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ABSTRACT

Explainable distances for sequence data depend on temporal alignment to tackle
sequences with different lengths and local variances. Most sequence alignment
methods infer the optimal alignment by solving an optimization problem under
pre-defined feasible alignment constraints, which not only is time-consuming, but
also makes end-to-end sequence learning intractable. In this paper, we propose
a learnable sequence distance called Temporal Alignment Prediction (TAP). TAP
employs a lightweight convolutional neural network to directly predict the opti-
mal alignment between two sequences, so that only straightforward calculations
are required and no optimization is involved in inference. TAP can be applied in
different distance-based machine learning tasks. For supervised sequence repre-
sentation learning, we show that TAP trained with various metric learning losses
achieves completive performances with much faster inference speed. For few-
shot action classification, we apply TAP as the distance measure in the metric
learning-based episode-training paradigm. This simple strategy achieves compa-
rable results with state-of-the-art few-shot action recognition methods.

1 INTRODUCTION

Distance between sequences plays a crucial role in sequence classification (Sakoe & Chiba, 1978),
retrieval (Su et al., 2019), clustering (Garcı́a-Garcı́a et al., 2008), etc. Measuring distance between
sequences is difficult, since different sequences may have different sampling rates, execution speeds,
local distortions, initial states, and elastic warpage. To tackle such temporal variances, existing
sequence distances either encode each sequence into a feature vector invariant to temporal vari-
ances (Abid & Zou, 2018; Lohit et al., 2019) or employ alignment for temporal correspondence
calibration (Sakoe & Chiba, 1978; Su & Hua, 2019). Typical feature-based methods use recurrent
neural networks (RNNs) (Ramachandran et al., 2017) to encode sequences and measure the Eu-
clidean distance between corresponding features. The feature of a sequence is fixed when compared
with any other sequence. Although such methods are naturally learnable and only perform forward
calculations in inference, they require large amounts of sequences to train complex RNNs. More-
over, how the learned features handle temporal variances and what kinds of variances can be handled
are not clear.

Alignment-based methods determine different optimal alignments for different sequence pairs. This
is more intuitive and flexible because temporal variances may be different when comparing different
sequences. The inferred alignments clearly indicate how and where the two sequences differ in
temporal steps. Most alignment methods solve an optimization problem under pre-defined feasible
constraints to infer the optimal alignment. E.g., DTW (Sakoe & Chiba, 1978) requires dynamic
programming and OPW (Su & Hua, 2019) employs fixed-point iterations. Such optimizations are
often time-consuming and cannot fully utilize GPU.

Moreover, since inferring the alignment is itself an optimization problem and has its own objec-
tive, sequence distance-based end-to-end learning using other objectives becomes intractable. For
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instance, learning discriminative temporal representations for elements in sequences often adopt the
objective that sequences of different classes are better separated w.r.t. a sequence distance (Mei et al.,
2014; Su & Wu, 2020b). Gradients of this overall objective are difficult to pass through alignments
since they are latent variables determined by another optimization problem.

In this paper, we propose a learnable alignment-based sequence distance, namely Temporal Align-
ment Prediction (TAP). TAP simulates the optimization-based inference from the input sequence pair
to the optimal alignment as a function. The function is modeled by a lightweight convolutional neu-
ral network to directly predict the optimal alignment. TAP can be applied in different distance-based
machine learning tasks under different settings. As instances, we show the applications of TAP in
supervised representation learning and few-shot learning for sequence data. For supervised learn-
ing, we employ metric learning losses by using TAP as the distance measure to learn the frame-wise
temporal representations. For few-shot learning, we adopt TAP as the distance measure in the metric
learning based paradigm to compare the query and support sequence samples. In both cases, owing
to the straightforward structure of TAP, the alignment prediction network and the feature extraction
or transformation network can be jointly trained in an end-to-end manner, resulting in principled yet
straightforward supervised learning and few-shot learning solutions for sequences. We further show
the application of TAP in self-supervised alignment learning in the appendix.

The main contributions of this paper are three-fold. 1. We propose TAP, a learnable and fast se-
quence distance that only requires straightforward calculations in inference. 2. We show that TAP
conveniently enables end-to-end supervised sequence representation learning with different losses.
3. We adopt TAP to dynamically align the support and query sequences for few-shot action recogni-
tion, so that alignments and temporal representations can be jointly learned with the episode-training
strategy. Experiments on seven datasets demonstrate the effectiveness of TAP for both supervised
learning and few-shot learning.

2 RELATED WORK

Alignment-based sequence distance. Various variations of DTW have been proposed to speed up
the inference (Salvador & Chan, 2007; Al-Naymat et al., 2009), or adapt to additional or modified
constraints (Ratanamahatana & Keogh, 2004), or tackle sequences from different modalities (Zhou
& Torre, 2009; Zhou & De la Torre, 2016; Trigeorgis et al., 2016; 2017; Cohen et al., 2021). They
rely on non-differential dynamic programming for inference. Soft-DTW (Cuturi & Blondel, 2017)
optimizes a differentiable loss by using the soft-minimum cost of all feasible alignments as the
objective. TCOT (Su et al., 2019) and OPW (Su & Hua, 2019) view the alignment problem as
the optimal transport problem with temporal regularizations. These methods solve an optimization
problem to infer the optimal alignment. In contrast, our method directly predicts the alignment using
a neural network, does not have its own objective, and only involves differentiable calculations.

Data-driven alignment methods. In Abid & Zou (2018), Autowarp finds the warping distance that
best mimics the distance between the features encoded by LSTM, which is difficult to be integrated
into an end-to-end framework because the autoencoder needs to be pre-trained and a betaCV-based
optimization is required. It is shown in Tallec & Ollivier (2018) that RNN can learn to warp se-
quences. In Lohit et al. (2019); Weber et al. (2019), a fixed warping function is predicted for a given
sequence when comparing with different sequences. This may be viewed as warping all sequences
w.r.t. a fixed timing scale, which may bias to the training sequences. In contrast, since the relative
local variations and correspondences between different sequences are different, our method predicts
different alignments for different sequence pairs.

Supervised representation learning for sequences. Generally, since alignment-based distances
need to solve their own optimization problems to infer alignments in the latent space, the gradients
of the supervised metric learning loss cannot be directly propagated. Existing methods exploit either
an approximate proxy loss (Su et al., 2018; Lajugie et al., 2014), or a time-consuming optimization
method to iteratively infer alignments (Mei et al., 2014), or both (Su & Wu, 2020a;b). In this paper,
we show that existing deep metric learning methods can be readily applied to the proposed TAP
distance in an end-to-end manner.

Few-shot action recognition. Most existing few-shot action recognition methods follow the metric
learning based paradigm. In Ben-Ari et al. (2021) and Tan & Yang (2019), TAEN and FAN en-
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Figure 1: (a) The TAP framework. (b) The alignment prediction network.

code each action into a representation with a fixed dimension and apply vector-wise metrics. Recent
works identify the importance of temporal alignment for tackling non-linear temporal variations.
Various alignment-based distances are proposed to compare sequence pairs, such as the temporal at-
tentive relation network (TARN) (Bishay et al., 2019), a variant of DTW used in OTAM (Cao et al.,
2020), the permutation-invariant spatial and temporal attention reweighted distance in ARN (Zhang
et al., 2020), the temporal CrossTransformer for comparing all possible subsequences in TRX (Per-
rett et al., 2021), and the two-stage temporal alignment network (TTAN) (Li et al., 2021). Following
this spirit, we apply the proposed TAP to perform temporal alignment and measure the distance be-
tween support and query sequences without any complicated attention mechanism, yielding a simple
yet effective few-shot sequence learning solution.

3 METHODOLOGY

3.1 TEMPORAL ALIGNMENT PREDICTION

We first revisit the unified formulation of sequence distance in Su & Wu (2019). Let X =
[x1, · · · ,xLX

] ∈ Rd×LX and Y = [y1, · · · ,yLY
] ∈ Rd×LY be two sequences with lengths of

LX and LY , respectively. The elements xi, i = 1, · · · , LX of X and yj , j = 1, · · · , LY of Y lie
in a d-dimensional feature space Rd. Many alignment-based distances between X and Y can be
unified as follows:

d(X,Y ) = 〈T ∗,D〉 , (1)

T ∗ = argmin
T∈Φ

〈T ,D〉+ R(T ), (2)

where 〈T ,D〉 = tr(T TD) is the Frobenius dot product. D := [e(xi,yj)]ij ∈ RLX×LY is the
matrix of pairwise distances between elements in X and Y , e(xi,yj) is a vector-wise distance
between two elements xi and yj , which we use Euclidean distance in this paper. T is an alignment
matrix whose element Tij indicates whether or how likely xi and yj are aligned. Φ is the set of all
feasible T with some constraints, which is a subset of RLX×LY . R(T ) is a regularization term on
T . T ∗ is the optimal alignment which is the solution of the optimization problem in Eq. (2).

Different sequence distances impose different constraints on the feasible set, have different regular-
ization terms, and use different optimization methods for inference. For instance, DTW optimizes
Eq. (2) with R(T ) = 0 and the boundary, continuity, and monotonicity constraints via dynamic pro-
gramming, while OPW optimizes Eq. (2) with two temporal regularization terms and the coupling
constraints via the Sinkhorn’s matrix scaling algorithm. Solving T ∗ by the optimization Eq. (2)
not only requires a long inference time, but also makes it difficult to apply a loss on the sequence
distance Eq. (1) for learning element representations, because T ∗ is a latent variable that needs to
be inferred and its gradient cannot be calculated.

To avoid solving the optimization problem, we propose a feedforward framework for measuring
the distances between sequences, namely Temporal Alignment Prediction (TAP). Fig. 1(a) illustrates
the TAP framework. For two sequences X = [x1, · · · ,xLX

] and Y = [y1, · · · ,yLY
], their TAP

distance also has the form of Eq. (1), i.e., the Frobenius dot product of D and T ∗. Different from
other sequence distances which infer the alignment with predefined objectives and constraints, TAP
uses an alignment prediction neural network f to directly predict the optimal T ∗ = f(X,Y ) by
taking the two sequences as inputs and learns f from data.
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The alignment prediction network f can be instantiated by different architectures. In this paper, we
propose a lightweight convolutional neural network architecture for its simplicity and fast inference
speed. Specifically, we reuse the spatial ground matrix D to measure all pairwise distances between
elements in X and Y . The relative positions of x̂i and ŷj are i/LX and j/LY , respectively. To
incorporate the temporal dissimilarities, TAP further calculates all pairwise Euclidean distances be-
tween the relative positions between xi and yj into a matrix Dt := [e(i/LX , j/LY )]ij ∈ RLX×LY .

Then, we concatenate D and Dt along the channel dimension to form Ds with a size of Lx×Ly×2.
We use a CNN g to predict the final alignment matrix from Ds. The CNN uses three convolutional
layers each followed by ReLu. The kernel size in the three layers is 5, 5, and 3, respectively, the
stride is fixed to 1, and the padding is set to 2, 2, and 1, respectively, to keep the spatial size. The
numbers of kernels in the three layers are set to 30, 30, and 1, respectively. The learned kernels
are expected to capture the local alignment patterns. The output of f is augmented by a residual
connection with D, resulting in the similarity matrix S := −(D + g(Ds)) ∈ RLX×LY .

The attentions of elements in Y on xi are obtained by performing Softmax on the i-th row of
S. The attentions on all elements in X form an attention matrix A, which can be obtained by
performing Softmax along the 2nd dimension of S. To generate the predicted alignment T ∗, TAP
finally performs a global L1 normalization on A:

A = [
exp(Sij)∑LY

k=1 exp(Sik)
]ij ∈ RLX×LY ; T ∗ = [

Aij∑LX

i=1

∑LY

j=1 Aij

]ij ∈ RLX×LY . (3)

T ∗ij indicates the probability of aligning xi and yj . The TAP distance between X and Y is calcu-
lated as in Eq. (1). The prediction network f of TAP is lightweight since it only contains a few
convolutional kernels of g as parameters.

Limitations. 1. The family of alignments for TAP is Φ := {T ∈ RLx×Ly

+ |T1Ly
= 1Lx

/Lx},
where 1L is a L-dimensional vector with all 1 elements. Since strict order-preserving is not
guaranteed in Φ, the performance of TAP may be limited when data are strictly ordered. 2.
T T1Lx

= 1Ly
/Ly does not necessarily hold, hence TAP is asymmetric and is not a real metric.

These limitations make TAP more flexible in turn. 1. Without strict order-preserving constraint,
TAP can tackle local temporal reorders and generalize to non-sequential (e.g. spatial, cross-modal,
etc) correspondences. 2. Asymmetric alignment distinguishes the source sequence X and the target
sequence Y , where all elements in X must be transported with the same mass when aligning to
different target sequences. To perform classification or retrieval, we can always set the test or query
sequence as the source, which serves as a standard template to be aligned. The symmetric distance
can be obtained by averaging d(X,Y ) and d(Y ,X).

3.2 SUPERVISED REPRESENTATION LEARNING WITH TAP

The performance of conventional alignment-based distances and TAP highly depends on D, where
D depends on the representation space or the ground metric for elements in sequences. Therefore,
learning more discriminative representations or ground metrics is of great interest. We transform
element-wise features xi of X into a new space by a transformation network h. We denote the
sequence of transformed features h(xi) by h(X). When labeled training sequences are available,
the objective is often to make the distance better separate sequences from different classes. However,
such objectives are difficult to optimize for conventional alignment-based distances because they
solve another optimization problem to obtain the alignments, as presented in Appendix A.2.

In contrast, TAP enables supervised learning of temporal representations without seeking surrogates
objectives. Given a batch of B training sequences Xn, n = 1, · · · , B with corresponding labels
yn, n = 1, · · · , B, for each sequence Xn, we generate its augmentation X̃n, whose class label
is the same as Xn, and calculate its TAP distances to all other B sequences including X̃n after
transformation by h. We obtain its largest TAP distance to h(Xn′

) of the same class as dnl =

maxn′:yn′=yn d(h(Xn), h(Xn′
); f) and its smallest TAP distance to h(Xn′

) of different classes as
dns = minn′:yn′ 6=yn d(h(Xn), h(Xn′

); f).

Any metric learning losses can be used to train TAP. We employ three metric learning losses to learn
h and f jointly, including the triplet loss with hard-mining (HM) (Hermans et al., 2017), the lifted
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structure (Lifted) loss (Song et al., 2016), and binomial deviance loss (Binomial) (Yi et al., 2014).
For the triplet loss, we minimize the TAP distances to sequences of the same class that are larger
than dns −m, and maximize those to different classes that are smaller than dnl + m, where m is a
margin and set to 0.1. The objective to be minimized over f and h is formulated as follows:

min
f,h

B∑
n=1

(
∑

n′:yn′=yn
max(d(h(Xn), h(Xn′

); f)−dns +m, 0)

+
∑

n′:yn′ 6=yn
max(dnl +m−d(h(Xn), h(Xn′

); f), 0))
. (4)

For the lifted structure loss, we minimize the following objective to utilize the TAP distances among
all the positive and negative pairs:

min
f,h

B∑
n=1

( 2
β log(

∑
n′:yn′=yn

eβd(h(Xn),h(Xn′
);f)) + 2

α log(
∑

n′:yn′ 6=yn
e−αd(h(Xn),h(Xn′

);f))) . (5)

For the binomial deviance loss, for the n-th sequence, we first perform hard mining to select its hard
positive and negative samples within the batch:

Pn = {n′|yn′
=yn; d(h(Xn), h(Xn′

); f)>dns−m}
N n = {n′|yn′ 6= yn; d(h(Xn), h(Xn′

); f)<dnl +m}
. (6)

We then minimize the following objective:

min
f,h

B∑
n=1

( 2
β|Pn|

∑
n′∈Pn

log(1 + eβ(d(h(Xn),h(Xn′
);f)−0.5))

+ 2
α|N n|

∑
n′∈N n

log(1 + e−α(d(h(Xn),h(Xn′
);f)−0.5)))

. (7)

where |Pn| and |N n| denote the number of mined positive and negative sequences, respectively.
In all losses, α and β are hyper-parameters controlling the weights of positive and negative pairs,
respectively. For all the losses, we also incorporate the self-supervised loss of minimizing the TAP
distance between each sequence and its augmentation, as presented in the appendix, where the aug-
mentation is obtained by random blurring and random merge. For any supervised loss, the feature
transformation network h and the alignment prediction network f in TAP are learned jointly by
back-propagation in an end-to-end manner.

3.3 FEW-SHOT ACTION RECOGNITION WITH TAP

In this subsection, we demonstrate the application of TAP in few-shot action recognition. For a N -
way K-shot classification task, there are N action classes and each class has K support videos. The
task aims to classify each query video into one of the N classes. We follow the episode training and
evaluation. The video dataset is divided into a training set, a validation set, and a test set. Classes in
the three sets are disjoint. In the training phase, we randomly construct one N -way K-shot task in
each episode to train the model. The best model is selected according to the performance on tasks
constructed from the validation set and evaluated on tasks constructed from the test set.

We adopt the metric learning strategy with the TAP distance. For each N -way K-shot classification
task, the support videos are denoted by V n

k , n = 1, · · · , N ; k = 1, · · · ,K and the query videos are
denoted by Vq, q = 1, · · · , Q, where Q is the number of query videos. We follow Cao et al. (2020);
Li et al. (2021) to sample a fixed number L of frames per video. We use a feature embedding
backbone h to represent each frame vi by a d-dimensional feature vector xi = h(vi), thus each
video V is represented by a feature sequence X = h(V ) = [x1, · · · ,xL] ∈ Rd×L. A self-attention
(SA) module can be performed to enhance X = SA(X) as presented in Appendix A.3.

To classify a query video Vq , we calculate the TAP distances between Xq and all the support se-
quences. Since TAP is non-symmetric, we add d(Xq,X

n
k ; f) and d(Xn

k ,Xq; f) as the dissimilarity
between Xq and the k-th support sequence of the n-th class Xn

k . The similarity between Vq and the
n-th class is then obtained as:

snq =

K∑
k=1

−d(Xq,X
n
k ; f)− d(Xn

k ,Xq; f) (8)
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Xq is classified to the class with the largest similarity.

In the training phase, we jointly learn the backbone h and the prediction network f of TAP with the
cross-entropy loss. The loss over a single episode is formulated as follows:

L = −
Q∑
q=1

log
exp(s

yq
q )∑N

n=1 exp(s
n
q )
. (9)

where yq is the ground-truth class label of the query video Vq . If SA is applied to query and support
sequences before performing alignment by TAP, the method is denoted by SA-TAP.

4 EXPERIMENTS

4.1 DATASETS

For supervised representation learning, we evaluate TAP on four sequence datasets. MSR Ac-
tion3D (Li et al., 2010; Wang et al., 2012) contains 557 skeleton sequences from 20 action classes.
We follow the splitting of the dataset in Wang et al. (2012); Wang & Wu (2013). We use the
192-dimensional element-wise features in Wang et al. (2012); Wang & Wu (2013). MSR Daily
Activity3D (Wang et al., 2012) contains 320 skeleton sequences from 16 activity classes. We also
follow the splitting of the dataset in Wang et al. (2012); Wang & Wu (2013) and use the 390-
dimensional element-wise features in Wang et al. (2012); Wang & Wu (2013). The “Spoken Ara-
bic Digits (SAD)” dataset from the UCI Machine Learning Repository (Bache & Lichman, 2013)
contains 8,800 sequences of 13-dimensional mel-frequency cepstrum coefficients from 10 classes.
The dataset has 6,600 training sequences and 2,200 testing sequences. ChaLearn (Escalera et al.,
2013b;a) contains 955 Italian gesture sequences from 20 classes. The dataset is split into training,
validation, and test sets. Following Fernando et al. (2015), we conduct experiments on the segmented
sequences where each sequence contains one gesture. We use the 100-dimensional element-wise
features in Fernando et al. (2015). On all datasets, the lengths of different sequences are different.

For few-shot action recognition, we evaluate TAP on three video datasets. UCF101 (Soomro et al.,
2012) contains 13,320 videos of 101 classes. We follow the protocol used in Zhang et al. (2020) to
split the dataset, where the training, validation, and test sets contain 70, 10, and 21 classes with 9154,
1421, and 2745 videos, respectively. HMDB51 (Kuehne et al., 2011) consists of 6,840 videos from
51 classes. We also follow the protocol used in Zhang et al. (2020) to split the dataest, where the
training, validation, and test sets contain 31, 10, and 10 classes with 4280, 1194, and 1292 videos,
respectively. Something-Something-v2 (SSv2) (Goyal et al., 2017) contains 220,847 videos of 174
classes. We follow the protocol in Cao et al. (2020) to split the dataset, where the training, validation,
and test sets contain 64, 12, and 24 classes with 77,500, 1925, and 2854 videos, respectively.

4.2 IMPLEMENTATION DETAILS

The structure and hyper-parameters of the alignment prediction network are fixed in TAP, as intro-
duced in Section 3.1. For supervised representation learning, we perform two tasks on each dataset:
sequence classification and sequence retrieval. For classification, we use the nearest neighbor (1-
NN) classifier. For each test sequence, we calculate the distances to all training sequences w.r.t. the
evaluated distance and its label is determined by the training sequence with the smallest distance.
We use accuracy as the performance measure. For retrieval, we use each test sequence as a query
and rank all training sequences according to their distances to the query in ascending order. We use
mean average precision (MAP) as the performance measure.

Following Su & Wu (2020b), we use a three-layer perceptron as the transformation network h, where
the two hidden layers have 1024 nodes followed by ReLU activations and the output has the same
dimension with the input element-wise features. For learning the TAP distance, we use the Adam
optimizer with a momentum of 0.9 and a weight decay of 1e−4 and train a maximum of 100 epochs.
The learning rate is fixed to 0.0001 on all datasets. The batch size is set to 64 except for the MSR
Activity3D dataset, where it is reduced to 16 due to memory limitation. We fix the hyper-parameters
α and β in the lifted structure loss and the binomial deviance loss to 40 and 2, respectively.

To evaluate TAP on few-shot action recognition, we perform 5-way 1-shot and 5-way 5-shot clas-
sification tasks. We increase the numbers of kernels in the middle layers of f from 30 to 64. Fol-
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Table 1: Comparison of supervised representation learning methods.

Method Action3D Activity3D SAD ChaLearn
MAP 1-NN MAP 1-NN MAP 1-NN MAP 1-NN

LDMLT+DTW (Mei et al., 2014) 0.643 84.98 0.366 55.00 0.595 96.50 0.213 84.37
LDMLT+OPW (Mei et al., 2014) 0.536 80.59 0.348 54.37 0.611 96.73 0.216 82.74
SWMD+DTW (Huang et al., 2016) 0.597 80.95 0.378 61.25 0.524 93.95 0.144 64.45
SWMD+OPW (Huang et al., 2016) 0.432 66.67 0.356 55.00 0.580 95.41 0.154 60.31
RVSML+DTW (Su & Wu, 2019) 0.593 82.78 0.422 62.50 0.602 96.23 0.338 87.38
RVSML+OPW (Su & Wu, 2019) 0.475 76.56 0.366 57.50 0.656 97.09 0.331 83.82
Binomial+DTW (Yi et al., 2014) 0.481 60.81 0.568 62.50 0.482 91.73 0.182 69.72
Binomial+DTW (Yi et al., 2014) 0.500 62.64 0.616 60.62 0.602 95.77 0.199 69.17
Lifted+DTW (Song et al., 2016) 0.440 67.40 0.484 62.50 0.464 89.64 0.130 66.85
Lifted+OPW (Song et al., 2016) 0.504 65.20 0.596 65.62 0.548 94.86 0.146 67.66
HM+DTW (Hermans et al., 2017) 0.432 57.51 0.589 65.62 0.656 92.68 0.237 67.28
HM+OPW (Hermans et al., 2017) 0.438 55.31 0.613 63.12 0.738 95.95 0.256 68.41
MS+DTW (Wang et al., 2019) 0.344 45.42 0.479 51.25 0.580 85.64 0.181 65.95
MS+OPW (Wang et al., 2019) 0.342 40.66 0.480 50.00 0.631 92.27 0.197 63.67
D-R+DTW (Su & Wu, 2020b) 0.617 79.49 0.531 61.88 0.782 97.32 0.440 81.15
D-R+OPW (Su & Wu, 2020b) 0.691 74.36 0.689 65.62 0.831 98.91 0.463 79.91
HM+SoftDTW 0.818 87.91 0.585 69.38 0.959 99.55 0.578 87.12
Lifted+SoftDTW 0.074 4.03 0.108 6.25 0.123 10.00 0.560 80.66
Binomial+SoftDTW 0.806 89.74 0.108 6.25 0.123 10.00 0.524 81.38
HM+TAP (Ours) 0.798 87.18 0.701 74.38 0.961 98.82 0.614 85.06
Lifted+TAP (Ours) 0.772 82.05 0.728 73.75 0.936 98.14 0.469 74.64
Binomial+TAP (Ours) 0.826 87.91 0.678 73.13 0.952 98.64 0.614 87.17

lowing Cao et al. (2020); Zhang et al. (2020), we uniformly sample L = 8 frames per video, resize
each frame to 256 × 256, augment the frames with random horizontal flipping, perform 224 × 224
random crops for training and center crops for testing, and use the pretrained ResNet-50 as the
backbone. We jointly tune the backbone and train TAP by the SGD optimizer with a learning rate
of 0.001. Each episode contains 1 task due to the memory constraint. We adapt the toolbox 1 and
all other hyper-parameters remain the same. We train a maximum of 100000 iterations on SSv2 and
35000 iterations on other datasets. We select the best iteration every 5000 iterations according to
the performance on the validation set. For 1-shot task on HMDB51, the validation accuracy starts
to fluctuate after 5000 iterations, so we train 5000 iterations and select every 1000 iterations. We
randomly sample 10,000 tasks from the test set and report the average accuracy.

4.3 COMPARISON WITH SUPERVISED REPRESENTATION LEARNING METHODS

TAP can be used to learn temporal representations in a supervised manner as presented in Sec-
tion 3.2. Comparisons with other supervised sequence representation learning methods on the four
datasets are shown in Table 1, where we follow the setting and compare with the results reported
in Su & Wu (2020b). LDMLT (Mei et al., 2014), SWMD (Huang et al., 2016), and RVSML (Su &
Wu, 2019) learn linear transformations for elements in sequences, while deep metric learning meth-
ods with binomial deviance loss (Binomial) (Yi et al., 2014), lifted structured loss (Lifted) (Song
et al., 2016), triplet loss with hard-mining (HM) (Hermans et al., 2017), and multi-similarity loss
(MS) (Wang et al., 2019) learn non-linear temporal representations by treating elements in each se-
quence as independent samples of the same class. DeepRVSML (D-R) (Su & Wu, 2020b) is the
deep extension of RVSML. All methods use the same transformation network. TAP generally out-
performs these methods on all datasets. Especially, TAP achieves much higher MAP, which reflects
that the TAP distances between sequences from the same class are generally smaller than those
from different classes. This shows the effectiveness of the end-to-end joint training of the feature
transformation network and the alignment prediction network of TAP.

SoftDTW is differentiable and can also be combined with different losses to train h. This can be
achieved by replacing the TAP distance d(h(Xn), h(Xn′

); f) with the SoftDTW distance in Eq. (4),

1https://github.com/tobyperrett/few-shot-action-recognition
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Table 2: Comparison of the training time per
epoch (middle) and running time (bottom).

Dataset Action3D SAD ChaLearn

l 39.64 39.81 39.72

SoftDTW 23.28 508.39 544.30
TAP 35.78 876.75 901.46

DTW 0.9212 29.568 28.9270
OT 279.6414 794.9984 2614.677
OPW 0.8029 25.309 32.7774
SoftDTW 0.217 4.922 4.959
TAP 0.138 3.009 3.033

Figure 2: TAP (left) alignment and Soft-DTW
(right) alignment.

Eq. (5), and Eq. (7), respectively. Comparisons between TAP and SoftDTW for supervised represen-
tation learning are also presented in Tab. 1. We employ the PyTorch implementation2 of SoftDTW.
The triplet loss is relatively straightforward, since the sequence distance does not undergo a non-
linear function. SoftDTW outperforms TAP when the HM loss is used on some datasets. In the
other two losses, exponential and logarithmic transformations are applied to the sequence distance,
so the backpropagation through the alignment variable is more complicated. For SoftDTW, using
a large α will lead to infinite initial losses, so we reduce α and β to 2 and 1, respectively. When
using the lifted structure loss and binomial deviance loss to optimize the transformation network h,
the results of SoftDTW are inferior to those of TAP on most datasets. In addition, it is easy to fall
into a trivial solution when incorporating SoftDTW into complex losses on some datasets. This may
be because that gradients backpropagated through SoftDTW cannot be automatically calculated and
such manually derived backward processes with respect to complex losses may be more unstable.
On all datasets, TAP outperforms all other methods by a significant margin on MAP. In cases where
the accuracy of TAP is not the best, it is also comparable with the best result. These results show that
TAP can be better learned with different losses, the training of TAP is easier and more consistent,
and TAP has better potential to be applied to more complex tasks. In addition, TAP can be general-
ized to tackle non-sequential data, e.g., determining the spatial or set-to-set correspondences; while
SoftDTW is more restricted to strictly order-preserving sequence data.

4.4 EVALUATION ON COMPUTATIONAL TIMES AND ALIGNMENTS

We compare the average training time per epoch of SoftDTW and TAP on a single TITAN V GPU
by using the triplet loss in the middle part of Table 2. Since the asymmetric TAP distance between
any two sequences in a batch is calculated twice, the training time of TAP is longer than SoftDTW.
Table 2 (bottom) compares the average running times for computing the distances between one test
sequence and all training sequences with different distances including DTW, optimal transport (OT),
OPW, SoftDTW, and TAP. l in the top row indicates the average length of sequences in the dataset.
TAP runs faster than OT, DTW, and OPW by at least an order of magnitude. The larger the dataset,
the more significant the advantage. This is because TAP avoids complex optimizations required by
other distances and can be accelerated conveniently by GPU. When both running on GPU, TAP is
faster than SoftDTW. As shown in Appendix A.5, the advantage increases as l increases.

Fig.2 shows visualizations on the MSR Action3D dataset. For the test sequence of “draw tick”,
the nearest training sequence by TAP comes from the same class, but the one by Soft-DTW comes
from another class “horizontal arm wave”. Actions contain different movement cycles and similar
poses. Each alignment path of Soft-DTW is strictly order-preserving, causing some meaningless
alignments. The alignments of TAP show periodicity while preserving the general orders.

In the alignment prediction network f , we implement g by CNN to model the temporal constraints
since multiple convolution kernels in different layers are suitable for capturing different local align-
ment patterns and variances of local motions. The local receptive field of CNN can be viewed as
imposing a constraint on the local temporal warping. Ablation studies on the architecture and hyper-
parameters of g are presented in Appendix A.7. To evaluate the effect of g(Ds), we apply the trained

2https://github.com/Sleepwalking/pytorch-softdtw. In Fig. 2, we use the implementation
(https://github.com/mblondel/soft-dtw) for calculating the SoftDTW alignment.
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Table 5: Comparison of few-shot action recognition methods.

Method UCF101 HMDB51 SSv2
1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

ARN 66.3±0.99 83.1±0.70 45.5±0.96 60.6±0.86 - -
CMN-J - - - - 34.4 43.8
OTAM 79.9 88.9 54.5 66.1 42.8 52.3
TRX(Ω = 1) 79.0 95.9 52.1 76.1 38.8 60.6
TRX(Ω = 2, 3) 78.2 96.1 53.1 75.6 42.0 64.6
TTAN 80.9 93.2 57.1 74.0 46.3 60.4
SoftDTW 51.4±0.4 62.1±0.4 36.0±0.4 46.0±0.4 23.9±0.3 31.5±0.4
TAP 83.5±0.3 94.5±0.2 54.0±0.4 72.5±0.4 43.5±0.4 61.3±0.4
SA-TAP 83.9±0.3 95.4±0.2 57.5±0.4 74.2±0.4 45.2±0.4 63.0±0.4

TAP model on each test sequence and calculate the Frobenius norm ratio: ‖g(Ds)‖F
‖D‖F . The average

ratios of all test sequences with different losses are shown in Tab. 3. The ratio ranges from 2 to 21,
showing that g(Ds) contributes more than D.

Table 3: Frobenius Norm ratios.
Method Action3D Activity3D

HM+TAP 3.5539 10.2145
lifted+TAP 21.2767 15.6680
Binomial+TAP 2.1119 13.8124

Table 4: MSE between predicted alignments and con-
structed ground-truth alignments.

Dataset SoftDTW-s TAP-s SoftDTW TAP

Action3D 0.0165 0.0131 0.0163 0.0062
Activity3D 0.0040 0.0037 0.0037 0.0026

To quantitatively evaluate the alignments, we generate augmentations and corresponding ground-
truth alignments for each sequence in the test set. Comparison on MSE between ground-truths and
predicted alignments by the supervised learned TAP (TAP-s) and SoftDTW (SoftDTW-s) is shown
in the left part of Tab. 4. f in TAP can also be directly learned by minimizing MSE on the training
set via augmentations. We directly apply TAP learned in this way and SoftDTW to align the original
test sequences and their augmentations. Results are shown in the right part of Tab. 4. Details of the
evaluation methods are presented in Appendix A.8. In both cases, TAP achieves lower MSEs.

4.5 EVALUATION ON FEW-SHOT ACTION RECOGNITION

We compare TAP and SA-TAP with state-of-the-art few shot action recognition methods including
ARN Zhang et al. (2020), CMN-J (Zhu & Yang, 2018; 2020), OTAM (Cao et al., 2020), TRX (Perrett
et al., 2021), and TTAN (Li et al., 2021). Results on 5-way 1-shot and 5-way 5-shot tasks are shown
in Table 5, where the results of OTAM and TRX on UCF101 and HMDB51 are reported in (Li
et al., 2021). OTAM employs a modified DTW as the distance. TAP generally outperforms OTAM
and SoftDTW significantly. When only 1 support sample per class is available, TAP also achieves
better results than TRX. TAP with much fewer parameters outperforms TTAN consisting of two
stages on UCF101. TAP has tighter 95% confidence intervals and is more stable than SoftDTW and
ARN. SA-TAP further improves TAP. It outperforms all other methods in 1-shot tasks on UCF-101
and HMDB-51. On SSv2, SA-TAP achieves comparable results to TTAN in 1-shot learning and
comparable results to TRXs in 5-shot learning, while significantly outperforming other methods.
These results validate the effectiveness of TAP and SA-TAP on few-shot action recognition.

5 CONCLUSION

In this paper, we present TAP, which is a learnable distance for sequences. TAP calculates the opti-
mal alignment from the input sequences using a prediction network. We demonstrate the application
of TAP in supervised representation learning for sequence data and few-shot action recognition. For
supervised learning, TAP can be learned with various metric learning-based losses. Experimental
results on four real-world datasets show that TAP achieves competitive performances with much
faster inference speed. For few-shot learning, simply applying TAP in the metric-based strategy
achieves comparable results with some state-of-the-art few-shot action recognition methods.
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ETHICS STATEMENT

This paper proposes a learnable sequence distance that employs a lightweight neural network to
predict the optimal alignment between two sequences and its applications in supervised learning,
few-shot learning, and self-supervised learning (in the appendix) for sequence data. The proposed
distance can be applied to any sequence data to speed up the inference of optimal alignment and
improve the discrimination ability. Because this work presents such a general distance measure and
its learning methods under different conditions, we did not see any particular foreseeable negative
ethics impacts.

REPRODUCIBILITY STATEMENT

The architecture and hyper-parameters of the alignment prediction network in TAP are fixed and
specified in Section 3.1. We specify all the training details on hyper-parameters and experimental
settings in Section 4.2. Our code is available at https://github.com/BingSu12/TAP.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural Science Foundation of China
No. 61976206 and No. 61832017, Beijing Outstanding Young Scientist Program NO.
BJJWZYJH012019100020098, Beijing Academy of Artificial Intelligence (BAAI), China Unicom
Innovation Ecological Cooperation Plan, the Fundamental Research Funds for the Central Universi-
ties, the Research Funds of Renmin University of China 21XNLG05, and Public Computing Cloud,
Renmin University of China. This work was also supported in part by Intelligent Social Governance
Platform, Major Innovation & Planning Interdisciplinary Platform for the “Double-First Class” Ini-
tiative, Renmin University of China, and Public Policy and Decision-making Research Lab of Ren-
min University of China.

REFERENCES

Abubakar Abid and James Zou. Autowarp: learning a warping distance from unlabeled time series
using sequence autoencoders. In Proceedings of the 32nd International Conference on Neural
Information Processing Systems, pp. 10568–10578, 2018.

Ghazi Al-Naymat, Sanjay Chawla, and Javid Taheri. Sparsedtw: a novel approach to speed up
dynamic time warping. In Proceedings of the Eighth Australasian Data Mining Conference-
Volume 101, pp. 117–127. Australian Computer Society, Inc., 2009.

K. Bache and M. Lichman. UCI Machine Learning Repository. http://archive.ics.uci.edu/ml, Uni-
versity of California, Irvine, School of Information and Computer Sciences, 2013.

Rami Ben-Ari, Mor Shpigel Nacson, Ophir Azulai, Udi Barzelay, and Daniel Rotman. Taen: Tem-
poral aware embedding network for few-shot action recognition. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 2786–2794, 2021.

Mina Bishay, Georgios Zoumpourlis, and Ioannis Patras. Tarn: Temporal attentive relation network
for few-shot and zero-shot action recognition. arXiv preprint arXiv:1907.09021, 2019.

Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien-Yi Chang, and Juan Carlos Niebles. Few-shot video
classification via temporal alignment. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10618–10627, 2020.

Samuel Cohen, Giulia Luise, Alexander Terenin, Brandon Amos, and Marc Deisenroth. Aligning
time series on incomparable spaces. In International Conference on Artificial Intelligence and
Statistics, pp. 1036–1044. PMLR, 2021.

Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. In Advances in
neural information processing systems, pp. 2292–2300, 2013.

10

https://github.com/BingSu12/TAP


Published as a conference paper at ICLR 2022

Marco Cuturi and Mathieu Blondel. Soft-dtw: a differentiable loss function for time-series. In
International Conference on Machine Learning, pp. 894–903, 2017.
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A APPENDIX

A.1 SELF-SUPERVISED LOSS FOR TAP

We show that the proposed TAP distance can also be learned in a self-supervised manner with
unlabeled sequence samples. We learn the prediction network of TAP by minimizing the TAP dis-
tances between sequences and their corresponding augmentations. Data of specific modalities such
as images and videos can be augmented through low-level transformations, where self-supervised
learning methods learn the feature embedding network by encouraging consistent features extracted
from original data and their augmentations. Differently, we focus on learning the distance between
sequences, where the element-wise features are already given no matter where and how the fea-
tures are extracted, so low-level transformations are not applicable. To this end, we propose two
augmentation methods for sequences: random blur and random merge.

Random blur. Random blur constructs a blur kernel K with a randomly selected size. The values
in the kernel are also randomly selected from the range of [0, 1] so that values in the kernel decrease
from middle to both sides. Given a sequence X = [x1, · · · ,xLX

] ∈ Rd×LX , random blur generates
an augmented sequence X̃ by convolving X with K. The stride along the 1st dimension is set to 1.
The stride along the 2nd dimension is randomly selected from 1, 2, 3. No padding is applied. Thus,
each column element x̃i of X̃ is the weighted average of several successive elements of X . The
ground-truth alignment values between x̃i and the Nk elements are set as the values in K, while
those between x̃i and all other elements of X are set to 0. In this way, we construct the ground-truth
alignment matrix T̃ between X and X̃ .

Random merge. For X with a length of LX , random merge first randomly selects an integer L̃
from [0.5LX , 0.8LX ]. X is then randomly segmented into L̃ parts, where each part has at least
one element. For the k-th part with L̃k elements, L̃k values are randomly sampled from a standard
Gaussian distribution and then normalized by softmax to form L̃k weights. The L̃k elements are
averaged with the weights to form a new element x̃k. The augmented sequence consists of all the
generated elements for all parts sequentially: X̃ = [x̃1, · · · , x̃L̃k

] . The ground-truth alignment
values between x̃k and the L̃k elements in the k-th part of X are set as the L̃k corresponding
weights, while those between x̃k and elements in other parts are set to 0. In this way, the ground-
truth alignment matrix T̃ between X and X̃ is constructed.

Self-supervised learning of TAP. Given N unlabeled training sequences Xn, n = 1, · · · , N , the
goal is to learn the TAP distance by learning the prediction network. For each Xn, we first ran-
domly select one of the two methods to generate its augmented sequence X̃n and the corresponding
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ground-truth alignment T̃ n. We then calculate the TAP distance d(Xn, X̃n; f) and the correspond-
ing non-normalized alignment An in Eq. (3) between Xn and X̃n. Since TAP is asymmetric, we
also calculate the dual TAP distance d(X̃n,Xn; f) and dual alignment An

d between X̃n and Xn.
We minimize the TAP and its dual distances. We also minimize the Mean Squared Errors (MSEs)
between the predicted dual alignments and the ground-truth alignments, which indirectly forces the
alignment and the dual alignment to be consistent. The objective for a batch of B sequences is:

min
f

1

B

B∑
n=1

(d(Xn, X̃n; f) + d(X̃n,Xn; f) +MSE(An, T̃ n) +MSE(An
d , T̃

nT )). (10)

Parameters of the alignment prediction network f in TAP are learned by back-propagation. Since
D is fixed with given sequences and T is obtained after softmax and L1 normalization, the TAP dis-
tance between two sequences is bounded. Therefore, f has no trivial collapse solution, so negative
sequence samples are naturally not required. Once f is learned, TAP can be applied to measure the
difference between two sequences by feedforward calculations. In Section 3.2, the self-supervised
loss 10 is added to all supervised losses to improve the stability of the learned TAP.

Table 6: Results on the MSR Action3D dataset.
Distance MAP 1-NN 5-NN 30-NN

DTW 0.590 81.32 80.95 72.53
lDTW 0.567 82.78 79.12 64.84
nDTW 0.565 79.85 76.92 67.40
OT 0.544 78.02 75.09 59.34
Sinkhorn 0.546 78.02 74.73 60.44
TCOT 0.578 80.59 79.49 67.03
OPW 0.587 84.25 80.22 67.03
SoftDTW 0.589 81.32 80.95 72.89
SoftDTW∗ 0.076 4.03 5.50 5.13
TAP 0.557 79.85 78.02 67.77

Table 7: Results on MSR Activity3D dataset.
Distance MAP 1-NN 5-NN 30-NN

DTW 0.338 58.75 49.38 31.87
lDTW 0.288 50.00 50.00 30.00
nDTW 0.306 55.63 52.50 30.00
OT 0.308 55.63 50.62 25.00
Sinkhorn 0.307 54.37 50.62 25.62
TCOT 0.321 59.38 51.88 28.13
OPW 0.346 58.13 53.75 30.63
SoftDTW 0.339 60.00 50.00 33.75
SoftDTW∗ 0.108 6.25 6.25 6.25
TAP 0.362 61.25 55.63 36.25

Comparison with alignment-based distances. We compare the self-supervised learned TAP with
8 alignment-based sequence distances in the retrieval and classification tasks, including DTW,
length-normalized DTW (lDTW), matching step-normalized DTW (nDTW), optimal transport
(OT) (Kolouri et al., 2017), Sinkhorn (Cuturi, 2013), TCOT (Su & Hua, 2019), OPW (Su & Hua,
2019), and SoftDTW (Cuturi & Blondel, 2017). We follow the setting in (Su & Hua, 2019) and
directly compare with the results reported in Su & Hua (2019). The comparisons on the MSR Ac-
tion3D and MSR Activity3D datasets are shown in Table 6 and Table 7, respectively. We observe
that TAP generally outperforms other distances on the MSR Activity3D dataset, but performs worse
on the MSR Action3D dataset.

SoftDTW can be used as a differentiable loss on top of a single-layer embedding. SoftDTW∗ trains
the additional linear layer in a self-supervised manner by minimizing the SoftDTW distances be-
tween the original training sequences and their augmented ones, but the effect is equivalent to ran-
dom classification. Without negative sample sampling, SoftDTW∗ falls into the trivial solution of
all zeros. In self-supervised learning, TAP naturally avoids the trivial solution since it calculates D
from the original sequences and performs Softmax on T .

A.2 PROBLEM OF SUPERVISED REPRESENTATION LEARNING WITH ALIGNMENT-BASED
DISTANCES

For supervised learning, the objective is often to make the sequence distance better separate se-
quences from different classes. However, such objectives are difficult to optimize for conventional
alignment-based distances because they solve another optimization problem to obtain the align-
ments. For example, if we apply the triplet loss to the OPW distance, the objective becomes:
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min
h

B∑
n=1

(
∑

n′:yn′=yn
max(

〈
T ∗nn′ ,D(h(Xn), h(Xn′

))
〉
− dns +m, 0)

+
∑

n′:yn′ 6=yn
max(dnl +m−

〈
T ∗nn′ ,D(h(Xn), h(Xn′

))
〉
, 0))

s.t. T ∗nn′ = argmin
T∈Φ

〈
T ,D(h(Xn), h(Xn′

))
〉

+R(T )

. (11)

The gradients of this objective with respect to the parameters of h rely on T ∗nn′ , which is determined
by another optimization problem with additional constraints on T and this optimization problem
depends on h in turn. Therefore, the gradients cannot be explicitly formulated and directly obtained.
The overall optimization problem thus cannot be optimized via back propagation in an end-to-end
manner. An alternative solution is to alternatively update T ∗ and h by fixing the other in an iterative
way, which is time-consuming and there is no theoretical guarantee of convergence. Existing meth-
ods (Mei et al., 2014; Su & Wu, 2020b) optimize a proxy or approximate objective through complex
iterative solutions.

A.3 SELF-ATTENTION MODULE IN SA-TAP

In few-shot action recognition, TAP can be combined with the self-attention mechanism. Especially,
the proposed TAP focuses on aligning different sequences, but cannot fully utilize the temporal
dependencies among frames in the same sequence. This can be alleviated by applying a single-head
self-attention (SA) module to each sequence before performing alignment by TAP. Specifically, after
obtaining the feature sequence X for a video, we first obtain Xp = X + Pe(X), where Pe(X) is
the sequence of position embeddings for elements in X . We then employ the self-attention module
to transform Xp into the following sequence:

Xa = Softmax(
XT
p Wq(X

T
p Wk)T

√
d

)XT
p Wv, (12)

where Wq , Wk, and Wv are three linear projections with the size of d× d.

The sequence X is finally transformed into:

X = LN(XT
a + Xp) (13)

Where LN is the layer normalization. Both the support and query sequences are enhanced before
calculating their TAP distance in Eq. (8). We denote this method by SA-TAP.

A.4 COMPLEXITY AND MODEL SIZE

The complexities for calculating D, performing convolutions with a few layers and small ker-
nels, calculating S, and performing Softmax and L1 normalization are O(LXLY d), O(LXLY d),
O(LXLY ), and O(LXLY ), respectively, where the number of layers, the size of kernels, and the
number of kernels are omitted since they are small. The overall complexity of TAP is O(LXLY d).

TAP only contains three convolution layers and hence the model size is quite small. For supervised
learning, the feature transformation network is the same for all methods. DTW, OPW, and Soft-DTW
are parameter-free but require solving an optimization problem for inferring the optimal alignment,
so they introduce no additional parameters. In the three layers of TAP, we fix the kernel sizes to 5,
5, and 3, respectively, and we fix the number of filers to 30, 30, and 1, respectively. Therefore, TAP
only introduces 30× 5× 5× 2 + 30× 5× 5× 30 + 1× 3× 3× 30 = 0.0231M parameters.

For few-shot action recognition, the feature extraction backbone is fixed to ResNet-50 for all meth-
ods. OTAM employs a variant of DTW as the distance measure and hence does not introduce
additional parameters. TRX contains two Ω × d × dk projections and one Ω × d × dv projection,
where Ω is the length of a tuple, d = 2048 is the dimension of frame-wide features and dk = dv is
set to 1152. Therefore, TRX introduces 3× 2× 2048× 1152×Ω parameters, Ω is often set to 2 for
using frame pairs and 3 for frame tuples, so the number of parameters ranges from 27M to 40.5M.
Moreover, TRX requires an exhaustive traversal of pairs and triplets of frames with high complexity.
In TTAN, the location network in the temporal transform module takes a feature sequence as input
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(a) (b)

Figure 3: (a) Running times of SoftDTW and TAP as functions of the length of sequences. (b)
Running times of SoftDTW and TAP as functions of the dimensionality of features in sequences.

Table 8: Comparison of TAP with/without data augmentation for supervised learning.

Method Action3D Activity3D
MAP 1-NN MAP 1-NN

HM+TAP w/o DA 0.839 88.28 0.690 71.25
HM+TAP 0.798 87.18 0.701 74.38
Lifted+TAP w/o DA 0.820 86.81 0.723 70.00
Lifted+TAP 0.772 82.05 0.728 73.75
Binomial+TAP w/o DA 0.802 86.45 0.689 71.88
Binomial+TAP 0.826 87.91 0.678 73.13

and outputs two indexes with several learnable layers, but the detailed network structure is not spec-
ified; the temporal attentive module contains 3 d × d projections and has 12M parameters; the late
fusion module introduces another 3 d× d projections with 12M parameters. In contrast, TAP-CNN
also only introduces 64× 5× 5× 2 + 64× 5× 5× 64 + 1× 3× 3× 64 = 0.1013M parameters
since the kernel sizes are enlarged to 64, 64, and 1, respectively. For SA-TAP, the self-attention
layer contains 3 d × d projections, Therefore, SA-TAP introduces 3d2 + 0.1013M = 12.1013M
parameters. The model sizes of both TAP and SA-TAP are smaller than TRX and TTAN.

A.5 COMPARISON OF TAP AND SOFTDTW ON RUNNING TIMES

We study the scalability of the proposed TAP in comparison with SoftDTW as the length and dimen-
sionality increase. We randomly generate two sequences of length L, both consists of d-dimensional
features. For different L and d, we compute the SoftDTW distance and the TAP distance with ran-
dom parameters between the two sequences, respectively, and compare the corresponding running
times. We first fix d to 500, and increase L from 100 to 1000 with an interval of 100. The run-
ning times of SoftDTW and TAP as functions of L are compared in Fig. 3(a). The running time of
SoftDTW grows rapidly as the length increases due to the dynamic programming and backtracking
processes. In contrast, since only the forward matrix operations are required, the running time of
TAP does not change much as the length increases. The longer the sequences, the more obvious the
speed advantage of the proposed TAP.

We then fix L to 500, and increase d from 100 to 1000 with an interval of 100. The running times of
SoftDTW and TAP as functions of d are compared in Fig. 3(b). We observe that the proposed TAP
is consistently about 10 times faster than SoftDTW. These results demonstrate that TAP can better
scale to long and high-dimensional sequences.
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Table 9: Comparison of using transformer and CNN.

Method Action3D Activity3D
MAP 1-NN MAP 1-NN

HM+TAP-Trans 0.751 81.32 0.691 72.50
HM+TAP(CNN) 0.798 87.18 0.701 74.38
Lifted+TAP-Trans 0.740 77.29 0.697 69.38
Lifted+TAP(CNN) 0.772 82.05 0.728 73.75
Binomial+TAP-Trans 0.746 80.22 0.705 71.25
Binomial+TAP(CNN) 0.826 87.91 0.678 73.13

A.6 EFFECT OF DATA AUGMENTATION ON SUPERVISED LEARNING

We apply the data augmentations, i.e., random blur and random merge, in supervised learning only
for obtaining more stable results. For example, in some cases, all sequences in a small batch satisfy
the constraints in Eq. (4) and Eq. (6), where data augmentation can enlarge the within-class distance.
Comparison results of TAP with and without data augmentations on the MSR Action3D and MSR
Activity3D datasets are shown in Tab. 8. In some cases, the data augmentation only brings minor
improvements, while in other cases, the data augmentation even causes performance degradation,
which may be because augmented sequences obtained by such temporal blur and merge do not
reflect the real intra-class variances. Generally, in most cases, since the augmented sequence often
has a small distance from the original sequence, it will not change the selection of hard negatives
and hard positives in Eq. (6). Without the proposed data augmentations, TAP still outperforms all
other methods where it performs best in Tab. 1, and all conclusions still hold.

A.7 ABLATION ON THE ARCHITECTURE OF THE ALIGNMENT PREDICTION NETWORK

The intuition behind using CNN as g in the alignment prediction network f is that CNN can im-
plicitly model the temporal constraints and capture local alignment patterns. Temporal constraints
for performing temporal alignment are often reflected as follows: the probability of two frames be-
ing aligned is not only related to the distance between the two elements and the difference between
their relative positions, but also depends on the distances and alignment probabilities between their
adjacent frames. Convolution kernels aim at capturing such local information. There may exist dif-
ferent local alignment patterns at different levels. Multiple convolution kernels in different layers
are suitable for capturing these different local patterns and variances of local motions.

A transformer-like cross-attention-based architecture can also be used to predict temporal alignment.
Specifically, for aligning Y to X , we use a linear projection Wq ∈ Rd′×d to transform all elements
xi of X to x̂i = Wqxi, resulting in a transformed sequence X̂ = [x̂i, i = 1, · · · , LX ] = WqX,

where d′ = 30 is the transformed dimensionality. Similarly, Y is transformed into Ŷ = [ŷj , j =
1, · · · , LY ] = WkY by another projection Wk. We use each x̂i as the query, use ŷj , j = 1, · · · , LY
as keys, and calculate all pairwise Euclidean distances between x̂i, i = 1, · · · , LX and ŷj , j =

1, · · · , LY into a matrix Ds := [e(x̂i, ŷj)/
√
d′]ij ∈ RLX×LY . The similarity matrix S is calculated

as: S = −(Ds + λDt), where the hyper-parameter λ is set to 50. Similarly with TAP, we perform
Softmax and L1 normalization in Eq.(3) to S to obtain the final alignment T . We denote this method
by TAP-trans. Comparisons of TAP and TAP-trans are shown in Tab. 9. We observe that CNN
outperforms the Transformer-like attention-based network. This may indicate that CNN indeed can
capture the local alignment patterns by integrating the local contexts.

The local receptive field of CNN can be viewed as imposing a constraint on the temporal deviation:
only local warping within the receptive field is considered since extremely unbalanced warping is
not preferred. Increasing the kernel sizes or using more convolution layers gains larger receptive
fields, hence larger warping patterns are allowed and long-range dependencies can be utilized. We
have added comparisons with two variants, namely TAP (l) and TAP (d), to evaluate the effects of
using larger kernels and using more convolution layers, respectively. In TAP (l), the kernel size in
the three convolution layers is increased to 7, 7, and 5 with paddings 3, 3, and 2 to keep the spatial
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Table 10: Effects of using larger kernels and more convolutional layers in the alignment prediction
network of TAP.

Method Action3D Activity3D
MAP 1-NN MAP 1-NN

HM+TAP 0.798 87.18 0.701 74.38
HM+TAP(l) 0.834 90.48 0.671 73.13
HM+TAP(d) 0.846 91.58 0.693 70.63
Lifted+TAP 0.772 82.05 0.728 73.75
Lifted+TAP(l) 0.805 85.35 0.743 73.75
Lifted+TAP(d) 0.779 83.52 0.743 71.25
Binomial+TAP 0.826 87.91 0.678 73.13
Binomial+TAP(l) 0.838 85.348 0.701 72.50
Binomial+TAP(d) 0.856 89.377 0.678 74.38

size, respectively. In TAP (d), another convolution layer is inserted after the second layer, where the
kernel size, padding, and the number of kernels are set to 5, 2, and 30, respectively.

Comparison results are shown in Tab. 10. Generally, using larger convolution kernels or adding
more convolution layers to relax the restriction on warping and model more levels of alignment
patterns can further increase the performance of TAP. We use the CNN architecture consisting of
3 convolution layers with small kernels to impose strong inductive bias and keep the alignment
prediction network lightweight.

A.8 EVALUATION METHODS ON MSE BETWEEN PREDICTED AND GROUND-TRUTH
ALIGNMENTS.

For each test sequence, we randomly generate 5 augmentations with the proposed augmentation
methods (random blur and random merge) and approximately construct the ground-truth align-
ment between the original sequence and its augmentations, respectively. To evaluate the predicted
alignments by supervised trained TAP (TAP-s), we first apply the trained transformation network
h to transform the sequence and each of its augmentations, and then predict their un-normalized
alignments by the trained alignment prediction network f . For supervised learning with SoftDTW
(SoftDTW-s), after transforming the sequences with the trained h, the alignments are directly in-
ferred by SoftDTW. The MSE between the predicted alignments and the ground-truth alignments
of all test-augmentation sequence pairs is calculated as the performance measure. Comparisons of
TAP-s and SoftDTW-s by using the triplet loss are shown in the left part of Tab. 4.

We can also directly train TAP without jointly learning the transformation network h by constraining
the predicted alignments. We generate augmentations for each training sequence and construct
the corresponding ground-truth alignment. The prediction network f is trained by minimizing the
MSE loss between the predicted un-normalized alignments by TAP and the constructed ground-
truth alignments. In the testing stage, we directly apply SoftDTW or the trained TAP to predict
the alignments between test sequences and their corresponding augmentations. Comparisons on the
MSE between the ground-truth alignments and the alignments predicted by SoftDTW and TAP on
the test set are shown in the right part of Tab. 4. We observe that in both cases, TAP achieves lower
MSEs, which may indicate that TAP can indeed learn alignment patterns from the training sequences
to better approximate the ground-truth alignments.

A.9 EVALUATING THE LEARNED REPRESENTATIONS WITH A LINEAR CLASSIFIER

In supervised representation learning, we jointly learn the frame-wise feature extraction network h
and the alignment prediction network f . We further use a linear classifier to evaluate the learned
representations. For each sequence, we freeze the backbone to extract frame-wise features and then
encode them into a vector representation by mean pooling. We then train a linear classifier on these
vector representations. We use the Adam optimizer, where the hyper-parameters of the optimizer
remain the same as in supervised representation learning. The number of epochs is fixed to 3000.
Comparisons of TAP and SoftDTW with the linear classifier are shown in Tab. 11.
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Table 11: Comparison of SoftDTW and TAP with the linear classifier.

Method Action3D Activity3D
Top-1 Top-5 Top-1 Top-5

HM+SoftDTW 56.41 86.81 62.50 90.63
HM+TAP 67.03 90.84 63.75 91.25
Lifted+SoftDTW 5.50 24.54 6.25 31.25
Lifted+TAP 51.65 82.78 64.38 86.25
Binomial+SoftDTW 53.48 85.35 6.25 31.25
Binomial+TAP 69.23 90.11 65.63 91.25

We observe that TAP always outperforms SoftDTW with the linear classifier no matter what super-
vised representation learning loss is adopted and whether SoftDTW falls into the trivial solution.
This shows that the representations learned by TAP are more discriminative. The results obtained by
the linear classifier are worse than the 1-NN classifier, which indicates that the mean pooling loses
useful temporal information and TAP can take advantage of such information.
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