from a lack of transparency and explainability (Rudin, 2019). On the other hand, it is easy
to explain predictions of DTs because they depend on a relatively short sequence of decisions (Wan
et al., 2020). However, they usually do not generalize as well as deep neural networks (Frosst &
Hinton, 2017). As a result, a strong focus is recently put on joining the positive aspects of both
models (Frosst & Hinton, 2017; Suárez & Lutsko, 1999; Kontschieder et al., 2015; Nauta et al., 2020;
Murthy et al., 2016; Tanno et al., 2019; Alaniz et al., 2021; Wan et al., 2020). There are methods that
combine NNs and soft decision trees with partial membership in each node (Frosst & Hinton, 2017;
Suárez & Lutsko, 1999; Kontschieder et al., 2015; Nauta et al., 2020). Others use trees to explain
NNs (Zhang et al., 2019; Bastani et al., 2017) or to obtain their optimal hierarchical structure (Murthy
et al., 2016; Tanno et al., 2019; Alaniz et al., 2021). Finally, some models replace the final softmax
layer of a neural network with a hierarchical binary decision tree (Wan et al., 2020; Morin & Bengio,
2005; Mikolov et al., 2011).

While decision trees can increase the performance and interpretability of NNs, they usually suffer
from exponential growth with depth (Shotton et al., 2012), repeating nodes (Frosst & Hinton, 2017),
and suboptimal structure, often selected manually before training (Wan et al., 2020). Hence, more
and more attention is put on combining NNs with decision graphs instead of trees (Baek et al., 2017;
Veit & Belongie, 2018; He et al., 2016; Mullapudi et al., 2018; Keskin & Izadi, 2018). Decision
graphs have a few advantages when compared to decision trees. They have a flexible structure that
allows multiple paths from the root to each leaf. As a result, nodes are reused, resulting in simpler and
smaller models, which solves the replication problem (Oliver, 1993) and provides models easier to
comprehend by humans (Breslow & Aha, 1997). Moreover, decision graphs require substantially less
memory while considerably improving generalization (Shotton et al., 2016). Nevertheless, decision
graphs are not commonly used in deep learning due to a lack of efficient gradient-based training
techniques.

1



Under review as a conference paper at ICLR 2022

r

v1 v2

l1 l2

x

NN

y1 y2

ba
ck
pr
op
ag
at
io
n

(a) random initialization

r

v1 v2

l1 l2

x

NN

y1 y2

(b) intermediate phase

r

v1 v2

l1 l2

x

NN

y1 y2

(c) trained SONG

Figure 1: Training stages of SONG that uses gradient descent to modify the graph structure and
transition probabilities. Based on an input x, the backbone neural network (NN) extracts a vector
representation, which is passed to SONG to obtain a prediction for each class (y1 and y2). At the
beginning of training, a graph has root r, nodes v1 and v2, leaves l1 and l2, and randomly initialized
edges (a). In the successive training iterations, the entropy of edge weights grows (b), finally resulting
in a sparse binary graph, with two strong edges outgoing from each node (c). Notice that SONG
contains two alternative sets of edges between the nodes (dashed blue arrows and solid red arrows,
respectively) that are combined based on the input (see Figure 2 for details).

In this paper, we introduce Self-Organizing Neural Graphs (SONGs)1, a special type of decision
graphs that generalize methods like Soft Decision Tree (SDT) (Frosst & Hinton, 2017) and Neural-
Backed Decision Trees (NBDT) (Wan et al., 2020), and as a differentiable solution are applicable
to any deep learning pipeline (Figure 1). Moreover, in contrast to the fixed structure of the existing
methods (Wan et al., 2020; Frosst & Hinton, 2017), SONGs can strengthen or weaken an edge
between any pair of nodes during training to optimize their structure. We illustrate this process in
Figure 1. In the beginning, the edges have random weights. However, in successive steps of training,
the structure is corrected with backpropagation, and it gets sparse and converges to the binary directed
acyclic graphs (Platt et al., 1999) (see Figure 1c). We prove this statement in Section 4.

Our contributions can be summarized as follows:

• We introduce Self-Organizing Neural Graphs (SONGs), a new paradigm of end-to-end
decision graph training based on Markov processes that simultaneously learn the optimal
graph structure and transition probabilities.

• Our model is fully differentiable and thus suitable for combined training with other deep
learning models.

• We prove empirically and theoretically that SONGs during training converge to sparse binary
acyclic graphs and can be interpreted as diagrams of consecutive decisions.

• Our method performs on par or outperforms decision trees trained in a similar setup and
does not require the graph/tree structure to be predefined before training.

2 RELATED WORKS

Decision trees Numerous Decision Tree (DT) algorithms have been developed over the years (Quin-
lan, 2014; Loh, 2011; Shafer et al., 1996; Mehta et al., 1996) and after the success of deep learning,
much research relates to combining DTs with neural networks. As a result, Soft Decision Tree (SDT)
was introduced, allowing for the partial membership of a sample in the nodes that make up the tree
structure (Suárez & Lutsko, 1999), also trained in distillation setup (Frosst & Hinton, 2017). This
idea was also used in (Kontschieder et al., 2015) that trains a set of classification trees and a backbone
network in an end-to-end manner. Moreover, it was recently used in (Nauta et al., 2020) to faithfully
visualize the model using nodes with prototypes (Chen et al., 2018) instead of classifiers. Trees were
also used to explain the previously trained black box models (Zhang et al., 2019; Bastani et al., 2017).
More advanced methods automatically generate deep networks with a tree structure in a multi-step or

1The code is available at: [anonymized]

2



Under review as a conference paper at ICLR 2022

m0i
0

l1

lc

v1

vn

vi

r
r

v1

vi

vn
l1

lc

m1i
0

mni
0

mn+1,i
0

mn+c,i
0

m0i
0

m1i
0

mni
0

mn+1,i
0

mn+c,i
0

m0i
1 r

v1

vi

vn
l1

lc

m1i
1

mni
1

mn+1,i
1

mn+c,i
1

m0i
1

m1i
1

mni
1

mn+1,i
1

mn+c,i
1

(a) transition vectors

(x)

l1

lc

v1

vn

vi

r
m0i
0r

v1

vn
l1

lc

m1i
0

mni
0

mn+1,i
0

mn+c,i
0

m0i
1

m1i
1

mni
1

mn+1,i
1

mn+c,i
1

+ σi1σi0

+

+

+

+

σi1σi0

σi1σi0

σi1σi0

σi1σi0

decision
σi·

(b) combination of transition vectors

Figure 2: SONG contains two alternative transition vectors m0
·i and m1

·i that aggregate the probability
of moving from a particular node vi to all other nodes. In (a), they are represented as dashed blue
and solid red arrows, respectively. Each node obtains input data x and makes a binary decision with
probabilities σ0

i and σ1
i of using one transition or another. As σ0

i +σ1
i = 1, SONG can be transformed

to a standard directed graph by combining m0
·i and m1

·i, as presented in (b). During training, both σ·i
and m··i are trained to obtain the optimal decision graph as presented in Figure 1 of the paper.

an end-to-end manner (Murthy et al., 2016; Tanno et al., 2019; Alaniz et al., 2021; Wan et al., 2020;
Ahmed et al., 2016). In contrast to the presented methods, our approach has a structure of a graph
trained together with other model parameters in an end-to-end manner.

Decision graphs A decision graph is a well-studied classifier and has been used to solve many
real-world problems (Sudo et al., 2018). When implemented as Directed Acyclic Graphs (DAG), it
leads to accurate predictions while having lower model complexity, subtree replication, and training
data fragmentation compared to decision trees (Shotton et al., 2016). However, most of the existing
algorithms for learning DAGs involve training a conventional tree that is later manipulated into a
DAG (Kohavi & Li, 1995; Oliveira & Sangiovanni-Vincentelli, 1996; Oliver, 1992; Chou, 1991)
and, as such, are difficult to be directly adopted into neural networks. Hence, alternative approaches
were proposed, like (Baek et al., 2017), which maintains the structure of the standard convolutional
neural networks (CNNs) but uses additional routing losses at each layer to maximize the class-wise
purity (like in growing decision trees) using data activation according to the class label distribution.
Another method (Veit & Belongie, 2018) introduces identity skip-connections similar to ResNets (He
et al., 2016) that are executed or skipped depending on the gate response for an input. A similar
gate mechanism was used in (Mullapudi et al., 2018) to choose branches specialized for different
inputs, whose outputs are combined to make the final predictions. Finally, (Keskin & Izadi, 2018)
embeds infinitely many filters into low dimensional manifolds parameterized by compact B-splines
and maximizes the mutual information between spline positions and class labels to specialize for
classification tasks optimally. Such a mechanism significantly reduces runtime complexity. In contrast
to existing methods, SONG is a directed graph that can be adapted to any deep architecture and
trained in an efficient gradient-based manner.

3 SELF-ORGANIZING NEURAL GRAPHS

To adequately describe the Self-Organizing Neural Graph (SONG), we first define a more abstract
structure that we call Soft Binary Directed Graph (SBDG). SBDG is considered binary because there
are two alternative sets of edges, and soft because those sets are combined into one target set of edges
depending on the input. Then, based on SBDG, we define SONG and describe how to use them
as a decision model. Finally, we present method limitations and show how to overcome them with
additional regularizers. The below definitions correspond to single-label classification for the clarity
of description. However, they could be easily extended to other tasks, like multi-label classification
or regression.

3



Under review as a conference paper at ICLR 2022

Soft binary directed graphs Soft Binary Directed Graph (SBDG) is a directed graph, which can be
viewed as a probabilistic model. It is defined as graph G = (V,E0, E1), with V corresponding to a
set of nodes and E0, E1 corresponding to two alternative sets of edges, where:

• Set V contains two types of nodes:
– internal nodes v0, . . . , vn, with v0 specified as root r,
– leaves l1, . . . , lc, each exclusively associated with one class from set {1, . . . , c},

• Set Ed, for d ∈ {0, 1}, contains all possible edges with weights md
ji corresponding to the

probability of moving from node ui to uj ∈ V , as presented in Figure 2a. In the following,
the aggregated probabilities of moving from node ui to other nodes will be called a transition
vector and denoted as md

·i.
• If ui is a leaf, then md

ji = δji (Kronecker delta), which means that it is impossible to move
out from the leaves.

• Each internal node ui makes binary decisions d ∈ {0, 1} with probabilities σdi of using
edges from set Ed.

• σ0
i + σ1

i = 1 and G can be transformed to a standard directed graph by combining m0
·i and

m1
·i using the following formula for each node ui: σ0

im
0
·i+σ1

im
1
·i. This process is presented

in Figure 2b.

Notice that if all transition vectors are binary, then after removing the edges with zero probability,
SBDG becomes a binary directed graphs (Platt et al., 1999).

Self-organizing neural graphs Self-Organizing Neural Graph (SONG) is a fully differentiable
adaptation of SBDG that can be combined with various deep architectures. SONG is defined as
G = (V, E0, E1), where V , E0, E1 implement V , E0, and E1 of SBDG, and are obtained for input
point x in the following way:

• The probability of decision d = 1 in node ui is obtained as σ1
i (x) = σ(xwi + bi), where σ

is the sigmoid logistic function, wi is a filter function, and bi is a bias2.
• The probability of decision d = 0 equals σ0

i (x) = 1− σ1
i (x).

• The probability of moving from internal nodes is defined by two matrices Md = [md
ji] ∈

R(n+c)×n, for d = {0, 1}, with positive values and columns summing up to 1. In our
implementation, we obtain such matrices by applying softmax to each of their columns.

Notice that {wi}i=1,...,n, {bi}i=1,...,n, M0, and M1 are trainable parameters of the model.

Finally, we define a directed graph Gx = (V, E) generated for input x where E corresponds to the
combination of matrices M0 and M1:

Mx = 1σTx �M1 + 1(1− σx)T �M0, (1)

where σx = [σ1
0(x), . . . , σ1

n(x)]T , symbol � denotes the Hadamard product, and 1 is the all-ones
vector of dimension n.

Decision model Matrix Mx contains the probability of moving from internal nodes to all nodes of
the graph. However, to apply the theory of the Markov processes, it needs to be extended by columns
corresponding to the leaves (as presented on the left side of Figure 3):

Px =

[
Mx

0
I

]
∈ R(n+c)×(n+c), (2)

where 0 ∈ Rn×c is zero matrix and I ∈ Rc×c is an identity matrix. As a result, we obtain a square
stochastic (transition) matrix used to describe the transitions of a Markov chain. While Px contains
the probability of moving from ui to uj in one time step, it can be easily used to obtain a similar
probability for N steps by calculating the N -th power of Px. Finally, the resulting matrix can be
multiplied by vector v = [1, 0, ..., 0]T to obtain the probability of moving from the root to any
node of the graph, including leaves, whose probability is the output of the model. We present a
simple example illustrating this process on the right side of Figure 3. More examples are provided in
Figures 12, 13, 14, and 15.

Regularizations Similarly as in Soft Decision Trees (SDT) (Frosst & Hinton, 2017), we observe
that our graphs require additional training regularizers. The reasons for that are threefold. First,
SONG may get stuck on plateaus in which one or more σdi (x) is 0 for all input samples x, and the

2In practice, this probability could also be obtained with any NN that ends with a sigmoid function.

4



Under review as a conference paper at ICLR 2022

0
0

0
1
0

1
0

0
0
0

0
0

1
0
0

0
0

0
0
1

0
0

1
0
0

0
0

0
1
0

M0= M1=

0.70.2 0.5

0
0

0
0.3
0.7

0.8
0

0.2
0
0

0
0

0.5
0.5
0

0
0

0
0
1

0
0

0
1
0

σTx=

Px=

v = Pxv = Px2v =

0.8 0.2

0.5

0.5 0.3
0.7

0.8 0.2

0.5

0.5 0.3
0.7

0.8 0.2

0.5

0.5 0.3
0.7

step 0 step 1 step 2

r

v1 v2

l1 l2

r
r

v1

v1

v2

v2
l1
l2

r
r

v1

v1

v2

v2
l1
l2

r
v1
v2
l1
l2

r v1 v2 l1 l2

M0, M1

decision

100%0%

probability in nodes

1 0 0 0 0 0 0.8 0.2 0 0 0 0 0.4 0.46 0.14
T T T

Figure 3: Construction of the transition matrix and successive steps of our Markov process. On the
left, a graph with its matrices M0 and M1 is presented, followed by an exemplary decision vector σx
and the resulting matrix Px. On the right, the flow in a graph is depicted for 3 consecutive steps. At
first, the probability is entirely placed in the root. However, in the next steps, the distribution splits
between nodes according to the transition probabilities, reaching leaves in step 3. The probabilities
in the leaves after all steps are class probabilities inferred by the model (the number of steps is
considered as a method hyperparameter).

gradient of the sigmoid logistic function for this decision is always very close to zero. Second, if
SONG is uncertain of its predictions, it can safely hold the probabilities in internal nodes instead of
moving them to leaves, which results in a small accumulated probability in the latter. Third, SONG
tends to binarize what is positive in general, but if this binarization appears too early, the model can
get stuck in a local minimum. Therefore, to prevent model degeneration, we introduce three types
of regularization. The first one, called node regularization, is based on (Frosst & Hinton, 2017) and
encourages each internal node to make equal use of both sets of edges E0, passing half of the training
samples to one direction (using M0) and the other half to the other direction (with M1). The second
one, called leave regularization, enforces the summary probabilities in leaves to be close to 1. Finally,
we apply Gumbel-softmax (Jang et al., 2016) instead of softmax to each column of matrices M0 and
M1 to explore the trajectories of the graph better. Details are provided in Appendix D.

4 THEORETICAL ANALYSIS

In this section, we show that the graph structure generated by SONG is binarized during training,
which increases its accuracy and makes the model easier to interpret and understand, see Figure 6.
Due to the page limit, we move all proofs to the Appendix B, while here we only describe the intuition
behind our ideas.

To study decision graphs, we use the probabilistic model over trajectories defined by arbitrary SBDG.
A trajectory of length N , starting at the root of SBDG G, is defined as T = (uit)t=1..N with binary
decisions dt ∈ {0, 1}, it ∈ I , where I denotes the set of node indexes. Thus, our trajectory starts at
the root (i0 = 0) and successively passes through nodes uit1 , . . . , uitN . The position of trajectory
after time t is defined as T (t) = uit and the probability of trajectory T is defined as

prob((T ;G)) =

N∏
t=1

(σdtit−1
·mdt

itit−1
).

Then the probability of reaching leaf l after N steps with a random trajectory T equals
prob((T (N) = l |T ∼ G)), where T ∼ G denotes that we sample trajectories with respect to distri-
bution given by prob((·;G)). Given a SONG G, to analyze a decision made on a single data point
x, we denote the probability that a random trajectory of length N reaches leaf corresponding to the
class y as prob((T (N) = y |T ∼ Gx)).

Now we present the main idea why during training SONG tends to binarize connections (for the
detailed proofs we refer to the Appendix B). For a fixed d ∈ {0, 1}, we denote G[i, j; d] as the graph
that makes a decision of moving from ui to uj with probability 1. Observe that G[i, j; d] comes from
binarization in graph G of the connections from ui under the choice d. In the following theorem, we

5



Under review as a conference paper at ICLR 2022

show that if G has no cycles, then we can decompose the probability of its trajectory into the mixture
of such binarized graphs.
Theorem 4.1. Let G be a SBDG where the probability of visiting twice an arbitrary internal node by
a trajectory of length N is zero. Moreover, ui be an internal node, fixed d ∈ {0, 1}, and an arbitrary
trajectory T of length N . Then

prob((T ;G)) =

n∑
j=1

md
jiprob((T ;G[i, j, d])). (3)

Roughly speaking, the proof follows from the fact that under the assumptions of the theorem the set
of the possible trajectories passing through ui with given d can be decomposed into n disjoint sets of
trajectories which after passing through ui visit uj , for j = 1, . . . , n.

Now we proceed to the consequence of the above result for SONG G. The accuracy of G over set X
is defined as the probability of predicting the correct class

acc(G;X) = 1
K

K∑
i=1

prob((T (N) = yi |T ∼ Gxi)).

Theorem 4.2. Let G be a SONG. We assume that for every x ∈ X no trajectory in Gx of length N
that visits twice the same internal node with nonzero probability. Let a node index i ∈ {1, . . . , n}
and d ∈ {0, 1} be fixed. Then

acc(G;X) =

n∑
j=1

md
jiacc(G[i, j, d];X). (4)

The consequence of the above theorem is profound. Namely, since the convex combination of
nonnegative reals is bounded by their maximum, we obtain that

acc(G;X) ≤ max
j=1..n

acc(G[i, j, d];X).

This means, that if we properly binarize the connections from ui, i.e. replace the SONG G by
G[i, j̄, d] (with j̄ = arg maxj acc(G[i, j, d];X)), we obtain a model with at least the same accuracy.
By applying the above operation for all nodes of G and all choices of d we will obtain a binary
graph which has accuracy at least that of G. Statistically SONG increases its accuracy if at least
one of the inequalities in equation 4 is strong for an arbitrary i and d. Summarizing, binarization of
the connections between nodes increases the performance of the model, which is formalized in the
following theorem.
Corollary 4.1. We assume that we are given a SONG G such that for an arbitrary x ∈ X no
trajectory in Gx of length N visits twice the same internal node with nonzero probability. Then we
can remove some connections from G to make a binary SONG, in such a way that the accuracy on X
is at least that of the original SONG G.

Figure 4: Total probability in leaves in successive train-
ing epochs for SONG trained on MNIST dataset. Each
color represents a different number of internal nodes (9,
16, 32, and 64), and each line corresponds to mean and
standard deviation over multiple training repetitions.

Observe, that if the training of the SONG
is successful and the model obtains accu-
racy close to one, the probability of arriv-
ing in the leaves becomes also close to one,
see Figure 4. The condition that we ar-
rive with probability one in leaves after N
jumps clearly implies that we cannot visit
twice the same internal node (in that case
we could return to this node with nonzero
probability). The formal zero loss assump-
tion (perfectly trained model) is commonly
accepted in deep learning literature – as
observed in (Ma et al., 2018) “most of
the modern machine learning, especially
deep learning, relies on classifiers which
are trained to achieve near zero classification and regression losses on the training data”. This
statement is supported by our experimental analysis, which shows that the loss for training and test
sets drop rapidly, achieving near-zero values at the final epochs of training (see Figure 7).

6



Under review as a conference paper at ICLR 2022

Table 1: Comparison of models with deep architecture in terms of model features and accuracy
on MNIST, CIFAR10 (CIF10), CIFAR100 (CIF100), and TinyImageNet (TinyIN). ResNet18 was
used to extract the vector representation of input images for DNDF (Kontschieder et al., 2015), DT,
NBDT (Wan et al., 2020), RDT (Alaniz et al., 2021), and SONG. For DDN (Murthy et al., 2016),
DCDJ (Baek et al., 2017), and ANT-A (Tanno et al., 2019), the backbone models are provided in
the brackets. “Ex?” indicates if the method retains interpretable properties such as pure leaves,
sequential decisions, and non-ensemble. “SO?” indicates if the model is self-organized (does not
require a predefined structure). “EE?” indicates if the structure and weights of model are trained in
an end-to-end continuous manner.

Method Ex? SO? EE? MNIST CIF10 CIF100 TinyIN

DDN (NiN) 7 3 7 - 90.32 68.35 -
DCDJ (NiN) 7 3 3 - - 69.00 -
ANT-A* (n/a) 3 3 7 99.36 93.28 - -

ResNet18 7 7 7 98.91 94.93 75.82 63.05
DNDF 7 7 7 97.20 94.32 67.18 44.56
DT 3 7 7 - 93.97 64.45 52.09
NBDT 3 7 7 - 94.82 77.09 64.23
NBDT w/o hierarchy 3 3 7 - 94.52 74.97 -
RDT 3 3 3 - 93.12 - -
SONG (ours) 3 3 3 98.81 95.62 76.26 61.99

While the above fact demonstrates that introducing binary connections improves the performance of
the model, it may be not obvious that SONG binarizes the connections during gradient training. To
see that, let us first notice that after calculating the loss function for each input sample, the gradient
is propagated from the leaves back to the root. It implies that all computation paths that end in
the internal nodes do not influence the transition probabilities in the graph. One may also notice,
that paths leading to the correct leaves (corresponding to the correct class for the input sample)
are strengthened by applying the chain rule to compute gradients with respect to the transition
probabilities. Conversely, paths ending in the incorrect leaves are weakened. Because transition
probabilities are softmax outputs limited to the range [0, 1], only the strongest path ending in the
correct leaf is iteratively reinforced at the expense of other paths. This aggressive exploitation of the
main paths causes SONG to binarize (see Figure 6 and Appendix C).

5 EXPERIMENTS

In this section, we analyze the accuracy of the SONGs trained on Letter (Asuncion & Newman,
2007), Connect4 (Asuncion & Newman, 2007), MNIST (LeCun et al., 2010), CIFAR10 (Krizhevsky
et al., 2009), CIFAR100 (Krizhevsky et al., 2009), and TinyImageNet (Le & Yang, 2015) datasets
and compare it with the state of the art methods (Wan et al., 2020; Kontschieder et al., 2015; Murthy
et al., 2016; Tanno et al., 2019; Alaniz et al., 2021; Baek et al., 2017). We examine how the number
of nodes and steps influence the structure of graphs, the number of internal nodes used by the model,
the number of back edges, and the distance from the root to leaves. Moreover, we explain how the
probability of back and cross edge changes in the successive training steps. Finally, we provide a
detailed comparison with SDT (Frosst & Hinton, 2017) and present sample graphs obtained for the
MNIST dataset. In all experiments, we use leaves normalization and Gumbel-softmax, and we treat
node regularization as a hyperparameter of the model. While this section presents only the most
important findings for the sake of clarity, the experimental setup and detailed results can be found in
Appendix G.

SONG in deep learning setup In the first experiment, we apply SONG at the top of the backbone
Convolutional Neural Network (CNN) without the final linear layer. CNN takes the input image and
generates the representation, which is passed to the SONG. SONG processes the representation and
returns the predictions for each class, which are then used with target labels to calculated Binary
Cross-Entropy (BCE) loss. As a backbone network, we use ResNet18 for all datasets except MNIST,
for which we employ a smaller network (see Appendix G for details).

7



Under review as a conference paper at ICLR 2022

Table 2: Comparison of SDT (Frosst & Hinton, 2017) and shallow SONG (SONG-S) on three datasets,
where shallow corresponds to direct flattened inputs (no backbone network used). The accuracy
of each model is reported along with the number of internal nodes specified in the parentheses.
SONG-S-small contains the minimal number of nodes necessary to match the accuracy of SDT.
SONG-S-large uses the same number of internal nodes as SDT. Please notice that SONG models
are trained without a distillation mechanism, and they always obtain better results than SDT without
distillation.

Method Letter Connect4 MNIST

SDT w/o distillation (Frosst & Hinton, 2017) 78.00 (511) 78.63 (255) 94.45 (255)
SDT (Frosst & Hinton, 2017) 81.00 (511) 80.60 (255) 96.76 (255)
SONG-S-large (ours) 86.25 (511) 82.82 (255) 95.74 (255)
SONG-S-small (ours) 82.95 (64) 80.27 (8) 94.66 (64)

0

1

2

3

4

5

7

8

9

(a) 16 internal nodes and 8 steps.

0 1

2 3

4

5

6

7 8 9

(b) 32 internal nodes and 8 steps.

Figure 5: Examples of the graph structures obtained by training SONG on the MNIST dataset. The
root is the top-most node in each graph, and double node borders denote the leaves with numbers of the
MNIST classes. For each node vi, we present two edges corresponding to the highest probability from
two transition vectors m0

·i and m1
·i (represented as dashed blue and solid red arrows, respectively).

As presented in Table 1, our method matches or outperforms most of the recent state-of-the-art
methods. On CIFAR10, SONG accuracy outperforms all baseline by almost 1 percentage point.
On MNIST, it is worse than ANT (Tanno et al., 2019) by around 0.5%, and on CIFAR100 and
TinyImagNet, NBDT (Wan et al., 2020) achieves better results. However, both ANT and NBDT are
not trained in an end-to-end continuous manner. Moreover, NBDT requires a hierarchy provided
before training, and without such a hierarchy, it obtains accuracy more than 1% lower than SONG on
CIFAR100.

SONG as shallow model Although SONG can be successfully used in a deep learning setup, it can
also be treated as a shallow model. In this case, SONG directly processes an input sample and returns
the predictions passed with target labels to BCE loss. This setup is similar to the one presented in
experiments on SDTs (Frosst & Hinton, 2017). Hence, we compare to SDT on all datasets considered
in (Frosst & Hinton, 2017).

Table 2 shows that SONG obtains better results than SDT without distillation on all datasets. Moreover,
on Letter and Connect4, SONG outperforms even SDT with distillation. We also observe that SONG
requires fewer nodes than SDT and obtains on par results on the Connect4 dataset with 30 times
fewer nodes. For Letter and MNIST, similarly good results can be obtained with 30 times fewer
nodes. This finding is in line with (Shotton et al., 2016) which shows that decision graphs require
dramatically less memory while considerably improving generalization.

SONG structure As a fully differentiable model, SONG strengthens or weakens an edge between
any pair of nodes during training to constantly optimize the graph’s structure (see Figure 6). Conse-
quently, it can generate any structure that uses all available nodes, or only some of them. In particular,
the final structure may be a binary tree or contain back edges. Moreover, the distance from the root to
leaves can vary. This variability is visualized in Figure 5, where we present two graphs obtained for
MNIST using a different number of internal nodes and steps.

In Figures 18 and 19, we provide statistics on multiple SONGs generated for the MNIST and
CIFAR10, respectively. We observe a significant difference in SONG structure depending on the
number of internal nodes and steps. First, we note that the number of internal nodes used by the
model increases with the increasing number of steps N , and it does not depend on the total number

8



Under review as a conference paper at ICLR 2022

(a) Initial values of M0, M1. (b) Trained values of M0, M1.

Figure 6: Visualisation of the graphs with edges corresponding to the transition matrices M0 (brown
edges) and M1 (green edges) of the SONG before and after training on the MNIST dataset with 9
internal nodes. One can observe that SONG models binarize the connections during gradient training.
Notice that brown and green nodes correspond to internal nodes and leaves, respectively.

of internal nodes n. As a natural consequence, a similar trend is observed for the distance from the
root to the leaves. When it comes to back edges, their number is relatively small, and they appear
only for a larger number of steps. At the same time, the cross edges are more often and increase with
the increased number of internal nodes.

SONG structure during training We analyze the relationship between BCE loss and
the probability of back and cross edges in the successive epochs of the training.

Figure 7: BCE loss as well as the number of back
and cross edges in the successive training epochs of
SONG with 256 internal nodes and 10 steps trained
for CIFAR100. One can observe that number of back
edges decrease together with decreasing BCE loss.

We present the mean over multiple models and
all test samples (as each test sample x has its
graph represented by matrix Px). We observe
that the probability of back edges decreases
together with decreasing BCE loss, both for
simple MNIST (see Figure 9) and more com-
plicated CIFAR100 datasets (see Figure 7).

Broader impact This work is mostly a the-
oretical contribution with practical elements,
and as such, does not have a direct impact on
society. However, our framework is a corner-
stone of neural decision graphs, which sheds
new light on combining modern neural net-
works with explainable decision models such
as graphs. Hence, due to the high applicability
of tree and graph decision models in many do-
mains, our work can bring long-term benefits
outside machine learning.

6 CONCLUSIONS

In this work, we introduce Self-Organizing Neural Graphs (SONGs), a new type of decision graphs
applicable in any deep learning pipeline. They optimize their structure during training by strengthen-
ing or weakening graph edges using gradient descent. Thanks to the graph structure, SONG can reuse
the decision nodes and obtain state-of-the-art results with a significantly smaller number of nodes
than existing methods. Moreover, the introduced general paradigm based on Markov processes allows
for efficient training, and SONG converges to the interpretable binary acyclic directed graphs. Hence,
we believe that our work opens a plethora of research pathways towards more effective applications
of decision graphs in a deep learning setup.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Karim Ahmed, Mohammad Haris Baig, and Lorenzo Torresani. Network of experts for large-scale
image categorization. In European Conference on Computer Vision, pp. 516–532. Springer, 2016.

Stephan Alaniz, Diego Marcos, Bernt Schiele, and Zeynep Akata. Learning decision trees recurrently
through communication. In 34th IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2021.

Arthur Asuncion and David Newman. Uci machine learning repository, 2007.

Seungryul Baek, Kwang In Kim, and Tae-Kyun Kim. Deep convolutional decision jungle for image
classification. arXiv preprint arXiv:1706.02003, 2017.

Osbert Bastani, Carolyn Kim, and Hamsa Bastani. Interpreting blackbox models via model extraction.
arXiv preprint arXiv:1705.08504, 2017.

Leonard A Breslow and David W Aha. Simplifying decision trees: A survey. The Knowledge
Engineering Review, 12(01):1–40, 1997.

Chaofan Chen, Oscar Li, Chaofan Tao, Alina Jade Barnett, Jonathan Su, and Cynthia Rudin. This
looks like that: deep learning for interpretable image recognition. arXiv preprint arXiv:1806.10574,
2018.

Philip A. Chou. Optimal partitioning for classification and regression trees. IEEE Computer
Architecture Letters, 13(04):340–354, 1991.

Nicholas Frosst and Geoffrey Hinton. Distilling a neural network into a soft decision tree. arXiv
preprint arXiv:1711.09784, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Cem Keskin and Shahram Izadi. Splinenets: Continuous neural decision graphs. arXiv preprint
arXiv:1810.13118, 2018.

Ron Kohavi and Chia-Hsin Li. Oblivious decision trees, graphs, and top-down pruning. In IJCAI, pp.
1071–1079. Citeseer, 1995.

Peter Kontschieder, Madalina Fiterau, Antonio Criminisi, and Samuel Rota Bulo. Deep neural
decision forests. In Proceedings of the IEEE international conference on computer vision, pp.
1467–1475, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep con-
volutional neural networks. Advances in neural information processing systems, 25:1097–1105,
2012.

Ya Le and Xuan Yang. Tiny imagenet visual recognition challenge. CS 231N, 7:7, 2015.

Yann LeCun, Corinna Cortes, and CJ Burges. Mnist handwritten digit database, 2010.

Wei-Yin Loh. Classification and regression trees. Wiley interdisciplinary reviews: data mining and
knowledge discovery, 1(1):14–23, 2011.

Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pp. 3325–3334. PMLR, 2018.

10



Under review as a conference paper at ICLR 2022

Manish Mehta, Rakesh Agrawal, and Jorma Rissanen. Sliq: A fast scalable classifier for data mining.
In International conference on extending database technology, pp. 18–32. Springer, 1996.

Tomáš Mikolov, Stefan Kombrink, Lukáš Burget, Jan Černockỳ, and Sanjeev Khudanpur. Extensions
of recurrent neural network language model. In 2011 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pp. 5528–5531. IEEE, 2011.

Frederic Morin and Yoshua Bengio. Hierarchical probabilistic neural network language model. In
Aistats, volume 5, pp. 246–252. Citeseer, 2005.

Ravi Teja Mullapudi, William R Mark, Noam Shazeer, and Kayvon Fatahalian. Hydranets: Spe-
cialized dynamic architectures for efficient inference. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 8080–8089, 2018.

Venkatesh N Murthy, Vivek Singh, Terrence Chen, R Manmatha, and Dorin Comaniciu. Deep
decision network for multi-class image classification. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 2240–2248, 2016.

Meike Nauta, Ron van Bree, and Christin Seifert. Neural prototype trees for interpretable fine-grained
image recognition. arXiv preprint arXiv:2012.02046, 2020.

Arlindo L Oliveira and Alberto Sangiovanni-Vincentelli. Using the minimum description length
principle to infer reduced ordered decision graphs. Machine Learning, 25(1):23–50, 1996.

JJ Oliver. Decision graphs - an extension of decision trees. In Proc. 4th International Conference on
Artificial Intelligence and Statistics, Miami, FL, 1993, 1993.

Jonathan Oliver. Decision graphs: an extension of decision trees. Citeseer, 1992.

John C Platt, Nello Cristianini, John Shawe-Taylor, et al. Large margin dags for multiclass classifica-
tion. In nips, volume 12, pp. 547–553, 1999.

J Ross Quinlan. C4. 5: programs for machine learning. Elsevier, 2014.

Cynthia Rudin. Stop explaining black box machine learning models for high stakes decisions and use
interpretable models instead. Nature Machine Intelligence, 1(5):206–215, 2019.

John Shafer, Rakesh Agrawal, and Manish Mehta. Sprint: A scalable parallel classifier for data
mining. In Vldb, volume 96, pp. 544–555. Citeseer, 1996.

Jamie Shotton, Ross Girshick, Andrew Fitzgibbon, Toby Sharp, Mat Cook, Mark Finocchio, Richard
Moore, Pushmeet Kohli, Antonio Criminisi, Alex Kipman, et al. Efficient human pose estimation
from single depth images. IEEE transactions on pattern analysis and machine intelligence, 35(12):
2821–2840, 2012.

Jamie Shotton, Toby Sharp, Pushmeet Kohli, Sebastian Nowozin, John Winn, and Antonio Criminisi.
Decision jungles: Compact and rich models for classification. 2016.

Alberto Suárez and James F Lutsko. Globally optimal fuzzy decision trees for classification and
regression. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(12):1297–1311,
1999.

Hiroki Sudo, Koji Nuida, and Kana Shimizu. An efficient private evaluation of a decision graph. In
International Conference on Information Security and Cryptology, pp. 143–160. Springer, 2018.

Ryutaro Tanno, Kai Arulkumaran, Daniel Alexander, Antonio Criminisi, and Aditya Nori. Adaptive
neural trees. In International Conference on Machine Learning, pp. 6166–6175. PMLR, 2019.

Andreas Veit and Serge Belongie. Convolutional networks with adaptive inference graphs. In
Proceedings of the European Conference on Computer Vision (ECCV), pp. 3–18, 2018.

Alvin Wan, Lisa Dunlap, Daniel Ho, Jihan Yin, Scott Lee, Henry Jin, Suzanne Petryk, Sarah Adel
Bargal, and Joseph E Gonzalez. Nbdt: neural-backed decision trees. ICLR 2021, 2020.

Quanshi Zhang, Yu Yang, Haotian Ma, and Ying Nian Wu. Interpreting cnns via decision trees.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
6261–6270, 2019.

11



Under review as a conference paper at ICLR 2022

A SONGS VISUALIZATION

In this section, we provide the visualization of a SONG trained on MNIST where the nodes are
represented by the learned filters and the “average” image passing through those nodes (see Figure 8).
Moreover, we provide additional examples of the graph structures obtained by training SONG on the
MNIST and CIFAR10 datasets (see Figures 10 and 11) together with the consecutive steps of the
Markov process (see Figures 12, 13, 14, and 15).

Finally, we analyze the relationship between BCE loss and the probability of back and cross edges in
the successive epochs of the training. We present the mean over multiple models and all test samples
(as each test sample x has its graph represented by matrix Px). The number of back and cross edges
is obtained in the following way. We first calculate all paths from the root with a probability higher
than a particular threshold 0.0001. Then we create a standard binary directed graph that contains all
nodes and edges from those paths. Finally, we run the DFS algorithm for this graph (starting from the
root) to obtain backed and cross edges.

Figure 8: Visualization of a shallow SONG (SONG-S) trained on MNIST where the nodes are
represented by the learned filters and the “average” image passing through those nodes (corresponding
to the right and left side of each node, respectively). Notice that SONGs contain filters only in the
inner nodes, as it is impossible to move out from the leaves.

12



Under review as a conference paper at ICLR 2022

Figure 9: BCE loss as well as the number of back and cross edges in the successive training epochs
of SONG with 64 internal nodes and 10 steps trained for MNIST. One can observe that number of
back edges decrease together with decreasing BCE loss.

0

12

3

4

5

6 7

8

9

(a)

0

1

2

3

4

5

6

7

8

9

(b)

Figure 10: Examples of the graph structures obtained by training SONG on the MNIST dataset. The
root is the top-most node in each graph, and the leaves are denoted by double node borders. The
numbers on the leaves are the MNIST classes. For each node vi, we present two edges corresponding
to the highest probability from two transition vectors m0

·i and m1
·i (represented as dashed blue and

solid red arrows, respectively).

0

1

234

5

6

78

9

(a)

0

1

2

3

4 56 7

8 9

(b)

0

1

2

3 45

6

7

8

9

(c)

0

1

2

3

4

5

6

7

8

9

(d)

Figure 11: Examples of the graph structures obtained by training SONG on the CIFAR10 dataset.
The root is the top-most node in each graph, and the leaves are denoted by double node borders.
The numbers on the leaves are the CIFAR10 classes. For each node vi, we present two edges
corresponding to the highest probability from two transition vectors m0

·i and m1
·i (represented as

dashed blue and solid red arrows, respectively).

13



Under review as a conference paper at ICLR 2022

0

1

234

5

6

78

9

0

1

234

5

6

78

9

0

1

234

5

6

78

9

0

1

234

5

6

78

9

Figure 12: An input image passing through a SONG trained on CIFAR10. High saturation of the green
color denotes high probability in the node. Each graph represent a consecutive step of the inference
(from left to right, then top to bottom). For each node vi, we present two edges corresponding to the
highest probability from two transition vectors m0

·i and m1
·i (represented as dashed blue and solid red

arrows, respectively).

14



Under review as a conference paper at ICLR 2022

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

0

1

2

3

4

5

6

7

8

9

Figure 13: An input image passing through a SONG trained on CIFAR10. High saturation of the green
color denotes high probability in the node. Each graph represent a consecutive step of the inference
(from left to right, then top to bottom). For each node vi, we present two edges corresponding to the
highest probability from two transition vectors m0

·i and m1
·i (represented as dashed blue and solid red

arrows, respectively).

15



Under review as a conference paper at ICLR 2022

0

1

2

3 45

6

7

8

9 0

1

2

3 45

6

7

8

9

0

1

2

3 45

6

7

8

9 0

1

2

3 45

6

7

8

9

Figure 14: An input image passing through a SONG trained on CIFAR10. High saturation of the green
color denotes high probability in the node. Each graph represent a consecutive step of the inference
(from left to right, then top to bottom). For each node vi, we present two edges corresponding to the
highest probability from two transition vectors m0

·i and m1
·i (represented as dashed blue and solid red

arrows, respectively).

0

1

2

3

4 56 7

8 9

0

1

2

3

4 56 7

8 9

0

1

2

3

4 56 7

8 9

0

1

2

3

4 56 7

8 9

Figure 15: An input image passing through a SONG trained on CIFAR10. High saturation of the green
color denotes high probability in the node. Each graph represent a consecutive step of the inference
(from left to right, then top to bottom). For each node vi, we present two edges corresponding to the
highest probability from two transition vectors m0

·i and m1
·i (represented as dashed blue and solid red

arrows, respectively).

16



Under review as a conference paper at ICLR 2022

B THEORETICAL ANALYSIS

Let us recall the most important definitions from section ’Theoretical analysis’ from the main paper.
In our theoretical results, we consider SONG as the probabilistic model over trajectories. A trajectory
of length N , starting at the root of SBDG G, is defined as T = (uit)t=1..N with binary decision
dt ∈ {0, 1}, it ∈ I , where I denotes the set of node indexes. Thus, our trajectory starts at the root
(i0 = 0) and successively passes through nodes uit1 , . . . , uitN . The position of trajectory after time t
is defined as T (t) = uit and the probability of trajectory T is defined as

prob((T ;G)) =

N∏
t=1

(σdtit−1
·mdt

itit−1
).

Then the probability of reaching leaf l afterN steps with a random trajectory T equals prob((T (N) =
l |T ∼ G)), where T ∼ G denotes that we sample trajectories with respect to distribution given by
prob((·;G)).

Next, we introduce a binarized graph G, where we binarize the connections from any pair of nodes.
For a fixed d ∈ {0, 1}, we denote G[i, j; d] as the graph that makes a decision of moving from ui to
uj with probability 1.

In the following theorem, we show that if G has no cycles, then we can decompose the probability of
its trajectory into the mixture of such binarized graphs.

Theorem B.1. (Theorem 4.1 in the main paper) Let G be a SBDG where the probability of visiting
twice an arbitrary node by a trajectory of length N is zero. Moreover, ui be an internal node, fixed
d ∈ {0, 1}, and an arbitrary trajectory T of length N . Then

prob((T ;G)) =

n∑
j=1

md
jiprob((T ;G[i, j, d])). (5)

Proof. Let T = (uit)t=1..N be a given trajectory and let us consider three cases of passing trough
node ui. First case assumes that T does not pass through ui, i.e. i 6= it for t = 1, . . . , N . Then,
directly from the definition of the trajectory’s probability

prob((T ;G)) = prob((T ;G[i, j, d])), for an arbitrary j.

This completes the proof of equation 5 in this case. Hence, let us now consider the cases where the
trajectory T passes through node ui.

Suppose the second case, when T passes through ui more than once. In this case, we will show that
both the left and right sides of equation 5 are zero. Obviously, prob((T ;G)) = 0 follows directly
from the assumption that the probability of visiting twice an arbitrary node by a trajectory of length
N in G is zero. Assume, for an indirect proof that there exist j such that md

jiprob((T ;G[i, j, d])) > 0.
Then md

ji > 0. Moreover, if T passes though ui and makes a decision d, then it has to move to uj . In
consequence,

prob((T ;G)) = md
jiprob((T ;G[i, j, d])) > 0

is a contradiction.

Let us consider the remaining, third case, when T passes through ui only once, and makes a decision
d. In other words, there exists a unique t such that it = i and dt = d. Observe that if j = it+1

then we move from ui to uj and all the probabilities prob((T ;G[i, l, d])) = 0, for l 6= j. Moreover,
since T visits ui only once, we get prob((T ;G)) = md

jiprob((T ;G[i, j, d])), which completes the
proof.

We now show the consequences of the above theorem for the SONG model. For this purpose, we
assume that X = (xi)i=1..K where each xi is associated with a label yi. We also consider SONG G
trained on X for trajectories of length N . Thus for each pair (x, y), we define the probability that a
random trajectory of length N reaches leaf corresponding to y as prob((T (N) = y |T ∼ Gx)).

In the following theorem, we show that if SONG is trained with zero CE or BCE loss, then no
trajectory of length N in Gx visits the same internal node twice with nonzero probability.

17



Under review as a conference paper at ICLR 2022

Theorem B.2. Let us consider SONG classifier with N moves and x being a data point with class y,
such that loss

(
prob((T (N) = y |T ∼ Gx)), y

)
= 0.

Then no trajectory of length N in Gx visits the same internal node twice with nonzero probability.

Proof. First observe, that directly from the fact that both CE and BCE are non-negative,
loss
(
prob((T (N) = y |T ∼ Gx)), y

)
= 0 iff

prob((T (N) = y |T ∼ Gx)) = 1.

Now suppose that there exists a trajectory T with nonzero probability, which goes through a given
internal node u twice, i.e. T (t1) = T (t2) = v for t1 < t2. Observe that T (t) is not a leaf for
t ∈ [t1, t2], since after reaching the leaf, we stay in it. Consider the trajectory T̃ given by

T̃ (t) =

{
T (t) for t ≤ t1,
T (t1 + s) for t = t1 + l(t2 − t1) + s, l ∈ N, s ∈ {0, .., t2 − t1}.

In other words, this is a trajectory that forms a cycle after reaching u. Thus we does not end in a leaf
with nonzero probability, which leads to a contradiction.

The accuracy of G over set X is defined as the probability of predicting the correct class

acc(G;X) =
1

K

K∑
i=1

prob((T (N) = yi |T ∼ Gxi
)).

As a direct consequence of Theorem B.1, we formulate the following fact.
Theorem B.3. (Theorem 4.2 in the main paper) Let G be a SONG. We assume that for every x ∈ X
no trajectory in Gx of length N that visits twice the same internal node with nonzero probability. Let
a node index i ∈ {1, . . . , n} and d ∈ {0, 1} be fixed. Then

acc(G;X) =

n∑
j=1

md
jiacc(G[i, j, d];X).

Proof. By Theorem B.1, for an arbitrary point x ∈ X (with class y) and trajectory of length N , we
have

prob((T ;Gx)) =

n∑
j=1

md
jiprob((T ;Gx[i, j, d])).

In consequence,

prob((T (N) = y |T ∼ Gx)) =

n∑
j=1

md
jiprob((T (N) = y |T ∼ Gx[i, j, d])).

Averaging the above probability over all points from X and applying the definition of accuracy, we
obtain the assertion of the theorem.

Observe that the above theorem implies that if we discretize connections in the graph by applying
formula equation 6 (below), then we do not decrease the accuracy of the model (statistically, we
increase it):
Theorem B.4. Let Gx be SONG generated for x ∈ X with CE or BCE loss equals zero. Moreover,
let node index i ∈ I and d ∈ {0, 1} be fixed, and

j = arg max
j̃

acc(G[i, j̃, d];X). (6)

Then
acc(G;X) ≤ acc(G[i, j, d];X).

Proof. From Theorem B.2 we obtain that Gx is SONG generated for x ∈ X with no trajectory of
length N that visits twice the same point with nonzero probability. Theorem B.3 implies that if we
discretize connections in the graph by applying formula equation 6, then we do not decrease the
accuracy of the model.

18



Under review as a conference paper at ICLR 2022

Figure 16: Simplified example of a SONG graph introduced to draw an intuition about graph
binarization property.

C EXPLANATION ON GRAPH BINARIZATION

To outline the idea why the Markov chain in our model gets binarized, let us consider a simplified
version of SONG model with only one transition matrix M and no decision functions σi in nodes.
Let us consider a simple subgraph G (Figure 16) with two non-zero paths:

G : v0
p01→ v1

p12→ v2, v0
p02→ v2,

where v0, v1, v2 are nodes, and p01, p12, p02 ∈ [0, 1] are transition probabilities, l = v2 is a leaf node
and r = v0 is the root (i.e. the initial probability on nodes is [v0, v1, v2] = [1, 0, 0]).

In the following, we will demonstrate why one of these two paths disappears. To show this, let us
first define the output of the model for leaf l:

l = v1p12 + v0p02 = v0(p01p12 + p02),

and calculate the gradients of the loss function L with respect to the transition probabilities:

∂L
∂p01

=
∂L
∂l
· ∂l

∂p01
=
∂L
∂l
v0p12,

∂L
∂p02

=
∂L
∂l
· ∂l

∂p02
=
∂L
∂l
v0,

∂L
∂p12

=
∂L
∂l
· ∂l

∂p12
=
∂L
∂l
v0p01.

Now, we can consider two cases:

1. p12 < 1: Then, ∂L
∂p01

< ∂L
∂p02

and because p01 + p02 = 1, the bigger gradient will cause p02
to increase and p01 to decrease. This will hold in the next iterations of training as long as
p12 < 1, and in consequence p02 → 1 and p01 → 0.

2. p12 = 1: Then, the subgraph is already binarized from node v1 onwards, and the gradients
with respect to p01 and p02 are equal (the model converged). While this situation can, in
theory, lead to a non-binary graph, it is very rare due to random initialization.

The above reasoning can be easily generalized to the case of multiple nodes and paths:

• If more than two alternative paths exist, both p01 and p02 can increase, but then at least one
of the other edges leaving node v0 has to decrease (

∑
i p0i = 1). This way, the alternative

paths will be eliminated one after another when other transition probabilities are already
close to 0.

• If paths contain more nodes, the gradients contain the product of all transition probabilities
on the path instead of one value.

19



Under review as a conference paper at ICLR 2022

Thus, the training converges when either all transition probabilities are binarized, or the product of
transition probabilities on all alternative paths except for the first transition is exactly the same (the
paths are equivalent).

D REGULARIZATIONS

Here we provide more details about three types of regularization described in the paper.

Node regularization The node regularization is a direct adaptation of the approach proposed
by Frosst & Hinton (2017). It is used to avoid getting stuck at poor solutions by encouraging
each internal node to make equal use of both left and right subtrees. In our approach, this regulariza-
tion encourages each internal node to make equal use of both sets of edges E0 and E1. I.e., to send
half of the training samples to one direction (using M0) and half of them to the other direction (with
M1). For this purpose, we calculate the cross entropy between the desired average distribution 0.5,
0.5 for those two sets and the actual average distribution αi,s, βi,s in node vi at step s

Lnodes = −λ
2

n∑
i=1

log(αi,s) + log(βi,s),

where

αi,s =

∑
x∈B(P sxr)i · (σ1

i (x))γ∑
x∈B(P sxr)i

,

βi,s =

∑
x∈B(P sxr)i · (σ0

i (x))γ∑
x∈B(P sxr)i

,

B is a batch of samples used in an iteration, γ ∈ [1, 2], and (P sxr)i corresponds to ith coordinate
of vector (P sxr). One can observe that our node regularizer is calculated per node and step, and it
is different from (Frosst & Hinton, 2017), where additional loss is computed once for each node.
Moreover, we penalize model for making uncertain decisions (σi,s(x) ≈ 0.5) using the parameter γ.

Leave regularization The leave regularization, enforcing the summary probabilities in leaves to be
close to 1, is defined as

Lleaves = − log

(
n+c∑
i=n

(PNx r)i

)
, (7)

where n is the number of nodes (excluding root indexed with 0), c is the number of leaves (classes),
and N is the number of steps.

In Figure 17, we present a comparison between SONG trained on MNIST dataset with (a) and without
Lleaves regularization (b). The accuracy and BCE loss reported at the final stage of training are
similar for both models. However, there are significant differences between their convergence times.
Most interestingly, models with regularization hold Lleaves close to 0 during the whole training, so
the sum of probability in the leaves is close to 1 all the time. On the other hand, the models without
regularization have an increased value of Lleaves between 50 and 150 epoch, meaning that the leaves
are not reached for some of the input samples. Such behavior can be especially detrimental for larger
datasets that require more training epochs to converge.

Gumbel-softmax We use Gumbel-softmax (Jang et al., 2016) instead of softmax to each column of
matrices M0 and M1 to explore the trajectories of the graph better. In other words, Gumbel-softmax
introduces randomness, which results in a wider exploration of the graph structure in the optimization
process.

E NODES AND EDGES STATISTICS

Here, we show the nodes and edges statistics calculated for SONGs trained on the MNIST and
CIFAR10 dataset (see Figures 18 and 19, respectively). They are discussed in Section 5.

20



Under review as a conference paper at ICLR 2022

(a) SONG trained with Lleaves regularization. (b) SONG trained without Lleaves regularization.

Figure 17: Accuracy, BCE loss, and Lleave in the successive training epochs of SONG trained on the
MNIST dataset. Each color represents a different number of internal nodes (64, 128, 255), and each
line corresponds to mean and standard deviation over multiple training repetitions.

4 6 8 10 20

2

4

6

8

10

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

4 6 8 10 20
0 .0

0 .5

1 .0

1 .5

2 .0

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

4 6 8 10 20
0

5

10

15

20

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

4 6 8 10 20

10

20

30

40

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

number of steps number of steps number of steps number of steps

number of nodes = 9 number of nodes = 16 number of nodes = 32 number of nodes = 64

di
st

an
ce

to
 le

av
es

nu
m

be
r 

of
ba

ck
 e

dg
es

nu
m

be
r 

of
cr

os
s 

ed
ge

s
nu

m
be

r 
of

 u
se

d
in

te
rn

al
 n

od
es

Figure 18: Nodes and edges statistics calculated for SONGs trained on the MNIST dataset. For each
combination of the number of internal nodes and steps, 20 graphs are trained and used to plot the
distributions of four statistics. One can observe a significant difference in SONG structure depending
on those hyperparameters.

F TRANSITION MATRICES

In Figures 20-25, we present sample matrices M0 and M1 before and after training. One can observe
that at the beginning, there are weak connections between all nodes. However, trained matrices
are almost binary and usually contain one value close to 1 in each column, and all other values are
close to 0. Moreover, in Figure 26, we present the mean distances between transition matrices (Px)
obtained for samples of the same and different classes. One can observe, among others, that the
diagonal is visibly darker than the rest of the matrix, which means that inputs from the same class

21



Under review as a conference paper at ICLR 2022

4 6 8 10 20

2

4

6

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

4 6 8 10 20
0

1

2

3

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

4 6 8 10 20
0 .0

2 .5

5 .0

7 .5

10 .0

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

4 6 8 10 20

5

10

15

20

4 6 8 10 20 4 6 8 10 20 4 6 8 10 20

number of steps number of steps number of steps number of steps

di
st

an
ce

to
 le

av
es

nu
m

be
r 

of
ba

ck
 e

dg
es

nu
m

be
r 

of
cr

os
s 

ed
ge

s
nu

m
be

r 
of

 u
se

d
in

te
rn

al
 n

od
es

number of nodes = 9 number of nodes = 16 number of nodes = 32 number of nodes = 64

Figure 19: Nodes and edges statistics calculated for SONGs trained on the CIFAR10 dataset. For
each combination of the number of internal nodes and steps, 20 graphs are trained and used to plot
the distributions of four statistics.

(a) Initial values of M0, M1. (b) Trained values of M0, M1.

Figure 20: Sample matricesM0 andM1 of the SONG before and after training on the MNIST dataset
with 9 internal nodes. One can observe that SONG models binarize the connections during gradient
training. Graphs corresponding to presented transition matrices are visualized in Figure 6.

have more similar transition matrices. This confirms that we obtain similar transition matrices for
similar inputs.

G EXPERIMENTAL SETUP

We used the following datasets in our experiments:

• Letter (https://archive.ics.uci.edu/ml/datasets/Letter+
Recognition),

• Connect4 (http://archive.ics.uci.edu/ml/datasets/connect-4),

• MNIST (published under CC BY-SA 3.0 license),

• CIFAR 10 & CIFAR 100 (published under MIT license),

22

https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
https://archive.ics.uci.edu/ml/datasets/Letter+Recognition
http://archive.ics.uci.edu/ml/datasets/connect-4


Under review as a conference paper at ICLR 2022

(a) Initial values of M0, M1. (b) Trained values of M0, M1.

Figure 21: Sample matricesM0 andM1 of the SONG before and after training on the MNIST dataset
with 16 internal nodes.

(a) Initial values of M0, M1. (b) Trained values of M0, M1.

Figure 22: Sample matricesM0 andM1 of the SONG before and after training on the MNIST dataset
with 32 internal nodes.

(a) Initial values of M0, M1. (b) Trained values of M0, M1.

Figure 23: Sample matricesM0 andM1 of the SONG before and after training on the MNIST dataset
with 64 internal nodes.

23



Under review as a conference paper at ICLR 2022

(a) Initial values of M0, M1. (b) Trained values of M0, M1.

Figure 24: Sample matricesM0 andM1 of the SONG before and after training on the MNIST dataset
with 128 internal nodes.

(a) Initial values of M0, M1. (b) Trained values of M0, M1.

Figure 25: Sample matricesM0 andM1 of the SONG before and after training on the MNIST dataset
with 256 internal nodes.

(a) SONG trained with 16 internal nodes. (b) SONG trained with 64 internal nodes.

Figure 26: Mean distances between transition matrices Px for pairs of MNIST input samples
represented by a distance matrix (the larger distance, the brighter color). The rows and columns
correspond to 0-9 digits.

24



Under review as a conference paper at ICLR 2022

• TinyImageNet (https://www.kaggle.com/c/tiny-imagenet/data).

Moreover, we consider two types of setups, deep (SONG) and shallow (SONG-S). In SONG, we
build neural networks that contain two successive parts, CNN and a graph. For the MNIST dataset,
the CNN is built from two convolution layers with 8 and 16 filters of size 5× 5, each followed by
ReLU and 2× 2 max pooling. Finally, a linear layer returns representation vectors of dimension 50.
For other datasets (CIFAR10, CIFAR100, and TinyImageNet), we use model ResNet18 without the
last linear layer. At the same time, for SONG-S, we only flatten the input sample to a one-dimensional
vector.

For SONGs, we apply a similar experimental setup as in the state-of-the-art methods (Wan et al.,
2020) to have comparable results. More precisely, we take the previously trained ResNet18 network,
remove its last layer, and use the remaining part as a CNN part. For the MNIST data, we train
the first part directly using Binary Cross Entropy (BCE) loss. For the remaining datasets, we take
a model from github.com/alvinwan/neural-backed-decision-trees (published
under MIT license) trained with Cross Entropy (CE) and finetune it using BCE loss. During training
the SONG, weights of CNNs are frozen. Moreover, the following hyper-parameters are considered in
the grid-search:

• For MNIST and CIFAR10:

– the number of nodes: 9, 16, 32, 64,
– the number of steps: 4, 6, 8, 10, 20.

• For CIFAR100:

– the number of nodes: 99, 256, 512,
– the number of steps: 7, 12, 20, 40.

• For TinyImagenet200:

– the number of nodes: 512,
– the number of steps: 20, 40.

Additionally, we consider a batch size 64 or 128 and the learning rate 0.001 for all datasets. Finally,
when it comes to initialization, M0, M1, and biases in nodes are initialized from a uniform distribution
on the interval [0, 1], and the remaining parameters (filters in the nodes) use the Kaiming initialization.

For SONG-S, the following hyper-parameters are considered in the grid-search:

• For Letter dataset:

– the number of nodes: 25, 32, 64, 128, 511,
– the number of steps: 5, 10, 20, 30, 40, 50.

• For Connect4 dataset:

– the number of nodes: 2, 8, 16, 32, 255,
– the number of steps: 2, 5, 10.

• For MNIST dataset:

– the number of nodes: 9, 16, 32, 64, 128, 256,
– the number of steps: 4, 6, 8, 10, 20, 30, 40, 50.

The remaining hyper-parameters are similar to the SONG setup.

H DETAILED RESULTS

In this section, we provide details on the experiments conducted for SONG in a deep learning setup
(see Table 3 and 4) and when treating SONG as a shallow model (see Table 5).

25

https://www.kaggle.com/c/tiny-imagenet/data
github.com/alvinwan/neural-backed-decision-trees


Under review as a conference paper at ICLR 2022

Table 3: Results of SONG in a deep learning setup. One can observe that for the MNIST dataset (a),
the performance increases with the increasing number of nodes and steps. In contrast to CIFAR10 (b),
where the performance is relatively similar for all combinations of the parameters. It can be caused
by the smaller dimension of the representation vector in MNIST (50) than in CIFAR10 (512).

(a) MNIST.

nodes
steps

4 6 8 10 20

9 95.66 97.29 97.25 97.95 97.56
16 97.31 97.83 98.23 98.43 98.56
32 96.82 97.74 98.35 98.65 98.62
64 96.29 98.12 98.12 98.47 98.68

(b) CIFAR10.

nodes
steps

4 6 8 10 20

9 94.48 94.86 94.92 94.94 94.93
16 94.88 94.95 94.86 94.87 94.89
32 94.99 94.95 94.95 94.90 94.98
64 94.90 94.87 94.88 94.94 94.93

Table 4: Results obtained for selected models from Table 3 (“base”) and their finetuned versions.
We analyze two types of finetuning, either by using basis weights and finetune all the parameters of
the network (“finetune”) or by taking the graph structure from the base model, reset other network
parameters, and train the network from scratch (“reset”). One can observe that there is no obvious
winning strategy, and it should be considered a hyperparameter. Notice also that we bold the
performance reported in the main paper.

(a) MNIST.

nodes steps base finetune reset

9 10 97.95 98.43 98.67
16 8 98.23 98.81 98.66
32 8 98.35 98.61 98.81
32 10 98.65 98.52 98.71
64 20 98.68 98.63 98.72

(b) CIFAR10.

nodes steps base finetune reset

9 10 94.94 94.98 95.26
16 6 94.95 95.09 95.47
32 6 94.95 95.12 95.62
64 10 94.94 95.03 95.41

I SOURCE CODE

The training and evaluation code is available in the archive file ’song_source.zip’. It contains
all the files required to reproduce the main results presented in the paper. Furthermore, in the
’README.md’ file, we describe detailed information about the Python environment, the required
packages.

J COMPUTATION TIME AND RESOURCES

We have run our experiments on Nvidia V100 32GB GPUs of our internal cluster. For deep setup, we
trained 50, 50, 25, and 10 models for MNIST, CIFAR10, CIFAR100, and TinyImageNet, respectively.
Each model required around 2, 2, 6, and 10 hours, respectively. For the shallow setup, we trained 60,
30, and 96 models for Letter, Connect4, and MNIST, respectively. In this case, each model required
around 5, 2, and 2 hours, respectively.

26



Under review as a conference paper at ICLR 2022

Table 5: SONG as a shallow model (SONG-S). One can observe that the performance increases with
the increasing number of nodes and steps for all datasets. We bold the performance reported in the
main paper.

(a) Letter.

nodes
steps

5 10 20 30 40 50

25 52.65 63.45 62.90 63.85 67.65 68.55
32 53.65 62.65 72.90 73.30 73.20 73.55
64 57.95 74.00 78.70 79.70 82.95 82.95
128 57.00 73.85 79.60 83.05 84.45 85.75
511 48.75 72.35 81.60 82.50 84.05 86.25

(b) Connect4.

nodes
steps

2 5 10

2 77.47 77.40 77.50
8 75.37 79.60 80.27
16 75.47 80.31 81.55
32 75.36 80.45 82.65
255 75.43 80.43 82.82

(c) MNIST.

nodes
steps

4 6 8 10 20 30 40 50

9 87.58 88.68 88.52 88.93 89.36 90.48 90.36 90.40
16 90.74 91.73 93.06 93.09 93.42 92.97 93.39 93.37
32 88.80 91.47 93.22 93.56 94.38 93.67 93.72 93.56
64 86.35 92.77 93.33 93.41 94.66 94.29 94.86 94.55
128 90.10 93.11 93.65 94.15 94.58 94.80 94.99 94.97
255 90.05 93.11 93.80 93.88 94.28 94.75 95.43 95.74

27


	Introduction
	Related works
	Self-organizing neural graphs
	Theoretical analysis
	Experiments
	Conclusions
	SONGs visualization
	Theoretical analysis
	Explanation on graph binarization
	Regularizations
	Nodes and edges statistics
	Transition matrices
	Experimental setup
	Detailed results
	Source code
	Computation time and resources

