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ABSTRACT

Existing diffusion model-based methods for classifier guidance, inverse problems,
and image editing often require additional training and are computationally ex-
pensive. We introduce FlowChef, a unified framework leveraging rectified flow
models (RFMs) to guide the denoising process deterministically and without gra-
dients. By exploiting the unique properties of RFMs, FlowChef achieves a sig-
nificant reduction in computational overhead while maintaining high-quality im-
age generation. This approach not only streamlines the process but also opens up
new possibilities for real-time applications in image manipulation. FlowChef
efficiently handles tasks such as inverse problems and image editing, achieving
superior performance and setting new state-of-the-art benchmarks.

1 INTRODUCTION

Diffusion models have revolutionized AI-generated content, particularly in text-to-image (T2I) and
text-to-video (T2V) applications Rombach et al. (2022); Saharia et al. (2022); Esser et al. (2024);
Polyak et al. (2024); Patel et al. (2024a); Singer et al. (2023). While latent diffusion models
(LDMs) Rombach et al. (2022) and classifier-free guidance Ho & Salimans (2022) have enabled re-
markable advances in image editing and inverse problem solving, these methods incur high compu-
tational costs due to their stochastic nature and the need for numerous function evaluations (NFEs).
However, the recent introduction of flow-based methods Lipman et al. (2023), especially rectified
flow models (RFMs) Liu et al. (2023a); Lee et al. (2024), addresses these limitations to some extent
by requiring fewer NFEs. Recent works have attempted to solve inverse problems by leveraging
this property, focusing mainly on pixel models Ben-Hamu et al. (2024); Martin et al. (2024). While
these approaches have improved computational time requirements, they are still not sufficiently ef-
ficient, as they require inversion and incur significant memory overhead. As a result, they cannot be
extended to large state-of-the-art models like Flux or SD3 Esser et al. (2024).

In this paper, we introduce FlowChef, a novel method that significantly enhances controlled image
generation by leveraging the unique characteristics of rectified flow models. We first standardize the
objective of controlled synthesis, unifying various downstream tasks within a single framework. By
revisiting the ordinary differential equations (ODEs) that govern these models, we analyze their error
dynamics both theoretically and empirically. We discover that in nonlinear ODEs with stochasticity
or trajectory crossovers, error terms emerge that hinder convergence due to inaccuracies in estimat-
ing denoised samples or improper gradient approximations.

Contrary to diffusion models, rectified flow models exhibit straight trajectories and avoid significant
trajectory crossovers due to their linear interpolation between noise and data distributions (see Fig-
ure ??(b-c)). We theoretically demonstrate and empirically validate that RFMs can achieve higher
convergence rates without additional computational overhead by capitalizing on this key property.
Building on this understanding, we present FlowChef, that proposes to steer the trajectories to-
wards the target in the vector field by gradient skipping. This allows us to steer/navigate the vector
field in a deterministic manner.

We conduct extensive evaluations of FlowChef across tasks such as pixel-level classifier guidance,
image editing, and classifier-guided style transfer. Our results demonstrate that FlowChef not only
surpasses baseline methods but does so with greater computational efficiency and without the need
for inversion. FlowChef efficiently addresses a variety of tasks such as inverse problems, image
editing, style transfer, etc. For perspective, FlowChef handles the linear inverse problems within
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Figure 1: Illustration of impact of guided control step on Flux.1[Dev] with mean squared error as
cost function (L = ||x̂0−xref

0 ||22). This shows that FlowChef could guide the rectified flow models
on the fly without requiring either the gradients through the Flux model or inversion. Importantly,
the convergence speed is slowed down for illustration purposes.

18 seconds on the latent-space model, while SOTA takes 1-3 minutes per image. Furthermore, we
explore its practical applicability to large-scale models to tackle both linear inverse problems and
image editing together without inversion and within 30 NFEs at billions of parameter scales.

2 PROPOSED METHOD

In this section, we introduce our method, FlowChef, which enables free-form control for rectified
flow models by presenting an efficient gradient approximation during guided sampling. We begin
by analyzing the error dynamics of general ordinary differential equations (ODEs) and then explain
how the inherent properties of rectified flow models mitigate existing approximation issues. Building
on these insights, we derive FlowChef, an intuitive yet theoretically grounded approach for free-
form controlled image generation applicable to various downstream tasks, including those involving
pretrained latent models.

2.1 ERROR DYNAMICS OF THE ODES

Understanding why existing methods often fail and require computationally intensive strategies is
crucial. In ODE-based generative models, guiding the sampling process toward a desired target
typically involves computing the gradient of a loss function with respect to the model’s parameters
or state variables. As noted in Eq. (6), even though the denoised output can be estimated using
x̂0 ← Sample(xt, uθ(xt, t)), backpropagation through the ODE solver is still necessary to obtain
∇xt
L. This raises the question: Why is backpropagation through the ODE solver necessary?

Approximating gradient computations is a common approach to reduce computational overhead He
et al. (2024); Song et al. (2023). However, in models governed by nonlinear ODEs, unregulated
gradient approximations can introduce significant errors into the system dynamics. This issue is
formalized in the following proposition:
Proposition 2.1. Let p1 ∼ N (0, I) be the noise distribution and p0 be the data distribution. Let xt

denote an intermediate sample obtained from a predefined forward function q as xt = q(x0, x1, t),
where x0 ∼ p0 and x1 ∼ p1. Define an ODE sampling process dx(t) = f(xt, t)dt and quadratic
L = ||x̂0 − xref

0 ||22, where f : Rd × [0, T ] → Rd is an ODESolver. Then, the error dynamics of
ODEs for controlled image generation is governed by:

dE(t)

dt
= −4sE(t) + 2e(t)T ϵ(t),

where e(t) = x̂0 − xref
0 , E(t) = e(t)T e(t) is the squared error magnitude, s > 0 is the guidance

strength, and ϵ(t) represents the accumulated errors due to non-linearity and trajectory crossovers.

The proof of Proposition 2.1 is provided in the Appendix D. The term −4sE(t) denotes the expo-
nential decay of error due to guidance, while 2e(t)⊤ϵ(t) captures the impact of non-linearity and
trajectory crossovers. In diffusion models, curved sampling trajectories lead to larger ϵ(t), hindering
convergence. In contrast, rectified flow models exhibit straight trajectories with minimal crossovers,
causing ϵ(t) to approach zero and allowing error to decrease exponentially.

To validate our findings, we conduct a toy study comparing classifier guidance on two ODE sampling
methods using pretrained IDDPM and Rectified Flow++ (RF++) models on the ImageNet 64x64. As
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reported in Table 3 (Appendix), skipping the gradient in DDIM-based sampling increases the FID
score, indicating significant ϵ(t). Conversely, RF++ converges well and improves the FID score.
These empirical evidences further bolster our hypothesis that Rectified Flow models observe smooth
vector field with the help of Proposition 2.1. Although backpropagating through the ODESolver
further improves performance, it incurs higher computational costs as highlighted.

2.2 FLOWCHEF : STEERING WITHIN THE VECTOR FIELD

Rectified flow models inherently allow error dynamics to converge even with gradient approxima-
tions due to their straight-line trajectories and smooth vector fields, as discussed previously. Hence,
vector field uθ(xt, t) is trained to be smooth, and this smoothness implies that uθ changes gradually
w.r.t. xt. We formalize our approach with the following assumptions:

Assumption 1 (Local Linearity): Within the small neighborhoods around any point xt along the
sampling trajectory, the vector field uθ(xt, t) behaves approximately linearly with respect to xt.
Doing Taylor series expansion for small perturbations δ, we get:

uθ(xt + δ, t) ≈ uθ(xt, t) + Juθ
(xt, t)δ, (1)

where Juθ
(xt, t) =

duθ(xt,t)
dxt

is the Jacobian matrix of uθ with respect to xt.

Assumption 2 (Constancy of the Jacobian): The Jacobian Juθ
(xt, t) varies slowly with respect to

xt within these small neighborhoods. Therefore, for small δ, it can be approximated as constant:

Juθ
(xt + δ, t) ≈ Juθ

(xt, t). (2)

Under these assumptions, we derive the following gradient relationship between∇xtL and ∇x̂0L:
Lemma 2.2 (Gradient Relationship). Let uθ : Rd × [0, T ] → Rd be the velocity function with the
parameter θ. Then the gradient of the cost function (∇xtL) at any timestep t can be approximated
as:

∇xt
L = (I + t · Juθ

)T∇x̂0
L. (3)

Therefore, we get ϵ(t) = t · Juθ
(xt, t)

T∇x̂0L. Importantly, when t → 0, the matrices I + t ·
Juθ

(xt, t) are close to the identity matrix. We further provide empirical evidence about this on
pretrained rectified flow models by analyzing the gradients and convergence w.r.t. denoising steps in
the Appendix H. Where we observe that gradient direction improves linearly and quickly converges
to xref

0 as t→ 0. Under this approximation, the difference between the two error dynamics becomes
negligible. Since the ϵ(t) introduces only a small correction, it leads to the convergence in error
dynamics as t→ 0. Combining the results of Preposition 2.1, Assumption 1 and 2, and Lemma 2.2,
we obtain the following theorem with straightforward proof that facilitates the controlled generation
for rectified flow models in the most computationally efficient way:
Theorem 2.3. (Informal) Given the above assumption and notations, the update rule for the vector
field driven by uθ for the inference-time steering is:

xt−∆t = xt +∆t · uθ(xt, t)− s′∇x̂0
L, (4)

where s′ is the guidance scale.

The formal statement and proof are provided in the Appendix E. This theorem forms the core of
FlowChef, enabling controlled generation efficiently.

3 EXPERIMENTS

We evaluate the FlowChef across two tasks: (1) Linear inversion problems on pixel and latent-
space models, (2) Image editing, and In Table 1, we report three inverse problems with easy and
hard difficulty scenarios. It can be observed that FlowChef significantly improves the performance
on both easy and hard settings across the tasks and all metrics consistently. While the concurrent
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Method BoxInpaint Deblurring Super Resolution

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Easy Scenarios
Degraded 21.79 74.76 10.92 20.17 54.03 22.20 24.68 77.57 11.67
OT-ODE 19.11 77.86 13.49 21.86 62.51 15.14 21.64 62.23 26.64
PnP-Flow 22.12 68.02 14.70 22.00 65.79 15.95 22.42 68.06 14.91
D-FLow 20.37 70.06 13.67 20.22 61.99 14.51 21.60 69.89 12.29
FreeDoM 20.87 74.79 13.92 20.21 69.73 13.22 21.15 77.54 12.12
DPS 23.61 74.79 9.35 22.49 69.73 10.23 23.94 77.54 8.46
FlowChef (ours) 26.32 87.70 3.36 27.69 86.43 2.66 26.00 80.15 4.43

Hard Scenarios
Degraded 18.75 65.12 22.54 16.83 30.02 54.04 20.77 55.85 38.16
OT-ODE 16.37 67.35 19.22 17.89 34.02 29.68 18.19 39.43 36.84
PnP-Flow 20.44 61.96 17.53 19.50 50.54 22.00 21.35 61.78 17.78
D-FLow 18.34 62.62 19.94 16.93 34.13 25.31 20.01 56.46 17.64
FreeDoM 18.88 65.07 16.83 16.50 34.88 18.91 19.58 55.84 14.12
DPS 20.68 65.06 13.06 17.58 34.89 15.86 21.52 55.90 10.31
FlowChef (ours) 21.45 78.75 7.73 20.31 52.73 10.64 21.62 60.33 10.18

Table 1: Pixel-space model-based evaluations for tackling the linear inverse problems.

Input

A dog wearing space suit with flowers in mouth.

Ledits++ DiffEdit
FlowChef

(InstaFlow)InfEdit
FlowChef
(Flux)

An illustration of an owl sitting on a branch in a cave.

A cute little bunny pig with big eyes.

Figure 2: Qualitative results on image editing. As illustrated, our method attains the SOTA per-
formance on comparison inversion-free methods.

gradient-free work, PnP-Flow, outperforms many other baselines, FlowChef leads the benchmark.
Figure 2 shows that FlowChef consistently outperforms the baselines without requiring inversion
and our Flux variant further improves the performance. We further provide detailed experiments and
it’s setup in the appendix along with experiments on new tasks such as classifier guidance.

4 CONCLUSION

In this work, we introduced FlowChef, a versatile flow-based approach that unifies key tasks in
controlled image generation, including linear inverse problems, image editing, and classifier-guided
style transfer. Extensive experiments show that FlowChef outperforms baselines across all tasks,
achieving state-of-the-art performance with reduced computational cost and memory usage. No-
tably, FlowChef enables inversion-free editing and scales to SOTA T2I models like Flux without
memory issues. Our results demonstrate FlowChef’s adaptability and efficiency, offering a unified
solution for both pixel and latent spaces across diverse architectures and practical constraints.
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A SUPPLEMENTARY OVERVIEW

This supplementary material contains proofs, detailed results, discussion, and qualitative results:

• Section B: Preliminaries.
• Section C: Key Experiments.
• Section D: Proposition 2.1 proof.
• Section E: Theorem 2.3 proof.
• Section F: Numerical accuracy analysis.
• Section G: Extended related works.
• Section H: Empirical study of pixel and latent models.
• Section I: Detailed algorithms.
• Section J: Experimental setup details.
• Section K: Extended results.
• Section L: Hyperparameter study.
• Section M: Qualitative Results.
• Section N: Limitations & Future Work

B PRELIMINARIES

Let uθ : Rd× [0, T ]→ Rd represent a pretrained flow model estimating the drift v = x1−x0 from
xt. The denoised sample x̂0 is obtained by integrating the drift uθ over time from t = T to t = 0,
starting from xT ∼ p1. With a target sample xref

0 , we define a cost function L : Rd ×Rd → R+

that quantifies the cost of aligning x̂0 with xref
0 , yielding the optimization problem:

min
{x̂t}T

t=0

L(x̂t, x
ref
0 ), (5)

where {x̂t}Tt=0 represents the model-generated trajectory from xT to x0. The objective is to find the
trajectory that minimizes L, effectively steering the generated sample toward the target. This can
be adapted for the denoising stage with either a noise-aware cost function at each timestep t or by
estimating x0 to refine the trajectory as needed. The gradient update is given by:

xt ← xt − s · ∇xt
L(x̂0, x

ref
0 ), (6)

where s is guidance scale. This process requires estimating x̂0, backpropagating gradients through
ODESolver (uθ) to adjust xt, and iteratively refining xt−∆t. As it can be observed, this approach
depends on accurate x̂0 estimation and substantial computation to ensure that the trajectory remains
on the data manifold.

B.1 COST FUNCTIONS

Notably, explicit xref
0 is unnecessary and can be approximated with appropriate cost functions de-

pending on the downstream tasks. Assuming initial Gaussian noise xT leads to x̂0, the cost function
can be defined as:

L(x̂0, x
ref
0 ) = ||x̂0 − xref

0 ||22. (7)

In inverse problems, let F : Rd → Rn represent a degradation operation (e.g., downsampling for
super-resolution). We then define:

L(x̂0, x
ref
0 ) = ||F(x̂0)− xref

0 ||22. (8)
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Here, xref
0 is a degraded sample, and we guide the model to generate x̂0 such that its degraded

version matches xref
0 . For classifier guidance, the cost function can be based on the negative log-

likelihood (NLL). Specifically, given a classifier pϕ(c|x̂0), the cost function is:

L(x̂0, c) = − log pϕ(c|x̂0). (9)

Remark 1. Although presented in pixel space, this formulation extends to latent space by introduc-
ing a Variational Autoencoder (VAE) encoder (E) and decoder (D).

C KEY EXPERIMENTS

In this section, we detail the remaining experiments in details.

C.1 LINEAR INVERSION PROBLEMS

We evaluate FlowChef against several baselines on three common linear tasks: box inpaint-
ing, super-resolution, and Gaussian deblurring, under varying difficulty levels. We extend both
FlowChef and the baselines to latent-space models to simulate real-world applications, reporting
results on PSNR, SSIM Wang et al. (2004), and LPIPS Zhang et al. (2018) across 200 images from
CelebA Liu et al. (2015) and AFHQ-Cat Choi et al. (2020).

C.1.1 PIXEL-SPACE MODELS

As FlowChef requires straightness and no crossovers, we select the Rectified-Flow++ pretrained
models Lee et al. (2024). We compare FlowChef with recent flow-based methods OT-ODE Pokle
et al. (2024), D-Flow Ben-Hamu et al. (2024), and PnP-Flow (concurrent work) Martin et al. (2024),
implementing the former two baselines manually due to lack of open-source access and tuning them
for optimal performance. Additionally, we extend two diffusion-based baselines, DPS Chung et al.
(2022) and FreeDoM Yu et al. (2023), for the RFMs. For comparisons, we use the Rectified-Flow++
models that are pretrained on FFHQ (for CelebA) and AFHQ-Cat datasets. Experiments are con-
ducted for 64x64 image resolutions. Hyper-parameters for each method are reported in the Ap-
pendix L. Our selected tasks include: (1) Box inpainting with 20x20 and 30x30 centered masks, (2)
Super-resolution with 2x and 4x scaling factors, and (3) Gaussian deblurring with an 11x11 kernel
at intensities of 1.0 and 10.0, with added Gaussian noise at σ = 0.05 for robustness.

Results. We present the quantitative and qualitative evaluation results in Table 1 and Appendix M,
respectively. It can be observed that FlowChef significantly improves the performance on both
easy and hard settings across the tasks and all metrics consistently. Notably from Table 7, we find
that the FlowChef is also the fastest and most memory efficient. Surprisingly, diffusion-based
extended baseline (DPS) significantly outperforms even recent baselines. However, DPS requires
backpropagation through billions of parameters of ODESolver. While the concurrent gradient-free
work, PnP-Flow, outperforms many other baselines, FlowChef leads the benchmark.

C.1.2 LATENT-SPACE MODELS.

Flow-based baselines are not extended to the latent space models as either they are already very
computationally heavy or require extra Jacobian calculations to support the non-linearity introduced
by the VAE models. We adapt D-Flow Ben-Hamu et al. (2024) and RectifID Sun et al. (2024) as
flow-based baselines, adding diffusion-based baselines PSLD-LDM Rout et al. (2024b) and Resam-
ple Song et al. (2024) for comparison. We use InstaFlow Liu et al. (2023b) (Stable Diffusion v1.5
variant) and Flux models as a baseline for flow-based approaches and utilize the original Stable
Diffusion v1.5 checkpoint for the diffusion-based baselines. We perform all tasks in 512 x 512 res-
olution, increasing to 1024 x 1024 for Flux experiments. Our task settings are: (1) Box inpainting
with a 128x128 mask, (2) Super-resolution at 4x scaling, and (3) Gaussian deblurring with a 50x50
kernel at intensity 5.0, all without extra Gaussian noise. For consistency, settings are doubled for
Flux to a 256x256 mask, 8x super-resolution scaling, and 10.0 deblurring intensity. As VAE en-
coders add extra unwanted nonlinearity, pixel-level cost functions alone may not be optimal. Hence,
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Reference
Resample

PSLD
(500 NFEs) D-FlowRectifID

Degraded

FlowChef
(InstaFlow)

FlowChef
(Flux)

14GB / 294 sec 19GB / 181 sec 18GB / 230 sec 33GB / 34 sec 14GB / 18 sec 64GB / 56 sec

Figure 3: Qualitative results on linear inverse problems. All baselines are implemented on stable
diffusion v1.5, except FlowChef Flux variant. Results are reported for VRAM and time on an
A100 GPU at 512 x 512 resolution, with Flux experiments at 1024 x 1024. Best viewed when
zoomed in.

Method BoxInpaint Super Resolution Deblurring

PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓) PSNR (↑) SSIM (↑) LPIPS (↓)

Diffusion based methods
Resample 20.12 79.94 19.36 26.91 70.91 30.75 25.27 62.97 41.94
PSLD (500 NFEs) 28.30 93.81 4.49 25.79 65.15 33.27 26.64 65.44 43.10
PSLD (100 NFEs) 26.90 93.13 5.29 21.95 54.67 46.08 21.25 51.62 51.92

Flow based methods
D-Flow 19.68 65.01 27.79 20.23 60.55 50.30 22.42 64.43 53.04
RectifID 23.81 75.13 10.50 10.36 31.55 67.08 10.40 31.16 66.60
FlowChef (InstaFlow) 22.94 73.55 9.94 25.83 64.73 31.38 22.50 47.42 42.54
FlowChef (Flux) 25.74 82.99 9.40 20.25 64.34 41.88 18.98 64.37 53.43

Table 2: Latent-space model based evaluations for tackling the linear inverse problems. SSIM & LPIPS results
are multiplied by 100.

we calculate the loss in the latent space only for the box inpainting task (as the degradation function
is known with σ = 0), allowing us to extend to image editing later. For super-resolution and de-
blurring, we stick with the pixel-level cost functions. We further detail the task-specific settings and
hyperparameters in the Tables 5 & 4.

Results. Quantitative and qualitative results in Figure 3 and Table 2 show that
FlowChef achieves SOTA performance for flow-based methods. However, a huge gap still
remains w.r.t. the diffusion-based methods like Resample and PSLD. Notably, these baselines take
about 5 minutes and 3 minutes, respectively, per image (see Figure 3), while FlowChef only takes
only 18 seconds and less memory (only 14GB). None of the existing flow-based methods can be
extended to Flux due to memory constraints. But FlowChef can seamlessly be applied, which
further improves the performance. We find that FlowChef (Flux) reduces the artifacts in the
images completely but observes the slight degradation in color dynamics. We attribute this to the
some nonlinearity observed in the trajectory of Flux.

C.2 IMAGE EDITING (HUMAN EVALS)

We perform extensive human evaluations (A/B testing) across the five models and 100 randomly
selected prompts from PIE-Bench. We utilized MTurk for this study and took three assessments
per task – resulting in total of 1500 assessments. As noted in Figure 5, we can observe that
FlowChef (InstaFlow) model outperforms the other inversion-free methods DiffEdit and InfEdit,
while competing with the inversion-based approach Ledits++. Additionally, FlowChef (Flux.1
[Dev]) variant outperforms the InstaFlow variant.
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D PROOF OF THE PROPOSITION

Proposition 4.1. Let p1 ∼ N (0, I) be the noise distribution and p0 be the data distribution. Let xt

denote an intermediate sample obtained from a predefined forward function q as xt = q(x0, x1, t),
where x0 ∼ p0 and x1 ∼ p1. Define a ODE sampling process dx(t) = f(xt, t)dt and quadratic
L = ||x̂0 − xref

0 ||22, where f : Rd × [0, T ]→ Rd is a nonlinear function parameterized by θ. Then,
under Assumption 1, the error dynamics of ODEs for controlled image generation are governed by:

dE(t)

dt
= −4sE(t) + 2e(t)T ϵ(t),

where e(t) is x̂0 − xref
0 , E(t) = e(t)T e(t) is the squared error magnitude, s > 0 is the guidance

strength, and ϵ(t) represents the accumulated errors due to non-linearity and trajectory crossovers.

Proof. Consider the sampling process described by the ODE:

dx(t)

dt
= f(x(t), t), (10)

where f(x(t), t) is a nonlinear function often parameterized via neural network θ. To guide the
sampling process toward minimizing a loss function L(x̂0, x

ref
0 ), we can adjust the dynamics by

adding the gradient∇xt
to the vector field (see Eq. 6) as:

dx(t)

dt
= f(x(t), t)− s · ∇xtL(x̂0, x

ref
0 ), (11)

where s is the guidance strength. Let e(t) = x̂0−xref
0 be the error between the estimated and target

samples. Since x̂0(t) = x(t) +
∫ 0

t
f(x(τ), τ)dτ , differentiating e(t) with respect to t yields:

de(t)

dt
=

dx̂0(t)

dt
(12)

=
dx(t)

dt
− f(x(t), t) (13)

= −s · ∇xt
L(x̂0, x

ref
0 ). (14)

However, this requires the compute-intensive backpropagation through ODESolver. Therefore, it is
important to find an approximation of∇xt

. And the most convenient approximation is: ∇xt
≈ ∇x̂0

.
However, this derivation assumes that the integral

∫ 0

t
f(x(τ), τ)dτ is well-behaved and that x̂0(t)

depends smoothly on x(t). In the presence of nonlinearity and trajectory crossovers, small changes
in x(t) can lead to disproportionately large changes in x̂0(t), due to the sensitivity of the integral
to the path taken. Moreover, potential crossovers in the trajectory mean that the mapping from x(t)
to x̂0(t) is not injective; different trajectories x(t) may lead to the same x̂0(t) or vice versa. This
non-unique mapping complicates the error dynamics because∇x̂0

Lmay not provide a consistent or
effective direction for updating x(t). Including the effects of nonlinearity and trajectory crossovers,
the error dynamics become:

de(t)

dt
= −s · ∇x̂0L(x̂0, x

ref
0 ) + ϵ(t), (15)

where ϵ(t) represents the errors introduced by the nonlinearity in f(x(t), t) and the sensitivity of x̂0

to x(t) due to trajectory crossovers. In other words, the approximation error ϵ(t) can be represented
as:

ϵ(t) = s ·
(
∇xt
L(x̂0, x

ref
0 )−∇x̂t

L(x̂0, x
ref
0 )

)
. (16)

4



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Assuming a quadratic loss function L = ||x̂0 − xref
0 ||22, we have ∇x̂0

L = 2e(t), leading to:

de(t)

dt
= −2se(t) + ϵ(t). (17)

To understand the convergence of the error, we analyze the evolution of the error magnitude E(t) =
e(t)T e(t). Differentiating E(t) with respect to time t, we get:

dE(t)

dt
=

d

dt

(
e(t)⊤e(t)

)
(18)

= 2e(t)⊤
de(t)

dt
(19)

= 2e(t)⊤ (−2se(t) + ϵ(t)) (20)

= −4se(t)⊤e(t) + 2e(t)⊤ϵ(t) (21)

= −4sE(t) + 2e(t)⊤ϵ(t). (22)

This completes the proof.

Notably, we derive this behavior of the ODE processes under the assumption that the error rate
cannot be calculated accurately. This can either come from the incorrect estimation of x̂0 or the
nonlinearity of ODESolver itself. In the next section, we further concretize this with respect to the
RFMs.

E PROOF FOR THEOREM

Lemma 4.2 (Gradient Relationship). Let uθ : Rd× [0, T ]→ Rd be the velocity function with the
parameter θ. Then the gradient of the cost function L at any timestep t can be approximated as:

∇xt
L = (I + t · Juθ

)T∇x̂0
L. (23)

Proof. Leveraging the straight-line trajectories characteristic of rectified flow models, the data sam-
ple at t = 0 can be estimated directly from an intermediate state xt:

x̂0 = xt + t · uθ(xt, t). (24)

By differentiating the x̂0 with respect to xt, we get:

dx̂0

dxt
= I + t · duθ(xt, t)

dxt
(25)

= I + t · Juθ
(xt, t). (26)

Using the chain rule for gradients:

∇xtL =

(
dx̂0

dxt

)T

∇x̂0L. (27)

Substituting the expression for dx̂0

dxt
, we obtain:

∇xt
L = (I + t · Juθ

(xt, t))
T∇x̂0

L. (28)

According to Assumption 3, due to the constancy of Jacobian, Juθ
, for rectified flow models, we

can treat it as constant for any time t. Hence, we get our desired approximation:

5
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∇xt
L = (I + t · Juθ

(xt, t))
T∇x̂0

L. (29)

This completes the proof.

Hence, as either t → 0 or Juθ
(Assumption 2), both gradients become approximately similar and

ϵ(t) → 0. This guarantees the convergence of the error dynamics as time passes. We further show
this behavior of RFMs empirically in Section H and show that this remains true for even large-scale
latent models.

Theorem 4.3 (Update Rule for Steering the RFMs). Let uθ : Rd× [0, T ]→ Rd be a velocity field
with constant Jacobian Juθ

. Define the estimated initial state x̂0 from an intermediate state xt by

x̂0 = xt + t · uθ(xt, t).

Consider the quadratic loss function L = ∥x̂0 − xref
0 ∥2, where xref

0 is a reference sample. Then, the
update rule for controlled generation is given by

xt−∆t = xt +∆tuθ(xt, t)− s′∇x̂0
L,

where:

• ∇x̂0
L = 2(x̂0 − xref

0 ),

• s′ ≈ (I +∆t · Juθ
) (I + t · Juθ

)
⊤,

• I is the identity matrix.

Proof. By lemma 2.2 and Assumption 2, we can further approximate the Eq. 23:

∇xt
L = (I + t · Juθ

)T∇x̂0
L ≈ KT∇x̂0

L, (30)

where K is the constant matrics as ∆t → 0 and t → 0. Under this formulation, we can perform
controlled image generation in three steps:

Step 1: x̂0 = xt + t · uθ(xt, t)

Step 2: x̂t = xt −KT∇x̂0
L

Step 3: xt−∆t = x̂t +∆t · uθ(x̂t, t).

(31)

However, this will require additional forward passes. But according to Assumption 2 if ∆t is suffi-
ciently small, then by Taylor series approximation, we get:

xt−∆t = xt −KT∇x̂0
L+∆t · uθ

(
xt −KT∇x̂0

L, t
)

(32)

= xt −KT∇x̂0
L

+∆t
[
uθ(xt, t)− Juθ

·KT · ∇x̂0
L
]

(33)

Now, as Juθ
is constant w.r.t. ∆t. Hence, we get:

xt−∆t = xt − (I +∆t · Juθ
)KT∇x̂0

L+∆t · uθ(xt, t) (34)

= xt +∆t · uθ(xt, t)− s′∇x̂0L, (35)

where s′ = (I +∆t · Juθ
)KT is constant and it can predetermined.

Hence, this concludes the proof that for appropriate guidance scale s′, we can perform the controlled
generation as derived above.

6
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F NUMERICAL ACCURACY FOR MODEL STEERING

In our controlled generation framework, we aim to steer the generation process towards a reference
sample xref

0 by solving the modified ODE:

dx(t)

dt
= f(x(t), t) = uθ(x(t), t)− s′∇x̂0

L. (36)

The accuracy of this numerical integration is crucial, as errors can accumulate over time, leading
to deviations from the desired trajectory. The smoothness of the modified velocity field f(x(t), t)
significantly impacts this accuracy. Specifically, a smaller magnitude of

∣∣ d
dtf(x(t), t)

∣∣ reduces local
truncation errors. The following Proposition formalizes this relationship, stating that the numerical
accuracy improves as

∣∣ d
dtf(x(t), t)

∣∣ decreases.

Proposition F.1. (Informal). Given the prior notations, Assumptions, and Theorem, for any p-th
order numerical method solving Eq. equation 36, the accuracy of the numerical solution increases
as the magnitude of

∣∣ d
dtf(x(t), t)

∣∣ decreases.

Proof. To analyze the local truncation error, consider the Taylor series expansion of the exact solu-
tion around time t when integrating backward in time from t to t−∆t:

x(t−∆t) =x(t)−∆t f(x(t), t) +
(∆t)2

2

d

dt
f(x(t), t)

− (∆t)3

6

d2

dt2
f(x(t), t) +O

(
(∆t)4

)
.

The numerical method updates the solution using:

xt−∆t = xt +∆t ϕ(xt, t), (37)

where ϕ(xt, t) is the increment function. The local truncation error τ is the difference between the
exact solution and the numerical approximation:

τ = x(t−∆t)− xt−∆t

=

[
x(t)−∆t f(x(t), t) +

(∆t)2

2

d

dt
f(x(t), t)

− (∆t)3

6

d2

dt2
f(x(t), t) +O

(
(∆t)4

)]
− [xt +∆t ϕ(xt, t)] .

The first p-order terms cancel out, and we have:

||τ || ≤
∥∥∥∥ (∆t)p+1

(p+ 2)!

dp+1

dtp+1
f(x(t), t)

∥∥∥∥ (38)

According to the Mean Value Theorem, we have

||τ || ≤ C(∆t)p+1 max
t∈[tn,tn+1]

∥∥∥∥ d

dt
f(x(t), t)

∥∥∥∥ (39)

where C is a constant depending on the method. The global error e(t) = x(t)−xt accumulates these
local errors over the integration interval. Under standard assumptions (e.g., Lipschitz continuity of
f ), the global error is bounded by:

7
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∥e(t)∥ ≤ K(∆t)p
(
eL(T−t) − 1

)
max
t∈[0,T ]

∥∥∥∥ d

dt
f(x(t), t)

∥∥∥∥ , (40)

where K is a constant depending on the Lipschitz constant L of f and the total integration time
T .

As the magnitude of
∥∥ d
dtf(xt, t)

∥∥ decreases, both the local truncation error and the global error
decrease, enhancing the accuracy of the numerical solution. In the context of controlled generation,
ensuring that f(xt, t) changes smoothly over time leads to more accurate integration and better
alignment with the reference point xref

0 . This insight and prior assumptions require that the guidance
scale s′ and δt be sufficiently smaller, where higher NFEs lead to the lower ∆t. Hence, we increase
the NFEs significantly to stabilize the steering (see Section L). By carefully selecting s′, we ensure
that the additional term s′ ·∇x̂0

L does not introduce excessive variability into f(x(t), t), maintaining
the smoothness necessary for accurate numerical integration.

G EXTENDED RELATED WORKS

Generative Models. Recent advances in generative models, especially diffusion models like La-
tent Diffusion Model (LDM) Rombach et al. (2022), GLIDE Nichol et al. (2021), and DALL-
E2 Ramesh et al. (2022), have significantly improved photorealism compared to GAN-based meth-
ods such as StackGAN Zhang et al. (2017) and BigGAN Brock (2018). Pretrained diffusion models
have been successfully applied to diverse tasks, including image editing Hertz et al. (2023), per-
sonalization Patel et al. (2024a), and style transfer Wang et al. (2024), but their inference flexibil-
ity remains limited, and they demand substantial resources Gu et al. (2024); Patel et al. (2024b).
Distillation-based strategies like Latent Consistency Models Luo et al. (2023) and Distribution
Matching Distillation Yin et al. (2024) address some limitations but lack control and broader ap-
plicability. Rectified Flow Models (RFMs) Liu et al. (2023a); Lipman et al. (2023), exemplified by
Flux1, SD3 Esser et al. (2024), and InstaFlow Liu et al. (2023b), show promise but face challenges
in downstream tasks due to inversion inaccuracies and other limitations. This work addresses these
gaps, extending RFMs to downstream tasks in a training-, gradient-, and inversion-free manner.

Conditional Sampling. Song et al. introduced noise-aware classifiers for controlling sampling
in diffusion models Dhariwal & Nichol (2021), but these require task-specific training. Classifier-
free guidance (CFG) Ho & Salimans (2022) avoids this but necessitates an additional pretraining
stage. FreeDoM Yu et al. (2023) and MPGD He et al. (2024) improve sampling control but remain
computationally intensive. Initial extensions of conditional sampling to flow models face simi-
lar challenges, such as compute-heavy gradient backpropagation and limited applicability to latent
space models. Our method, FlowChef, eliminates these issues, seamlessly enabling gradient- and
inversion-free conditional sampling in latent-space models.

Inverse Problems. This task addresses training-free approaches for solving inverse problems such
as in-painting, super resolution, Gaussian de-blurring etc Daras et al. (2024). Inverse problems,
dominated by diffusion-based methods Daras et al. (2024), include pixel-space solutions such as
DPS Chung et al. (2022), Π-GDM Peng et al. (2024), and BlindDPS Chung et al. (2023). PSLD Rout
et al. (2024b) extends support to latent-space models, while manifold-based methods Song et al.
(2024); He et al. (2024) further enhance performance. Since Dhariwal et. al. demonstrated that
guiding models with classifiers improves image generation quality Dhariwal & Nichol (2021), much
of the current literature focuses on diffusion models, particularly pixel-space models Daras et al.
(2024); Song et al. (2023); Chung et al. (2022); Wu et al. (2024a). However, these models face chal-
lenges when scaled to latent-space models, as they are incompatible with off-the-shelf pretrained
models and require backpropagation through ODESolvers, which can take at least three minutes per
image for satisfactory results Daras et al. (2024); Rout et al. (2024b); Song et al. (2024); Rout et al.
(2024a). Methods such as MPGD He et al. (2024) attempt to mitigate these issues via manifold cor-
rection, but limitations persist, especially with large-scale models. Recent work has extended these
approaches to ODEs (e.g., OT-ODE) and flow models Pokle et al. (2024). D-Flow Ben-Hamu et al.

1https://huggingface.co/black-forest-labs/FLUX.1-dev
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Rectified Flow ++ during
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Figure 4: Empirical analysis of gradient similarity (a, b, and c) and convergence rate. (a) and (b)
analyzes the gradients without model steering. (c) contains the gradient similarity during the active
model steering. And (d) shows the trajectory similarity at each timestep t w.r.t. the inversion based
trajectory.

Method NFEs CG Scale FID (↓) VRAM (↓) Time (↓)

DDIM 50 - 5.39 3.67 14.22
MPGD 50 1 4.24 6.56 25.01
MPGD 50 10 5.46 6.56 25.01
Oursw/ skip grad 50 1 19.28 6.56 24.95

RFPP (2-flow) 2 - 4.56 3.29 0.28
RFPP (2-flow) 15 - 4.29 3.36 2.75
Oursw/ backpropagation 15 5 2.77 17.98 12.79
Oursw/ skip grad 15 50 3.13 6.64 5.85

Table 3: Performance of Various guided sampling methods on ImageNet64x64 with 32 batch size inference on
A6000 GPU.

(2024), for instance, optimizes initial noise by differentiating through the full trajectory chain; how-
ever, this comes with significant resource demands and is not adaptable to state-of-the-art (SOTA)
models like Flux or SD3 Esser et al. (2024). In this work, we propose FlowChef, which addresses
linear inverse problems in a gradient- and inversion-free manner.

Image Editing. Diffusion-based approaches dominate image editing Huang et al. (2024), but they
rely heavily on accurate inversion Ju et al. (2023); Brack et al. (2024); Mokady et al. (2023);
Huberman-Spiegelglas et al. (2024). Although inversion-free diffusion methods are faster, they
often lack in edit quality Xu et al. (2023); Couairon et al. (2023); Meng et al. (2022); Wu et al.
(2024b). Despite RFMs being SOTA in text-to-image (T2I) generation, they still lack robust edit-
ing capabilities. iRDS Yang et al. (2024) presents an inversion strategy for RFMs, especially In-
staFlow Liu et al. (2023b), but it lacks quality and control. Similarly, RectifID Sun et al. (2024)
offers an optimization-based approach to modify the whole trajectory for personalized T2I gener-
ation but performs poorly with InstaFlow like straight models. To the best of our knowledge, we
present the first comprehensive solution that enhances RFMs for image editing and extends beyond
it that too without significant computational or time overhead.

H EMPIRICAL FINDINGS

In Section 2, we provided theoretical insights into FlowChef along with an intuitive algorithm.
To complement the theory, we conducted an empirical analysis on large-scale RFMs to validate
the Assumptions, Propositions, Lemmas, and Theorems presented. The results are summarized in
Figure 4.

In Figure 4a, we compare the gradient cosine similarity with and without backpropagation through
the ODESolver for InstaFlow and Stable Diffusion v1.5. For all denoising steps, the gradients of

9
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Algorithm 1: FlowChef vs. Baseline FreeDoM.
1 Input: Pretrained Rectified-flow model uθ, input noise sample xT ∼ N(0, I), target data

sample xref
0 , and L cost function.

2 for t ∈ {T...0} do
3 v ← uθ(xt, t) dt← 1/T

4 xt ← xt.require grad (True)
5 for N steps do
6 v ← uθ(xt, t)

7 x̂0 ← xt + t · v
8 loss← L(x̂0, x

ref
0 )

9 ∇xt ← grad(loss, xt) // Compute heavy BP

10 xt ← Optimize(xt, loss) // Lemma 2.2

11 v ← uθ(xt, t)

12 xt−1 ← xt + dt · v // Theorem 2.3
13 RETURN x0

SDv1.5 behave nearly randomly, indicating that the stochasticity of the base model significantly
impacts gradients, even when using the ODE sampling process during inference. In contrast, for
InstaFlow, as denoising progresses (t→ 0), gradient alignment improves, supporting our derivation
in Lemma 2.2, which states that as t→ 0, we achieve∇xt

≈ ∇x̂0
.

Further analysis was performed on the Rectified Flow++ model, which is designed for straight tra-
jectories with zero crossovers. As shown in Figure 4b, well-trained models exhibit high gradient
similarity even at the initial stages of denoising. However, as illustrated in Figure 4c, during active
steering, the gradient direction initially diverges before improving. This behavior is also reflected in
the convergence plot in Figure 4d.

We hypothesize that this phenomenon arises due to the proximity to the Gaussian noise space (p1 ∼
N(0, I)), where model steering is more error-prone since minor adjustments can disproportionately
affect future trajectories. As denoising progresses and the distribution moves further from the noise
(p1), these errors diminish, and convergence is achieved. These observations align well with our
theoretical predictions, further reinforcing the validity of FlowChef.

I ALGORITHMS

This section provides an overview of the algorithms underpinning FlowChef for image editing and
its comparison to baseline methods for a comprehensive understanding.

Image Editing. As described in Section 2.2, FlowChef can be easily extended to image editing.
Revisiting the core concept, FlowChef modifies random trajectories to align with a target sample.
Image editing involves balancing similarity with the target sample while introducing deviations to
achieve desired edits.

Figure 1 and Section L illustrate how FlowChef progressively transfers characteristics from high-
level structure to finer details like color composition. However, editing requirements vary by task.
For example, adding an object benefits from trajectory adjustments earlier in the denoising process,
while color changes require gradual learning at later stages. We can optimize parameters for diverse
tasks using the generalized FlowChef, as detailed in Algorithm ??.

To simplify the process, we extend FlowChef to support off-the-shelf editing tasks, such as those
in the PIE-Benchmark, as detailed in Algorithm 1. Assume a non-edit region mask, Medit, derived
from cross-attention or human annotation. To steer the trajectory towards the desired edits, we
modify the velocity (v) using a classifier-free guidance strategy:

10
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Algorithm 2: : FlowChef optimized for a wide range of image editing tasks.
1 Input: Pretrained Rectified-flow model uθ, input noise sample xT ∼ N(0, I), target data

sample xref
0 , cedit is edit prompt, cbase is base prompt, M is user-provided input mask, and L

cost function.
2 for t ∈ {T...0} do
3 dt← 1/T

4 c← [cedit, cbase]
5 v ← uθ(xt, t, c)
6 vedit, vbase = v.chunk(2)
7 v = vedit + ¬mask · (vedit − vbase) · s
8 Medit ←M
9 xt ← xt.require grad (true)

10 if t < minT then
11 for N steps do
12 x̂0 ← xt + t · v
13 if t < max full stepsT then
14 Medit ← I

15 loss← L(x̂0, x
ref
0 ) ·Medit

16 xt ← Optimize(xt, loss) // Lemma 2.2

17 xt−1 ← xt + dt · v // Theorem 2.3
18 RETURN x0

v = vedit + ¬mask · (vedit − vbase) · s, (41)

where vedit corresponds to the edit prompt and vbase to the base (negative) prompt. This adjustment
ensures the trajectory reflects the desired edits.

To maintain alignment of non-edited regions with the target sample, we modify the cost function as
follows:

L(x̂0, x
ref
0 ) = ||(x̂0 − xref

0 ) ·Medit||22. (42)

Preserving the original image structure is crucial for edits such as color or material changes. To
achieve this, we introduce the parameter max full steps T , which determines the number of steps
that apply full FlowChef guidance with an identity mask. This ensures structural preservation
while facilitating edits. Section L details a comprehensive reference for hyperparameters.

FlowChef vs. Baseline FreeDoM. Algorithm 1 compares FlowChef to the baseline FreeDoM,
a diffusion model method that modifies the score function using a classifier guidance-like approach.
FreeDoM requires estimating velocity and calculating gradients (∇xt ) through backpropagation
via the ODESolver uθ, as marked in red. In contrast, as highlighted in green, FlowChef elim-
inates the need for backpropagation while still achieving convergence. This simplification makes
FlowChef a more efficient and practical solution without sacrificing performance.

J EXPERIMENTAL SETUP

This section outlines the hyperparameters used for FlowChef and baseline methods in solving
inverse problems.

Pixel-Space Models. All evaluations were conducted using the Rectified Flow++ checkpoint.
Since public implementations of OT-ODE and D-Flow are unavailable, we implemented these meth-
ods manually based on the provided pseudocode and performed hyperparameter tuning to ensure op-
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Hyperparameter OT-ODE D-Flow PnP-Flow FlowChef

Iterations / NFEs 200 20 50 200
Optimization per iteration 1 - - 1
Optimization per denoising - 50 - -
Avg. sampling steps - - 5 -
Guidance scale 1 1 1 500
Cost function L1 L1**2 L1 MSE
initial time (1 means noise) 0.8 - - -
blending strength - 0.05 - -
inversion × ✓ × ×
learning rate 1 1 1 1

Table 4: Hyperparameters for solving inverse problems using pixel-space models.

Hyperparameter D-Flow RectifID FlowChef

Iterations / NFEs 10 4 100
Optimization per iteration - - 1
Optimization per denoising 20 400 -
Blending strength 0.1 - -
Guidance scale 0.5 0.5 0.5
Cost function MSE MSE MSE
Learning rate 0.5 1 0.02
Optimizer Adam SGD Adam
loss multiplier (latent/pixel) 0.000001 0.0001 / 100000 0.001/1000
inversion ✓ × ×

Table 5: Hyperparameters for solving inverse problems using latent-space models (InstaFlow).

Model Hyperparameters Chage Object Add Object Remove Object Change Attrbiute Chage Pose Change Color Change Material Change Background Change Style

FlowChef (InstaFlow)

Learning rate 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5
Max setps 50 50 50 50 20 30 50 50 30
Optimization steps 1 1 3 2 2 2 2 4 1
Inference steps 50 50 50 50 50 50 50 50 50
Full source steps 30 30 0 10 10 20 20 0 30
Edit guidance scale 2.0 2.0 2.0 4.5 8.0 8.0 4.0 3.0 6.0

FlowChef (Flux)

Learning rate 0.4 0.5 0.5 0.5 0.5 0.4 0.5 0.5 0.4
Optimization steps 1 1 1 1 1 1 1 1 1
Inference steps 30 30 30 30 30 30 30 30 30
Full source steps 5 5 0 2 5 3 5 0 5
Edit guidance scale 4.5 4.5 4.5 4.5 7.5 10.0 4.5 0.0 10.0

Table 6: Hyperparameter examples for which various editing tasks can be performed (following Algorithm
2). Notably, the FlowChef (Flux) variant can be further optimized for task-specific settings that will follow
Algorithm 1 with a careful selection of hyperparameters.

Metric OT-ODE PnP-Flow D-Flow FlowChef

VRAM (GB) 0.70 0.40 6.44 0.43
Time (sec) 10.39 5.23 80.42 4.31

Table 7: Compute requirement comparisons on a A6000 GPU.

timal performance. Notably, DPS and FreeDoM hyperparameters are the same as the FlowChef.
Table 4 provides a detailed overview of the hyperparameters used for each baseline.

Latent-Space Models. For latent-space models, we extended D-Flow to the InstaFlow pretrained
model, repurposed RectifID for inverse problems, and fine-tuned the hyperparameters for optimal
results. The best-performing hyperparameters for each baseline are listed in Table 5. We utilized
their baseline implementations for diffusion model-based approaches such as Resample and PSLD-
LDM, modifying only the number of inference steps. Specifically, we used 100 NFEs for Resample
and 100/500 NFEs for PSLD.

K EXTENDED RESULTS

Classifier Guidance: Style Transfer. We conducted classifier-guided style transfer experiments
using 100 randomly selected style reference images paired with 100 random prompts. The objective
was to generate stylistic images that align visually with the reference style while adhering to the
prompt. A pretrained CLIP model was used for evaluation, and we report both CLIP-T and CLIP-

12
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Method CLIP-I (↑) CLIP-T (↑) VRAM Time

FreeDoM 0.5343 0.2541 17GB 80 sec
MPGD 0.5285 0.2616 16GB 20 sec
RetifID 0.4583 0.1702 18GB 30 sec
D-Flow 0.4851 0.2591 23GB 5 sec
FlowChef(10 NFEs) 0.5044 0.2655 2 sec
FlowChef(30 NFEs) 0.5301 0.2600 7 sec
FlowChef(30 NFEs × 2) 0.5531 0.2478

14GB
12 sec

Table 8: Comparison of Various Classifier Guided Style Transfer.

0 20 40 60 80 100
Percentage of Responses

FlowChef (Flux)

InfEdit

DiffEdit

Ledits++

47.0% 18.0% 35.0%

40.4% 18.2% 41.4%

24.2% 26.3% 49.5%

48.0% 20.0% 32.0%

Preference Scores by Method

Baseline Tie FlowChef (InstaFlow)

Figure 5: Human preference analysis for image editing.

Methods CLIP-I (↑) CLIP-T (↑) Time (↓)

RF-Inversion 0.8573 0.2790 ∼31 sec
FlowChef (ours) 0.8269 0.2828 ∼15 sec

Table 9: Comparison of FlowChef with concurrent work RF-Inversion on top of Flux for editing task “wear-
ing glasses”.

S scores Radford et al. (2021). For baseline comparisons, we included diffusion-based methods
FreeDoM and MPGD and flow-based methods D-Flow and RectifID, which were extended for this
task. The backbone was fixed to Stable Diffusion v1.5 (SDv1.5), with FlowChef evaluated in its
InstaFlow variant to ensure a consistent comparison. Both quantitative and qualitative results are
presented in Table 8, demonstrating the effectiveness of FlowChef in this setup.

Multiobject editing & 3D generations. To highlight the versatility and effectiveness of
FlowChef, we extended our method to tackle multi-object image editing and 3D multiview gen-
eration. Figure 7 demonstrates FlowChef (Flux) performing complex multi-object edits, such as
simultaneously modifying two pots and hats. Notably, this capability relies on the base model’s
ability to understand textual instructions effectively. FlowChef leverages this strength of Flux,
achieving edits without requiring inversion, a significant advantage over traditional methods. In
Figure 6, we explore FlowChef’s multiview synthesis capability, inspired by Score Distillation
Sampling (SDS) Poole et al. (2023). By incorporating the core idea of FlowChef for model
steering into recent work on RFDS Yang et al. (2024), we evaluate its effectiveness for 3D view
generation. While FlowChef does not improve inference efficiency or reduce cost compared to
RFDS-Rev Yang et al. (2024), it demonstrates competitive performance in generating high-quality
multiview outputs. These results underline the adaptability of FlowChef, showcasing its potential
for advanced generative tasks such as multi-object editing and 3D synthesis, while maintaining the
state-of-the-art quality expected from RFMs.

RF-Inversion vs. FlowChef. In this section, we briefly compare FlowChef with the con-
current work, RF-Inversion, which introduces an inversion strategy for rectified flow models us-
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An adorable cottage.

A steaming mug of hot chocolate with whipped cream.

RDFS-Rev FlowChef

Figure 6: Extending FlowChef to 3D multiview synthesis.

Three pots on top of the table with blue, green, and green colors.

Four people dining at a restaurant and wearing red, blue, yellow, and 
black hats from left to right.

Four people dining at a restaurant and wearing red, yellow, yellow, and 
black hats from left to right.

Figure 7: FlowChef (Flux) multi object editing examples.

ing a linear quadratic regulator perspective from optimal transport, particularly for image editing
tasks. RF-Inversion relies on image inversion, significantly increasing compute time—nearly dou-
bling it compared to FlowChef. To evaluate, we conducted a “wearing glasses” editing task us-
ing 256 randomly selected SFHQ face images on the Flux.1[dev] model. As shown in Table 9,
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lr = 0.01 lr = 0.02 lr = 0.05 lr = 0.1 reference

Figure 8: Effect of FlowChef learning rate with fixed 20 max steps and one optimization step on
InstaFlow.

Opt. steps = 1 Opt. steps = 2 Opt. steps = 3 Opt. steps = 4 Opt. steps = 5 reference

Figure 9: Effect of FlowChef optimization steps with fixed 20 max steps and 0.02 learning rate on
InstaFlow.

FlowChef achieves competitive performance in half the time. At a high level, RF-Inversion can
be viewed as a special case of FlowChef, where the starting point is an inverted image rather than
random noise. We applied a similar editing strategy to both methods for a fair comparison, as out-
lined in Algorithm ??, using a learning rate of 0.07, 20 optimization steps, and 30 total inference
steps. On an A100 GPU, this configuration required approximately 15 seconds per inference. This
comparison highlights the efficiency and versatility of FlowChef in handling image editing tasks.

L HYPER-PARAMETER STUDY

Figures 8, 9, and 10 present an analysis of the impact of various hyperparameters on steering the
InstaFlow model using FlowChef. Figure 8 demonstrates that a lower learning rate combined
with a single optimization step is insufficient to effectively steer the model. Optimal performance is
achieved with a learning rate of 0.1. Additionally, Figure 9 shows that lower learning rates necessi-
tate more optimization steps to achieve convergence. Finally, Figure 10 illustrates how the denoising
trajectory can be controlled by adjusting the learning rate and optimization steps, enabling recovery
of the target sample with the desired accuracy. This control is particularly critical for image editing
tasks, where striking the right balance between preserving the reference sample and applying the
editing prompt is essential. Table 6 further highlights optimal hyperparameter settings for image
editing tasks, providing valuable guidance for achieving high-quality edits. This study underscores
the flexibility of FlowChef in adapting to diverse use cases by tuning these parameters effectively.
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Max steps = 0 Max steps = 1 Max steps = 2 Max steps = 3 Max steps = 4 Max steps = 5 Max steps = 10 Max steps = 15 Max steps = 20

lr = 0.01
Opt. steps = 1

lr = 0.01
Opt. steps = 5

lr = 0.1
Opt. steps = 1

reference

Figure 10: Effect of various FlowChef’s steering parameters with increasing maximum optimiza-
tion steps on InstaFlow.

a small white blue lamb standing in the grass.

Deblurring Super-resolution

a green lipstick is being splashed with red powder.

Figure 11: FlowChef (Flux) model failures on inverse problems and image editing.

M QUALITATIVE RESULTS

Figure 12 showcases additional qualitative examples of image editing tasks. For tasks such as
changing materials or removing objects, FlowChef outperforms the baselines significantly. How-
ever, some limitations are noted: while FlowChef (InstaFlow) struggles to replace a cat with a
tiger, InfEdit handles this task effectively, and Ledits++ exhibits difficulties. On the other hand,
FlowChef (Flux) achieves superior results, though it replaces a dog with a tiger instead of a lion
in one instance. In the final example, both Ledits++ and FlowChef successfully edit long hair into
short hair. Importantly, the results in Figure 12 are presented without cherry-picking, using consis-
tent hyperparameters for both baselines and FlowChef. Variability in outcomes may still arise due
to random seeds and fine-tuned hyperparameter selection.

Figures 13, 14, 15, 16, 17, and 18 provide pixel-level qualitative results for various inverse prob-
lems, spanning inpainting, deblurring, and super-resolution tasks under both easy and hard scenar-
ios. Readers are encouraged to zoom in to inspect these comparisons more closely. For each task,
we randomly selected 10 CelebA examples and evaluated various baselines. Across all difficulty
levels, FreeDoM, DPS, and PnPFlow demonstrate better performance than D-Flow and OT-ODE.
However, FlowChef consistently outperforms all baselines, producing sharp and visually ap-
pealing results where other methods either fail outright or introduce excessive smoothness. Hard
scenarios pose challenges for all methods, but FlowChef notably improves performance even un-
der these conditions. While FlowChef shows promise, future work is needed to address potential
adversarial effects and further enhance robustness.
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N LIMITATIONS & FUTURE WORK

Limitations. While FlowChef represents a significant leap in steering RFMs for controlled gen-
eration, it shares some limitations with its baseline counterparts. Hyperparameter tuning remains
a challenge, particularly due to differences in trajectory behavior. For instance, while InstaFlow
trajectories are relatively linear, Flux.1[Dev] trajectories exhibit non-linearity, necessitating careful
tuning. As shown in Figure 7, FlowChef (Flux) faces difficulties in deblurring and super-resolution
tasks, which we attribute to the pixel-space loss and non-linear behavior of the VAE model. Impor-
tantly, these limitations occur in less than 10% of cases and can often be resolved by simply adjusting
the random seed. Furthermore, due to Flux’s lack of true classifier-free guidance (CFG), Algorithm 2
occasionally fails to perfectly execute color changes, sometimes producing the unaltered target im-
age without reflecting the edit (see Figure 7). Despite these minor limitations, FlowChef still
delivers state-of-the-art performance, making these challenges opportunities for further refinement
rather than fundamental drawbacks.

Future Work. FlowChef opens a promising avenue for steering RFMs effortlessly with guar-
anteed convergence for controlled image generation. While this work extensively evaluates
FlowChef on image generative models, future research should focus on expanding its capabil-
ities to video and 3D generative models, areas that remain largely unexplored. Additionally, the
current implementation assumes the availability of human-annotated masks for image editing. Au-
tomating this step with advanced attention mechanisms could make FlowChef a fully automated
image editing framework. We encourage the research community to build upon this foundation to
enhance its accessibility and functionality.

Ethical Concerns. As with all generative models, ethical concerns such as safety, misuse, and
copyright issues apply to FlowChef Kim et al. (2024a;b). By enabling controlled generation
with state-of-the-art RFMs, FlowChef can be leveraged for beneficial and harmful purposes. To
mitigate these risks, future efforts should focus on solutions such as image watermarking, content
moderation, and unlearning harmful behaviors. While these issues are not unique to FlowChef,
addressing them will be key to ensuring its responsible use.
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Input Ledits++ DiffEdit Ours
(InstaFlow)InfEdit Ours

(Flux)

A dog lion is laying down on a white background.

a colorful wooden bird sitting on a branch with a green background

A lion in a suit sitting at a table with a laptop.

A cat tiger sitting next to a mirror

a woman with long short hair sitting in the sand at sunset

Figure 12: Qualitative results on image editing. Additional qualitative comparisons of
FlowChef with the baselines.
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Figure 13: Qualitative examples of various methods for easy box inpainting task on RF++.
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Figure 14: Qualitative examples of various methods for hard box inpainting task on RF++.

19



1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Deblurring

Degraded

OT-ODE

FreeDoM

DPS

D-Flow

PnPFlow

FlowChef
(ours)

Ground
Truth

Figure 15: Qualitative examples of various methods for an easy deblurring task on RF++.
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Figure 16: Qualitative examples of various methods for the hard deblurring task on RF++.
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Figure 17: Qualitative examples of various methods for an easy super-resolution task on RF++.
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Figure 18: Qualitative examples of various methods for the hard super-resolution task on RF++.
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