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Abstract

In-context learning (ICL) is one of the key capabilities contributing to the great
success of LLMs. At test time, ICL is known to operate in the two modes: task
recognition and task learning. In this paper, we investigate the emergence and
dynamics of the two modes of ICL during pretraining. To provide an analytical
understanding of the learning dynamics of the ICL abilities, we investigate the
in-context random linear regression problem with a simple linear-attention-based
transformer, and define and disentangle the strengths of the task recognition and
task learning abilities stored in the transformer model’s parameters. We show that,
during the pretraining phase, the model first learns the task learning and the task
recognition abilities together in the beginning, but it (a) gradually forgets the task
recognition ability to recall the priorly learned tasks and (b) relies more on the
given context in the later phase, which we call (a) prior forgetting and (b) in-context
overfitting, respectively.

1 Introduction

Large language models (LLMs) show an emergent behavior [Wei et al.| [2022]], known as in-context
learning (ICL) [Brown et al., 2020, [Kaplan et al.,|2020], that they can learn (without updating any
model parameters) a new unseen task from a few demonstrations of input-output pairs given at test
time. While models trained with traditional supervised learning for a given task/mapping learn
task-specific features that might be spurious or irrelevant for other tasks, the ICL ability enables the
models to learn stronger representations with task-agnostic architecture and task-agnostic data and to
efficiently learn diverse tasks via text interaction in a flexible way. Thus, it is often considered as one
of the key capabilities contributing to the great success of LLMs.

At test time, in-context learning is known to operate in the following two modes: given an in-context
task, the model (i) recalls similar functions and concepts learned (priorly) in the pretraining phase
and (ii) smoothly adapts to and implicitly learns the (observed) in-context task [Xie et al., 2022}
Ravento6s et al. 2024, [Pan et al., 2023 |Lin and Leel 2024]. These dual Bayesian modes of ICL are
often called (i) task recognition and (ii) task learning [Pan et al.,[2023]]. In other words, the pretrained
model (i) knows the prior task distribution and (ii) has the ability to select and perform a proper task
corresponding to the given demonstrations.

The power of each mode of ICL is not the same and one often dominates the other depending on
many factors. To separately investigate the effects of the task recognition and task learning abilities,
it has been proposed to use the experimental setups with noisy output labels (random or semantically
irrelevant labels). Min et al.| [2022], Lyu et al.| [2023]] show that randomly replacing output labels
in the demonstrations does not significantly affect ICL performance which indicates that the task
recognition dominates the task learning. On the other hands, Yoo et al.| [2022], |Wei et al.| [2023]], [Shi
et al.| [2023]] show that larger models are easily distracted by wrong or irrelevant demonstrations and
Pan et al.|[2023]] show that larger models exhibits a better task learning ability than smaller ones and
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Figure 1: Conceptual sketch of in-context overfitting and prior forgetting. (Left) Following
the gradient flow (the c-shaped trajectory (() from magenta to lime) in the parameter space, we
observe a monotonic increase in in-context strength (J) during training, which we call in-context
overfitting, and a decrease in prior strength (—) in the later phase of the training, which we call
prior forgetting. The exact meaning of the axes will become clear in Figure 2] (Bottom). (Right) We
observe a monotonic increase in the generalization gap (blue dotted line) and a u-shaped curve of the
generalization risk (black solid line). We also call these two phenomena in-context overfitting (—)
since the generalization gap is directly linked with the in-context strength.

it improves with more demonstrations. In other words, the task learning ability emerges as we scale
up the model and it plays more important role than the task recognition for larger models.

As shown above, most studies attempt to analyze the behaviors of the pretrained transformers at test
time, but to deeper understand the two modes of ICL, we need to investigate their emergence and
dynamics in the pretraining phase. Thus, we raise the following questions:

How do in-context learning abilities emerge (and disappear) during pretraining?

To answer this question with an analytical understanding of the learning dynamics of the ICL abilities,
we investigate the in-context random linear regression problem [Garg et al.| 2022| |Akyiirek et al.,
2023, |Von Oswald et al.,|2023a, |Li et al.| 2023b|] with a simple linear-attention-based transformer
[Schlag et al.,|2021},|Von Oswald et al.,|2023a]. Moreover, to mathematically model a setup similar
to the experimental settings considered in Min et al.| [2022], [Lyu et al.| [2023]], |Yoo et al.|[2022],
Wei et al.|[2023]], [Shi et al|[2023]], |Pan et al.| [2023]] and to disentangle the strengths of the task
recognition and task learning abilities, we introduce new settings we call demonstration-query task
irrelevance and noncentral task model. With these small modifications from previous works, we can
derive a simple yet interesting dynamics regarding the ICL abilities.

To be specific, we show that, during the pretraining phase, the model first learns the task learning and
task recognition abilities together in the beginning, but it (a) gradually forgets the task recognition
ability to recall the priorly learned tasks and (b) relies more on the given context in the later phase,
which we call (a) prior forgetting and (b) in-context overfitting, respectively. Figure [I)illustrates
prior forgetting and in-context overfitting from the perspectives of model parameters (Left) and
generalization loss (Right).

2 Related Work

After it was demonstrated that large transformers [Vaswani et al.,2017]] such as GPT-3 can perform
in-context learning [Brown et al.| 2020, Kaplan et al., 2020], there has been a growing interest in
understanding the underlying mechanisms of the ICL ability.

Garg et al.[[2022] empirically show that, for in-context linear regression, the trained transformers
match the performance of the optimal least squares estimator, i.e., the solution obtained by gradient
flow on the in-context examples. This work is followed by [Von Oswald et al.| [2023al], |Akyiirek
et al.|[2023] in which the authors provide a construction of transformer that can implement gradient
descent for in-context linear regression. Especially, the construction in|Von Oswald et al.|[2023a]
only requires a single linear self-attention layer [[Schlag et al.,2021] to implement a single iteration



of gradient descent. After that, many works consider linear transformer as a simple proxy for the
softmax-based transformers to theoretically investigate their complex behaviors [Mahankali et al.}
2024, |Ahn et al., [2024alb, [Zhang et al., [2024].

Ahn et al.|[2024a] show that, for a certain training objective over random instances of linear regression,
the global minimizers can implement preconditioned gradient descent. Here, the parameter configura-
tion of the minimizer is the same (up to a constant factor) as the one constructed inVon Oswald et al.
[2023a]. Moreover, Zhang et al.|[2024]] show that such global minimizers can be achieved by running
gradient flow under a certain initialization inducing the balancedness condition [Arora et al.| 2019al
2018, 2019b} Du et al., [2018]] throughout the training.

Beyond the linear regression, |Garg et al. [2022] also explore more complex function classes such
as two-layer neural networks and decision trees, and empirically show that the trained transformer
can in-context learn these function classes. Some theoretical work extend the in-context linear
regression problem to exponential regression [Gao et al.,|2023]], softmax regression [Li et al., 2023a]
or autoregressive learning [[Von Oswald et al., 2023b, |Sander et al., 2024} Zheng et al., [2024].
Moreover, |Dai et al.|[2023]] empirically explore language models on real NLP tasks such as sentiment
classification, topic classification, and natural language inference.

Likewise, many studies attempt to analyze the behaviors of the pretrained transformers at test time,
e.g., the two Bayesian modes of ICL [Xie et al.| 2022, [Wies et al.l 2023] Jiang}, [2023| [Wang et al.,
2024b), [Raventos et al., 2024, [Pan et al., [2023| |[Lin and Lee, 2024]] and their relative performance
(especially when we scale the model) [Min et al., 2022} Lyu et al., 2023} Yoo et al.| [2022, |Wei et al.|
2023, |Shi et al., [2023| [Pan et al., 2023 Shi et al.,[2024]]. On the other hand, we focus more on the
emergence and rise-and-decline dynamics of the test-time performance of the two modes during
pretraining.

To model the task distribution, Raventds et al.| [2024], Lin and Lee| [2024] introduce a probabilistic
mixture model of multiple task groups with task-dependent input distributions, while we analyze a
simple unimodal task distribution.

There are some more interesting work on the power balance between the two Bayesian modes of
ICL. Wang et al.| [2023]] show a similar results with Min et al.| [2022]] for chain-of-thought prompting
that invalid reasoning steps do not hurt performance on multi-step reasoning tasks. [Reynolds and;
McDonell [2021]] show that zero-shot prompts can match and even outperform few-shot prompts,
which implies that the task recognition ability plays a more important role than from the task learning
ability for some tasks.

Wang et al.|[2024a] design a metric called competition intensity to explore the emergence of ICL and
empirically show that the two modes of ICL are competitive during pretraining, while we measure
the strengths of the two modes from the transformer’s parameters and theoretically investigate how
they emerge and disappear.

3 Settings

In this section, we first investigate the in-context random linear regression problem with a simple
linear-attention-based transformer, following [|Garg et al.| 2022} |/Akyiirek et al., 2023} |Von Oswald
et al.} [2023al L1 et al., 2023b| |Schlag et al.l [2021]], in Section@ Then, we introduce some new
settings and definitions to explore robustness to shift that we are given demonstrations irrelevant to
the query task as similar to the empirical settings considered in|Min et al.|[2022]], Lyu et al.|[2023]],
Yoo et al| [2022]], [Wei et al.| [2023]], [Shi et al] [2023]], [Pan et al.| [2023]] in Sections [3.2H3.3] See
Appendix [A] for a quick reference for the notations.

3.1 In-Context Linear Regression with Linear Transformer

We train a transformer with the training set, which consists of the input context matrices and the
corresponding target responses. The input context matrix

X X x(n+1) ﬂf(l) m(2) m(n) m(n+1) (d+1)x (n+1)
Z[Y}[Y 0 |Tlyw y@ .. ym o |ERTTT



is generated by drawing n + 1 d-dimensional covariates 2(Y) and an in-context task vector w
representing a linear function f,, : & — w ' = and computing the target responses y(*) as follows:

2D Dy w ~ Dy, y® = w (=1, n+1),

where (), w € RY, ) ¢ R, X = [X z(+D)] ¢ RX(HD X = [z ... ("] ¢ RIx",
Y=Y 0 eR>0HD Y = [y ... 4] ¢ R1*" Here, the (Vs for i < n and z("+1) are
called the in-context covariates and the query input, respectively.

We consider a single-layer linear transformer T'p o with linear self-attention (LSA) [Schlag et al.,
2021, [Von Oswald et al.l 2023a]] parametrized by two matrices PP and () and residual connection [He
et al.,[2016]:

1
Trgl2)= - |2+ 11SAno(2)| . 0
n d4+1,n+1
LSApo(Z) = PZMZ'QZ,
where
_ [Ogxa Og _[@ 04 (d+1)x (d+1) I 0Oy (n+1)x (n+1)
P_[pT K},Q_Lﬂ O]ER , M = 0 0 eR .

Here, the first d rows P;.q. of P and the last column Q. 4411 of @ do not affect the output T'p o (Z)
of the transformer (see Appendix [B), i.e., during the gradient-based training they remain the same
as the initial values which are usually very small, and thus we simply put Py.q. = Ogx(441) and

Q. a+1 = 0g41.

Note that the usual self-attention (SA) can be expressed as
SAw,, Wi wyio(Z) = Wy ZMo(ZTWEWoZ),

where o is usually the column-wise softmax [Bahdanau et al.,[2015| Vaswani et al., 2017]]. Here, the
linear self-attention is a special case of the self-attention when P = Wy, Q) = WIE Wq,0(2)=Z.

We say the transformer performs a task W if Tpg(Z) = fo(x™Y) = Tz, For the
parametrization in (I)), we can express the task

B =—(Q" +quw")Gy(p + rw), 2
where G, = XX = 15" 2@0z7T See Appendix@for details.

To learn to predict the target response y("*+1) = w T (™1 for the query input, the training loss (also
called the training risk) is given as

Luin(PQ) = B | (w7al ) = Tig(2) | = B | (w0~ )Ta+)]

3.2 Demonstration-Query Task Irrelevance and Noncentral Task Model
Zhang et al.| [2024] consider the following three distribution shifts:

* task shifts: the tasks provided in the pretraining phase and the tasks at test time follow
different distributions.

 query shifts: the in-context covariates :Et(;)t and the query input :chzt* Y follow different
distributions.

e covariate shifts: the in-context inputs X in the pretraining phase and the test phase follow
different distributions.

We depart from these distribution shifts and the vanilla setup (without any distribution shifts) consid-
ered in previous work, and introduce another class of scenario, which we call demonstration-query
task irrelevance, where the demonstration task w and the query task wg (both at test time) are
different (independent) but sampled from the same distribution:



Assumption 3.1 (Demonstration-Query Task Irrelevance).

iid.
w,wqg ~ Dwy.

In other words, we are given an input context matrix

1 n n+1
Ziest = l:XtCSL] = wt(esz T wt(est) wl(est )
Yiest wth(els% - wth(eZt) 0

with the demonstration task w, but the target response is determined by another independent query
task wg, not by the demonstration task w:

(n+1) T _(n+1)
test =~ — Wq Lrest

Note that this assumption is designed not to model a real-world scenario but to disentangle the power
of the two ICL abilities because it is similar to the empirical settings considered in|Min et al.| [2022],
Lyu et al.| [2023]], Yoo et al.|[[2022], Wei et al.|[2023]], Shi et al.|[2023]], [Pan et al.| [2023]] that we are
given demonstrations irrelevant to the query task.

To investigate the robustness and generalization to the demonstration-query irrelevance, we consider
the following generalization risk (also called test risk):

2
LteSt(P5 Q) = qu7w~,Xlesl [(w;rmt(g:jl) - TPvQ(ZteS[)) :|

and the generalization gap between the training risk and the generalization risk defined as follows:
AL(Pv Q) = Ltest(P7 Q) - Ltrain(Pa Q) (3)

If the task learning plays a more important role than the task recognition, then the model relies more
on the demonstration task that is irrelevant to the query task and thus it shows a higher generalization
risk and gap. Therefore, by measuring the generalization risk or gap, we can separately analyze the
task learning ability from the task recognition ability.

Similarly, we also want to separately investigate the power of the task recognition ability with which,
given a demonstration task, the model can recall similar concepts from prior knowledge to infer the
query task. However, the two tasks are independent. Therefore, we need to consider shared concept
in the prior knowledge between the two tasks.

To this end, we simply examine a non-centeral task distribution D)y with a nonzero mean p # 0.
Here, the task center p explains the prior task distribution in the sense that w = p + s and
wgq = p§ + Sq share the (non-zero) prior knowledge p and they have their own knowledge s and s4.
By using this prior knowledge represented by a nonzero vector, we can measure how much the model
knows and utilizes this prior, i.e., the power of the task recognition ability (see (7).

Assumption 3.2 (Isotropic Covariate and Noncentral Task). We assume that
(i) the covariate distribution is Dy = N (04, I4) and

(ii) the task distribution D)y = N (u, ) is noncentral with ||p|| = 1 and isotropic with
ZW = O'QId.

Here, we name b = tr(3yy) = o2d the task dispersion.

Under the above isotropic covariate assumption (i), we have

Llrain(P7 Q) = ]E'w,X |:((w - w)Tw(n+1))2:| = Ew,)_([Hw - wHQ] (4)

2
LedP.Q) = B |((10g = 072" )| =B sllg ~ 02

Note that we assume the isotropic covariate assumption (i) for simplicity which can be easily relaxed
to obtain similar equations with (H) and H up to a constant multiple, since £ |:(aTw(n+1)) } =
tr(Sx)E [||a||?] if the covariate has zero-mean and covariance of .y instead of I,.

Moreover, with the noncentral task assumption (ii), we define the following generalization risks:



Definition 3.3 (Generalization Risk at Zero). If the transformer performs the zero-task @ = 0y, i.e.,
Tp,Q(:c(”“)) = 0, then the corresponding generalization risk is called the generalization risk at
zero defined as

Lo = Eu, [[wgl”] = 1l + tx(Ew) = 1+ .
When the parameters are near the small initialization, the generalization risk is about L.
Definition 3.4 (Generalization Risk at Random). If the transformer performs a random task w’ ~
Dy, ie., Tpo(x™) = w'Tz("*+1) then the expected generalization risk over w’ ~ Dyy is
called the generalization risk at random defined as

Ly =By, w [[[wg — w'[|?] = 2tx(Sy) = 2.
Definition 3.5 (Generalization Risk at Optimum). When the transformer in (1)) is optimally trained

with the parameter (P*, Q*) that minimizes the training loss Ly, the train/test risks are called the
train/test risks at optimum defined as

Liggin = Lirain(P*, Q%) Ly = Leest(P*,Q%),
and the gap between the two is denoted by AL* = L, — L . . Note that L}

) b X test train* test 1S not Optlmal
generalization risk.

3.3 Two-Parameter Transformer and Prior/In-Context Strength

Given u € R, we consider the following simple transformers parametrization with two scalars o
and k:

_ |04xa 0Og _|{a Oq (d+1)x (d+1)
P_|:Ot[.tT K::|7Q_|:O;lr 0:|€R (6)

which, if we put u = 04, reduces to the parameter construction in [Von Oswald et al.[[2023a]] to
implement a single step of gradient descent. From now on, we will use the two-parameter notation
To with 0 = [, k] T instead of T p,).

The two-parameter transformer Ty performs the following task w, i.e., Tg(:c("“)) = ap Tt
—G(ap + rw), @)
—aq @ prior strength, —k : in-context strength.

w

Here « and k are the weights of the task center p (independent of the demonstrations) and the
in-context task w, respectively. Thus, we refer to —a and —x (or just « and k) as the (semantic/task)
prior strength and the in-context strength, respectively. For example, if « is much larger than « in
magnitude, then w ignores the demonstrations from w, relying heavily on the task prior Dyy (task
recognition) represented by p. On the other hand, if « is much larger than « in magnitude, then W
only relies on the demonstration task w (task learning) and the model cannot recover irrelevant query
task.

This two-parameter model enables us to disentangle the two modes of ICL, the task recognition and
task learning abilities, with the two distinct parameters, the prior strength « and in-context strength x,
respectively. Thus, in the next section, we will explore the evolution of these two parameters.

4 Main Results

In this section, first we show that our objective function is quadratic (Theorem@ and then, for this
quadratic loss, the gradient flow is a linear ODE which shows a simple dynamics (Theorem [4.2)).
Using this dynamics, we can analyze how the prior/in-context strengths and generalization gap/risk
evolve during pretraining. Moreover, we also discuss how the value of task dispersion b affects the
learning dynamics (Theorem [4.3).

4.1 Training Dynamics

The training loss function for the two-parameter transformer, from (@) and (7), can be expressed as
follows:

Luiin(8) = By x[lw — B[] = Eyy x[|lw + Go(op + ww)|].
From this equation, it can be easily shown that the training loss function is quadratic with respect to
the two variables « and x. The following theorem states the details of this quadratic loss function:
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Figure 2: Evolution of the two parameters, o and «, for different b’s. We train the two-parameter
transformer using SGD with learning rate of 0.01 and batch size of 4,000. We also use n = 10,d = 5,
and 0 = 0.2,0.4,0.8, i.e., the task dispersion b = 02d = 0.2,0.8, 3.2 (from Left to Right). Top:
Empirical results with SGD (solid lines) and theoretical results of (IT) and (I2) with gradient flow
(dashed lines). Bottom: Training trajectory (from initialization ¥ to the optimum A) drawn with
quadratic loss landscape (elliptic level sets) on the aux-plane. The color of trajectory indicates the
training loss value. See Figure[T](Left) together.

Theorem 4.1 (Quadratic Loss). For the two-parameter transformer; the training loss is quadratic
with respect to the parameter @ = [, k)T € R2:

1
Lirin(0) = §0TC’20 + C[ 0 + Cy, where 8)
_n+d+1 1 1 99 _ 1 ) B
OQ—ZT} 1+b]6R ,C1 =2 14 eR*,Co=1+b€eR,

and b = tr(2yy) = 02d. The training loss Liain(0) is minimized at @ = 0*, where

- 1
0" = O‘*} = [ 0 } and L¥,, — LLO. )

L T ntdil ran T 4d 4+ 1
Note that, when o = 04, the global minimum 6* reduces to the one in|Ahn et al.|[2024a] as a special
case. The proof is deferred to Appendix

Figure [2] (Bottom) shows the quadratic loss landscape with elliptic level sets and a unique minimum
(since the Hessian matrix C' is positive-definite) at 8* on the x-axis (shown with A). The geometry

of the loss landscape highly affects the learning dynamics as will be detailed in the following theorem
and the later sections.

Theorem 4.2 (Training Dynamics). Under the same setting of Theorem by solving the following
linear differential equation (gradient flow) starting from 6(0) = 0:

é = _VBLtmin(e) = _020 - 01,

we can obtain the following solution:

0(t) = ce Mo, —ce Mt + 6%, (10)
n
(n+d+1)Va+0p2
where
2+ b+ VAT D2 b VIFE? |,
A= adve = |1, ————
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Figure 3: ICL loss curves for different parameterizations (each row) and different 0’s
(each column). We train (Top) the two-parameter transformer in @, (Middle) the full-parameter
transformer in , and (Bottom) a practical multi-head (h = 8) multi-layer (¢ = 12) transformer with
softmax attention and residual connection. We use n = 10,d = 5, and ¢® = 0.04,0.12,0.16, i.e.,
b =10.2,0.6,0.8 (from Left to Right). It shows empirical results with gradient descent (solid lines)
and theoretical results with gradient flow (colored dotted lines). The horizontal dotted lines indicate

the four equations, Lo = 1+ b, L, = 7525 Lo, Liyy = Wrﬁ%’ AL* = —2bk*. The
training loss (red) and generalization loss (black) start from L and the training loss monotonically
decreases to L;,;.. On the other hand, the generalization gap (blue) monotonically increases to AL*.
As aresult, the generalization loss shows a u-shaped curve and converges to L. We use learning
rate of 0.01 and batch size of 4,000. We use SGD for the two-parameter transformer, but use AdamW

for the full-parameter transformer and practical models. See Figure[I](Right) together.

are the eigenvalues and the corresponding eigenvectors of Cs, respectively. To be specific, we have

a(t) = —2ce Pt sinh(yt) <0, (11)
K(t) = 2ce Pt cosh(ypt — 1) + K* > K, (12)
where B, = 27%7 = Y- 4;1’2 and T, = aurctanh(ifz_b2 )

Note that the context length n can only scale the dynamics through the constant ¢ and does not affect
the shape of the dynamics. The proof is deferred to Appendix [D}

Figure [2|shows «(t), x(t) (Top) and the trajectory 0(¢) on the ax-plane (Bottom). Our theory
and (12) with gradient flow (Top, dashed) explains the empirical results with SGD (Top, solid) well.

4.2 Prior Forgetting and In-Context Overfitting

Theorem [4.2]illustrates the analytical dynamics of the two parameters «(t) and r(t). First, from (L)),
we can show that a(t) decreases till ¢ < ¢, for some to > 0 and then increases back to 0 as ¢ goes to
oo since the derivative

o (t) = —2ce P! (=B sinh(ypt) + v, cosh(ypt)) = 2ce™P*t sinh(ypt — 73)



changes its sign (from negative to positive) at t = to = T/, i.€., &' (tg) = 0, where 7, =
arctanh(v,/8,) > 0. Here the critical point ¢y is a decreasing function of b (see Figure |3|in
Appendix [E), and as expected, Figure 2] (Top) shows an earlier critical point as we increase b.

Second, from (12)), we can show that () monotonically decreases to k* = —n/(n + d + 1) since

K (t) = 2ce Pt (= By cosh(ypt — 1) + yp sinh(ypt — 7)) = —2cePet cosh(yt — 1, — 7) < 0.

Figure [2| (Top) demonstrates the above two phenomena: (i) «(t) decreases in the beginning and
then increases back to 0 and (ii) (¢) monotonically decreases to x*. In other words, (i) the prior
strength —« gets stronger in the beginning, but it gets weaker, reaching 0 in the later phase, which
we call prior forgetting, and (ii) the in-context strength —x increases and it leads to the increase in
the generalization gap (we will show this in the next section) which we call in-context overfitting.

4.3 Generalization Gap

Moreover, for the generalization gap of the model during the pretraining, from (@), @), @), (7), we
have

AL(8) = By x|l wg — @[? = lJw = @[%] = 2By, 0 x[(wg — w) " Galap + rw)] = ~2br
(13)
since E[w, w] — E[w "w] = ||p||* — (||u/|* + b) = —b. Thus, the generalization gap increases with

the in-context strength — k.

Figure 3| (blue curves) shows the increase in the generalization gap AL during pretraining, which
we also call in-context overfitting. It empirically shows that the full-parameter transformer in
(bottom) behaves similar to our analytical model (dotted lines) for the two-parameter transformer, also
demonstrating in-context overfitting. Note that, without the two-parameter restriction, the training
and generalization losses become a little smaller.

4.4 Different Dynamics Depending on Task Dispersion b
For the trajectory (¢) in (10), we have the derivative

0'(t) = —chie Mo +ed e lo

with the two orthogonal components vy and v_. At time ¢, the coefficients are ©(\ exp(—tA)) with
respect to each A and we have

>0, ift<l1,

<0, ift>1"

%)\exp(ft)\) = (1 —t)Aexp(—tA) {

Thus, as shown in Figure 2] (Bottom), in the beginning (¢ < 1), the flow is mostly aligned with the
sharper direction —v of the quadratic loss landscape because A > A_. On the other hand, in the
later phase (¢ > 1), the opposite holds and the flow gets more aligned with the flatter one v_.

The following theorem provides intuitive pictures for the loss landscape and the gradient flow, and
their changes due to variations in the value of task dispersion b.

Theorem 4.3 (Evolution of Task Recognition/Learning). The eigenvalues Ay and the corresponding
eigenvectors vy of the Hessian Cs of the training loss Ly, are:
(i) for a small b = o%d < 1,

Ay =2+06(0) =2, vl =[1,1+06(b)] ~[1,1],

Ao =0(0) < A\, vl =[1,-1+00)] ~[1,-1],
and, (ii) for a large b > 1,

Ay =0(b), v] =[1,00)] |~ [0,1],

A =14+0(1/b) < Ay, vl =[1,0(1/b)] |~ [L,0],

respectively, where v ||~ u means that v and u are approximately parallel.



The proof is deferred to Appendix

Figure [2] (Bottom) shows that when b is small, e.g., b = 0.2 (Left), the two main directions of the
elliptic level sets are vy = [1,1]T and v_ ~ [1,—1]T and the gradient flow is first aligned with the
sharper direction v then later it follows the flatter direction v_. And as b gets larger, e.g., b = 0.8
(Right), the two directions becomes more like v |~ [1,0]T and v_ ||~ [1,0]7.

Figure[2| (Top) shows that, as b gets larger (from Left to Right), a(t) gets to have relatively smaller
dip as the sharper direction is nearly aligned with [0, 1] orthogonal to the direction increasing .

4.5 Generalization Risk

~ ~ 1.8
0.0 1@ N 7 AN N
: =L
O\ \ g A o N\ \_ 16 —
~ 7 4 \ c
A \ y \ \ .9
X \ A \ | D) A 465
(> \ 1.4 N
0.5\ \ \ \\A AN ©
VYV init. (t=0) \‘ : .‘ v
A opt (t=w) . . 1.2 8
@ testopt. N )
-1.0 . — 1.0
-1.0 -0.5 0.0 0.5
a

Figure 4: Generalization risk (red ellipses) and training risk (blue ellipses). The minimizers for
the generalization risk and training risk are [x*,0] " (@) and [0, x*]" (A), respectively. The color of
trajectory indicates the generalization risk value which decreases in the beginning, but increases back
(in-context overfitting). See Figure [3]together.

From , the generalization risk Liest(0) = Liain(0) — 20k can also be expressed as a quadratic
form similar to (8):

1
Liest(8) = 5eTcge +C1T0+Cy (14)
with C] = Cy + [0, —2b] " = 2[1,1] "and argming Liq(0) = —C5 *C} = [*,0] .

In addition, Ly = Li, — 2bk™ = wj}f# is in between Lg (at zero) and L, (at random) from

(). If we are given many demonstrations with large n, then the trained model nearly performs the
demonstration task which is a random task for the irrelevant query task.

Figure [4| visually demonstrates how the generalization risk behaves on the trajectory 6(¢). From
(14), the generalization risk has the minimizer (@) on the a-axis, while the training risk (A) on the
k-axis. With the two elliptic level sets for the generalization risk (red) and training risk (blue), we
can expect that the generalization risk decreases as 0(t) flows along the sharper direction —v_, and
then it increases as 0(t) get close to 8 following v_.

5 Conclusion

In this paper, we investigate how the two modes of ICL emerge and disappear during pretraining. By
introducing new simple settings, demonstration-query task irrelevance and noncentral task distribution,
we can separately analyze the two modes of ICL and show two interesting phenomena: prior forgetting
and in-context overfitting. Due to the simplicity of the analysis, we hope that our insights will motivate
the future work toward understanding ICL.
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B Transformer Parameterization and Task w
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which proves the equation . Moreover, for the two-parameter transformer with Q = I;,q =

04, p = aut, we have

which proves the equation (7).
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C Higher Moments of Multivariate Gaussian

Lemma C.1. For w ~ N (p,02%1,) and a matrix A € R4, we have the first four moments as
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D Proofs

Proof of Theorem From (@), we have
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The last term is Eqp[||w|?] = 1 + b = Cp.
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Next, we want to calculate the minimizer 8* and the corresponding minimum value. First, as Cy > 0,
the training loss has only one critical point which is the minimizer:

VGLtrain(G*) = C'20* + CVl = 07
0" =-C,'0y

|
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—
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L |
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—_

__n |0
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We can calculate the corresponding minimum value at the minimizer by plugging in 8* = —C~2C}
and 0* = —[0,—n/(n +d + 1)] T into Ly (6*) as follows:

1
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where A1, A9 are eigenvalues of —C, i.e., Ay = —Ay, Ay = —A_, and ¢, ¢ are determined by the

initial condition

1 1 0 0
6(0) =c1 | pyyage |+ |povare |+ |__n | = o]
2 2 n+d+1

Therefore, solving the following system of linear equations
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Therefore, we have

n 1 N 1 1 N 1 0
0(t) = M v | - —=¢"" | i | )
n+d+1\V4+0p2 S N/ T -1

atty=—" 1 e—Zébt(e—vﬁth_.eVﬁf”t>
Cn+d+ 14+ b2
n 2 _24b, V4 + b?
=— e~ 2 "sinh t],
n+d+1./4+p2 2
(t) = —2 O e S R LU S PR | R
Kk(t) = I by e e e e 5 ¢ e e K
_ n 2 _24by b . V4 + b2 4+ b2 V4 + b2 .
= e 2 ——sinh t|+ cosh t + K
n+d+1+/4+p2 2 2 2 2
2 V4 + b2 V4 +b?
= n et —sinh(7,) sinh + t | 4+ cosh(7) cosh i t| | +~r"
n+d+1Itb2 2 2
B n 2 _24by L \/4+b2t .
7n+d—|—1\/me cos 5 —Tp | + K.

Proof of Theorem If b is small, then we can ignore higher order terms and obtain
4+ 62 =201+ (b/2))"? =2+ 6(?)

and bi\/m = +1 + O(b). For large b, we have

A+ )2 =pab 2+ D)2 =b+ 001
and thus, b+ v/4 + b2 = O(b) and b — V4 + b2 = O(b~1). To summarize, we have the eigenvectors

T L] qmisem bt

o= ez = {1 i s
L 1) ifb<1

o= o | = {1 o o

Similarly, for the eigenvalues, we have AL = % VA+DE 1 4 bEvA+D? V;"‘bz, and thus

WL [2Hew) i<l
e ifh>>1’

\ _[ew ifh <1
T 1+ ifb>17

E Extra Figures
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Figure 5: The critical point ¢, = %arctanh(*yb /Bp) = ﬁarctanh ( V;If) that o/ (t) changes

its sign from negative to positive becomes earlier as we increase the value of b.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See the abstract and introduction.
Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

 The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: Our theoretical analysis is limited to the 2-parameter model, but empirical
results demonstrate that the full-parameter model also exhibits similar behavior. See Fig[3]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Assumptions[3.T]and[3.2] and Appendix D}

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See the captions of each Figure (e.g., Fig[3).

Guidelines:

The answer NA means that the paper does not include experiments.
If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: ~We modify the code from https://github.com/chengxiang/
LinearTransformer. See the supplemental material.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See the captions of each Figure (e.g., Fig[3).
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: There is no experiment that requires such error bars.

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.
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8.

10.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer:

Justification: Our random linear regression experiments do not require a lot of resources.
We used a single A40 GPU, but much smaller one would suffice.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Yes
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See the supplementary material for the license.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See the supplementary material.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This is a theoretical paper.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: No LLM is used.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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