Under review as submission to TMLR

Directed Exploration in Reinforcement Learning
from Linear Temporal Logic

Anonymous authors
Paper under double-blind review

Abstract

Linear temporal logic (LTL) is a powerful language for task specification in reinforcement
learning, as it allows describing objectives beyond the expressivity of conventional discounted
return formulations. Nonetheless, recent works have shown that LTL formulas can be
translated into a variable rewarding and discounting scheme, whose optimization produces a
policy maximizing a lower bound on the probability of formula satisfaction. However, the
synthesized reward signal remains fundamentally sparse, making exploration challenging. We
alm to overcome this limitation, which can prevent current algorithms from scaling beyond
low-dimensional, short-horizon problems. We show how better exploration can be achieved
by further leveraging the LTL specification and casting its corresponding Limit Deterministic
Biichi Automaton (LDBA) as a Markov reward process, thus enabling a form of high-level
value estimation. By taking a Bayesian perspective over LDBA dynamics and proposing a
suitable prior distribution, we show that the values estimated through this procedure can be
treated as a shaping potential and mapped to informative intrinsic rewards. Empirically, we
demonstrate applications of our method from tabular settings to high-dimensional continuous
systems, which have so far represented a significant challenge for LTL-based reinforcement
learning algorithms.

1 Introduction

Most reinforcement learning (RL) research has traditionally focused on a standard setting, prescribing the
maximization of cumulative rewards in a Markov Decision Process (Puterman, [2014; [Sutton & Bartol [2018)).
While this simple formalism captures a variety of behaviors (Silver et al., |2021]), its expressiveness remains
limited (Abel et al) 2021). In pursuit of a more natural and effective way to specify desired behavior, several
works have turned towards logic languages (Camacho et al., |2019; [De Giacomo et al., [2020b} [Hasanbeig et al.,
2018} Icarte et al., |2022; [Li et al., [2017). Originally designed to describe possible paths of a system (with
direct applications, e.g., in model checking (Baier & Katoen, |2008))), Linear Temporal Logic (LTL) (Pnueli,
1977) has been found to strike an interesting balance between expressiveness and tractability.

A translation from LTL to RL objectives is in general possible at the cost of optimality (Alur et al., [2022).
Nevertheless, several works (Bozkurt et al., 2020; [Hasanbeig et al., 2020; |Voloshin et al.l [2023) have proposed
a reward and discounting scheme to distill a policy through RL from an LTL specification. In particular, the
scheme proposed by [Voloshin et al.| (2023)) recovers a policy that optimizes a lower bound on the probability
of satisfying the specification: suboptimality can in practice be bounded through discretization arguments, or
for finite policy classes. However, this scheme results in a sparse reward signal and a potentially flat value
landscape, thus making exploration a fundamental challenge.

The necessity for strong exploration algorithms when learning from LTL specification is therefore evident.
Existing methods rely on counterfactual data augmentation schemes (Voloshin et all [2023), which however
do not directly guide the agent in the underlying MDP, on the availability of a task distribution (Wang et al.|
2023)), or on heuristics (Hasanbeig et al., 2020)). Closer in spirit to our work, task-aware reward shaping has
briefly been explored in the context of finite logic (Camacho et all 2019; [carte et al., [2022]), but has not
been scaled to w-regular problems and cannot adapt to unknown environment dynamics.

Under review as submission to TMLR

Task Specification ¢ build

GF(a & XFC) & Gn

JIN
11\
J/\Y

Environment

0

observe So
ao

Product MDP M*

<

- &

Prior P(K

update

T

> b,
s, 3253

Trajectory D

&

Posterior P(K|D)

MRP Distribution

compute

b,

a° > train V= « —11Dx

Epx|py[(—7* @ K)!R
. Rmtr(b b) (b/)V(b/) - V(b)
Policy 7

Figure 1: Overview of DRL2. DRL? leverages an LDBA representation of the task and a Bayesian estimate
of its transition kernel to define a distribution over Markov reward processes, which can be used for high-level
value estimation. Resulting values are mapped to an intrinsic reward signal, which guides exploration in the
product MDP.

The main idea of our work is the distillation of an intrinsic reward signal from the structure of the LTL
specification itself. In particular, we repurpose the Limit Deterministic Blichi Automata (LDBA) constructed
from an LTL formula as a Markov reward process, by assuming a transition kernel over LDBA states. We
then leverage the reward process to perform a form of high-level value estimation and compute values for
given LDBA states. These values can be naturally leveraged for potential-based reward shaping. Crucially,
we adopt a Bayesian perspective on estimating the transition kernel over the LDBA: by choosing a suitable
prior distribution, we ensure that intrinsic rewards are informative from the initial phases of learning. This is
done by optimistically assuming that the agent is capable of transitioning to any adjacent LDBA state in a
single step, although this might not be easily afforded by the dynamics of the environment. Moreover, by
updating the distribution according to evidence, the assumed transition kernel can be adapted over time to
realistically represent the agent’s behavior and environment’s dynamics.

Our method, named DRL? (Directed Reinforcement Learning from Linear Temporal Logic), is illustrated
in Figure 1] and is capable of driving deep exploration in reinforcement learning from linear temporal logic
specifications. The contributions of this work can be outlined as follows:

1. we design and introduce a method for exploration in reinforcement learning when learning from
LTL specifications, by casting the LDBA as a Markov reward process and leveraging it for value
estimation and distillation of intrinsic rewards;

we analyse the proposed method and the suboptimality potentially induced by intrinsic rewards;
we evaluate the method across diverse settings, spanning from simple tabular cases to complex,

high-dimensional environments, which pose a significant challenge for RL from LTL specifications.

Section [2] provides an introduction to LTL and its connection to RL. Our method is described in Section [3]
and evaluated in Section 4] A discussion of related works and of the proposed one can be found in Sections
and [6] respectively.

2 Background

This section provides a brief introduction to linear temporal logic and discusses connections to reinforcement
learning. For a complete introduction, we refer the reader to Baier & Katoen| (2008).

Linear Temporal Logic LTL formulas build upon a finite set of propositional variables (atomic propositions,
AP), over which an alphabet is defined as the powerset ¥ = 24P i.e. the combinations of variables evaluating
to true.

As a more concrete, illustrative example, let us consider a farming robot, which is tasked with continually
weeding through any of three different fields. The presence of the robot in each field could be described by
the set of atomic propositions {a,b,c}. When the robot is operating in the first field, a would evaluate to
true (T), while b and ¢ would evaluate to false ().

Under review as submission to TMLR

Definition 2.1. (LTL Formula) An LTL formula is a composition of atomic propositions (AP), logical
operators not (—) and or (|) and temporal operators next (X) and until (U). Inductively:

e if pe AP, then p is an LTL formula;
o if ¢ and @ are LTL formulas, then —¢, ¢ |6, X ¢ and ¢ U 0 are LTL formulas.

Intuitively, while logical operators encode their conventional meaning, the next operator evaluates to true if
its argument holds true at the very next time step, and until is a binary operator which requires its second
argument to eventually evaluate to true, and its first argument to hold true until this happens. From this
sufficient set of operators, additional ones are often defined in order to allow more concise specifications. In
the context of reinforcement learning for control, useful operators are finally (F'(¢) := TU¢) and globally
(G(p) := 7F~¢). Returning to our example, they could be used to specify stability (FGa, i.e., reach and
remain in the first field), or avoidance (G—a, i.e., never enter the first field). A more complex task, which
requires the farming robot to visit the first and third fields, repeatedly, while always avoiding the second one,
could be simply represented as (GF(a& X F'¢))&(G—b). Through this work, we will refer to this task as Tp.

Each LTL formula can be satisfied by an infinite sequence of truth evaluations of AP (i.e., an w-word). While
a direct definition is also possible (Thomas| [1990)), for simplicity, satisfaction will be introduced through the
acceptance of paths in an automaton built from the formula.

From Formulas to Automata A practical way of defining satisfaction involves the introduction of Limit
Deterministic Biichi Automata (LDBAs). An LDBA can be constructed from any LTL formula (Sickert et al.l
2016) and is able to keep track of the progression of its satisfaction.

Definition 2.2. (Limit Deterministic Biichi Automaton - LDBA) An LDBA is a tuple £ = (B, %, P5,B* by),
where B is a finite set of states, ¥ is an alphabet, PB : B x ¥ — 28 is a non-deterministic transition function,
B* C Bis a set of accepting states, and by € B is the initial state. There exists a mutually exclusive partitioning
of B = Bp U By such that B* C Bp and for (b,a) € (Bp x %) then PB(b,a) C Bp and |P5(b,a)| = 1.

In LDBASs synthesized from LTL formulas, additional properties hold (Sickert et al, [2016). First, the alphabet
is over evaluations of atomic propositions ¥ = 247, Second, the non-determinism is limited to a subset
of so-called e-transitions, which arise for specific formulas, e.g. those encoding stability problems. As a
consequence, this class of LDBAs is known as Good-for-MDPs (Hahn et al., [2020), since the non-determinism
can be resolved on the fly in arbitrary MDPs without changing acceptance.

An infinite sequence of LDBA actions (a;)° €
3% induces multiple paths, where a single path
can be defined as a sequence of LDBA states
p = (b;)5°. The set of induced paths P
can be defined recursively: P, = {(bp)} and
P, = {(bo, o, bilq, bi)l(bo, RN bifl) € P_1,b; €
PB(b;_1,a;)}. Intuitively, each path may split if the
selected LDBA action transitions to multiple states.

Definition 2.3. (Acceptance) An LDBA L accepts a CF(&XFC) &G

path (b;)5° if an or.ﬂy if the path vis_its an accepting Figure 2: Illustrative task Ty (left), and LDBA encod-
state b* € B* infinitely often, that is Vt € N, 3t >

N ing the formula (right, with starting state marked as
t such that by € B*. 0 and accepting state in green). The farming robot
(in green) moves in a 2D plane, where three areas of
different colors represent fields. {a,b,c} are atomic
propositions that evaluate to true when the agent en-
ters the yellow, blue and red field, respectively. A
trajectory satisfying the specification is shown.

By translating each LTL specification into an LDBA,
it is now possible to tie formula satisfaction to the
acceptance of a path: informally, an infinite sequence
of AP evaluations (w-word) satisfies a formula ¢ if
and only if the LDBA L synthesized from ¢ accepts
a path (b;)§° induced by the w-word.

Let us consider the example in Figure for the illustrative task Ty and the LTL formula ¢ =
(GF(a&X Fc))&(G-b). The periodic LDBA path (0,1,2) is accepted, just as (0,1,1,2)*, although

Under review as submission to TMLR

the latter takes on average more steps to reach the accepting state. On the other hand, the paths (0)* or
(0, (3)°°) would not be accepted, as neither ever reach the accepting state, with the second getting caught in
a sink state by violating the avoidance criterion in ¢.

We note that this notion of success relies on conditions that are achieved eventually in the future, independently
of temporal distance. While this leads to myopic behavior under naive optimization (Voloshin et al., |2023]),
recent works (Bozkurt et al., |2020; |De Giacomo et al., 2020a; [Hasanbeig et al., [2020} [Voloshin et al., 2023)
propose an elegant rephrasing for formula satisfaction in an RL-friendly form, as we now describe.

Product MDPs and Policy Optimization The following part describes standard RL terminology and
then reconciles it with the introduced logic machinery.

Definition 2.4. (Markov Decision Process — MDP) A Markov Decision Process is a tuple M =
(S, A, P,R,~, 1), where S and A are potentially continuous state and action spaces, P : § x A — A(S) is a
probabilistic transition kerne]ﬂ R:8 x A— Ris areward function, v is a discount factor, and pg € A(S) is
the initial state distribution.

MDPs are the standard modeling choice for RL environments; however, they are disconnected from atomic
propositions and unable to track progression over formula satisfaction. The semantics of APs can be grounded
in MDP states through a labeling function F : § — X, which evaluates APs in each MDP state. On the other
hand, progression over task satisfaction can naturally be stored in an LDBA, as its states encode sufficient
information on the history of paths.

Finally, all three components (MDP, labeling function and LDBA) can be synchronized to ensure consistency
between trajectories in each of them and enable mapping policies to distribution over paths, and therefore
likelihoods of formula satisfaction (Hasanbeig et al), [2018} [Voloshin et all [2023]). The first step is to
resolve the non-determinism by creating a new action for each potential e-transition to a state b € B, thus
defining a new action set AP = {¢|b € B} (Sickert et al. 2016). Then, we can define a product MDP
MX = (8% AP R X uy), where S* =8 x B, AX = AU AP, and pf (s,b) = p10(8) - Ly—p, -

Essentially, a policy learned over the product MDP has access to both low-level information (MDP states)
and indicators of progress on the specified task (LDBA states). The transition kernel over M* needs to
guarantee that both the underlying MDP and the LDBA evolve consistently. This synchronization is achieved
through the labeling function F:

P(s'|a,s), a€ Al € PB(b,F(s))
PX((SI7b/)|a’a (Sab)): 1 aGAB7a:6b/,b—€)b/,S:SI
0 otherwise,

where b = b indicates that there is an e-transition between the two LDBA states b and b’. Through this
construction, it is finally possible to connect trajectories (and, therefore, policies) to satisfaction of a given
LTL formula. Let us consider an LTL formula ¢ and its corresponding LDBA L, as well as a trajectory
T = (84, ;)3 in the product MDP M*. Then, 7 |= ¢ (7 satisfies ¢) if and only if £ accepts the path (b;)5°,
i.e., the projection of 7 to LDBA states. Finally, let us consider a policy 7 : S* — A(A*): the probability
of 7 satisfying ¢ can thus be defined as the probability integral for trajectories satisfying the formula:
P(m = ¢) = Er~r 17, Optimizing a policy 7 for satisfaction of an LTL specification ¢ can be expressed as
finding 7* € argmax i P(7 = ¢) . Prior works (Hasanbeig et al., 2018} Voloshin et al., [2023) have proposed
RL-friendly proxy objectives, which optimize a lower bound on the probability of LTL formula satisfaction:

7, € argmax E {ZFiRX(bi)] (:=V7), where (1)

mell T~ i—0

i—1
v, thB*
RX(b;)) =1gp.epr, To=1,T; = *(by), *(by) =
(b)) = 1gp,e8+1, To g7 (be), 7 (b {1, otherwise.

LA(S) represents the space of probability distributions over S.

Under review as submission to TMLR

Paraphrasing, 7 maximizes the visitation count to accepting states in the LDBA under eventual discounting.
For a formal analysis of the policy recovered by this objective, we refer the reader to Voloshin et al.| (2023)).
Our work builds upon this formulation and devises an exploration method to compensate for its drawbacks.
That is, the reward function R* is fundamentally sparse: the agent only receives feedback when a significant
amount of progress toward solving the task has been made, and thus an accepting LDBA state is visited. As
a result, while naive exploration might reach several non-accepting LDBA states, the agent remains unable
to evaluate them, as it is largely uninformed of the yet unexplored parts of the LDBA. Our method distills
the global known structure of the LDBA in a denser intrinsic reward signal for exploration.

3 Method: Directed Exploration in Reinforcement Learning from LTL

Our method relies on (i) repurposing the LDBA as a Markov reward process by assigning a transition kernel,
as well as rewards and discount signals for each transition, (ii) defining a value estimation operator to compute
high-level values for each LDBA state, and finally (iii) leveraging these values for potential-based reward
shaping. This procedure is described in Section It takes an LDBA and a transition kernel as input and
returns intrinsic rewards for each transition in the product MDP. A second and crucial component, discussed in
Section[3:2] is the estimation of the LDBA transition kernel, which is essential for ensuring informative intrinsic
rewards: by taking a Bayesian perspective, we show that a symmetric prior can induce strong exploration.
Finally, Section [3.3] connects each component and describes a practical instantiation of the algorithm.

3.1 High-level Value Estimation from LDBA

As described in Section [2] an LDBA can be naturally synthesized from a given LTL specification, through
well-known schemes (Sickert et al.l [2016)). We now show how an LDBA can be recast as a Markov reward
process, which can be leveraged for computing values for each LDBA state. This construction requires 2
ingredients, namely (i) an LDBA £, and (ii) a transition kernel K over LDBA states, where K is a stochastic
matrix such that K;; = E_ px /L>< P/ =bj|b=1;), ie., an estimate of the probability for the LDBA to
transition to state b; starting from b; under some policy 7, assuming stationarity. The choice of the transition
kernel K is crucial for the effectiveness of the method and is thus treated in detail in the following section.

Having access to these two ingredients, we can define a discrete Markov reward process £ = (B, K,R*,v*,bo):
the state space B and initial state by are left unchanged and coupled with the transition kernel K. Moreover,
we provide reward and a discounting functions: R* and ~* are a projection of the eventual reward and
discounting scheme to the LDBA, as they are only dependent on LDBA states (see Equation . A
trajectory 7 = (bo, b1, ...) can be sampled from the MRP according to p(7) = [[;=, Kb, ;- As any Markov
reward process, the newly synthesized one allows computing the value function under eventual discounting
Vi (b) = Ex[> i I'¥ R* (by)] with b1 ~ K (b;). The Markov property over the MRP induces the following
Bellman equation (Sutton & Barto, [2018):

Vi = R* + 9" 0 (KVk), (3)
where a matrix notation is adopted: Vi, R* and v* are represented as |B|-dimensional vectors, and ® stands
for the Hadamard product. As the LDBA (and thus the MRP) is discrete and finite, the Bellman equation
defined over the MRP has a closed-form solution (Sutton & Barto, |2018) ﬂ

Vi = (I-~*©K)"'R*, (4)
where I represents the identity matrix. As the MRP is closely related to the product MDP M> | an analysis of

their connection is provided in Appendlxl Once value estimates Vi are computed, they can be treated as a po-
tential function for reward shaping (Ng et al.,|{1999), although under eventual discounting (Voloshin et al.,2023)):

Rinr(b,0) = v (") Vg (V') — Vi (b). (5)

2In the case of exceedingly complex specifications, and thus large LDBAs, iterative methods could be a viable replacement.

Under review as submission to TMLR

This reward signal can be added to the product MDP reward R* and optimized with an arbitrary RL
algorithm. We note that, as an instantiation of potential-based reward shaping, the optimal policy in the
product MDP remains invariant to this reward transformation, if eventual discounting converges to zero.

Proposition 3.1. (Consistency) Let us consider the product MDP M* = (8>, A*,P*, R*,v*, uy) and
its modification M* = (8>, A, P*, R* + Rjntr, 7, piy). Under eventual discounting, any optimal policy in
M* for which Ty ¥28°0 4s also optimal in M*.

The proof follows the general scheme for potential-based reward shaping (Ng et al., |1999) and extends it to
the eventual discounting setting (see Appendix [Al).

While this procedure allows the synthesis of an intrinsic reward signal for arbitrary logic specifications, the
informativeness of this signal relies on two factors. The first factor is the existence of a sink state, which
occurs across many (but not all) LDBAs constructed from LTL formulas (e.g., formulas involving global
avoidance, as the illustrative task Tp). Its absence can be remedied by augmenting the MRP state space with
a virtual sink state, reachable from all other states and associated with an eventual reward and discount
factors of 0 and 1, respectively (see Appendix [C|for a complete discussion and evaluation). The second factor
lies in the transition kernel K. While Proposition [3.1] guarantees that no kernel perturbs the optimal policy,
it does not quantify how a chosen kernel affects learning efficiency. The following section outlines how a
careful choice of its initialization and estimation is crucial to the practical effectiveness of the algorithm.
Other alternatives are ablated empirically in Appendix [E]

3.2 Optimistic Priors for High Level Value Estimation

Let us consider a naive approach to the choice of Trajectories Empirical K

the transition kernel K, which simply computes the B .05 o0 [o00s

expected empirical transition probability of the cur- éZHXX oo loal oo loa
i | —

rent policy m. As shown at the top of Figure [3] for
the illustrative task Ty, a randomly initialized policy

can be executed in the product MDP, and K can be 00]00]00 .
estlm.ajced t'hrough the empirical count of observed Posterior P(K|D) K ~ P(K|D)
transitions in the LDBA. As long as the policy does 0403|0003
not spontaneously visit the accepting state, values 00 I o [o53
and rewards estimated through Equatlons.@ and [f] ~ [5loss] oo loms
are uniformly zero and fail to drive exploration. The

method would thus be rendered ineffective. sojoojee .

In order to address this issue, we adopt a Bayesian
approach to the problem of estimating the LDBA
transition kernel K. Let us consider each row K,
which models a categorical probability distribution
over future LDBA states from each LDBA state
b; € B. At its core, our method proposes a prior
distribution over these categoricals, such that appro-
priate shaping of the prior controls and directs the exploration in the product MDP. As the conjugate prior
to categorical distributions, we adopt a Dirichlet prior K; ~ P(K;) = Dir(a;,...,;5/-1). The prior is
informed of the LDBA structure by setting a; ; = 0 if the LDBA does not allow transitions from b; to b;. For
the m remaining non-zero Dirichlet parameters, we adopt an partially symmetric prior by setting them to a
shared value =, where « is a hyperparameter controlling the strength of the prior: large values of o induce
slower convergence of the posterior distribution to the empirical transition kernel.

Figure 3: Top: a randomly initialized policy is executed
in the product MDP M* for TO; its empirical transition
kernel K results in uniformly zero value estimates V.
Bottom: the expected value for K over a posterior
distribution estimated from a symmetric prior results
in informative value estimates and intrinsic rewards.

We remark that the choice of symmetry corresponds to the assumption that, at each step, the agent is capable
of transitioning to each adjacent LDBA state with equal probability. In practice, the agent might actually
take several steps in the underlying MDP in order to transition to any different LDBA state; moreover, some
LDBA transitions can be substantially harder to achieve than others. Finally, for complex problems, naive
exploration may not even result in observing the full set of possible transitions in a practical number of time

Under review as submission to TMLR

steps. However, assuming that the agent is capable of transitioning under a max-entropy distribution allows
reward signals to propagate to all states, thus resulting in informative estimates for the high-level value Vi and
the intrinsic rewards Rjn,. For the illustrative example Tp, this is displayed in the bottom part of Figure

Furthermore, while the initialization of K is possibly unrealistic, the Bayesian framework provides a natural
way to update it as an N-step trajectory D = (b))’ is gathered in the product MDP:

P(K;|D) o< P(D|K;)P(K:) (6)

for each i € [0,...,|B|]. This update is tractable due to the choice of a conjugate Dirichlet prior for the
categorical likelihood described by the transition kernel. As training progresses, a posterior distribution
P(K|D) can be updated with collected evidence. Moreover, instead of computing high-level values for a
specific transition kernel K as in Equation |4 we can compute the expected value V under the posterior
distribution of transition kernels P(K|D) and thus of MRPs:

V= E [Vkl= (T —~* © K)R". ”)
K~P(K|D) K~P(K|D)

We remark that the maximization of V corresponds to the average-case MDP problem, while other procedures
can be easily adapted to solve the Robust MDP (Xu & Mannor}, |2010)) or the Percentile Criterion MDP
problems (Delage & Mannor} 2010). In practice, the expectation in Equation m can be estimated by sampling,
with the special case of Thompson Sampling when a single sample is used. Our approach to estimating the
transition kernel is ablated empirically in Appendix [F} a study of the hyperparameter « controlling prior
strength is in Appendix [G]

3.3 Practical Algorithm

This section combines the elements out-
lined above into a practical scheme for Algorithm 1 DRL?

distilling an intrinsic reward, which is re- Input: Product MDP M*, prior distribution P(K)
ported in Algorithm[I] On top of the abil- for each iteration do

ity to sample trajectories from the prod- Execute policy 7 in M* to collect data D for N steps
uct MDP and access to its LDBA, the Update posterior P(K|D) with evidence D (Eq. [6)
algorithm only requires the specification Compute high-level values V (Eq.

of a prior distribution P(K) over LDBA Sample training batch B (either on- or off-policy)
transition kernels, which is proposed in Add intrinsic reward to batch B (Eq.

Section [3.2] The output is a policy 7 op- Train 7 with B through arbitrary RL algorithm
timizing an eventually discounted proxy end for

to the likelihood of task satisfaction.

4 Experiments

This section presents an empirical evaluation of the method by investigating the following questions:

« Can DRL? drive deep exploration in reinforcement learning from linear temporal logic specification?
« How does DRL? perform across different environments and specifications?
o Can DRL? be scaled to high-dimensional continuous settings?

As the method is designed to handle the full complexity of LTL, our evaluation considers several logic specifica-
tions, encompassing reach-avoidance (e.g., Fla&G(—b)) and subtask sequences (e.g., Tp : GF(a& X Fc)&G-d).
In order to focus on exploration, the suite of formulas allows easily scaling the number of LDBA states,
or the minimum number of steps required in the underlying MDP to induce a transition in the LDBA. To
investigate the final question, we perform an evaluation in both tabular and continuous domains. While the
former avoids confounding effects arising from function approximation, the latter stresses the ability to scale
to complex underlying environments. This also evaluates the versatility of DRL?2, as it is in practice coupled

Under review as submission to TMLR

Reach-avoid, easy Reach-avoid, medium Reach-avoid, hard Fa&G(-b)
75 7.5 7.5
w w w
S £ S
550 550 550
& 25 & 25 & 25
0.0 0.0 0.0
0 50k 100k 150k 200k 0 50k 100k 150k 200k 0 50k 100k 150k 200k
Steps Steps Steps
Sequential, easy Sequential, medium Sequential, hard F(a&XF(b&XFc))
40 30
n 0 n
S £ € 2
g el =3 .
[w 0)
x @ x 10
0 0 0
0 50k 100k 150k 200k 0 50k 100k 150k 200k 0 50k 100k 150k 200k
Steps Steps Steps
Circular, easy Circular, medium Circular, hard GF(2&XF(b&XF(c&XFd)))&Ge

Returns
» =
Returns
o - ~N
Returns
° N

0 50k 100 k 150 k 200 k 0 50k 100k 150k 200k 0 50k 100 k 150k 200k
Steps Steps Steps

memm DRL? wss= [CER === Count-based === No exploration

Figure 4: Return for Q-learning under eventual discounting. The three rows display reach-avoidance,
sequential and circular tasks, as illustrated on the right with optimal policies. Each atomic proposition
evaluates to T in cells of matching color; difficulty increases from left to right. Further details are available in
Appendix DRL? is able to drive exploration when naive exploration is insufficient.

with tabular Q-learning (Watkins & Dayan, 1992) and Soft Actor Critic (Haarnoja et al.| 2018a)), respectively.
In the first case, the environment involves navigation in a 2D GridWorld, while in the latter we evaluate
dexterous manipulation with a simulated Fetch robotic arm and locomotion of a 12DoF quadruped robot and
a 6DoF HalfCheetah. A detailed description of the benchmark environments and specifications is provided in
Appendix code is available at sites.google.com /view /drl-2.

Baselines We compare DRL? to (1) a counterfactual experience replay scheme (LCER
), (2) a novel baseline, that relies on inverse square root visitation counts of LDBA states to compute
a potential function for reward shaping (see Appendix [JJ), (3) the underlying learning algorithm with no
additional exploration bonuses. We note that other promising approaches for exploration in the LTL domain
exist, but they rely on meta-learned components or ad-hoc training regimes (Qiu et al., 2023; Wang et al.|

2023) and are thus not suitable for a fair comparison.

4.1 Tabular Setting

We first evaluate the exploration performance of DRL? by coupling it with tabular Q-learning
Dayanl [1992)) when operating over discrete state and action spaces in the standard online episodic setting
(Sutton & Bartol, 2018]). The evaluation environment is a deterministic 2D gridworld, in which the agent can
move in each of the four cardinal directions by one unit at each timestep. The first row of Figure [4] evaluates
a reach-avoidance task G(a&—b), in which the agent needs to avoid a large area that covers all but a corridor.
The goal area is at the end of said corridor; and the difficulty of the task increases with the length of the
corridor. In this case the benefit of DRL? is evident, as it returns a negative reward whenever the agent leaves
the corridor, and the LDBA thus transitions to a sink state. The agent can therefore direct its exploration
towards a fraction of the state space, resulting in improved sample efficiency. On the other hand, count-based
shaping can only penalize transitions to the sink state once it has been visited enough times. While LCER has
the advantage of potentially ignoring failures by hallucinating counterfactual LDBA states during training, it
cannot discourage exploration of the forbidden area. We remark that LCER remains a strong method significant
when exploration of the underlying MDP is not necessary; a detailed discussion is provided in Appendix [E]

The second and third row of Figure [4] evaluate sequential tasks. In both, the agent navigates a room with
several zones. In the first case, the agent must reach a sequence of zones in a given order; in the second one,

https://sites.google.com/view/drl-2

Under review as submission to TMLR

Fetch, avoid Doggo, avoid Cheetah, frontflip

\

0 100k 200k 300k 400k 0 100k 200k 300k 0 100k 200k 300k 400k
Steps Steps Steps

Fetch, align Doggo, navigate Cheetah, sequential

0 100k 200k 300k 400k 0 100k 200k 300k 400k) 0 100k 200k 300k 400k
Steps Steps Steps

s DRL? === [CER === Count-based No exploration

Figure 5: Return for SAC under eventual discounting on Fetch (left), Doggo (center) and HalfCheetah (right),
as shown in renderings. DRL? confirms its ability to drive exploration in complex tasks when coupled with
deep RL.

this must be repeated indefinitely while also avoiding the center of the room. While the standard reward
under eventual discounting would be zero until the last zone in the sequence is reached, DRL? provides
an informative reward at each LDBA transition, thus informing the agent to direct exploration towards
promising directions. Therefore, as number and size of the zones grows (to the right), DRL? results in more
efficient exploration by encouraging LDBA transitions towards the accepting state. This encouragement is
instead only dependent on visitation counts for the count-based baseline and absent in LCER. We additionally
evaluate variations of these tasks in Appendix [D]

4.2 Continuous Setting

After verifying the effectiveness of DRL? in interpretable settings, this section investigates if the exploration
signal can be scaled to high-dimensional, long-horizon environments requiring the application of deep RL
algorithms. For simplicity, we evaluate its application to Soft Actor Critic (SAC) (Haarnoja et al.l |2018a)),
which stands as a fundamental building block for many algorithms (Eysenbach et al. [2019; Haarnoja et al.
[2018b; Tbarz et all, 2021} [Kumar et al) 2020)). On the top of Figure [5| a simulated Fetch robotic arm
(de Lazcano et al.l [2023)) is evaluated on two tasks, namely (i) moving its gripper to a specific location while
avoiding lateral movements and (ii) gradually producing an horizontal alignment of three cubes. In the
middle, an HalfCheetah receives specifications encoding, respectively, finite sequences of positions and infinite
sequences of angles for its center of mass, resulting in precise horizontal locomotion, and in front flipping
indefinitely. On the bottom, a 12DoF simulated quadruped robot is tasked with (i) fully
traversing a narrow corridor, or with (ii) navigating through two zones in sequence. As in the tabular case,
the four tasks can all be described through LTL formulas encoding reach-avoidance and sequential behavior.
They are reported among further details on the environments in Appendix [J]

As expected, in this setting the evaluation is slightly noisier and partially constrained by the learning algorithm.
Nevertheless, when applied to significantly more complex underlying environments, DRL? is competitive with
the stronger baselines in simpler problems, and largely outperforms them when exploration in the underlying
MDP becomes more challenging. Interestingly, we observe that counterfactual experience replay (LCER)
is less effective in this setting. We remark that LCER can generate unfeasible states for the product MDP,
which can be harmful when the agent has the ability to interpolate between training samples.

5 Related Work

Learning from LTL specification has seen remarkable progress in recent years. While this section provides an
essential overview, an extended selection of works is presented in Appendix [H]

LTL is among several languages for task specification in RL: for instance, numerous works have investigated
Reward Machines (Icarte et all 2018} [2022)), which however do not match the expressiveness of LTL. While

Under review as submission to TMLR

Reward Machines can be very effective for reward shaping, either through heuristics (Camacho et al.| |2017) or
value iteration (Camacho et al. [2019)), these methods are static and do not naively generalize to our setting.

The combination of LTL and RL has initially focused on reconciling logic and policy optimization through
the definition of a product MDP and the design of a reward signal encouraging task satisfaction (Bozkurt
let al. [2020; |Camacho et al., 2017; 2019; Hasanbeig et al., |2018; |2020; Kantaros| 2022; |Li et al., 2017). This
led to the development of principled approaches, proposing schemes that provably and directly optimize a
lower bound on the likelihood of formula satisfaction (Shao & Kwiatkowskal, [2023; [Voloshin et al., |2023).

The sparsity of rewarding schemes has motivated the development of several methods, involving the use of
heuristics (Li et al., [2017), an accepting frontier function (Hasanbeig et al., [2018; 2020)), bonuses for first
visitations (Cai et al., 2021)), or the knowledge of additional information such as annotated maps
2023). Recently, |Shah et al| (2024)) also propose a heuristic scheme for shaping constraints expressed
in LTL. This scheme is partially aligned with the shaping signal that DRL? naturally recovers, but only
considers accepting paths and is restricted to on-policy methods. Directly within the LTL literature, another
line of work leverages the discrete structure of automata and learns hierarchical (Hasanbeig et al., 2020
Icarte et al., |2022; Jothimurugan et al., 2021)), goal-conditioned (Qiu et al., 2023) or modular (Cai et al.
12021) policies. While considerably improving sample efficiently, these approaches are known to potentially
introduce suboptimality (Icarte et al., [2022]).

A further possibility is that of leveraging control over the automaton to produce synthetic experience by relabel-
ing the LDBA states of collected transitions. Such schemes have been proposed in the context of Reward Ma-
chines (Icarte et al.,2022) and LTL (Voloshin et al.,2023); as they can produce off-policy samples, they cannot
be naively applied to on-policy methods, as discussed in Appendix [E] Other relabeling techniques only target
the initial LDBA state (Wang et al. |2020]) or focus on optimality guarantees (Shao & Kwiatkowskal, 2023)).

Finally, we note that previous work have also led to strong exploration on unseen tasks, as the result of a
meta-learning phase when a distribution over MDPs can be accessed (Ledn et al., 2022; [Vaezipoor et al.l 2021]).

To the best of our knowledge, our approach is novel in its adaptive and informed estimation of the high-level
Markov reward process, resulting in a directed exploration method that retains optimality.

6 Discussion

This work proposes DRL?, an exploration method for reinforcement learning from LTL specifications. By
casting the LDBA encoding the specification as a Markov reward process, we enable a form of high-level
value estimation, which can produce value estimates for each LDBA state. These values can be leveraged
as a potential function for reward shaping and combined with an informed Bayesian estimate of the LDBA
transition kernel to ensure an informative training signal. As a result, DRL? accelerates learning when
non-trivial exploration of the underlying MDP is necessary for reaching an accepting LDBA state, as is often
the case for complex specifications.

Limitations DRL? is not designed to directly address certain exploration issues (such as e—transitions).
Nonetheless, it can be seamlessly combined with existing experience replay methods that do. As several other
exploration schemes, we note that DRL? introduces a slight non-stationarity in the reward signal, which
needs to be addressed by the underlying learning algorithm.

Outlook This work opens up exciting future directions, including a formal analysis of which reward shaping
terms would not only grant consistency, but also maximize sample efficiency. Moreover, as DRL? leverages
the LDBA structure, its effectiveness is dependent on it. Its applicability can thus further benefit by LDBA
construction algorithms that do not return an arbitrary LDBA in its equivalence class, but rather the one
which is most suitable for guiding an RL agent.

Having shown how the fundamental problem of sparsity for complex LTL tasks can be addressed by directly
leveraging their structure, we believe that the evidence provided in this work further supports reinforcement
learning as suitable paradigm for extracting a controller from a logic specification, simply via interaction and
learning.

10

Under review as submission to TMLR

References

David Abel, Will Dabney, Anna Harutyunyan, Mark K Ho, Michael Littman, Doina Precup, and Satinder
Singh. On the expressivity of markov reward. Advances in Neural Information Processing Systems, 2021.

Rajeev Alur, Suguman Bansal, Osbert Bastani, and Kishor Jothimurugan. A framework for transforming
specifications in reinforcement learning. In Principles of Systems Design: Essays Dedicated to Thomas A.
Henzinger on the Occasion of His 60th Birthday. 2022.

Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press, 2008.

Alper Kamil Bozkurt, Yu Wang, Michael M Zavlanos, and Miroslav Pajic. Control synthesis from linear
temporal logic specifications using model-free reinforcement learning. In 2020 IEEE International Conference
on Robotics and Automation (ICRA), 2020.

Mingyu Cai, Mohammadhosein Hasanbeig, Shaoping Xiao, Alessandro Abate, and Zhen Kan. Modular deep
reinforcement learning for continuous motion planning with temporal logic. IEEFE robotics and automation
letters, 2021.

Alberto Camacho, Oscar Chen, Scott Sanner, and Sheila Mcllraith. Non-markovian rewards expressed in
Itl: guiding search via reward shaping. In Proceedings of the International Symposium on Combinatorial
Search, 2017.

Alberto Camacho, Rodrigo Toro Icarte, Toryn Q Klassen, Richard Anthony Valenzano, and Sheila A Mcllraith.
Ltl and beyond: Formal languages for reward function specification in reinforcement learning. In Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence, 2019.

Giuseppe De Giacomo, Marco Favorito, Luca Iocchi, Fabio Patrizi, and Alessandro Ronca. Temporal logic
monitoring rewards via transducers. In Proceedings of the 17th International Conference on Principles of
Knowledge Representation and Reasoning, 2020a.

Giuseppe De Giacomo, Luca locchi, Marco Favorito, and Fabio Patrizi. Restraining bolts for reinforcement
learning agents. In Proceedings of the AAAI Conference on Artificial Intelligence, 2020b.

Rodrigo de Lazcano, Kallinteris Andreas, Jun Jet Tai, Seungjae Ryan Lee, and Jordan Terry. Gymnasium
robotics. github, 2023. URL http://github.com/Farama-Foundation/Gymnasium-Robotics.

Erick Delage and Shie Mannor. Percentile optimization for markov decision processes with parameter
uncertainty. Operations research, 2010.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. Diversity is all you need: Learning
skills without a reward function. In International Conference on Learning Representations, 2019.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor. In International conference on machine
learning, 2018a.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie Tan, Vikash Kumar,
Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algorithms and applications. arXiv
preprint arXiv:1812.05905, 2018b.

Ernst Moritz Hahn, Mateo Perez, Sven Schewe, Fabio Somenzi, Ashutosh Trivedi, and Dominik Wojtczak.
Good-for-mdps automata for probabilistic analysis and reinforcement learning. In Tools and Algorithms
for the Construction and Analysis of Systems, 2020.

Charles R Harris, K Jarrod Millman, Stéfan J Van Der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J Smith, et al. Array programming
with numpy. Nature, 2020.

Mohammadhosein Hasanbeig, Alessandro Abate, and Daniel Kroening. Logically-constrained reinforcement
learning. arXiv preprint arXiv:1801.08099, 2018.

11

http://github.com/Farama-Foundation/Gymnasium-Robotics

Under review as submission to TMLR

Mohammadhosein Hasanbeig, Daniel Kroening, and Alessandro Abate. Deep reinforcement learning with
temporal logics. In Formal Modeling and Analysis of Timed Systems: 18th International Conference,
FORMATS 2020, 2020.

Shengyi Huang, Rousslan Fernand Julien Dossa, Chang Ye, Jeff Braga, Dipam Chakraborty, Kinal Mehta,
and Joao G.M. Aratjo. Cleanrl: High-quality single-file implementations of deep reinforcement learning
algorithms. Journal of Machine Learning Research, 2022.

Julian Ibarz, Jie Tan, Chelsea Finn, Mrinal Kalakrishnan, Peter Pastor, and Sergey Levine. How to train your
robot with deep reinforcement learning: lessons we have learned. The International Journal of Robotics

Research, 2021.

Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila Mcllraith. Using reward machines for
high-level task specification and decomposition in reinforcement learning. In International Conference on
Machine Learning, 2018.

Rodrigo Toro Icarte, Toryn Q Klassen, Richard Valenzano, and Sheila A Mcllraith. Reward machines:
Exploiting reward function structure in reinforcement learning. Journal of Artificial Intelligence Research,
2022.

Kishor Jothimurugan, Suguman Bansal, Osbert Bastani, and Rajeev Alur. Compositional reinforcement
learning from logical specifications. Advances in Neural Information Processing Systems, 2021.

Yiannis Kantaros. Accelerated reinforcement learning for temporal logic control objectives. In 2022 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2022.

Jan Kfretinsky, Tobias Meggendorfer, Salomon Sickert, and Christopher Ziegler. Rabinizer 4: from 1tl to your
favourite deterministic automaton. In International Conference on Computer Aided Verification, 2018.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline reinforce-
ment learning. Advances in Neural Information Processing Systems, 2020.

Borja G Le6én, Murray Shanahan, and Francesco Belardinelli. Agent, do you see it now? systematic
generalisation in deep reinforcement learning. In ICLR Workshop on Agent Learning in Open-Endedness,
2022.

Xiao Li, Cristian-Ioan Vasile, and Calin Belta. Reinforcement learning with temporal logic rewards. In 2017
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2017.

Andrew Y Ng, Daishi Harada, and Stuart Russell. Policy invariance under reward transformations: Theory
and application to reward shaping. In International Conference on Machine Learning, 1999.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. NIPS 2017
Workshop on Autodiff, 2017.

Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations of Computer
Science (sfes 1977), 1977.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley &
Sons, 2014.

Wenjie Qiu, Wensen Mao, and He Zhu. Instructing goal-conditioned reinforcement learning agents with
temporal logic objectives. In Thirty-seventh Conference on Neural Information Processing Systems, 2023.

Paulo Rauber, Avinash Ummadisingu, Filipe Mutz, and Jirgen Schmidhuber. Hindsight policy gradients. In
International Conference on Learning Representations, 2019.

Alex Ray, Joshua Achiam, and Dario Amodei. Benchmarking safe exploration in deep reinforcement learning.
https://github.com/openai/safety-gym, 2019.

12

https://github.com/openai/safety-gym

Under review as submission to TMLR

Ameesh Shah, Cameron Voloshin, Chenxi Yang, Abhinav Verma, Swarat Chaudhuri, and Sanjit A Seshia.
Deep policy optimization with temporal logic constraints. arXiv preprint arXiv:2404.11578, 2024.

Dagian Shao and Marta Kwiatkowska. Sample efficient model-free reinforcement learning from 1tl specifications
with optimality guarantees. In Proceedings of the Thirty-Second International Joint Conference on Artificial
Intelligence, 2023.

Salomon Sickert, Javier Esparza, Stefan Jaax, and Jan Kretinsky. Limit-deterministic biichi automata for
linear temporal logic. In International Conference on Computer Aided Verification, 2016.

David Silver, Satinder Singh, Doina Precup, and Richard S Sutton. Reward is enough. Artificial Intelligence,
2021.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT press, 2018.

Wolfgang Thomas. Chapter 4 - automata on infinite objects. In Formal Models and Semantics, Handbook of
Theoretical Computer Science, pp. 133—191. Elsevier, Amsterdam, 1990.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan Deleu, Manuel
Goulao, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-Vicente, Andrea Pierré, Sander
Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G. Younis. Gymnasium, 2023. URL https:
//zenodo.org/record/8127025.

Pashootan Vaezipoor, Andrew C Li, Rodrigo A Toro Icarte, and Sheila A Mcilraith. Ltl2action: Generalizing
1tl instructions for multi-task rl. In International Conference on Machine Learning, 2021.

Cameron Voloshin, Hoang Le, Swarat Chaudhuri, and Yisong Yue. Policy optimization with linear temporal
logic constraints. Advances in Neural Information Processing Systems, 2022.

Cameron Voloshin, Abhinav Verma, and Yisong Yue. Eventual discounting temporal logic counterfactual
experience replay. In International Conference on Machine Learning, 2023.

Chuanzheng Wang, Yinan Li, Stephen L Smith, and Jun Liu. Continuous motion planning with temporal
logic specifications using deep neural networks. arXiv preprint arXiv:2004.02610, 2020.

Jun Wang, Hosein Hasanbeig, Kaiyuan Tan, Zihe Sun, and Yiannis Kantaros. Mission-driven explo-
ration for accelerated deep reinforcement learning with temporal logic task specifications. arXiv preprint
arXiv:2311.17059, 2023.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 1992.

Zikang Xiong, Joe Eappen, Daniel Lawson, Ahmed H Qureshi, and Suresh Jagannathan. Co-learning planning
and control policies using differentiable formal task constraints. arXiv preprint arXiv:2303.01346, 2023.

Huan Xu and Shie Mannor. Distributionally robust markov decision processes. Advances in Neural Information
Processing Systems, 2010.

13

https://zenodo.org/record/8127025
https://zenodo.org/record/8127025

Under review as submission to TMLR

A Proof of Proposition [3.1 and Further Analysis

This section presents a proof for Proposition [3.1] in Section [3] which we also report in its entirety for ease of
reference, and further discusses how the intrinsic reward is informed by the task.

Proposition A.1. (Consistency) Let us consider the product MDP M* = (8>, A, P>, R*,v*, uy) and
its modification M* = (8>, A, P*, R* + Rinir, 7, 113). Under eventual discounting, any optimal policy in
M for which Ty "28° 0 is also optimal in M*.

The proof consists of a simple extension of known results on potential-based reward shaping (Ng et al.l [1999)
to account for eventual discounting. Let us consider an arbitrary state-action pair (sg,ap) € S* x A* and
the optimal Q-function in M* under eventual discounting :

Q7 (s0,a0) = P {Zf‘t (R* (81, at, 5141) + Rintr(staataStJrl))} (8)
71—* X t 0
oo oo
= { TP R™ (54, a4, 5¢41) + Z I Ringe (¢, ar, 3t+1))} (9)
G t=0 t=0
= Ql(s0.a0) + B | DT Ruuea(se,01.51.41) (10)
P 0
= Ql(s0.a0) +_E er (st+)V (br1) = V(b1))] (1)
= Ql(so.a0) + _E, Zrt “(s100)V (1) = YTV (0)] (12)
Pt t=0
= Q(s0,00) + Jlim [TV (b) =7 (s0)V (bo)| (13)
= Q* (S(),a()) + li)n;.lo *I%;X |:Ft‘7(bt)] — f7>< (S())V(b()) (14)
where Q7 is the optimal Q-function in M > under eventual discounting. If the assumption holds, and T'; iy 0,
then the second term fades, and we have
Q] (s0,a0) = QY (50, a0) — 7 (50)V (bo) (15)
The difference between the two Q-functions Q7 and Q7 is therefore constant at any given state. Thus,
7*(s) = argmax Q] (s, a) = argmax Q] (s, a) = 7*(s). [(16)

a€AX a€AX

As stated above, this invariance relies on the assumption that the product of discounts converges to zero,
which would happen in case an accepting state is visited infinitely often. Intuitively, once a good policy is
found, the contribution of the intrinsic reward fades, and there is no incentive for optimization algorithms to
update the policy away from its optimum. While this assumption often holds for the optimal policy (e.g., in
deterministic environments), there are cases in which this may not be true (e.g., in the stochastic case, if the
LDBA features a sink state). Nevertheless, we note that the assumption holds for optimal policies in tasks
considered in this paper, and in recent literature (Voloshin et al., |2023]).

On the other hand, in cases in which the assumption does not hold (e.g., as often happens for a random
initialized policy), the intrinsic reward can in principle still bias the policy and drive exploration well. For
instance, let us assume that the likelihood of visiting an accepting LDBA state under the current policy 7 is

14

Under review as submission to TMLR

exactly zero. This implies R*(-) =0, v*(-) =l and I'; = Ht 07 *(by) = 1. In this case, the value under
eventual discounting for an arbitrary state so € S* is

‘7,“7(80, CLO) = *IF%)X Z Ft St, ag, St-l,-l) + Rmtr(st; at, St-i-l)) (17)
= E Z Riner (8¢, ag, 5t+1))} (18)
P 0
= ,(IE%DX Z’Y (St+1) bt+1) V(bt):| (19)
=Jm E [V(bt)} — V(bo). (20)

Thus, a policy optimizing the value function under eventual discounting with the intrinsic reward provided
by DRL? also maximizes the likelihood of eventually reaching the LDBA state with maximum high-level
value V. It is easy to show that this corresponds to the accepting state b* in the LDBA as the high-level
value of any LDBA state b € B is V(b) = (1 — P (=b*|))V (b*) < V(b*) , where P, (=b*|b) is the likelihood of
never reaching the accepting state under the current policy.

We can thus conclude that a policy trained with DRL? preserves its asymptotic optimality, while also
benefiting from an informative exploration signal during early stages of training.

B Connection Between MRP and Product MDP

This section discusses the relationship between product MDP (introduced in Section [2)) and MRP (described
in Section [3]) in further detail. Let us consider a trajectory in the product MDP 7 = ((sg, bo), (s1,b1),-.-).
Due to the construction of the MRP, the return of the projection of 7 to the MRP state space (in this case,
(bo, b1,...)) is the same as the return of 7 in the product MDP, evaluated according to R* and v*. A similar
argument can be made for a policy 7 given a fixed starting state (sg,bp). If the MRP transition kernel K is a
projection of the transition kernel induced by 7 in the product MDP, then the value Vi (by) computed in the
MRP matches the value computed in the product MDP V™ ((sg, bo)). Nonetheless, we remark that the MRP
can be seen as a high-level approximation of the product MDP, and as such it loses information. Thus, it
may not be straightforward to leverage the MRP to accurately compute values for arbitrary MDP states, to
the best of our knowledge.

C Addition of a Virtual Sink State

As described in Section a design choice in DRL? involves the construction of a virtual sink state for
LDBAs that do not feature one, where a sink state can be defined as an LDBA state by € B such that
PB(bg,-) = b,.

Let us consider an LDBA featuring a path from each state to an accepting state. Moreover, let us consider a
transition kernel K with full support over reachable LDBA states (as is the case for likely samples under
the prior proposed in Section (3.2 E In thls case, the values computed under eventual discounting by solving
Equation |7 would be uniform: Vx = ——. As a consequence, intrinsic rewards computed through Equation
would be constantly zero until an acceptmg state is visited and thus uninformative. This is a natural
consequence of the fact that, if irreversible failure is not possible, any policy inducing a transition kernel with
a good enough support will satisfy the specification, considering an infinite horizon.

In order to provide an informative learning signal, DRL? augments LDBAs that do not feature a sink state
with a virtual one and assumes that it can be reached from any other LDBA state. We note that this is
equivalent with associating each LDBA state with a discount factor equal to the likelihood of transitioning to
the virtual sink. While this can introduce myopic behavior (Voloshin et al., 2023)), we remark that DRL? also

15

Under review as submission to TMLR

Sequential, easy Sequential, medium Sequential, hard F(2&XF(b&XFc))

30
B . -
’ -
10

Returns
~N B
o o
1
)
|
|
|
Returns

Returns

/

0 0 0
0 50k 100 k 150k 200k 0 50k 100k 150k 200k 0 50k 100 k 150k 200k
Steps Steps Steps
s DRL? === DRL? w/o virtual sink No exploration

Figure 6: Ablation of the addition of a virtual sink for DRL2. When a sink state is not featured nor added
(e.g. in sequential tasks), the performance of the No-exploration baseline is recovered.

learns and updates its estimate of the LDBA transition kernel. As any virtual sink state cannot in practice be
reached, the likelihood of transitioning to it from each visited LDBA state converges to zero as the number of
environment steps increases. Thus, as training progresses, any virtual sink is effectively removed, together
with any degree of myopia introduced.

Among the tasks considered in Figure [d] MRPs for sequential tasks do not naturally feature a sink state.
To support the discussion, we additionally provide empirical evidence on the performance of DRL? in these
tasks when a virtual sink is not added. We note that performance on other tasks would not be affected, as
they naturally feature a sink state.

In Figure@we observe that DRL? without a virtual sink state recovers the performance of the No-exploration
baseline, as expected. Experimental settings are the same as those outlined in Section [4]

D Additional Tabular Results

Optimal policies for the reach-avoidance tasks from Figure EI (first row) would also solve a shortest-path
reaching problem in the underlying MDP. In other words, a linear path to the goal does not violate the
constraints. This Section evaluates a variation of the original task, by reshaping the safe area of the reach-avoid
task into a U-shape. In this case, the shortest path to the goal violates the avoidance constraints. Fortunately,
changing the shape of the avoidance zone only results in a local change to the labeling function F. DRL?, as
well as other baselines, can handle arbitrary relabeling functions; thus these methods can adapt to arbitrary
environment layouts.

Results are reported in Iﬂ for all task variants (easy, medium and hard). In general, as the path length has
now increased, performance globally decreases accordingly. Nevertheless, the overall relative performance of
each methods is consistent with the original version of the task. We note that LCER (Voloshin et al., |2023))
now outperforms the count-based baseline, as it can effectively ignore previous visits to the zone to avoid. In
the extreme case in which the length of the U-maze is very large, but the starting position is very close to the
goal if the avoidance constraint is ignored, we expect LCER to perform even better.

U-reach-avoid, easy U-reach-avoid, medium U-reach-avoid, hard Fa&G(Ab)
7.5

" 7.5 " w2
e
& s & 25 g 1 /—~w— i

0.0 - 0.0 0

0 s0k 100k 150k 200k 0 s0k 100k 150k 200k 0 sok 100k 150k 200k
Steps Steps Steps
mmmm DRL? == [CER === Count-based No exploration

Figure 7: Alternative evaluation of reach-avoid task involving a conflict between reaching objectives and
avoidance constraints. Results are consisted with those in Figure

16

Under review as submission to TMLR

F(28XF(b&XF(CBXFd))) Sequential, distant F(28XF(b&XF(c&XFd))) Sequential, close

Returns
~
S
III]
Returns
S 5

0 ENEEEEEEEE 0
e
0 50k 100 k 150 k 200k 0 50k 100 k 150 k 200k
Steps Steps
s DR LCER === Count-based No exploration

Figure 8: Comparison of DRL?, LCER and additional baselines in the Sequential task from Figure [4] (left)
and an additional variation (right). LCER performs very well when significant exploration of the underlying
MDP is not required, as is the case for the example on the right. To the left of each set of training curve, the
task is represented, and an optimal policy is visualized.

E Comparison to LTL-guided Counterfactual Experience Replay (LCER)

The environments and tasks presented in Section [require significant exploration in the underlying MDP
and stress the ability to leverage the semantics of LDBA states to accelerate this process.

LTL-guided Counterfactual Experience Replay (Voloshin et al., 2022) takes an orthogonal approach to the
problem of exploration when learning from LTL formulas and represents a very strong baseline in specific
environments. In particular, LCER does not leverage the semantics of the LDBA, however it generates
synthetic experience by fully controlling its dynamics. Transitions ((s,b), a, (s',0")) with {(s,b), (s',0')} C &>
and a € A* are relabeled by uniformly resampling the initial LDBA state and simulating the LDBA transition
caused by action a, resulting in a new transition ((s,b), a, (s',5)).

Generated transitions respect the transition kernel of the product MDP and are thus valid training samples.
However, the method does not guarantee that relabeled product states (s, 3) are actually feasible, as the set
of reachable product states might only consist of a manifold of the full Cartesian product of MDP and LDBA
state spaces. For instance, let us consider the illustrative task Ty as displayed in Figure [2f at any step, if
the agent is in the red field, the LDBA would necessarily be in its sink state and in no other state. Any
relabeling of this particular state would thus not be relevant. Furthermore, as a form of state relabeling,
LCER cannot generate on-policy data, as the on-policy action sampled in (s, 13) might be different than the
original action sampled in (s,b) (Rauber et al.| [2019).

Nevertheless, LCER remains a very strong exploration method in environments in which each MDP state
can be associated with several LDBA states; furthermore, in the presence of sink LDBA states, LCER can
hallucinate their avoidance. In this merit, we report an additional experiment in Figure [8| evaluating DRL?2,
LCER and baselines in a modified version of the Sequential environment from Figure 4] In its original version
(on the left), the accepting LDBA state can only be visited once the distant final zone (in bright purple) is
reached. In this case, LCER is not effective. However, if the zones are rearranged in a way such that they can
be visited without excessive exploration in the underlying MDP (e.g., by placing them closer to the starting
MDP state, as done on the right), the performance of LCER largely improves, fully bridging the gap with
DRL2. We note that the modified version of the task requires fewer steps to reach an accepting state from
the starting one; the baseline without exploration incentives also solves the task, albeit less efficiently. For
evaluations on additional variations of tabular tasks, we refer the reader to Appendix [D]and [}

LCER and DRL? thus address different issues in exploration from logic formulas. Fortunately, the two
methods are orthogonal and can be freely combined.

F Kernel Estimation Ablation

Proposition [3.1] states that, under specific assumptions, optimal policies are invariant to the proposed reward
shaping. In fact, Proposition holds for any choice of transition kernel K. In practice, the choice of
kernel still impacts the quality of exploration and sample efficiency. We ablate this choice by comparing
the effectiveness of kernels sampled by our methods with several others, to assert what constitutes a “good”
kernel for exploration.

17

Under review as submission to TMLR

Reach-avoid, medium Sequential, medium Circular, medium

Returns
N on o~
o
Returns

~

o
Returns
N

o , /—.—'.;—/_.—-.—— 0
0 50k 100k 150k 200 k 0 50k 100k 150k 200k 0 50k 100 k 150k 200 k

Steps Steps Steps
e DRL2? === Partially informed prior === VI kernel === Empirical kernel

Figure 9: Ablation of kernel initialization and estimation methods. Results suggest that an informed
symmetric prior, as used by DRL?, performs reliably.

We remark that DRL? averages its values over transition kernels sampled from a posterior distribution to a
symmetric Dirichlet prior. We compare this choice to three additional ones:

« kernels sampled from a partially informed prior, which differs from the one used in DRL? due to its
lack of knowledge over the connectivity of the MRP/LDBA, except for its sink state. It essentially
assumes that a transition between any LDBA state pair is always possible.

o a transition kernel obtained using value iteration (VI), and that therefore represents the optimal policy
under assumption of full controllability of an high level MDP. It represents a naive implementation
of the reward shaping introduced in Icarte et al.| (2022). This kernel has the lowest entropy possible,
as value iteration outputs a deterministic policy.

e an empirical kernel, which simply counts LDBA transitions performed by the policy in the product
MDP. This kernel does not leverage the LDBA structure, and is visualized in Figure [3]

These ablations are evaluated in the medium variants of the three tabular tasks from Figure [4] to highlight
performance differences; all experimental parameters are unchanged.

Results are presented in Figure @ We observe that a partially informed prior can recover part of DRL?’s
performance, but suffers as the size of the LDBA increases (Sequential, medium). The transition kernel
obtained through VI performs well in some tasks, and less in other: since the optimal policy under eventual
discounting assigns similar values to non-sink LDBA states, reward shaping becomes less informative. Finally,
choosing the empirical kernel generally leads to low performance, as discussed in Figure [3]

G Prior Strength Ablation

This Section performs an empirical evaluation of the effect of the hyperparameter «, which controls the
strength of the prior over MRP transition kernels in DRL?. We ablate the default choice (v = 1000) in the
hard variant of tasks from the tabular evaluation in Figure [4] Overall, in Figure [L0] we observe that DRL? is
fairly robust to this hyperparameter. Performance is generally lower for weak priors (o < 100), which can
be significantly affected by poor trajectories collected by the initial policy. As the prior is informed by the
LDBA structure, we find that it generally provides good guidance even for stronger priors. We note that, in
case the prior is misinformed, a weaker prior would indeed be favorable.

Reach-avoid, hard Sequential, hard Circular, hard
2
75 30
w «n 0
S s0 g 20 g ;
& 25 & 10 &
0.0 0 0
0 50k 100k 150k 200k 0 50k 100k 150k 200k 0 50k 100k 150k 200k
Steps Steps Steps
_042100 —a:101 _042102 _042103 (Jé:104

Figure 10: Ablation of prior strength hyperparameter «.

18

Under review as submission to TMLR

H Extended Related Works

Logic for Task Specification The intersection of reinforcement learning and logic languages has flourished
around the topic of Reward Machines (Camacho et al. [2019; Icarte et all [2022; Vaezipoor et al.l [2021)).
While Reward Machines can handle regular expressions, LTL is designed to address a superset, namely
w-expressions. As a consequence, LTL gains the ability to reason about infinite sequences and tasks including
liveness and stability.

For this reason, several works have investigated LTL for task specification. Early attempts proposed heuristic
reward shaping schemes (Li et al., [2017)), which gradually evolved towards dynamic or eventual rewarding and
discounting schemes (Cai et al.,|2021; De Giacomo et al.| [2020a;b; Hasanbeig et al., 2018; 2020; Voloshin et al.
2023). As for the optimization of such schemes, while linear programming is sufficient for known dynamics
and finite action spaces, Q-learning approaches have been adopted when a model of the environment is not
available (Bozkurt et al., |2020; |Cai et all 2021; [Hasanbeig et all 2018). A fundamental restriction of this
approaches was lifted by adopting actor-critic (Hasanbeig et al.| 2020]) or policy gradient (Voloshin et al.l
2023) methods suited for continuous action spaces. Nevertheless, in this case, empirical demonstration of
LTL-guided RL have remained mostly constrained to low-dimensional setting.

Logic-driven Exploration in Reinforcement Learning A significant effort has been targeted at
addressing the sparsity arising from proposed rewarding schemes (Hasanbeig et al., [2018; [Voloshin et al.l
2023)).

Perhaps closest to the method we propose, several works investigate reward shaping for reinforcement learning
from logic specification. In the context of reward machines, |(Camacho et al.[(2017) consider potential functions
®(s,b) of both the MDP and automaton states; among those, they investigate counting the minimum number
of steps to reach an accepting automaton state, which is equivalent to computing values under a specific
automaton transition kernel.

Another work (Icarte et al., [2022) explores an extension, which is also fundamentally related to our method:
the authors investigate value iteration on an MDP synthetised from the automaton to compute a potential
function for reward shaping, thus leveraging the semantics of the task. While motivated by a similar intuition
to ours, a naive application of this method would not be viable in an eventually discounted setting, which
involves w-regular problems, as we report in Appendix [F] By adopting an LDBA instead of a DFA, and more
importantly by integrating an eventual discounting scheme, our method is able to avoid myopic behavior
while handling the full complexity of LTL. Futhermore, DRL? does not require assumptions on controllability
by defining a Markov reward process instead. Values estimated in the MRP are thus softer than the optimal
ones in a corresponding MDP, and we find them to be more informative for exploration. We validate this
discussion empirically, by evaluating optimal transition kernels under eventual discounting in Appendix [F]
By updating its distribution over MRP transition kernels, it is moreover capable of providing an adaptive
and informative reward signal, rather than a static one derived from a hard assumption.

| Evaluation with e-transitions

This section evaluates application in presence of e-transitions. e-transitions occur in a subset of automata, in
particular for stability specification; our method, as well as baselines considered, are compatible with theis
existence. Thus, we now evaluate the task F'Ga in reach-avoid tabular settings. This setup is similar to that
of the corresponding experiment in recent work (Voloshin et al.l [2023). Overall, as the structure of the LDBA
is minimal, we observe that all considered methods perform reasonably well in Figure In particular, DRL?
and the count-based baseline slightly improve over the No-exploration baseline. LCER (Voloshin et al. 2023)
works particularly well, as the task does not involve several substeps, but presents irrecoverable failures when
"jumping" at the wrong time. We refer to Appendix [E| for a further comparison between DRL? and LCER.

19

Under review as submission to TMLR

FGa Reach-stabilize
”
5
35
------------------ m i)
0
0 50k 100 k 150k 200 k
Steps
s DR LCER === Count-based No exploration

Figure 11: Evaluation of DRL? and baselines on a the task FGa in presence of jump transitions.

J Implementation Details

This section presents a thorough description of methods, tasks and hyperparameters. For the sake of
reproducibility, we provide our full codebase ﬂ

J.1 Environments and Tasks

Throughout the paper, experiments involve simulated environments.

J.1.1 Tabular Environments

The environments considered in tabular settings (Figure {4]) are variants of the common gridworld, that is a
2D grid, with one cell being occupied by the agent. The action space is discrete and includes 5 actions, four
of which allow movement in each of the cardinal directions, and a single no-op action. The observation space
contains x and y coordinates of the agent and is therefore 2-dimensional. While dynamics are shared, the
labeling function from MDP states to atomic propositions and task-dependent details differ across tasks and
are reported below. We note that each task is also represented in the rightmost column of Figure [4] although
not to scale for illustrative purposes.

Reach-avoidance Reach-avoidance is evaluated in a gridworld without obstacles (Figure {4} top). The
agent is initialized at one end of a thin corridor (of unit width). The other end of the corridor is not bounded;
however, the AP a evaluates to true in each cell of the corridor beyond a fixed distance from the starting
cell. The AP f evaluates to true anywhere outside the corridor. The formula evaluated is Fa&G—-b. The
difficulty of the task can be scaled by increasing the distance to the zone to reach (7, 9 and 11 for easy,
medium and hard task variants, respectively). Episodes have a duration equal to the minimum number of
step to reach the final zone, plus 10 steps.

Sequential The second task in Figure [4] also takes place in a gridworld without obstacles. Contiguous 7 x 7
squares are aligned horizontally. The agent starts at the center of the leftmost square; in each square to the
right, a different AP evaluates to true, in alphabetical order. In the first square to the right of the starting
one, a evaluates to true, in the second b evaluates to true and so on. Difficulty can be scaled by specifying
longer formulas: F'(a&X F(b&X Fc)), F(a&XF(b& X F(c& X Fd))) and F(a& X F(b& X F(c& X F(d&X Fe))))
are used, respectively, for easy, medium and hard tasks. Episodes have a fixed length of 70 steps.

Circular Circular tasks (Figure 4] bottom) present 5 contiguous 7 x 7 squares, aligned as a cross. The
central zone represents an obstacle: it is labeled to the AP e, and the agent cannot reach its central 6 x 6 cells.
The other 4 zones are labeled as a, b, ¢, d in counterclockwise order, and the agent is initialized in proximity
of the first one. The difficulty of the task can be controlled by scaling the number of zones involved in a
loop: GF(a&X Fb)&—e, GF(a& X F(b&X Fc)&—e and GF (a& X F(b& X F(c& X Fd))&—e for easy, medium
and hard tasks, respectively. An episode lasts for 70 steps.

3sites.google.com /view /drl-2

20

https://sites.google.com/view/drl-2

Under review as submission to TMLR

J.1.2 Continuous Environments

Section [4 also provides an evaluation on continuous, high-dimensional environments. Since evaluation of LTL-
guided RL has traditionally been mostly restricted to simple tabular (Icarte et all |2022) or low-dimensional
(Hasanbeig et al.| [2020; [Voloshin et al., 2023)) settings, we repurpose high-dimensional environments from safe
and goal-conditioned reinforcement learning research.

Fetch Experiments reported in the first row of Figure |5 were developed on top of the common Fetch robotic
benchmark (de Lazcano et al.,|2023)), and are also available as part of our codebase. We evaluate two tasks,
in which the agent controls the end effector position of a TDoF robotic arm with 4-dimensional actions over
episodes of 50 steps. FetchAvoid is reminiscent of the reach-avoidance task in tabular settings, and involves
fully stretching out the arm while avoiding lateral movements (i.e., not entering red zones as shown in Figure
. In this case, observations are 10-dimensional. In FetchAlign the agent has to interact with three cubes on
one side of the table, and has to align them horizontally at the center of the table. In this case, observations
include information on the cubes, and are 45-dimensional. The two tasks are specified, respectively, with
the formulas Fa&G—e (reach the end of the table, and avoid lateral movements), and F(a& X F(b&X Fc))
(position the first, second and then third block).

Doggo Doggo is a 12DoF quadruped adapted from the most challenging tasks in SafetyGym (Ray et al.
2019). It is tasked with navigating a flat plane; observations are 66-dimensional, actions are 12-dimensional
and the length of each episode is 500 steps. Similarly to other reach-avoidance tasks, DoggoAvoid involves
navigation to a distant goal (shown in green in Figure [5)), in a straight line, while completely avoiding detours.
On the other hand, DoggoLinear involves navigating through a sequence of 2 circular zones. These two tasks
are encoded through the following two specifications: Fa&sG—e and F(a& X Fb). Episode length is set to 500.

HalfCheetah HalfCheetah (Towers et al., [2023) involves controlling a 6DoF robot in a vertical 2D plane
and is a standard environments in the deep reinforcement learning literature. We define two tasks in this
underlying environments. In CheetahSequential the agent is tasked with eventually reaching, in succession,
4 consecutive zones to its right, as encoded by the formula F(a& X F (b& X F(c&X Fd))). Once the last zone
is reached, the task is solved and the agent can stop. In CheetahFrontflip the agent is informed by the
formula GF(a&X F(b&X F(c& X Fd))), where each variable evaluates to true for a given range of angles of
the main body of the robot, respectively when the Cheetah is in its default position, standing on its front
legs, upside down, and standing on its back legs. As a result, the formula is satisfied by an infinite sequence
of frontflips. Notably, this task can not be satisfied by finite trajectories.

J.2 Methods and Algorithms

The core of our method computes an intrinsic reward and is therefore applicable on top of arbitrary
reinforcement learning algorithms. Therefore, we will first discuss the implementation of the method itself, as
well as relevant baselines, and then details involving RL algorithms.

The proposed algorithm is detailed in Algorithm [I} Its computational cost is dominated by the closed form
solution of the value in the Markov reward model (see Equation , which is cubic in the number of MRM
states. However, since LDBAs for most common tasks in these settings are relatively small (< 20 states), the
computational load is negligible, even when computing the expected value over the posterior via sampling.

The main hyperparameter introduced by DRL? is «, which controls the strength of its prior as described in
Section It is set to 103 in tabular settings, and to 10° in continuous settings, where increased stability was
found to be beneficial. The remaining hyperparameters for reward shaping are shared with the count-based
baseline and are, respectively, the frequency of updates to the potential function (set to 2000 environment
steps), and a scaling coefficient to the intrinsic reward, which was tuned individually for each method in a
grid of [0.1,1.0,10.0]. We found a coefficient of 0.1 to be optimal across all tasks for both methods in tabular
settings, while continuous settings benefit from a stronger signal and a coefficient of 10.0. The two remaining
baselines (relying on LCER and no exploration techniques) introduce no additional hyperparameters on top
of the learning algorithm.

21

Under review as submission to TMLR

The intrinsic reward is added to the extrinsic one and op-
timized under eventual discounting through one of two al-
gorithms, depending on the setting. In practice, we rely
on tabular Q-learning (Watkins & Dayan| [1992) with an e~ Hyperparameter Value
greedy policy (e=0.1) and Soft Actor Critic with automatic

Table 1: Hyperparameters for Q-learning and
Soft Actor Critic.

entropy tuning (Haarnoja et all, 2018b)). In the tabular 7 . 0.99 -

case, strict adoption of eventual discounting (Voloshin et al., Buffer size 4-10°

2023) results in a largely uniform policy, as in most states Ba.,t.ch slze) 64 3

1o action would reduce the likelihood of task satisfaction. 1nitial exploration 210 3Steps

As a consequence, a prohibitive number of steps would be T (Polyalk) 5107 for SAC
Learning rate 3-10~* for SAC,

required during evaluation for computing cumulative returns.
For this reason, our practical implementation of tabular Q-
learning does not apply eventual discounting, although this
would be possible given a much larger computational budget. Our SAC implementation is partially based on
that provided by [Huang et al.| (2022). Hyperparameters for each algorithm were tuned to perform best when
no exploration bonus is being used, and are reported in Tables[I] They are kept fixed across tasks.

1 for Q-learning

J.3 Metrics

Unless specified, the metric used to measure the methods’ performance is cumulative return under eventual
discounting, that is R = Zﬁio ~% where v = 0.99 and N is the number of visits to an accepting LDBA
state within an episode. In the limit of N — oo, this metric is a proxy for the likelihood of task satisfaction
(Voloshin et al., [2023). All curves report mean performances estimated across 10 seeds, and shaded areas
represent 95% simple bootstrap confidence intervals. They undergo average smoothing with a kernel size of
10.

J.4 Tools

Our codebaseﬂ mostly relies on numpy (Harris et al., [2020) for numeric computation and torch (Paszke et al.
2017) for its autograd functionality. Furthermore, we partially automate the synthesis of LDBAs from LTL
formulas through rabinizer (Kretinsky et al.l |2018]).

J.5 Computational Costs

All methods have comparable runtimes within their setting (tabular or continuous). Each experimental run
required 8 cores of a modern CPU (Intel i7 12th Gen CPU or equivalent). Each run in tabular and continuous
settings required on average ~30 minutes and ~150 minutes, respectively.

4 Available at sites.google.com /view /drl-2.

22

https://sites.google.com/view/drl-2

	Introduction
	Background
	Method: Directed Exploration in Reinforcement Learning from LTL
	High-level Value Estimation from LDBA
	Optimistic Priors for High Level Value Estimation
	Practical Algorithm

	Experiments
	Tabular Setting
	Continuous Setting

	Related Work
	Discussion
	Proof of Proposition 3.1 and Further Analysis
	Connection Between MRP and Product MDP
	Addition of a Virtual Sink State
	Additional Tabular Results
	Comparison to LTL-guided Counterfactual Experience Replay (LCER)
	Kernel Estimation Ablation
	Prior Strength Ablation
	Extended Related Works
	Evaluation with -transitions
	Implementation Details
	Environments and Tasks
	Tabular Environments
	Continuous Environments

	Methods and Algorithms
	Metrics
	Tools
	Computational Costs

