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Abstract

Second-order optimization has been shown to accelerate the training of deep neural
networks in many applications, often yielding faster progress per iteration on the
training loss compared to first-order optimizers. However, the generalization prop-
erties of second-order methods are still being debated. Theoretical investigations
have proved difficult to carry out outside the tractable settings of heavily simplified
model classes – thus, the relevance of existing theories to practical deep learning
applications remains unclear. Similarly, empirical studies in large-scale models and
real datasets are significantly confounded by the necessity to approximate second-
order updates in practice. It is often unclear whether the observed generalization
behaviour arises specifically from the second-order nature of the parameter updates,
or instead reflects the specific structured (e.g. Kronecker) approximations used or
any damping-based interpolation towards first-order updates.
Here, we show for the first time that exact Gauss-Newton (GN) updates take on
a tractable form in a class of deep reversible architectures that are sufficiently
expressive to be meaningfully applied to common benchmark datasets. We exploit
this novel setting to study the training and generalization properties of the GN
optimizer. We find that exact GN generalizes poorly. In the mini-batch training
setting, this manifests as rapidly saturating progress even on the training loss, with
parameter updates found to overfit each mini-batchatch without producing the
features that would support generalization to other mini-batches. We show that our
experiments run in the “lazy” regime, in which the neural tangent kernel (NTK)
changes very little during the course of training. This behaviour is associated with
having no significant changes in neural representations, explaining the lack of
generalization.

1 Introduction

Efficient optimization of overparameterized neural networks is a major challenge for deep learning.
For large models, training remains one of the main computational and time bottlenecks. Much work
has therefore been devoted to the development of neural network optimizers that could accelerate
training, enabling researchers and engineers to iterate faster and at lower cost in their search for better
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performing models. Second-order optimizers, in particular, have been shown to deliver substantially
faster per-iteration progress on the training loss [Martens and Grosse, 2015, Botev et al., 2017, George
et al., 2018, Goldfarb et al., 2020, Bae et al., 2022, Petersen et al., 2023, Garcia et al., 2023], and
much work has been done to scale them to large models via suitable approximations [Ba et al.,
2017, Anil et al., 2021]. However, the generalization properties of second-order optimizers remain
poorly understood. Here, we focus on the training and generalization properties of the Gauss-Newton
(GN) method, which – in many cases of interest – also encompasses natural gradient descent (NGD)
[Martens, 2020].

Theoretical studies of generalization in GN/NGD have been limited to simplified models, such as
linear models [Amari et al., 2021] or nonlinear models taken to their NTK limit [Zhang et al., 2019].
When applied to real-world networks and large datasets, GN/NGD has so far required approximations,
such as truncated conjugate gradient iterations in matrix-free approaches [Martens et al., 2010], or
block-diagonal and Kronecker-factored estimation of the Gauss-Newton / Fisher matrix [Martens
and Grosse, 2015, Botev et al., 2017, George et al., 2018, Goldfarb et al., 2020, Bae et al., 2022,
Petersen et al., 2023, Garcia et al., 2023]. Those approximations are exact only in the limit of constant
NTK [Karakida and Osawa, 2020], in which models cannot learn any features [Yang and Hu, 2021,
Aitchison, 2020]. To our knowledge, the only case in which exact and tractable GN updates have
been obtained is that of deep linear networks [Bernacchia et al., 2018, Huh, 2020], which – despite
exhibiting non-trivial learning dynamics [Saxe et al., 2013] – cannot learn interesting datasets nor
yield additional insights into generalization beyond the linear regression setting. Critically, the use of
necessary approximations makes it difficult to understand how much of the observed generalization
(or lack thereof) can be attributed to the GN method itself, or to the various ways in which it has been
simplified.

Here, we derive an exact, computationally tractable expression for Gauss-Newton updates in deep
reversible networks [Dinh et al., 2015, Mangalam et al., 2022]. In reversible architectures made of
stacked, volume-preserving MLP-based coupling layers (which we call RevMLPs), we show that it is
possible to analytically derive a specific form of a generalized inverse for the network’s Jacobian. This
generalized inverse enables fast, exact GN updates in the overparameterized regime. We highlight
that, in contrast to the work of Zhang et al. [2019], Cai et al. [2019], Rudner et al. [2019], Karakida
and Osawa [2020], we do not assume constant NTK, instead we only require the NTK to remain
non-singular during training [Nguyen et al., 2021, Liu et al., 2022, Charles and Papailiopoulos, 2018]
as, for example, in the mean-field limit [Arbel et al., 2023]. Equipped with this new model, we study
for the first time the generalization behaviour of GN in realistic settings. In the stochastic regime, we
find that GN trains too well, overfitting single mini-batch at the expense of impaired performance not
only on the test set, but also on the training set. To understand this severe lack of generalization, we
conduct a careful examination of the model’s neural tangent kernel and show that the NTK remains
almost unchanged during training, and that the neural representations that arise from after training
are not different from those set by the network’s initialization. Thus, GN tends to remain in the “lazy”
regime [Jacot et al., 2018, Chizat et al., 2019], in which representations remain close to those at
initialization, lacking generalization.

In summary:

• We show that GN updates computed with any generalized inverse of the model Jacobian
results in the same dynamics of the loss, provided that the NTK does not become singular
during training (Theorem 4.3).

• We derive an exact and tractable generalized inverse of the Jacobian in the case of deep
reversible neural networks (Proposition 4.4). The corresponding GN updates have the same
complexity as gradient descent.

• We study the generalization properties of GN in models up to 147 million parameters on
MNIST and CIFAR-10, and we show that neural representations do not change during
training, as the model remains in the “lazy” regime.

2 Related Work

Exact vs approximate Gauss-Newton in deep learning. Previous work on second-order optimiza-
tion of deep learning models focused on either Natural Gradient Descent (NGD), or Gauss-Newton
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(GN). Since the two are equivalent in many important cases [Martens, 2020], here we do not distin-
guish them and we refer simply to GN. The most popular methods for computing Gauss-Newton
updates assume block-diagonal and Kronecker-factored pre-conditioning matrices [Martens and
Grosse, 2015, Botev et al., 2017, George et al., 2018, Goldfarb et al., 2020, Bae et al., 2022, Petersen
et al., 2023, Garcia et al., 2023]. Such approximations are known to be exact only in deep linear net-
works [Bernacchia et al., 2018, Huh, 2020] and in the Neural Tangent Kernel (NTK) limit [Karakida
and Osawa, 2020], both of which cannot learn features [Yang and Hu, 2021, Aitchison, 2020]. Recent
work focused on exact Gauss-Newton in the feature learning (mean-field) regime [Arbel et al., 2023]
but they studied only small models applied to synthetic data. The work of Cai et al. [2019] studies
exact Gauss-Newton on real data but only models with one-dimensional outputs. Our work is the first
to investigate exact Gauss-Newton in the feature learning regime on real data and sizeable neural
networks.

Reversible neural networks. Reversible neural networks [Dinh et al., 2015] allow saving memory
during training of large models, because they do not require storing activations [Gomez et al.,
2017, MacKay et al., 2018], and achieve near state-of-the-art performance [Mangalam et al., 2022].
Reversible neural networks also feature in normalizing likelihood-based generative models, or
normalizing flows [Dinh et al., 2016]. In different reversible models, the inverse is either computed
analytically with coupling layers [Kingma and Dhariwal, 2018, Chang et al., 2018, Jacobsen et al.,
2018] and similar algebraic tricks [Papamakarios et al., 2017, Hoogeboom et al., 2019, Finzi et al.,
2019, Xiao and Liu, 2020, Lu and Huang, 2020], is computed numerically [Behrmann et al., 2019,
Song et al., 2019, Huang et al., 2020], or is learned [Keller et al., 2021, Teng and Choromanska,
2019]. In this work, we use analytical inversion with coupling layers, because of the efficiency of
automatic differentiation through the inverse function. Our work is the first to use reversible neural
networks to compute Gauss-Newton updates. A previous work made a connection between reversible
models and Gauss-Newton [Meulemans et al., 2020], but they studied Target Propagation, a very
different optimizer.

Generalization of Gauss-Newton in overparameterized models. The generalization properties
of Gauss-Newton are currently debated. While Wilson et al. [2017] shows worst-case scenarios
for adaptive methods, Zhang et al. [2019] suggests that GN has similar generalization properties
as gradient descent (GD) in the NTK limit. In overparameterized linear models, GN and GD
find the same optimum [Amari et al., 2021], however GD transiently achieves better test loss
before convergence [Wadia et al., 2021]. The loss dynamics of Gauss-Newton is approximately
re-parameterization invariant, and it remains unclear whether a specific parameterizations allows
GD to generalize better [Kerekes et al., 2021]. Previous work also suggests a trade-off between
training speed and generalization of GN: a good generalization is obtained only when slowing down
training, either by damping [Wadia et al., 2021] or by small learning rates [Arbel et al., 2023]. Here
we study for the first time generalization for exact GN in sizeable neural networks and real data, and
we show that GN achieves poor generalization with respect to gradient descent and similar first order
optimizers.

3 Background

We provide a brief introduction to Gauss-Newton and Generalized Gauss-Newton. Given input
and target data pairs (x, y) ∈ Rdx × Rdy and parameters θ ∈ Rp, the loss is a sum over a batch
B = {(xi, yi)

n
i=1} of n data points

L(θ) =
n∑

i=1

ℓ (yi, f(xi,θ)) = L̃(f(θ)) (1)

with a twice differentiable and convex function ℓ (e.g. square loss or cross entropy) and a parame-
terized model f(xi,θ) (e.g. a deep neural network). In the second equality of (1), we concatenate
the model outputs f(xi,θ) ∈ Rdy for all n data points in a single (column) vector f(θ) ∈ Rndy with
entries fi+n·(j−1) = f(xi,θ)j , and define concisely the loss in function space as L̃(f(θ)). The loss
L̃(f) is a convex and twice differentiable function of the model f , but L(θ) is usually a non-convex
function of the parameters θ, due to the non-linearity of the model f(θ). Gradient descent optimizes
parameters according to:

θt+1 = θt − α ∇θL (2)
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where α is the learning rate and ∇θL is the gradient of the loss with respect to the parameters. In the
full-batch setting, B is the full training dataset. In the mini-batch setting (stochastic gradient descent,
SGD), a batch of data B is drawn at random from the dataset at each iteration, without replacement,
until all data is covered (one epoch), after which random batches are re-drawn.

Gauss-Newton. We review two alternative but equivalent views on Gauss-Newton: the Hessian
view and the the functional view, which provide different intuitions into the method. The Hessian
view understands Gauss-Newton as a second-order optimization method, from the point of view of
the curvature of the loss. The functional view understands Gauss-Newton as model inversion, and is
more appropriate in the context of our work.

In the functional view, Gauss-Newton corresponds to gradient descent in function space [Zhang et al.,
2019, Cai et al., 2019, Bae et al., 2022, Amari, 1998, Martens, 2020]. By assumption, the loss L̃ is a
convex function of the model outputs f , thus it would be convenient to optimize the model outputs
directly. Gradient flow in function space is given by

df

dt
= −∇f L̃

∣∣
f(t)

(3)

However, we need to optimize parameters θ to have a model that can be applied to new data. If
f(t) = f(θ(t)), we use the chain rule to find the update in parameter space that corresponds to
gradient flow in function space,

∂f

∂θ

dθ

dt
= −∇f L̃

∣∣
f(θ(t))

(4)

Given the gradient ∇f L̃ and the Jacobian J = ∂f
∂θ defined as Jab = ∂fa

∂θb
(of shape ndy × p), this is a

linear system of equations that can be solved for the update dθ
dt , by pseudo-inverting the Jacobian. In

discrete time, with learning rate α, the update is equal to [Björck, 1996, Ben-Israel, 1965]
θt+1 = θt − α J+ ∇f L̃ (5)

where the superscript + denotes matrix pseudo-inversion. We use this update in our work, in either
the full-batch or mini-batch setting. We note that equation (5) implies equation (3), in the continuous
time limit, only if the Jacobian has linearly independent rows (JJ+ = Indy

), which also guarantees
convergence to a global minimum (full-batch). This requires overparameterization p ≥ ndy , however,
even if the model is underparameterized and does not converge to a global minimum, equation (5) is
still equivalent to Gauss-Newton in the Hessian view, as shown below.

In the Hessian view, Gauss-Newton corresponds to Newton’s method with a positive-definite ap-
proximation of the Hessian, in the case of square loss [Dennis Jr and Schnabel, 1996, Nocedal and
Wright, 1999, Bottou et al., 2018]. The approximation is accurate near a global minimum of the
loss, therefore Gauss-Newton inherits the accelerated convergence of Newton’s method near global
minima [Dennis Jr and Schnabel, 1996]. The Gauss-Newton update, with learning rate α, is equal to

θt+1 = θt − α
(
JTJ

)+ ∇θL (6)

Matrix pseudo-inverse is used instead of inverse when JTJ is singular (damping is also a popular
choice, see Nocedal and Wright [1999]). It is straightforward to prove that equations (6) and (5)
are identical, by noting that, since L(θ) = L̃(f(θ)), then ∇θL = JT∇f L̃ by chain rule, and(
JTJ

)+
JT = J+ by the properties of matrix pseudo-inverse. The Gram-Gauss-Newton update

of Cai et al. [2019] is also equivalent to equation (5), it just requires the formula for the Jacobian
pseudo-inverse in the case of linearly independent rows.

Generalized Gauss Newton. Following the Hessian view, Generalized Gauss-Newton (GGN)
was introduced for convex losses that are different from square loss [Ortega and Rheinboldt, 2000,
Schraudolph, 2002]. The Hessian is approximated by the positive semi-definite matrix JTHJ , where
H = ∇2

f L̃. As in the case of square loss, the approximation is accurate near a global minimum. That
leads to the following update:

θt+1 = θt − α
(
JTHJ

)+ ∇θL (7)

Note that GGN reduces to GN for H = Indy (square loss). In the functional view, Appendix A shows
that Generalized Gauss-Newton corresponds to Newton’s method in function space, provided that the
Jacobian has linearly independent rows and L̃ is strongly convex. Furthermore, Appendix B provides
some intuition into the convergence of GGN flow.
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4 Exact and tractable Gauss-Newton

The main hurdle in the GN update of equation (5) is the computation of the Jacobian pseudo-inverse.
For a batch size n, number of parameters p and output dimension d, that requires O(ndp min(nd, p))
compute and O(ndp) memory. In this Section, we show that the GN update can be computed
efficiently for reversible models. For a dense neural network of L layers and dimension d, implying
p = O(Ld2) parameters, our GN update requires the same memory as gradient descent and O(Lnd2+
Ln2d) compute, compared to O(Lnd2) compute of gradient descent.

Our method consists of two steps: first, we replace the Jacobian pseudoinverse with a generalized
inverse, and show that it has identical convergence properties (Theorem 4.3). Second, we show that a
specific generalized inverse can be computed efficiently in reversible neural networks (Proposition
4.4). We present both results in the case of square loss (GN). Results for other convex loss functions
(GGN) can be derived following steps similar to Appendix B.

Replacing the pseudoinverse with a generalized inverse. We show that the Jacobian pseudoin-
verse in equation (5) can be replaced by a generalized inverse that has the same convergence properties.
A similar approach was proposed by Bernacchia et al. [2018], Karakida and Osawa [2020], but it was
only valid in the case of, respectively, deep linear networks or constant Neural Tangent Kernel (NTK)
limit. Here we provide a more general formulation that holds under less restrictive assumptions, e.g.
it holds in the mean field regime [Arbel et al., 2023]. We need the following assumption
Assumption 4.1. Assume J(θ) has linearly independent rows (is surjective) for all θ in the domain
where GN dynamics takes place.

Note that this implies that the network is overparametrized, i.e. p ≥ ndy. While, in practice, this
assumption may seem strong, it is only slightly stronger than the following version, employed in
Arbel et al. [2023]:
Assumption 4.2. J(θ0) is surjective at initialization θ0.

In Arbel et al. [2023], the authors argue that since surjectivity of J is an open condition, it holds for a
neighbourhood of θ0, and moreover continue to prove that the dynamics of GN is well defined up to
some exit time T from this neighbourhood. They then continue to give assumptions guaranteeing
that this dynamics extends to ∞. We directly assume we are in this latter setting.
Theorem 4.3. Under Assumption 4.1 so that there is a right inverse J⊣ satisfying JJ⊣ = I, consider
the update in parameter space with respect to the flow induced by an arbitrary right inverse J⊣:

θt+1 = θt − αJ⊣∇f L̃. (8)
Then the loss along these trajectories is the same up to O(α), i.e. for any two choices J⊣

1 and J⊣
2 , the

corresponding iterates θ(1)
t and θ

(2)
t satisfy:

∥∇f L̃(f(θ(1)
t ))−∇f L̃(f(θ(2)

t ))∥ ≤ O(α). (9)
Moreover, as the Moore-Penrose pseudo-inverse is a right inverse under the assumptions, the result
applies to J+, and consequently to the dynamics of (5).

The proof is in Appendix C. The intuition behind this result becomes clearer once we examine the
differential of the loss w.r.t. the function outputs, ∇f L̃. Notice that, as L̃ is a convex function, it has a
unique stationary point, and hence it is natural to interpret ∇f L̃(θ) as the error at θ, especially close
to the global minimum. We will therefore adopt the notation

ϵ(θ) := ∇f L̃(θ) (10)
here and throughout the proofs to refer to the deviation from the global minimum at the current
parameter value. A key ingredient of the proof of Theorem 4.3 will be to establish that, for trajectories
induced by GGN or the update in equation (8), ϵ(t) := ϵ(θ(t)) satisfies:

dϵ

dt
= −ϵ(t) (11)

This trivially implies that ϵ → 0 from any initial condition ϵ0, so that the evolution of the weights
approaches a stationary point for the loss, and hence its global minimum.

The right inverse of the Jacobian, J⊣ is non-unique, and, in general, it is not feasible to compute
for large models. However, it turns out that in the case of reversible models, we have an analytic
expression for J⊣, which allows computing exact GN at nearly the same cost as SGD.

5



Computing GN of a reversible deep network. Throughout this Section we employ the following
notation: for an arbitrary matrix X of shape (d, n) we write the lowercase boldfont corresponding
symbol, e.g. x for the row-wise vectorization of the matrix, i.e. xi+d·(j−1) = Xi,j .

We consider networks composed of L reversible layers, and we denote by Xℓ (with the associated
vectorization xℓ) and by Wℓ (and wℓ), respectively, the output and the parameters of layer ℓ in matrix
and vector forms. The output of the model is the output of the last layer, f = xL.

The Jacobian of the full neural network can be expressed as a block matrix consisting of the Jacobians
of different layers. Letting θ = (w1,w2, . . . ,wL) the concatenated vector with parameters of all
layers

J =
∂xL

∂(w1, . . . ,wL)
= (J1, . . . , JL) (12)

with Jℓ =
∂xL

∂wℓ
. Since the only way wℓ affects xL is through the way it affects xℓ, by the chain rule,

the layer-wise Jacobian can be written as

Jℓ =
∂xL

∂xℓ

∂xℓ

∂wℓ
(13)

First, we note that a right inverse of the full Jacobian in equation (12) can be computed by finding
right inverses of the individual, layer-wise Jacobians of equation (13). Then we show that, given
that the neural network is reversible, a right inverse of equation (13) can be computed easily. In
particular, the product of the inverse of the first factor ∂xL/∂xℓ with any vector can be computed
exactly with a single forward differentiation pass on the neural network’s inverse. The inverse of the
second factor ∂xℓ/∂wℓ can be also computed at low complexity when individual layers are linear
in the parameters, even if nonlinear in the input. These observations hold for any reversible neural
network, but here we use dense coupling layers as a specific realization (see Section 2), which we
call RevMLP. The activation xℓ ∈ Rdn for layer ℓ is written in matrix form Xℓ ∈ Rd×n and is split
along the first dimension into two components Xℓ = (X

(1)
ℓ , X

(2)
ℓ ), where X0 is the input. Here d is

an even integer and both X
(1)
ℓ and X

(2)
ℓ have shape

(
d
2 × n

)
. The equations for a single coupling

layer are

X
(1)
ℓ = X

(1)
ℓ−1 +W

(1)
ℓ σ(V

(2)
ℓ−1X

(2)
ℓ−1) (14)

X
(2)
ℓ = X

(2)
ℓ−1 +W

(2)
ℓ σ(V

(1)
ℓ X

(1)
ℓ ) (15)

where Wℓ = (W
(1)
ℓ ,W

(2)
ℓ ) are trainable parameters, while Vℓ = (V

(1)
ℓ , V

(2)
ℓ ) are non-trainable

parameters (also known as inverted bottleneck, see Bachmann et al. [2024]), and σ(·) is any differen-
tiable non-linear function. In the rest of this paper, we use the term layer and block interchangeably
to refer to a full coupling layer (i.e., where the output is the concatenation of X(1)

ℓ and X
(2)
ℓ as

defined in Equation (14) and Equation (15)). Whereas we explicitly refer to “half"-coupled layers to
mean Equation (14) or Equation (15). We also define the reshaping operator: for x, a vector of dn
components we write R(d,n){x} for the matrix A of size (d× n) satisfying: Ai,j = xi+d(j−1)

Proposition 4.4. Assuming σ(V
(2)
ℓ−1X

(2)
ℓ−1), σ(V

(1)
ℓ X

(1)
ℓ ) have linearly independent columns, the GN

update for the weights of each layer is given by

W
(1)
ℓ (t+ 1) = W

(1)
ℓ (t)− α

L
R( d

2 ,n)

{
∂x

(1)
ℓ

∂xL
ϵ

}
σ
(
V

(2)
ℓ−1X

(2)
ℓ−1

)+
︸ ︷︷ ︸

∆
(1)
ℓ

(16)

W
(2)
ℓ (t+ 1) = W

(2)
ℓ (t)− α

L
R( d

2 ,n)

{
∂x

(2)
ℓ

∂xL
ϵ−

(
∂x

(2)
ℓ

∂w
(1)
ℓ

)
R( d

2 ,d
′)
−1 {

∆
(1)
ℓ

}}
σ
(
V

(1)
ℓ X

(1)
ℓ

)+
(17)

The proof is in Appendix D.

Computational and Memory Complexity

The terms in the braces in equations (16), (17), are Jacobian-vector products and can be easily
computed using automatic mode differentiation at the cost of one (reverse) inference pass, i.e., O(nd2).
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Figure 1: Training loss and accuracy on (a) MNIST and (b) CIFAR-10 in a full-batch scenario where
each dataset is trimmed to a fixed subset of n = 1024 images. GN converges much faster than Adam
and SGD.
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Figure 2: Training loss, test loss, and test accuracy on (a) MNIST and (b) CIFAR-10 in a mini-batch
scenario. GN does not exhibit the same properties observed in the full-batch setting. In fact, Adam
reaches lower training and test loss.

The last factor requires pseudo-inverting a matrix of size n× d/2, which requires O(nd min(n, d)).
Since these operations are required in each layer, the overall cost of the update for the full network is
O(Lnd2 + Ln2d), compared to O(Lnd2) of SGD, while the memory complexity is the same.

5 Experiments
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Figure 3: Percentage change in
training loss after each update.
GN decreases the loss for the
current mini-batch more than
SGD and Adam early in train-
ing.

For our experiments we train RevMLPs (equations (14) and (15))
with 2 (6) blocks for MNIST [LeCun et al., 2010] (CIFAR-10;
Krizhevsky, 2009), ReLU non-linearities at all half-coupled lay-
ers, and an inverted bottleneck of size 8000 resulting in models
with 12M (MNIST) and 147M (CIFAR-10) parameters. We train
these models to classify images flattened to 1D vectors, using a
cross-entropy objective. Note that the chosen size of the inverted
bottleneck ensures that the assumptions of Proposition 4.4 hold.

At each training iteration, we compute the pseudoinverses in equa-
tions (16), (17) using an SVD. For numerical stability we truncate
the SVD to a 1% tolerance relative to the largest singular value
and an absolute tolerance of 10−5, whichever gives the smallest
rank – our main findings are qualitatively robust to these tolerance
levels. Full hyperparameters and additional details are reported
in Appendix L, and code is provided with the submission. We
report results averaged over 3 random seeds. All experiments are performed on a single NVIDIA
RTXA6000 GPU.
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5.1 Full-Batch Setting

0 10 20 30 40 50 60 70 80 90 100

Epoch

10 7

10 6

10 5

10 4

10 3

10 2

10 1

R
at

e 
of

 c
ha

ng
e 

of
 N

TK

GN
ADAM
SGD

(a)

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.6

0.7

0.8

0.9

1.0

N
TK

 S
im

ila
ri

ty

GN
ADAM
SGD

(b)

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.998

1.000

1.002

1.004

C
KA

 S
im

ila
ri

ty

Block 1

(c)

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.95

0.96

0.97

0.98

0.99

1.00
C

KA
 S

im
ila

ri
ty

Block 3

(d)

0 10 20 30 40 50 60 70 80 90 100

Epoch

0.6

0.7

0.8

0.9

1.0

C
KA

 S
im

ila
ri

ty

Block 6

GN
ADAM
SGD

(e)

Figure 4: NTK and CKA sim-
ilarity evolution across training
for GN, Adam and SGD. Top
two panels include (a) the rate
of change of the NTK and (b)
the NTK similarity during train-
ing with respect to initialization.
Bottom three panels, along the
same axis, include the CKA sim-
ilarities for the (c) first, (d) mid-
dle and (e) last block with re-
spect to their initial values.

We first examine the full-batch setting in which the dataset is a
random subset of size 1024 of MNIST or CIFAR-10. We tuned
the learning rate for each optimizer by selecting the largest one
that did not cause the loss to diverge. Figure 1 shows that GN is
significantly faster than Adam and SGD in both datasets, in line
with theoretical predictions (Equation 11).

5.2 Mini-Batch Setting

Next, we consider the full MNIST and CIFAR-10 datasets in the
mini-batch setting. We follow standard train and test splits for the
datasets, with a mini-batch size of n = 1024. The learning rate for
all methods is tuned towards the largest progress after 1 epoch that
does not exhibit any training instabilities. In both datasets, GN
makes good initial progress on the training and test losses, but then
struggles to sustain the continued progress which Adam exhibits
(Fig. 2). This surprising early saturation of the GN training and test
losses is most pronounced for the CIFAR dataset, where even SGD
eventually overtakes GN (see Fig. 6 in Appendix E for a longer
training run). In the rest of this Section, we use the CIFAR-10
setup to study the possible origins of such weak generalization.

Overfitting each mini-batch. Based on the full-batch results of
Figure 1 in which GN was seen to converge very fast, we postulate
that the poor generalization behaviour observed in the mini-batch
case may be caused by overfitting to each mini-batch. To test
this hypothesis, at each iteration, we compute the loss on a single
mini-batch before and after applying the update computed on that
same mini-batch. The resulting percentage change in mini-batch
loss is shown in Figure 3. Compared to SGD and Adam, GN
leads to a much stronger immediate decrease in loss after each up-
date, especially early in training. Whilst this difference gradually
weakens during the course of training, it subsists for 80 epochs,
i.e. until well after GN’s overall training and test losses have sat-
urated (c.f. Fig.2). These results suggest that GN might require
some form of regularization to prevent aggressive incorporation
of each mini-batch into the model’s parameters. However, we find
that neither smaller learning rates (Appendix I), nor weight decay
(Appendix J), nor any of the usual techniques for regularizing the
pseudoinverse in Equation (16) (Appendix K) appear to help in
this respect (Figures 12, 13 and 14).

Evolution of the Neural Tangent Kernel. We further hypothe-
size that GN’s poor generalization may be due to a lack of feature
learning. In a similar fashion to Fort et al. [2020], we study the
evolution of the neural tangent kernel (NTK) when training with
GN compared to SGD and Adam. A changing NTK would sug-
gest that the model learns features different from those present at
initialization. Figure 4a and Figure 4b show the rate of change of
the NTK between epochs, and the evolution of the NTK similarity
with initialization, respectively.

Overall, the NTK changes very little for SGD and GN, suggesting
that SGD and GN operate close to the “lazy” training regime [Jacot
et al., 2018, Chizat et al., 2019]. On the other side, Adam causes
the NTK to change significantly, i.e. Adam does learn features
different from the initial ones.

8



Feature Learning with Gauss-Newton. Even if features (i.e., the NTK) change during GN training,
it remains unclear whether they are associated with changes in neural representations. We examine
the change in neural representations during training by computing the Centered Kernel Alignment
(CKA; Kornblith et al., 2019 ) measure of similarity between the representations at initialization and
those learned at each epoch, across all layers of the model.

Figures 4c, 4d and 4e illustrate the evolution of CKA similarities for the last, middle and first block
(i.e., a “full” coupling layer as described by equations 14, 15) of a 12 layer RevMLP trained on
CIFAR-10. Plots for all blocks are provided in Appendix H along with pairwise similarities across
optimizers (Figures 10 and 11). Similar to the NTK, neural representations do not change during
training with GN. SGD behaves similarly, with little change in CKA. Adam, on the contrary, has
changes in neural representations that coincide with changes in NTK. Appendix G shows that the lack
of changes in neural representations for GN cannot be explained by a smaller change in parameters, in
fact both GN and Adam show changes in weight space, while weights of SGD change little (Figure 9).

Contrary to the findings of Arbel et al. [2023], it is evident that the CKA similarities in Figures 4c,
4d and 4e remain higher for longer in earlier blocks for GN, implying that GN is slower than Adam
at adapting its deeper internal representations. Furthermore, in Appendix F and I, we address two
suggestions from Arbel et al. [2023] and find that the generalization improvements when using
smaller learning rates and/or different initializations (close-to-optimal in Figure 7 and low variance
in Figure 8) do not carry over to deeper networks. In particular, Figure 7 shows that continuing
training with GN after initially training with Adam exhibits the same phenomena as training with GN
throughout – albeit at a slightly lower loss than can be achieved using only GN.

5.3 Experiments without Inverted Bottleneck

The previous experiments used inverted bottlenecks to ensure “linear independence”, i.e., to ensure
that the model is adequately overparametrized such that the proposed efficient generalized inverse is
valid. In other words, inverted bottlenecks ensure that the scalable GN weight updates (equations 16)
do implement gradient flow in function space (equation 3), such that our results are not potentially
confounded by broken theoretical assumptions. Nevertheless, the proposed GN update can still be
applied in the absence of inverted bottlenecks. In Figure 5 we report results on the CIFAR10 dataset,
following the same experimental procedure of the previous experiments, but removing all inverted
bottlenecks. In the full-batch setting, GN is still performing much better than Adam and SGD. In the
mini-batch setting we observe a very similar trend to what is observed in the previous experiments:
GN leads to an early saturation of the loss, which instead does not appear in Adam and SGD.
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Figure 5: Experiments on CIFAR using a model without Inverted Bottleneck (Full-batch on the left,
mini-batch on center and right). While the theoretical guarantees do not hold in this setting, the
results follow the same trend observed in Figure 2.

5.4 Regression Experiments

We further performed some experiments on regression tasks from the UCI regression dataset†. In
more detail, we used the Superconductivity Hamidieh [2018] and Wine Aeberhard and Forina [1992]
datasets, and followed the same experimental procedure used for the classification datasets (i.e.,
we use the same RevMLP architecture with an inverted bottleneck for all optimizers and select the
highest learning rate that does not cause the loss to diverge). Results are shown in Appendix M
and follow the same trend observed in the classification experiments: in the full-batch case GN is

†https://github.com/treforevans/uci_datasets
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significantly faster than SGD and Adam, while in the mini-batch case there is an apparent stagnation
of the test and train losses under GN.

6 Summary and limitations

In this paper we have introduced a new, tractable way of computing exact Gauss-Newton updates in
models with millions of parameters. We have used this theory to study the generalization behaviour
of GN in realistic task settings. We found that, although GN yields fast convergence in the full batch
regime as predicted, it does not perform as well in the stochastic setting where it tends to overfit
each mini-batch. We observed that the NTK does not change when training with GN, suggesting
that it operates in the “lazy” regime. In line with the above, using the CKA metric, we performed an
analysis of the neural representations at the start and end of training showing that they remain very
close to each other. This can explain the observed lack of generalization.

Our investigations have relied on a specific formulation of GN based on a tractable generalized inverse
of the Jacobian in reversible networks. While we proved that this inverse leads to the same training
loss dynamics, in the limit of small learning rate, as the standard GN formulation is based on the
Moore-Penrose pseudoinverse (MPP), one cannot exclude the possibility that those two update rules
have different learning and generalization properties for finite learning rates. Indeed, the functional
view of GN (Section 3) makes it clear that the standard MPP-based GN update corresponds to the
minimum-norm weight update that guarantees (infinitesimal) steepest descent in function space.
Whilst also achieving steepest descent, our generalized inverse does not have the same least-squares
interpretation – although it could imply another form of regularization which future work could
uncover. In any case, these differences are difficult to assess precisely because the full Jacobian of
the network (let alone its MPP) simply cannot be computed for large models.

Previous applications of approximate GN to deep models found that damping, or truncating, the pseu-
doinverse of the GN matrix (or, equivalently, of the Jacobian) is key not only for good generalization
but also for successful training [Martens et al., 2010, Wadia et al., 2021]. Our generalized inverse is
based on a layer-wise factorization of the Jacobian, teasing apart (i) the sensitivity of the network’s
output to small changes in layer activations and (ii) the sensitivity of those activations to small
changes in parameters. The use of exactly reversible networks allows us to invert the former very
efficiently, but does not easily accommodate damping or truncation, making it difficult to study their
effect on generalization in large scale settings. We speculate that a variation on coupling layer-based
reversible networks could be developed that allows for damping or truncation, potentially improving
the generalization behaviour of GN. If this can be done, our framework would then enable very
efficient training of large models, effectively achieving the training acceleration of second-order
methods at the cost of first-order optimizers, all in a memory efficient architecture.
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Appendix

A Functional view of Generalized Gauss-Newton

Assuming that L̃ is strongly convex, Newton’s flow in function space is equal to

df

dt
= −H−1 ∇f L̃ (18)

with H = ∇2
f L̃. Following steps similar to Section 3, we use df

dt = J dθ
dt and pseudo-invert the

Jacobian. In discrete time, with learning rate α, the functional view of Generalized Gauss Newton is
given by

θt+1 = θt − α J+H−1∇f L̃ (19)
It is straightforward to show that equations (19) and (7) are identical when the Jacobian has lin-
early independent rows. Under these assumptions,

(
JTHJ

)+
= J+H−1JT+ and JT+

JT = I .
Furthermore, as in Section 3, ∇θL = JT∇f L̃.

B Convergence of GGN flow

In this Section, we give an informal derivation of the continuous-time dynamics of GGN. See Ortega
and Rheinboldt [2000], Bottou et al. [2018] for convergence of GGN in discrete time. We consider
the optimization of the error under GGN flow in continuous time. Using the definition of the error
ϵ = ∇f L̃ (equation (10)), the optimization flow of the error can be derived using the chain rule

dϵ

dt
= HJ

dθ

dt
(20)

The definition of GGN flow is
dθ

dt
= −α (JTHJ)+∇θL = −α (JTHJ)+JT ϵ (21)

Therefore, optimization of the error under GGN flow is equal to

dϵ

dt
= −α HJ(JTHJ)+JT ϵ = −α Aϵ (22)

where we defined the matrix A = HJ(JTHJ)+JT . Using the properties of the matrix pseudoinverse,
we note that A is a projection operator, namely An = A for any integer power n. Therefore,
eigenvalues of A are either zero or one, implying that the error decreases exponentially in the range
of A, while it remains constant in the null space of A. In general, the range and null space of A
change during training. We note that the projection is orthogonal with respect to the inner product
ϵTHϵ. Using the same steps as in Appendix A, if J has linearly independent rows and L̃ is strongly
convex, then it is straightforward to show that A = Indy

.

C Proof of Theorem 4.3

During the proof we will compare the dynamics of the flow curves of two vector fields, namely
−J+(θ)ϵ(θ) and the corresponding −J⊣(θ)ϵ(θ). The dependence on θ is assumed throughout and
we will write (−J+ϵ)

∣∣
θ

or just −J+ϵ. The flowlines of these vector fields are given by:

dθ

dt
= (−J+ϵ)

∣∣
θ(t)

(23)

and
dθ

dt
= (−J⊣ϵ)

∣∣
θ(t)

(24)

respectively. We will further write plain θ(t) for the solutions of equation (23) and θ̃(t) for the
solutions of equation (24). Moreover, we’ll write f̃ to mean f(θ̃(t)) for arbitrary (possibly tensor
valued) functions f , to distinguish from f(θ(t)).
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First notice that the right inverses J⊣ are not canonical and hence equation (24) represents a family
of equations and associated flowlines. However, the dynamics of the associated error ϵ̃ is the same
regardless of the choice, and moreover, the same as that of ϵ itself. Note that d

dtϵ(θ(t)) = J
∣∣
θ(t)

· dθ
dt ,

which gives:
dϵ

dt
= −JJ+ϵ (25)

If J has linearly independent rows we have JJ+ = I, therefore

dϵ

dt
= −ϵ (26)

If we consider the flow of ϵ̃ := ϵ(θ̃(t)), replacing J+ with a right inverse J⊣ satisfies JJ⊣ = I, and
again we obtain

dϵ̃

dt
= −ϵ̃ (27)

Integrating these equations from the same initial condition θ̃(t0) = θ(t0) indeed gives the same error
flowlines.

So despite the different dynamics of the θ and θ̃, errors propagate identically. We can use this to
derive a bound between the errors incurred by the k-th forward Euler iterates of equations (23) and
(24), which define the gradient descent equations. Denote by θi the i-th Euler iterate of θ(t) and by
θ̃i, the corresponding iterate of θ̃(t). Then, we have:

∥θi − θ(ti)∥ ≤ α

K

(
eL(ti−t0) − 1

)
(28)

∥θ̃i − θ̃(ti)∥ ≤ α

K̃

(
eL̃(ti−t0) − 1

)
(29)

where α is the step-size, i, the number of steps can be computed as i = ⌊ ti−t0
α ⌋, L and L̃ are the

Lipschitz constants of (−J+ϵ) and (−J⊣ϵ) respectively, and K and K̃ are constants which depend
on the maximum norm of d2

dt2 θ(t) and d2

dt2 θ(t) across our domain, see e.g. Iserles. Since ϵ is at least
C2 and the dynamics of θ and θ̃ take place over a bounded domain, ϵ is Lipschitz with constant Lϵ.
Then we have:

∥ϵ(θi)− ϵ(θ̃i)∥ ≤ ∥ϵ(θi)− ϵ(θ(ti))∥+ ∥ϵ(θ(ti))− ϵ(θ̃(ti))∥+ ∥ϵ(θ̃(ti))− ϵ(θ̃i)∥ (30)

≤ Lϵ∥θi − θ(ti)∥+ 0 + Lϵ∥θ̃i − θ̃(ti)∥ (31)

≤ Lϵ
α

K̄

(
eL̄(ti−t0) − 1

)
(32)

where K̄ = min(K, K̃) and L̄ = max(L, L̃). This shows that the dynamics of the gradient descent
iterates coincides up to first order in α.

D Proof of Proposition 4.4

Proof. We rewrite the layer-wise Jacobian as

Jℓ =
∂xL

∂xℓ

∂xℓ

∂wℓ
=

∂xL

∂(x
(1)
ℓ ,x

(2)
ℓ )

∂(x
(1)
ℓ ,x

(2)
ℓ )

∂(w
(1)
ℓ ,w

(2)
ℓ )

(33)

=

(
∂xL

∂x
(1)
ℓ

,
∂xL

∂x
(2)
ℓ

) σ(V
(2)
ℓ−1X

(2)
ℓ−1)

T ⊗ Id/2 0
∂x

(2)
ℓ

∂w
(1)
ℓ

σ(V
(1)
ℓ X

(1)
ℓ )T ⊗ Id/2

 (34)

=

(
∂xL

∂x
(1)
ℓ

,
∂xL
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(2)
ℓ

) σ
(2)
ℓ−1

T
⊗ Id/2 0

∂x
(2)
ℓ

∂w
(1)
ℓ

σ
(1)
ℓ

T
⊗ Id/2

 (35)
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where σ
(2)
ℓ−1 = σ(V

(2)
ℓ−1X

(2)
ℓ−1) and σ

(1)
ℓ = σ(V

(1)
ℓ X

(1)
ℓ ) for brevity.

Given a lower-triangular block matrix (
A 0
B C

)
(36)

it is possible to define a right inverse as(
A+ 0

−C+BA+ C+

)
(37)

Using the above, we prove that a right inverse J⊣
ℓ of Equation (34) is equal to

J⊣
ℓ =


[
σ
(2)
ℓ−1

T+
⊗ Id/2

]
0

−
[
σ
(1)
ℓ

T+
⊗ Id/2

]
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ℓ

[
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(2)
ℓ

∂xL

 (38)

It is possible to prove that J⊣
ℓ defined above in Equation 38 actually corresponds to the Moore-Penrose

pseudoinverse of Jℓ (see Appendix N). From Equation (34) and Equation (38), we have that

JℓJ
⊣
ℓ =

(
∂xL

∂x
(1)
ℓ

,
∂xL

∂x
(2)
ℓ

)
[
σ
(2)
ℓ−1σ

(2)
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+]T
⊗ Id/2 0

Λ
[
σ
(1)
ℓ σ
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ℓ

+]T
⊗ Id/2
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=
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)(
I 0
0 I
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where Equation (40) follows from the assumption that σ(2)
ℓ−1 and σ

(1)
ℓ have linearly independent

columns and,

Λ =
∂x

(2)
ℓ

∂w
(1)
ℓ

[
σ
(2)
ℓ−1

T+
⊗ Id/2

]
−
([

σ
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)
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(2)
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(1)
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[
σ
(2)
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T+
⊗ Id/2
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= 0. (42)

Additionally, the last equality in Equation (41) holds since xL is a bijective function of xℓ, due to the
reversibility of the RevMLP. Finally, following from Equation (12), we note that,

J⊣ =
1

L

 J⊣
1
...
J⊣
L

 (43)

which when substituted into Equation (8), along with Equation (38), results in the GN update for the
weights of each layer,

W
(1)
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(1)
ℓ (t)− α

L
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Figure 6: Training loss, test loss, and test accuracy when training for a longer amount of epochs on
CIFAR-10 shows that Gauss-Newton is unable to further decrease the training loss, while even plain
SGD can reach lower values.

E Longer training curves

Figure 6 displays the result of training the same RevMLP as in Section 5.2 for 1000 epochs on the
CIFAR-10 dataset in a mini-batch setting (n = 1024). We observe that by continuing the training
for longer on CIFAR-10, SGD is able to reach lower values of the training loss when compared to
Gauss-Newton. In particular, we highlight that even in 1000 epochs, Gauss-Newton appears unable
to increase its training performance further than the value it reaches after just 50 epochs. In fact, the
results in Figure 6 show that Gauss-Newton tends to increase its training loss after 150 epochs of
training.

F Initialization dependencies for Gauss-Newton
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Figure 7: Training loss when first using Adam (or
GN), and then continuing with GN (or Adam) – the
purple dashed line indicates the 50 epochs mark
at which the optimizers are switched. GN shows
early saturation of the loss even when starting from
a better intialization point.

To examine if the poor performance of Gauss-
Newton depends on a poor initialization point,
we first train a model with Adam for 50
epochs, before continuing the training with
Gauss-Newton. For comparison, we also train a
model with Gauss-Newton for 50 epochs and
subsequently continue training with Adam –
to observe if Gauss-Newton reaches reaches a
“bad” local minimum that is hard to escape from.
These results are provided in Figure 7 and com-
pared with their single optimizer counterparts.
We choose a “good” initialization point as an
Adam trained model at 50 epochs (indicated by
the dashed line in Figure 7), which has a lower
training loss than GN can achieve in the same (or
larger) number of iterations. One can observe
that, even when starting from this “good” ini-
tialization, GN eventually saturates at a higher
value of the loss when compared with the values
achievable by continuing training with Adam. We also find that Adam can start from a point found by
GN and continue training without issues, reaching a value of the loss that is lower than the saturation
point of GN.

In reference to Arbel et al. [2023], we also provide additional results in Figure 8 to show the
dependency of Gauss-Newton on the initial weight variance chosen. Interestingly, our results are
different from those in Arbel et al. [2023] and suggest that choosing a higher variance is preferable.
However, all curves exhibit the same phenomena as discussed in Section 5 and under-perform with
respect to Adam. The default choice for all experiments we report is σ = 10−3.

G Change in weights during training

We analyze the change in norm and cosine similarity between the weights at initialization and at the
end of training when a model is trained with different optimizers. Results are shown in Figure 9. We
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Figure 8: GN Train and test loss with weights initialized accounding to different variances at
initialization σ.
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Figure 9: Cosine similarity with the initial weight initialization across training. ADAM and GN
move similarly in weight space indicating a consistent behaviour in weight space between the two
optimizers. Note that, in this Figure, we use the term “layer” to refer to half-coupled layer in the
reversible blocks.
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observe that Gauss-Newton changes the weights to an extent similar to Adam, while SGD show much
smaller weight changes, suggesting a lazy training regime.

H Extended Centered Kernel Alignment (CKA) analysis
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Figure 10: CKA similarity evolution across training for GN, Adam and SGD. GN maintains a high
CKA similarity with its initial feature space, very similarly to SGD.

In Figure 10 we present the full spectrum of CKA similarities from initialization across blocks (i.e.,
full coupling layer) when training on CIFAR-10. We observe that GN behaves very much SGD: the
representqations remain very similar to those at initialization. Adam instead tends to change the
representations during training, more quickly for later blocks, and more slowly for earlier blocks.
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Figure 11: Pairwise CKA similarity evolution across training between GN and models trained with
Adam and SGD.

In addition to the CKA evolution results for single optimizers, Figure 11 presents the pairwise
similarities between models at each epoch trained with different optimization strategies. These results
demonstrate explicitly the close correspondence between SGD and GN learned features for each
block.

I Learning rate variations of Gauss-Newton

Figure 12 provides additional training runs of Gauss-Newton with different learning rates. These
results indicate that forcing GN to learn slower is not sufficient to reduce the effect of the observed
saturation of performance.
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Figure 12: Train loss, test loss and test accuracy (left to right) for a RevMLP trained on CIFAR-10
with Gauss-Newton using different learning rates.
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Figure 13: Train loss, test loss, and test accuracy (left to right) for a RevMLP trained on CIFAR-10
with Gauss-Newton with weight-decay. Adam is also added for comparison.

J Adding Regularization to Gauss-Newton

In this Section we explore wether weight-decay can be used to improve the performance of Gauss-
Newton. We use a RevMLP on the full CIFAR-10 dataset with the same setting presented in Section 5
and we add weight decay to the loss during training. We tune the strength of the weight decay using
the validation set. Results are shown in Figure 13. We notice that weight decay has a minimal effect
of the performance of Gauss-Newton.

K Pseudo-Inverse Regularization

In this Section we explore the effects of different strategies for regularizing the pseudoinverse
in the proposed Gauss-Newton update (see equations (16), (17)). We note that regularization is
necessary, as the presence of very small singular values causes numerical instabilities. We compute
the pseudoinverse using a singular value decomposition, and we try three different strategies:

• Damping: we add a constant to all the singular values. In particular we add a quantity equal
to 1% of the maximum singular value (this quantity of damping was tuned by selecting the
best performing one over the values 1%, 10%, 0.1%).

• Truncation: we set to zero all the singular values smaller than a certain threshold. In
particular, we use relative tolerance of 1% with respect to the largest singular value and an
absolute tolerance of 10−5 (we tune this values in a similar fashion to the previous method).
This is the strategy used for the results in Section 5.

• Noise: we add noise to the matrix to be pseudoinverted; we then compute the SVD and
use all singular values. The noise is sampled from a zero-mean Gaussian with a standard
deviation equal to 10% (this value was selected though a tuning procedure as above) of the
standard deviation of the matrix to be pseudoinverted.

Results are shown in Figure 14, where Adam is also added for comparison. We notice that there is a
small difference between damping and truncating (with the former performing slightly better), while
adding noise does not seem as effective. Nevertheless, Gauss-Newton is always under-performing
when compared to Adam.

L Full Hyperparameters & Experimental Details

In this Section we provide additional details on the hyperparameters and experimental details used
for our experiments. Full code to reproduce our results is also provided with the submission.
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Figure 14: Train loss, test loss, and test accuracy (left to right) for a RevMLP trained on CIFAR-10
with Gauss-Newton using different regularization strategies for the pseudoinverse. Adam is also
added for comparison.
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Figure 15: Train loss and test loss on UCI (a) wine and (b) superconductivity regression datasets.
(Full-batch on top, mini-batch on bottom).

Implementation details. Our code is based on the PyTorch framework Paszke et al. [2019]. In
more detail we use version 2.0 for Linux with CUDA 12.1.

Weight initialization. We use standard Xavier Glorot and Bengio [2010] initialization for the
weights, while we initialize the biases to zero.

Sampling the inverted bottleneck. We sample the entries of each inverted bottleneck from a
zero-centered gaussian with a variance of 1

layer dimension .

Data augmentations. For the MNIST dataset we do not use any data augmentations. For the
CIFAR-10 dataset we follow the standard practice of applying random crops and resizes. We do not
use data augmentations for the regression datasets.

Additional hyperparameters for Adam. We tune the learning rate for each experiment and
method, as explained in Section 5, and we use the PyTorch default values for the betas parameters in
Adam.

M Regression Results

We report the results for the regression experiments in Figure 15.
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N Proof Layer-wise Right-inverse is the Moore-Penrose Pseudo-inverse

Consider the Jacobian for layer ℓ:

Jℓ =
(
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Denote Jℓ,1 =

(
A 0
B C

)
. For our method, we used

J⊣
ℓ,1 =

(
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)
with (48)
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Then:
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(52)

We show below that B = BA+A, and hence that J⊣
ℓ,1 = J+

ℓ,1 (i.e., our right-inverse corresponds to
the Moore-Penrose Pseudo-inverse).

We can show that (see Section N.1):
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With the above, we first compute (BA+):
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and finally
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: All claims made in the abstract and introduction are reflected in the paper. We
show that GN updates computed with any generalized inverse of the model Jacobian results
in the same dynamics of the loss, and we introduce a tractable form of the Gauss-Newton
update for reversible neural networks in Section 4. We then study its behaviour showing
poor generalization in Section 5.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in Section 6.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: We provide full assumptions and proofs for all the theoretical results introduced
in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide all details about architecture, datasets, and hyperparameters in the
main text and appendix. Code is also provided with the submission.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide code with instructions to replicate our results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Yes we provide all information regarding the training details and test details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Yes our results are averaged over multiple seeds, and we include error bars.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: In the experimental Section we provide a description of our computational
setting (single NVIDIA RTXA6000 GPU).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The paper adheres to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: the paper has mainly theoretical motivations and outcomes, so there is no
direct societal impact of the work performed.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: the paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: we provide a reference for the datasets used in this paper.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: the paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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