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Abstract

In Federated Learning, one of the biggest challenges is that client devices often have
drastically different computation and communication resources for local updates.
To this end, recent research efforts have focused on training heterogeneous local
models that are obtained by adaptively pruning a shared global model. Despite the
empirical success, theoretical analysis of the convergence of these heterogeneous
FL algorithms remains an open question. In this paper, we establish sufficient
conditions for any FL algorithms with heterogeneous local models to converge to a
neighborhood of a stationary point of standard FL at a rate of O( 1√

Q
). For general

smooth cost functions and under standard assumptions, our analysis illuminates
two key factors impacting the optimality gap between heterogeneous and standard
FL: pruning-induced noise and minimum coverage index, advocating a joint design
strategy of local models’ pruning masks in heterogeneous FL algorithms. The
results are numerically validated on MNIST and CIFAR-10 datasets.

1 Introduction

Federated Learning (FL) [1] allows distributed clients to collaborate and train a centralized global
model without the transmission of local data. In practice, mobile and edge devices that are equipped
with drastically different computation and communication capabilities are becoming the dominant
source for FL [2]. This has prompted significant recent attention to a family of FL algorithms relying
on training heterogeneous local models (often obtained through pruning a shared global model) for
global aggregation. It includes algorithms such as HeteroFL [3] that employ fixed heterogeneous local
models, algorithms utilizing pre-trained pruning masks following "The Lottery Ticket Hypothesis"
[4], as well as algorithms like PruneFL [5] that adaptively prune local models during training.
However, the success of these algorithms has only been demonstrated empirically (e.g., [2, 5, 3]).
Unlike standard FL that has received rigorous analysis [6–9], the convergence of heterogeneous FL
algorithms is still an open question.

This paper tackles the following questions – Given a heterogeneous FL algorithm that trains a shared
global model through a sequence of time-varying and client-dependent local models, what conditions
can guarantee its convergence? How do the trained models compare to that of standard FL? There
have been many existing efforts in establishing convergence guarantees for FL algorithms, such as
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the popular FedAvg [1], on both IID 1 and non-IIDdata distributions, but all rely on the assumption
that local models share the same uniform structure as the global model. Training heterogeneous local
models (which could adaptively change both over time and across clients) in FL is desirable due to
its ability to adapt to resource constraints and training outcomes.

For general smooth cost functions under standard FL assumptions, we prove that heterogeneous
FL algorithms satisfying certain sufficient conditions can indeed converge to a neighborhood of a
stationary point of standard FL (with a small optimality gap that is characterized in our analysis),
at a rate of O( 1√

Q
) in Q communication rounds. We prove a new upperbound and show that the

optimality gap (between heterogeneous and standard FL) is affected by both pruning-induced noise
(as identified in single-model pruning) and a new notion of minimum coverage index in FL (i.e., any
parameters in the global model are included in at least Γmin local models). Our results also motivate
a joint design of efficient local-model pruning strategies (e.g., leveraging [10–12]) for heterogeneous
FL to have comparable convergence with standard FL. It captures a number of existing FL algorithms
and provides a general convergence guarantee. We perform extensive experiments on MNIST and
CIFAR10 datasets. Our numerical evaluations validate the sufficient conditions established in our
convergence analysis.

2 Related Work

Federated Averaging and Communication Efficient FL. FedAvg [1] is considered the first and
the most commonly used federated learning algorithm . Several works have shown the convergence
of FedAvg under several different settings with both homogeneous (IID) data [6, 13] and heteroge-
neous (non-IID) data [9, 7, 8] even with partial clients participation. Specifically, [8] demonstrated
LocalSGD achieves O( 1√

NQ
) convergence for non-convex optimization and [9] established a conver-

gence rate of O( 1
Q ) for strongly convex problems on FedAvg, where Q is the number of SGDs and

N is the number of participated clients. Several works [14–17] are proposed to further reduce the
communication costs. One direction is to use data compression such as quantization [18, 7, 19, 20],
sketching [21, 22], split learning [23] and learning with gradient sparsity [24]. None of these work
considers the convergence of FL with heterogeneous local models.

Neural Network Pruning and Sparsification. To reduce the computation costs of a neural network,
neural network pruning is a popular research topic. A magnitude-based prune-from-dense methodol-
ogy [25–29] is widely used where weights smaller than the certain preset threshold are removed from
the network. In addition, there are one-shot pruning initialization [30], iterative pruning approach
[31, 32] and adaptive pruning approach [33, 34] that allows network to grow and prune. In [4, 35]
a "lottery ticket hypothesis" was proposed that with an optimal substructure of the neural network
acquired by weights pruning, directly training a pruned model could reach similar results as pruning
a pre-trained network. The other direction is through sparse mask exploration [36–38], where a
sparsity in neural networks is maintained during the training process. It is empirically observed
[4, 37] training of models with static sparse parameters will converge to a solution with higher loss
than models with dynamic sparse training. However, when adaptive model pruning is employed to
generate local models in heterogeneous FL, the convergence is an open problem.

Efficient FL with Heterogeneous Neural Networks. Several works are proposed to address
the reduction of both computation and communication costs, including one way to utilize lossy
compression and dropout techniques[39, 40]. Although early works mainly assume that all local
models are to share the same architecture as the global model [41], recent works have empirically
demonstrated that federated learning with a heterogeneous client model to save both computation
and communication is feasible. PruneFL[5] proposed an approach with adaptive parameter pruning
during FL. [42] proposed FL with a personalized and structured sparse mask. HetroFL[3] proposed
to generate heterogeneous local models as a subnet of the global network by picking the leading
continuous parameters layer-wise with the help of proposed static batch normalization, while [43]
finds the small sub-network by applying the structured pruning. Despite their empirical success, they
lack theoretical convergence guarantees even in convex optimization settings.

1Throughout this paper, “IID data” means that the data among local clients are not independent and identically
distributed.
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3 Methodology

3.1 Problem Formulation for FL with Heterogeneous Local models

Given an FL algorithm that trains heterogeneous local models for global aggregation, our goal
is to analyze its convergence with respect to a stationary point of standard FL. We consider a
general formulation where the heterogeneous local models can be obtained using any adaptive model
pruning strategies that are both (i) time-varying to enable online adjustment of pruned local models
during the entire training process and (ii) different across FL clients with respect to their individual
heterogeneous computing resource and network conditions. More formally, we denote the sequence
of local models used by a heterogeneous FL algorithm by masks mq,n ∈ {0, 1}|θ|, which can vary
at any round q and for any client n. Let θq denote the global model at the beginning of round q
and ⊙ be the element-wise product. Thus, θq ⊙mq,n defines the trainable parameters of the pruned
local model2 for client n in round q. Our goal is to find sufficient conditions on such masks mq,n

∀q, n for the convergence of heterogeneous FL. Here, we describe one around (say the qth) of the
heterogeneous FL algorithm. First, the central server employs a given pruning strategy P(·) to prune
the latest global model θq and broadcast the resulting local models to clients:

θq,n,0 = θq ·mq,n, with mq,n = P(θq, n, q), ∀n. (1)

We note that the pruning strategy P(θq, n, q) can vary over time q and across clients n in heterogeneous
FL. Each client n then trains the pruned local model by performing T local updates (in T epochs):

θq,n,t = θq,n,t−1 − γ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n, for t = 1 . . . , T, (2)

where γ is the learning rate and ξn,t−1 are independent samples uniformly drawn from local data
Dn at client n. We note that ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n is a local stochastic gradient evaluated
using only local parameters in θq,n,t−1 (available to the heterogeneous local model) and that only
locally trainable parameters are updated by the stochastic gradient (via an element-wise product with
mq,n). Finally, the central server aggregates the local models θn,q,T ∀n and produces an updated
global model θq+1. Due to the use of heterogeneous local models, each global parameter is included
in a (potentially) different subset of the local models. Let N (i)

q be the set of clients, whose local
models contain the ith modeling parameter in round q. That is n ∈ N (i)

q if m(i)
q,n = 1 and n /∈ N (i)

q

if m(i)
q,n = 0. Global update of the ith parameter is performed by aggregating local models with the

parameter available, i.e.,

θ
(i)
q+1 =

1

|N (i)
q |

∑
n∈N (i)

q

θ
(i)
q,n,T , ∀i, (3)

where |N (i)
q | is the number of local models containing the ith parameter. We summarize the algorithm

details in Algorithm 1 in the Appendix.

3.2 Notations and Assumptions

We make the following assumptions that are routinely employed in FL convergence analysis. In
particular, Assumptions 1 is a standard and common setting. Assumption 2 follows from [34] (which
is for a single-model case) and implies the noise introduced by pruning is relatively small and bounded.
Assumptions 3 and 4 are standard for FL convergence analysis following from [45, 46, 8, 9] and
assume the stochastic gradients to be bounded and unbiased.
Assumption 1. (Smoothness). Cost functions F1, . . . , FN are all L-smooth: ∀θ, ϕ ∈ Rd and any n,
we assume that there exists L > 0:

∥∇Fn(θ)−∇Fn(ϕ)∥ ≤ L∥θ − ϕ∥. (4)

Assumption 2. (Pruning-induced Noise). We assume that for some δ2 ∈ [0, 1) and any q, n, the
pruning-induced error is bounded by

∥θq − θq ⊙mq,n∥2 ≤ δ2 ∥θq∥2 . (5)
2While a pruned local model has a smaller number of parameters than the global model. We adopt the

notations in [5, 44, 34] and use θq ⊙mq,n with an element-wise product to denote the pruned local model - only
parameter corresponding to a 1-value in the mask is accessible and trainable in the local model.
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Assumption 3. (Bounded Gradient). The expected squared norm of stochastic gradients is bounded
uniformly, i.e., for constant G > 0 and any n, q, t:

E ∥∇Fn(θq,n,t, ξq,n,t)∥2 ≤ G. (6)

Assumption 4. (Gradient Noise for IID data). Under IID data distribution, for any q, n, t, we assume
that

E[∇Fn(θq,n,t, ξn,t)] = ∇F (θq,n,t), E∥∇Fn(θq,n,t, ξn,t)−∇F (θq,n,t)∥2 ≤ σ2 (7)

for constant σ2 > 0 and independent samples ξn,t.

3.3 Convergence Analysis

We now analyze the convergence of heterogeneous FL for general smooth cost functions. We begin
with introducing a new notion of minimum covering index, defined in this paper by

Γmin = min
q,i

|N (i)
q |, (8)

Since |N (i)
q | is the number of heterogeneous local models containing the ith parameter, Γmin measures

the minimum occurrence of the parameter in the local models in all rounds. Intuitively, if a parameter
is never included in any local models, it is impossible for it to be updated. Thus conditions based
on the covering index would be necessary for the convergence toward standard FL. All proofs are
collected in the Appendix.

Theorem 1. Under Assumptions 1-4 and for arbitrary masks satisfying Γmin ≥ 1, heterogeneous FL
converges to a small neighborhood of a stationary point of standard FL as follows:

1

Q

Q∑
q=1

E||∇F (θq)||2 ≤ G0√
TQ

+
V0

Q
+

I0
Γmin

· δ
2

Q

Q∑
q=1

E∥θq∥2

where V0 = 3L2NG/Γmin, I0 = 3L2N , and G0 = 4E[F (θ0)] + 6LNσ2/Γ2
min, are constants

depending on the initial model parameters and the gradient noise.

Remark 1. Theorem 1 shows the convergence of heterogenous FL to a neighborhood of a stationary
point of standard FL (albeit a small optimality gap due to pruning-induced noise) as long as Γmin ≥ 1.
The result is a bit surprising since Γmin ≥ 1 only requires each parameter to be included in at least
one local model – which is obviously necessary for all parameters to be updated during training.
But we show that this is also a sufficient condition for convergence. Moreover, we also establish a
convergence rate of O( 1√

Q
) for arbitrary pruning strategies satisfying the condition.

1 2 3 4
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1 2 3 4
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1 2 3 4
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1 2 3 4

1 2 3 4
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1 2 3 4 X1

Figure 1: Illustration of three alternative pruning
strategies in heterogeneous FL. While all three
ensure convergence and have the same total model
size, their optimality gap can vary significantly.

Remark 2. Impact of pruning-induced
noise. In Assumption 2, we assume the
pruning-induced noise is relatively small and
bounded with respect to the global model:
∥θq − θq ⊙mq,n∥2 ≤ δ2 ∥θq∥2. This is satis-
fied in practice since most pruning strategies
tend to focus on eliminating weights/neurons
that are insignificant, therefore keeping δ2 in-
deed small. We note that similar observations
are made on the convergence of single-model
adaptive pruning [33, 34], but the analysis does
not extend to FL problems where the fundamen-
tal challenge comes from local updates causing
heterogeneous local models to diverge before
the next global aggregation. We note that for heterogeneous FL, pruning will incur an optimality gap
δ2 1

Q

∑Q
q=1 E∥θq∥2 in our convergence analysis, which is proportional to δ2 and the average model

norm (averaged over Q). It implies that more aggressive pruning in heterogeneous FL may lead to a
larger error, deviating from standard FL at a speed quantified by δ2. We note that this error is affected
by both δ2 and Γmin.
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Remark 3. Impact of minimum covering index Γmin. It turns out that the minimum number of occur-
rences of any parameter in the local models is a key factor deciding convergence in heterogeneous
FL. As Γmin increases, both constants G0, V0 and the optimality gap decrease. This result is a bit
counter-intuitive since certain parameters should be small enough to ignore in pruning. However,
recall that our analysis shows the convergence of all parameters in θq with respect to a stationary
point of standard FL (rather than for a subset of parameters or to a random point). The more times
a parameter is covered by local models, the sooner it gets updated and convergences to the desired
target. This is quantified in our analysis by showing that the optimality gap due to pruning noise
decreases at the rate of Γmin.

Remark 4. When the cost function is strongly convex (e.g., for softmax classifier, logistic regression
and linear regression with l2-normalization), a stationary point becomes the global optimum. Thus,
Theorem 1 shows convergence to a small neighborhood of the global optimum of standard FL for
strongly convex cost functions.

Remark 5. Theorem 1 also inspires new design criteria for designing adaptive model pruning
strategies in heterogeneous FL. Since the optimality gap is affected by both pruning-induced noise δ2
and minimum covering index Γmin, we may prefer strategies with small δ2 and large Γmin, in order
to minimize the optimality gap to standard FL. Using these insights, We present numerical examples
with different pruning strategy designs in Section 4. Optimal pruning mask design with respect to
clients’ resource constraints will be considered in future work.

4 Empirical Results and Discussion

Model FLOPs Space Ratio Γmin

Accuracy

IID Non-IID

Local Global

FullNets 158.8K 1.27M 1.00 10 98.01 93.82 93.59

WP-L1 143.12K 1.15M 0.90 6 98.18 95.49 95.15
NP-L1 142.9K 1.14M 0.90 6 97.97 93.82 93.6
FS-L1 142.9K 1.14M 0.90 6 97.76 92.55 92.33

*WP-M1 135.5K 1.08M 0.85 8 98.39 95.82 95.48
WP-M2 135.5K 1.08M 0.85 4 97.51 89.29 89.13
*NP-M1 135.0K 1.08M 0.85 8 97.86 92.42 91.90
NP-M2 135.0K 1.08M 0.85 4 97.53 92.07 91.70
FS-M1 135.0K 1.08M 0.85 4 97.62 92.33 92.05

*WP-S1 100.0K 0.80M 0.63 5 95.32 81.64 81.66
WP-S2 100.0K 0.80M 0.63 5 95.10 72.19 71.64
*NP-S1 91.3K 0.73M 0.57 3 94.41 62.49 61.96
NP-S2 91.3K 0.73M 0.57 3 95.21 60.54 61.86
FS-S1 91.3K 0.73M 0.57 1 96.88 90.67 90.73

(a) FL with Different Pruning Techniques on MNIST

Model FLOPs FLOPs
Ratio Space Space

Ratio Γmin Accuracy

FullNets 653.8K 1.00 512.8K 1.00 10 53.63

WP-L1 619.6K 0.94 482.3K 0.94 8 53.12
FS-L1 619.6K 0.94 476.3K 0.93 8 53.08

WP-M1 587.0K 0.89 451.9K 0.89 6 52.66
*WP-M2 587.0K 0.89 451.9K 0.89 7 52.99
*WP-M3 587.0K 0.89 451.9K 0.89 8 54.20
FS-M1 585.5K 0.85 440.0K 0.89 6 51.87

WP-S1 553.7K 0.84 421.5K 0.82 4 51.69
*WP-S2 553.7K 0.84 421.5K 0.82 7 52.20
FS-S1 551.4K 0.84 403.5K 0.78 4 50.96

(b) FL with Different Pruning Techniques on CIFAR
10 (IID)

Table 1: Evaluation results on MNIST and CIFAR-10 Dataset

4.1 Experiment Settings and Baseline Notations

We focus on three key points in our experiments: (i) the general convergence of FL with heterogeneous
models by different pruning strategies, (ii) the impact of minimum coverage index Γmin and (iii) the
impact of pruning-induced noise δ2. The numerical results provide a comprehensive comparison
among existing baselines and heterogeneous FL with new pruning strategies in our framework, to
validate our theoretical results. Our code implementation can be found at (supplementary files).

To empirically verify the correctness of our theory, we pick FedAvg, and 4 other pruning techniques
from the state-of-the-art as baselines – namely FullNets that can be considered as FedAvg [1] without
any pruning, "WP" for weights pruning as used in PruneFL[5], "NP" for neuron pruning as used in
[47], "FS" for fixed sub-network as used in HeteroFL [3] and "PT" for pruning with a pre-trained
mask as used in [4]; for notation and demonstration simplicity. Let Pm = ∥m∥0

|θ| be the sparsity of
mask m, e.g.,Pm = 75% for a model when 25 % of its weights are pruned. Due to page limits, we
show selected combinations over 4 pruning levels: 60% workers with full model and 40% workers
with 75% pruned model; M. 40 % workers with full model and 60% workers with 75% pruned model;
S. 10% workers with full model, 30% workers with 75% pruned model and 60 % workers with 50%
pruned models; SS. 40% workers with full model and 60 % workers with 50% pruned models.

5



4.2 Numerical Results

(a) Different Pruning Techniques (b) Impact of Pruning Level (c) Impact of Γmin

(d) Pruning-induced Noise (e) Pruning Techniques w/ non-IID (f) Impact of Γmin w/ non-IID

Figure 2: Selected experimental results for MNIST (IID and Non-IID) dataset between different
pruning settings. (a) For similar pruning level, PT converge a lot slower than others, without a lottery
ticket to an optimal mask found. (b) Generally higher pruning level will lead to a higher loss. (c)
By applying our design to increase the coverage index, models with identical architecture can reach
a solution with lower loss for both selected pruning techniques without additional computational
overhead (d) Relative error introduced by pruning is another key factor to the convergence. (e,
f)Similar findings are also observed on such scheme with heterogeneous data.
Impact of minimum coverage index. Our theory suggests that for a given pruning level (or pruning-
induced noise), the minimum coverage index Γmin is inverse proportional to the convergence gap as
the bound in Theorem 1 indicates. Then for a given pruning level, a pruning strategy in heterogeneous
FL with higher minimum coverage index may result in better training performance. Note that existing
heterogeneous FL algorithms with adaptive online pruning often focus on removing the small model
parameters that are believed to have an insignificant impact on model performance, while being
oblivious to the coverage of parameters in pruned local models. Our analysis in this paper illuminates
this important design metric for pruning strategies in heterogeneous FL.

To illustrate the importance of minimum coverage index, we consider that the parameters of a model
is arg-sorted based on certain pruning technique policy P and then K = 4 regions/partitions are
thereby generated representing the highest 25% partition to the lowest 25% partition: P1(θ) =
{S1,S2,S3,S4}. A pruning mask generated by existing baselines (like in heteroFl and PruneFL) for
a 75% sparsity model is then defined as mi = 1 if θi ∈ {S1 ∪ S2 ∪ S3} otherwise mi = 0. It is
easy to see Γmin is then directly determined by the number of models with lowest pruning levels, e.g.
Γmin = 4 for Medium pruning level: 40 % workers with full models and 60% workers with 75%
pruned models.

We consider a straightforward way to increase the minimum coverage index in the pruning mask
design by jointly designing pruning masks for local models to maximize Γmin. As an example shown
in Fig 1, for model with code name *WP-M1, from which 2 out of 6 models with 75% pruned model
using regular weights pruning technique, with the other 4 each two use P2(θ) = {S1,S3,S4} and
P3(θ) = {S1,S2,S4}, so that Γmin = 8 is then achieved. We denote such design on current pruning
techniques marked with (*) in the results. For detailed case settings, pruning techniques and examples
please see Appendix 2 and Appendix 3. As shown in Figure 2(c), under the same model setting
with the same pruning level, both pruning techniques with different minimum coverage index show
different convergence behaviors. Specifically, the design with a higher minimum coverage index is
able to converge faster with lower loss. There are even cases where settings under our design with
fewer communication and computation costs that perform better than a design with more costs, e.g.
"*WP-M1" over "WP-L1" and "FS-L1" on both IID and non-IID data.

Impact of pruning-induced noise. As suggested in our analysis, another key factor that affects
convergence is pruning-induced noise δ2. When a model is pruned, inevitably the pruning-induced
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noise δ2 will affect convergence and model accuracy. Yet, our analysis shows that increasing local
epochs or communication rounds cannot mitigate such noise. To minimize the convergence gap in
the upperbounds, it is necessary to design pruning strategies in heterogeneous FL with respect to
both pruning-induced noise and minimum coverage index, e.g., by considering a joint objective of
preserving large parameters while sufficiently covering all parameters. For this phenomenon, we
focus on tested higher pruning levels as shown in Figure 2(d) and confirms such a trend. As shown in
Figure 2 (b), all selected pruning methods are affected by the change of pruning level.

More discussions and empirical findings. In Figure 2(a), PT converges a lot slower than others with
its pre-trained masks, as also suggested by previous works that models with static sparse parameters
will converge to a solution with higher loss than models with dynamic sparse training. Finally, we
also show a synthetic special case where all local clients do not sum up a mask that covers the whole
model (proposed conditions are not met) in Appendix.4, where the it did not learn a usable solution.

5 Conclusion
In this paper, we study the sufficient conditions for FL with heterogeneous local models – which
may vary over time and across clients – to converge to a small neighborhood of a stationary point of
standard FL, at a rate of 1√

Q
. The optimality gap is characterized and depends on pruning-induced

noise and a new notion of minimum coverage index. The result recovers a number of important FL
algorithms as special cases. It also provides new insights on designing optimized pruning strategies
in heterogeneous FL, with respect to both minimum coverage index Γmin and pruning-induced noise
δ2. We empirically demonstrated the correctness of the theory and the design insights. Our work
provides a theoretical understanding of heterogeneous FL with adaptive local model pruning and
presents valuable insights on new algorithm design, which will be considered in future work.
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A Proof of Theorems

A.1 Problem summary and notations

We summarize the algorithm in a way that can present the convergence analysis more easily. We use
a superscript such as θ(i), m(i)

q,n, and ∇F (i) to denote the sub-vector of parameter, mask, and gradient
corresponding to region i. For the proof purpose and with slight abuse of notations, we denote all
modeling parameters contained in the same set of local models as a parameter region i (Ultimately
we can regard each modeling parameter as a separate region). In each round q, parameters in each
region i is contained in and only in a set of local models denoted by N (i)

q , implying that m(i)
q,n = 1 for

n ∈ N (i)
q and m

(i)
q,n = 0 otherwise, for all the parameters in the region. We define Γ∗ = minq,i N (i)

q

as the minimum coverage index, since it denotes the minimum number of local models that contain
any parameters in θq . With slight abuse of notations, we use ∇Fn(θ and ∇Fn(θ, ξ) to denote the the
gradient and stochastic gradient, respectively.

Algorithm 1: Heterogeneous FL with adaptive online model pruning

Input: Local data Dk
i on N local workers, learning rate γ, pruning policy P, number of local

epochs T , global model parameterized by θ.
Executes:
Initialize θ0
for round q = 1, 2, . . . , Q do do

for local workers n = 1, 2, . . . , N do (In parallel) do
Generate mask mq,n = P(θq, n)
Prune θq,n,0 = θq ⊙mq,n

// Update local models:
for epoch t = 1, 2, . . . , T do do

Update θq,n,t = θq,n,t−1 − γ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n

end
end
// Update global model:
for region i = 1, 2, . . . ,K do do

Find N (i)
q = {n : m

(i)
q,n = 1}

Update θ
(i)
q+1 = 1

|N (i)
q |

∑
n∈N (i)

q
θ
(i)
q,n,T

end
end
Output θQ

A.2 Assumptions

Assumption 1. (Smoothness). Cost functions F1, . . . , FN are all L-smooth: ∀θ, ϕ ∈ Rd and any n,
we assume that there exists L > 0:

∥∇Fn(θ)−∇Fn(ϕ)∥ ≤ L∥θ − ϕ∥. (1)
Assumption 2. (Pruning-induced Error). We assume that for some δ2 ∈ [0, 1) and any q, n, t, the
pruning-induced error is bounded by

∥θq,n,t − θq,n,t ⊙mq,n∥2 ≤ δ2 ∥θq,n,t∥2 . (2)
Assumption 3. (Bounded Gradient). The expected squared norm of stochastic gradients is bounded
uniformly, i.e., for constant G > 0 and any n, q, t:

E ∥∇Fn(θq,n,t, xq,n,t)∥2 ≤ G. (3)
Assumption 4. (Gradient Noise for IID data). Under IID data distribution, for any q, n, t, we assume
that

E[∇Fn(θq,n,t, ξn,t)] = ∇F (θq,n,t) (4)
E∥∇Fn(θq,n,t, ξn,t)−∇F (θq,n,t)∥2 ≤ σ2 (5)

where σ2 > 0 is a constant and ξn,t) are independent samples for different n, t.
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Assumption 5. (Gradient Noise for non-IID data). Under non-IID data distribution, we assume that
for constant σ2 > 0 and any q, n, t:

E
[

1

|N (i)
q |

∑
n∈N (i)

q
∇F

(i)
n (θq,n,t, ξn,t)

]
= ∇F (i)(θq,n,t) (6)

E
∥∥∥∥ 1

|N (i)
q |

∑
n∈N (i)

q
∇F

(i)
n (θq,n,t, ξn,t)−∇F (i)(θq,n,t)

∥∥∥∥2 ≤ σ2. (7)

A.3 Convergence Analysis

We now analyze the convergence of heterogeneous FL under adaptive online model pruning with
respect to any pruning policy P(θq, n) (and the resulting mask mq,n) and prove the main theorems in
this paper. We need to overcome a number of challenges as follows:

• We will begin the proof by analyzing the change of loss function in one round as the model
goes from θq to θq+1, i.e., F (θq+1) − F (θ1) . It includes three major steps: pruning to
obtain heterogeneous local models θq,n,0 = θq⊙mq,n, training local models in a distributed
fashion to update θq,n,t, and parameter aggregation to update the global model θq+1.

• Due to the use of heterogeneous local models whose masks mq,n both vary over rounds and
change for different workers, we first characterize the difference between local model θq,n,t
at any epoch t and global model θq at the beginning of the current round. It is easy to see
that this can be factorized into two parts: pruning induced error ∥θq,n,0 − θq∥2 and local
training ∥θq,n,t − θq,n,0∥2, which will be analyzed in Lemma 1.

• We characterize the impact of heterogeneous local models on global parameter update.
Specifically, we use an ideal local gradient ∇Fn(θq) as a reference point and quantify the
different between aggregated local gradients and the ideal gradient. This will be presented
in Lemma 2. We also quantify the norm difference between a gradient and a stochastic
gradient (with respect to the global update step) using the gradient noise assumptions, in
Lemma 3.

• Since IID and non-IID data distributions in our model differ in the gradient noise assumption
(i.e., Assumption 4 and Assumption 5), we present a unified proof for both cases. We will
explicitly state IID and non-IID data distributions only if the two cases require different
treatment (when the gradient noise assumptions are needed). Otherwise, the derivations and
proofs are identical for both cases.

We will begin by proving a number of lemmas and then use them for convergence analysis.
Lemma 1. Under Assumption 2 and Assumption 3, for any q, we have:

T∑
t=1

N∑
n=1

E∥θq,n,t−1 − θq∥2 ≤ γ2T 2NG+ δ2NT · E∥θq∥2. (8)

Proof. We note that θq is the global model at the beginning of current round. We split the difference
θq,n,t−1 − θq into two parts: changes due to local model training θq,n,t−1 − θq,n,0 and changes due
to pruning θq,n,0 − θq . That is

T∑
t=1

N∑
n=1

E∥θq,n,t−1 − θq∥2

=

T∑
t=1

N∑
n=1

E∥ (θq,n,t−1 − θq,n,0) + (θq,n,0 − θq) ∥2

≤
T∑

t=1

N∑
n=1

2E∥θq,n,t−1 − θq∥2 +
T∑

t=1

N∑
n=1

2E∥θq,n,t−1 − θq∥2 (9)

where we used the fact that ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2 in the last step.

For the first term in Eq.(9), we notice that θq,n,t−1 is obtained from θq,n,0 through t− 1 epochs of
local model updates on worker n. Using the local gradient updates from the algorithm, it is easy to
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see:

∑
t=1T

N∑
n=1

E∥θq,n,t−1 − θq,n,0∥2

=
∑
t=1T

N∑
n=1

E

∥∥∥∥∥∥
t−1∑
j=0

−γ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n

∥∥∥∥∥∥
2

≤
∑
t=1T

N∑
n=1

(t− 1)

t−1∑
j=0

E ∥−γ∇Fn(θq,n,t−1, ξn,t−1)⊙mq,n∥2

≤
∑
t=1T

N∑
n=1

(t− 1)γ2G

≤ γ2T 2NG

2
, (10)

where we use the fact that ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2 in step 2 above, and the fact that mq,n is a
binary mask in step 3 above together with Assumption 3 for bounded gradient.

For the second term in Eq.(9), the difference is resulted by model pruning using mask mn,q of work
n in round q. We have

∑T
t=1

∑N
n=1 E∥θq,n,0 − θq∥2 =

T∑
t=1

N∑
n=1

E∥θq ⊙mn,q − θq∥2

≤
T∑

t=1

N∑
n=1

δ2E∥θq∥2

= δ2NT · E∥θq∥2, (11)

where we used the fact that θq,n,0 = θq ⊙mn,q in step 1 above, and Assumption 2 in step 2 above.

Plugging Eq.(10) and Eq.(11) into Eq.(9), we obtain the desired result.

Lemma 2. Under Assumptions 1-3, for any q, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

]∥∥∥∥∥∥∥
2

≤ L2γ2TNG

Γ∗ +
L2δ2N

Γ∗ E∥θq∥2. (12)

Proof. Recall that Γ(i)
q = |N (i)

q | is the number of local models containing parameters of region i
in round q. The left-hand-side of Eq.(12) denotes the difference between an average gradient of
heterogeneous models (through aggregation and over time) and an ideal gradient. The summation
over i adds up such difference over all regions i = 1, . . . ,K, because the average gradient takes a
different form in different regions.
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From the inequality ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2, we obtain ∥ 1
s

∑s
i=1 ai∥2 ≤ 1

s

∑s
i=1 ∥ai∥2. We

use this inequality on the left-hand-side of Eq.(12) to get:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

]∥∥∥∥∥∥∥
2

≤
K∑
i=1

1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

E
∥∥∥∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

∥∥∥2

≤ 1

TΓ∗

T∑
t=1

N∑
n=1

K∑
i=1

E
∥∥∥∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

∥∥∥2
=

1

TΓ∗

T∑
t=1

N∑
n=1

E ∥∇Fn(θq,n,t−1)−∇Fn(θq)∥2

≤ 1

TΓ∗

T∑
t=1

N∑
n=1

L2E ∥θq,n,t−1 − θq∥2 , (13)

where we relax the inequality by choosing the smallest Γ∗ = minq,i Γ
(i)
q and changing the summation

over n to all workers in the second step. In the third step, we use the fact that L2 gradient norm of a
vector is equal to the sum of norm of all sub-vectors (i.e., regions i = 1, . . . ,K). This allows us to
consider ∇Fn instead of its sub-vectors on different regions.

Finally, the last step is directly from L-smoothness in Assumption 1. Under Assumptions 2-3, we
notice that the last step of Eq.(13) is further bounded by Lemma 1, which yields the desired result of
this lemma after re-arranging the terms.

Lemma 3. For IID data distribution under Assumptions 4, for any q, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)(θq,n,t−1)
]∥∥∥∥∥∥∥

2

≤ Nσ2

T (Γ∗)2
.

For non-IID data distribution under Assumption 5, for any q, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)(θq,n,t−1)
]∥∥∥∥∥∥∥

2

≤ Kσ2

T
.

Proof. This lemma quantifies the square norm of the difference between gradient and stochastic
gradient in the global parameter update. We present results for both IID and non-IID cases in this
lemma under Assumption 4 and Assumption 5, respectively.

We first consider IID data distributions. Since all the samples ξn,t−1 are independent from each
other for different n and t − 1, the difference between gradient and stochastic gradient, i.e.,
∇F

(i)
n (θq,n,t−1, ξn,t−1)−∇F

(i)
n (θq,n,t−1), are independent gradient noise. Due to Assumption 4,

these gradient noise has zero mean. Using the fact that E∥
∑

i xi∥2 =
∑

i E∥x2
i ∥ for zero-mean and
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independent xi’s, we get:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

]∥∥∥∥∥∥∥
2

≤
K∑
i=1

1

(Γ
(i)
q T )2

T∑
t=1

∑
n∈N (i)

q

E
∥∥∥∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

∥∥∥2

≤ 1

(TΓ∗)2

K∑
i=1

T∑
t=1

N∑
n=1

E
∥∥∥∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

∥∥∥2
=

1

(TΓ∗)2

T∑
t=1

N∑
n=1

E ∥∇Fn(θq,n,t−1, ξn,t−1)−∇Fn(θq,n,t−1)∥2

≤ 1

(TΓ∗)2
· TNσ2 (14)

where we used the property of zero-mean and independent gradient noise in the first step above, relax
the inequality by choosing the smallest Γ∗ = minq,i Γ

(i)
q and changing the summation over n to all

workers in the second step. In the third step, we use the fact that L2 gradient norm of a vector is
equal to the sum of norm of all sub-vectors (i.e., regions i = 1, . . . ,K). This allows us to consider
∇Fn instead of its sub-vectors on different regions. Finally, we apply Assumption 4 to bound the
gradient noise and obtain the desired result.

For non-IID data distributions under Assumption 4 (instead of Assumption 5), we notice that

E
[

1

|N (i)
q |

∑
n∈N (i)

q
∇F

(i)
n (θq,n,t−1, ξn,t−1)

]
= ∇F (i)(θq,n,t−1) is an unbiased estimate for any

epoch t, with bounded gradient noise. Again, due to independent samples ξn,t−1, we have:

K∑
i=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q T

T∑
t=1

∑
n∈N (i)

q

[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

]∥∥∥∥∥∥∥
2

≤ 1

T 2

K∑
i=1

T∑
t=1

E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

∇F (i)
n (θq,n,t−1, ξn,t−1)−∇F (i)

n (θq,n,t−1)

∥∥∥∥∥∥∥
2

≤ 1

T 2

K∑
i=1

T∑
t=1

σ2

=
Kσ2

T
, (15)

where we use the property of zero-mean and independent gradient noise in the first step above, used
the fact that the norm of a sub-vector (in region i) is bounded by that of the entire vector in the second
step above, as well as Assumption 5. This completes the proof of this lemma.

Proof of the main result. Now we are ready to present the main proof. We begin with the L-
smoothness property in Assumption 1, which implies

F (θq+1)− F (θq) ≤ ⟨∇F (θq), θq+1 − θq⟩+
L

2
∥θq+1 − θq∥2 . (16)

We take expectations on both sides of the inequality and get:

E[F (θq+1)]− E[]F (θq)] ≤ E ⟨∇F (θq), θq+1 − θq⟩+
L

2
E ∥θq+1 − θq∥2 . (17)

In the following, we bound the two terms on the right-hand-side above and finally combine the results
to complete the proof.
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Upperbound for E ⟨∇F (θq), θq+1 − θq⟩. We notice that the inner product can be broken down and
reformulated as the sum of inner products over all regions i = 1, . . . ,K. This is necessary because
the global parameter update is different for different regions. More precisely, for any region i, we
have:

θ
(i)
q+1 − θ

(i)
q =

 1

Γ
(i)
q

∑
n∈N (i)

q

θ
(i)
q,n,T

− θ(i)q

=
1

Γ
(i)
q

∑
n∈N (i)

q

[
θ
(i)
q,n,0 −

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1) ·m(i)

n,q

]
− θ(i)q

= − 1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1) ·m(i)

n,q + θ(i)q ·m(i)
n,q − θ(i)q

= − 1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1), (18)

where global parameter updated is used in the first step, local parameter update is used in the
second step, and the third step follows from the fact that for any worker n ∈ N (i)

q participating
in the global update of θ(i)q contain the model parameters of region i, i.e., m(i)

q,n = 1. We also use
θ
(i)
q,n,0 = θ

(i)
q ·m(i)

n,q in the third step above because of to pruning.

Next we analyze E ⟨∇F (θq), θq+1 − θq⟩ by considering a sum of inner products over K regions.
We have

E ⟨∇F (θq), θq+1 − θq⟩

=

K∑
i=1

E
〈
∇F (i)(θq), θ

(i)
q+1 − θ(i)q

〉
=

K∑
i=1

E

〈
∇F (i)(θq), −

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1)

〉

=

K∑
i=1

E

〈
∇F (i)(θq), −

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γE
[
∇F (i)

n (θq,n,t−1, ξn,t−1)|θq
]〉

=

K∑
i=1

E

〈
∇F (i)(θq), −

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1)

〉

= −
K∑
i=1

E
〈
∇F (i)(θq), γT∇F (i)(θq)

〉
(19)

−
K∑
i=1

E

〈
∇F (i)(θq),

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]〉

where we use the first step reformulates the inner product as a sum, the second step follows from
Eq.(18), the third step employs a conditional expectation over the random samples with respect to θq ,
and the last step splits the result into two parts with respect to a reference point γT∇F (i)(θq).

For the first term on the right-hand-side of Eq.(19), it is easy to see that

−
∑K

i=1 E
〈
∇F (i)(θq), γT∇F (i)(θq)

〉
= −γT

K∑
i=1

∥∥∥∇F (i)(θq)
∥∥∥2

= −γT ∥∇F (θq)∥2 , (20)
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where we add up the norm over K regions in the last step. For the second term on the right-hand-side
of Eq.(19), we use the inequality < a, b >≤ 1

2∥a∥
2 + 1

2∥b∥
2 for any vectors a, b. Applying this

inequality to the second term, we have

−
K∑
i=1

E

〈
∇F (i)(θq),

1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]〉

= −
K∑
i=1

Tγ · E

〈
∇F (i)(θq),

1

TΓ
(i)
q

∑
n∈N (i)

q

T∑
t=1

[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]〉

≤ Tγ

2

K∑
i=1

E
∥∥∥∇F (i)(θq)

∥∥∥2 + Tγ

2

K∑
i=1

E

∥∥∥∥∥∥∥
1

TΓ
(i)
q

∑
n∈N (i)

q

T∑
t=1

[
∇F (i)

n (θq,n,t−1)−∇F (i)(θq)
]∥∥∥∥∥∥∥

=
Tγ

2
E ∥∇F (θq)∥2 +

Tγ

2

(
L2γ2TNG

Γ∗ +
L2δ2N

Γ∗ E∥θq∥2
)

(21)

where the second step uses the inequality and the third step follows directly from Lemma 2. Plugging
Eq.(20) and Eq.(21) results into Eq.(19), we obtain the desired upperbound:

E ⟨∇F (θq), θq+1 − θq⟩ ≤ −Tγ

2
E ∥∇F (θq)∥2 +

Tγ

2

(
L2γ2TNG

Γ∗ +
L2δ2N

Γ∗ E∥θq∥2
)
. (22)

Upperbound for L
2E ∥θq+1 − θq∥2. We use the again result in Eq.(18) and apply it to θq+1 − θq,

which gives:
L

2
E ∥θq+1 − θq∥2

=
L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq,n,t−1, ξn,t−1)

∥∥∥∥∥∥∥
2

≤ 3L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1, ξn,t−1)−∇F (i)
n (θq,n,t−1)

]∥∥∥∥∥∥∥
2

+
3L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ
[
∇F (i)

n (θq,n,t−1)−∇F (i)
n (θq)

]∥∥∥∥∥∥∥
2

+
3L

2
E

∥∥∥∥∥∥∥
1

Γ
(i)
q

∑
n∈N (i)

q

T∑
t=1

γ∇F (i)
n (θq)

∥∥∥∥∥∥∥
2

, (23)

where in the second step, we use the inequality ∥
∑s

i=1 ai∥2 ≤ s
∑s

i=1 ∥ai∥2 and split stochastic
gradient [∇F

(i)
n (θq,n,t−1, ξn,t−1)] into s = 3 parts, i.e., [∇F

(i)
n (θq,n,t−1, ξn,t−1)−∇F

(i)
n (θq,n,t−1)],

[F
(i)
n (θq,n,t−1)− F

(i)
n (θq)], and [F

(i)
n (θq)].

Next, we notice that the third term on the right-hand-side of Eq.(23) can be simplified, because (i)
for IID data distribution, the cost function of each worker n is the same as the global cost function,
i.e., ∇Fn(θq) = ∇F (θq), and (ii) for non-IID data distribution, the gradient noise assumption
(Assumption 5) implies that 1

Γ
(i)
q

∑
n∈N (i)

q
∇Fn(θq) = F (θq). Thus in both cases, we have:

3L
2 E

∥∥∥∥ 1

Γ
(i)
q

∑
n∈N (i)

q

∑T
t=1 γ∇F

(i)
n (θq)

∥∥∥∥2 ≤ 3LT 2γ2

2

K∑
i=1

E∥∇F (i)(θq)∥2

=
3LT 2γ2

2
E∥F (θq)∥2, (24)
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where we again used the sum of norm of K regions in the last step.

Now we notice that the first and second terms of Eq.(23) have been bounded by Lemma 2 and
Lemma 3, excpet for constants γ and 1/T . Applying these results directly and also plugging in
Eq.(24) into Eq.(23), we obtain the desired upperbound:

L
2E ∥θq+1 − θq∥2 ≤ 3LTNγ2σ2

2(Γ∗)2
(for IID) or

3LTKγ2σ2

2
(for non− IID)

+
3L3γ4T 3NG

2Γ∗ +
3L3T 2γ2δ2N

2Γ∗ E∥θq∥2

+
3LT 2γ2

2
E∥Fn(θq)∥2. (25)

Combining the two Upperbounds. Finally, we will apply the upperbound for
E ⟨∇F (θq), θq+1 − θq⟩ in Eq.(22) as well as the upperbound for L

2E ∥θq+1 − θq∥2 in Eq.(25),
and plug them into Eq.(17). First we take the sum over q = 1, . . . , Q on both sides of Eq.(17), which
becomes:

E[F (θQ+1)]− E[F (θ0)]

=

Q∑
q=1

E[F (θq+1)]−
Q∑

q=1

E[F (θq)]

≤
Q∑

q=1

E ⟨∇F (θq), θq+1 − θq⟩+
Q∑

q=1

L

2
E ∥θq+1 − θq∥2 . (26)

Now plugging in the two upperbounds and re-arranging the terms, for IID data distribution, we derive:

E[F (θQ+1)]− E[F (θ0)]

≤ −Tγ

2
(1− 3LTγ)

Q∑
q=1

E∥∇F (θq)∥2

+
γTQ

2

(
TL2γ2NG

Γ∗ +
3LNγσ2

(Γ∗)2
+

3L3γ3T 3NG

Γ∗

)
+
Tγ

2

(
L2δ2N

Γ∗ +
3L3Tγδ2N

Γ∗

) T∑
q=1

E∥θq∥2. (27)

We choose learning rate γ ≤ 1/(6LT ) and use the fact that E[F (θQ+1)] is non-negative. The
inequality above becomes:

Tγ
4

∑Q
q=1 E∥∇F (θq)∥2 ≤ E[F (θ0)] +

TγQ

2

(
3LNγσ2

(Γ∗)2
+

3L2γ2TNG

2Γ∗

)
+
Tγ

2

(
3L2δ2N

2Γ∗

) T∑
q=1

E∥θq∥2. (28)

Dividing both sides above by 4/(QTγ) and choosing γ = 1/
√
TQ, we have:

1
Q

∑Q
q=1 E∥∇F (θq)∥2 ≤ 4E[F (θ0)]√

TQ
+

6LNσ2

√
TQ(Γ∗)2

+
3L2NG

QΓ∗

+
3L2δ2N

Γ∗ · 1

Q

T∑
q=1

E∥θq∥2

=
G0√
TQ

+
V0√
Q

+
I0
Γ∗ · 1

Q

T∑
q=1

E∥θq∥2, (29)
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where we introduce constants G0 = 4E[F (θ0)] + 6LNσ2/(Γ∗)2, V0 = 3L2NG/Γ∗, and I0 =
3L2δ2N . This completes the proof of Theorem 1.

Finally, for non-IID data distribution, we plug the two upperbounds into Eq.(26) and re-arrange the
terms. We follow a similar procedure and choose learning rate γ = 1/

√
TQ and γ ≤ 1/(6LT ). It is

straightforward to show that for non-IID data distribution:

1

Q

Q∑
q=1

E∥∇F (θq)∥2 ≤ H0√
TQ

+
V0√
Q

+
I0
Γ∗ · 1

Q

T∑
q=1

E∥θq∥2, (30)

where H1 = 4E[F (θ0)] + 6LKσ2 is a different constant. This completes the proof of Theorem 2.

B Experimental Details

B.1 Experiment Setup

The code implementation is open sourced and can be found at

Github Link(Link anonymized, see supplementary materials for code and other tools).

In this experimental section we evaluate different pruning techniques from state-of-the-art designs
and verify our proposed theory under unifying pruning framework using two datasets.

Unless stated otherwise, the accuracy reported is defined as

1

n

∑
i

pi
∑
j

Acc(fi(x
(i)
j , θi ⊙mi), y

i
j))

averaged over three random seeds with same random initialized starting θ0. Some key hyper-
parameters includes total training rounds Q = 100, local training epochs T = 5, testing batch
size bs = 128 and local batch size bl = 10. Momentum for SGD is set to 0.5. standard batch
normalization is used.

We focus on three points in our experiments: (i) the general coverage of federated learning with
heterogeneous models by pruning (ii) the impact of coverage index Γmin (iii) the impact of mask
error δ.

We examine theoretical results on the following two common image classification datasets: MNIST
and CIFAR10, among N = 100 workers with IID and non-IID data with participation ratio c = 0.1.
For IID data, we follow the design of balanced MNIST by previous research, and similarly obtain
balanced CIFAR10. For non-IID data, we obtained balanced partition with label distribution skewed,
where the number of the samples on each device is up to at most two out of ten possible classifications.

We run all experiments on the small model architecture: an MLP with a single hidden layer for
MNIST and a LeNet-5 like network with 2 convolutions layers for CIFAR10. As some large DNN
models are proved to have the ability to maintain their performance within a reasonable level of
pruning, we use smaller networks to avoid the potential influence from very large networks, as well
as other tricks and model characteristics of each framework. Note that the accuracy is NOT directly
comparable to models with enormous sizes in some other works.

B.2 Pruning Techniques

In the paper we select 4 pruning techniques as baselines and we elaborate the details of them. Let
Pm = ∥m∥0

|θ| be the sparsity of mask m, e.g.,Pm = 75% for a model when 25 % of its weights are
pruned, and M is the number of the parameters in the model. Then a mask for weights pruning can be
defined as:

mi =

{
1 , if argsort(θ[i]) < Pm ∗M
0 , otherwise

, i ∈ M (31)

Similarly we have the defination for neuron pruning:

mi =

{
1 , if argsort(

∑
θi) < Pm ∗N

0 , otherwise
, θi ∈ Neuron i (32)

9
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where N is the total number of neurons in the network, and fixed subnetwork:

mi =

{
1 , if i < Pm ∗M
0 , otherwise

, i ∈ M (33)

where M is the total number of parameters in the network.

Note in adaptive pruning such mask is subject to change after each round of global aggregation. For
pruning with pre-trained mask, the mask is generated based on eq(x) for first 3 rounds then fixed for
the rest of the training.

An illustration of those pruning techniques can be found in figure.

Figure 1: Illustration of pruning techniques used in this paper

C More Results on MNIST dataset

In this section we present more supplementary experimental results on MNIST dataset. Specifically,
we present the training progress in respect of global loss and accuracy for selected pruning techniques.
For the final training results we focus on WP, FS and NP as PT is not found competitive without a
carefully designed algorithm, however we still keep the training details for PT.

C.1 Change of Notations

In the main paper we use code name for simplicity of notation and better understanding. Here we
present the results with their detailed settings.

For a full model without pruning it can be described as P1(θ) = {S1,S2,S3,S4}, where

mi = 1 if θi ∈ {S1 ∪ S2 ∪ S3 ∪ S4} otherwise mi = 0

.

Similarly we have another 6 pruning polices as follows:

P2(θ) = {S1,S3,S4}

P3(θ) = {S1,S2,S4}
P4(θ) = {S1,S2,S3}

P5(θ) = {S2,S3}
P6(θ) = {S1,S3}
P7(θ) = {S1,S2}

10



And we further denote a local client with its pruning policy, as an example, the case "*WP-M1" uses
4 local clients with full models, 2 local clients with pruned models using pruning policy P4, 2 local
clients with pruned models using pruning policy P2 and 2 local clients with pruned models using
pruning policy P3, then we denote its code name as "1111223344" for simpler notation. Note that
we continue to use code name "FedAvg" as a baseline rather than "1111111111". For the rest of the
appendix we continue using such notations for denoting its pruning policy settings.

codename 1 0.75 0.5 PARAs FLOPs Γmin %PARA %FLOPS IID Non-IID

Accuracy Global Local

1111111111 10 159010 158800 10 1.00 1.00 98.045 93.59 93.82
1111114444 6 4 143330 143120 6 0.90 0.90 98.18 95.15 95.49
1111144447 5 4 1 135490 135280 5 0.85 0.85 97.51 89.13 89.29
1111223344 4 6 135490 135280 8 0.85 0.85 98.32 95.48 95.82
1111234444 4 6 135490 135280 6 0.85 0.85 98.39 95.45 95.96
1111113477 6 2 2 135490 135280 7 0.85 0.85 96.72 91.27 91.57
1111234567 4 3 3 123730 123520 7 0.77 0.77 96.73 88.99 88.90
1111444444 4 6 135490 135280 4 0.85 0.85 97.85 89.13 89.29
1111444477 4 4 2 127650 127440 4 0.80 0.80 96.9 93.02 93.12
1111556677 4 6 111970 111760 6 0.70 0.70 95.5 80.07 79.34
1114556677 3 1 6 108050 107840 5 0.67 0.67 95.80 79.30 79.75
1234556677 1 3 6 100210 100000 5 0.63 0.62 95.31 81.66 81.64
1455666777 1 1 8 92370 92160 3 0.58 0.58 94.79 79.15 79.08
2233445677 0 6 4 104130 103920 5 0.65 0.65 95.95 81.27 81.17
1444777777 1 3 6 92370 92160 6 0.65 0.65 95.10 72.19 71.64

Table 1: Results For Weights Pruning on MNIST

codename 100% 75% 50% PARAs FLOPs Γmin %PARA %FLOPS IID Non-IID

Accuracy Global Local

1111111111 10 159010 158800 10 1.00 1.00 98.13 95.31 95.33
1111114444 6 4 143110 142920 6 0.90 0.90 97.97 93.60 93.82
1111144447 5 4 1 135160 134980 5 0.85 0.85 97.39 91.92 92.18
1111223344 4 6 135160 134980 8 0.85 0.85 97.86 91.90 92.42
1111234444 4 6 135160 134980 6 0.85 0.85 97.86 92.99 92.93
1111234567 4 3 3 123235 123070 7 0.77 0.77 96.64 83.82 83.61
1111444444 4 6 135160 134980 4 0.85 0.85 97.53 91.80 92.07
1111444477 4 4 2 127210 127040 4 0.80 0.80 96.77 84.91 85.02
1111556677 4 6 111310 111160 6 0.70 0.70 96.57 69.11 69.63
1114556677 3 1 6 107335 107190 5 0.67 0.67 95.34 77.53 77.70
1234556677 1 3 6 99385 99250 5 0.62 0.62 95.47 72.80 72.40
1455666777 1 1 8 91435 91310 3 0.57 0.57 94.41 61.96 62.49
2233445677 0 6 4 103360 103220 5 0.65 0.65 96.37 60.23 61.01
1444777777 1 3 6 99385 99250 5 0.62 0.62 95.23 60.54 61.85

Table 2: Results For Neuron Pruning on MNIST

codename 100% 75% 50% PARAs FLOPs Γmin %PARA %FLOPS IID Non-IID

Accuracy Global Local

1111111111 10 159010 158800 10 1.00 1.00 97.67 94.12 94.45
1111114444 6 4 143110 142920 6 0.9 0.90 97.76 92.33 92.55
1111144447 5 4 1 135160 134980 6 0.85 0.85 97.34 93.79 93.92
1111444444 4 6 135160 134980 4 0.85 0.85 97.62 92.05 92.33
1111444477 4 4 2 127210 127040 4 0.80 0.80 97.32 92.67 92.95
1111444777 4 3 3 123235 123070 4 0.77 0.77 97.35 91.34 91.73
1111777777 4 6 111310 111160 4 0.70 0.70 97.18 93.6 93.48
1114777777 3 1 6 107335 107190 3 0.67 0.67 97.12 93.7 93.57
1444777777 1 3 6 99385 99250 1 0.62 0.62 97.01 90.74 90.57
1477777777 1 1 8 91435 91310 1 0.57 0.57 96.88 90.73 90.67

Table 3: Results For Fixed Sub-network on MNIST
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C.2 More Results

C.2.1 Case for IID data

We present the full results of training for IID case in Fig 2 - 5

(a) Global Loss (b) Accuracy

Figure 2: Results on Weights Pruning on MNIST IID

(a) Global Loss (b) Accuracy

Figure 3: Results on Fixed Sub-network on MNIST IID

(a) Global Loss (b) Accuracy

Figure 4: Results on Neuron Pruning on MNIST IID

C.2.2 Case for non-IID data

We present the full results of training for non-IID case in Fig 6 - 9

12



(a) Global Loss (b) Accuracy

Figure 5: Results on Pruning with pre-trained mask on MNIST IID

(a) Global Loss (b) Accuracy

Figure 6: Results on Weights Pruning on MNIST non-IID

(a) Global Loss (b) Accuracy

Figure 7: Results on Neuron Pruning on MNIST non-IID

(a) Global Loss (b) Accuracy

Figure 8: Results on Fixed Sub-network on MNIST non-IID
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(a) Global Loss (b) Accuracy

Figure 9: Results on Pruning with pre-trained mask on MNIST non-IID
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D More Results For CIFAR-10-IID

In this section we present more supplementary experimental results on CIFAR 10 dataset to test the
effects of pruning on convolutional layers. Specifically, we present the training progress in respect of
global loss and accuracy for selected pruning techniques where we focus on WP and FS.

D.1 Change of Notations

In the main paper we use code name for simplicity of notation and better understanding. Here we
present the results with their detailed settings.

For a full model without pruning it can be described as P1(θ) = {S1,S2,S3,S4}, where

mi = 1 if θi ∈ {S1 ∪ S2 ∪ S3 ∪ S4} otherwise mi = 0

. As we have demonstrated the effects of pruning MLP layers, on CIFAR10 datasets we focus on the
effects of conv2d layers.

We have another 3 pruning polices for conv2d layers as follows:

P2(θ) = {S1,S3,S4}

P3(θ) = {S1,S2,S4}
P4(θ) = {S1,S2,S3}

For WP and PT, when using P2 the top 75% of kernels will be kept, i.e. for the first conv2d layer, the
5 largest kernels out of total of 6 kernels will be kept, and the 6-th kernel will be pruned. Under all
pruning polices MLP layers will be pruned at 75% accordingly. Note under such settings, code name
without full model ’1’ , e.g. ’2222333444’, will not satisfy our necessary condition of convergence.

For FS, we denote P2 as the similar policy as above but only the first continuous parameters, i.e. for
the first conv2d layer, the first 5 kernels out of total of 6 kernels will be kept, and the 6-th kernel will
be pruned, together with pruning MLP layers at 75%. We denote P3 as only pruning conv2d layers
and P4 as only pruning MLP layers. In this case, note that even with same codename for WP and FS,
their results are NOT directly comparable.

And we further denote a local client with its pruning policy, as an example, the case "*WP-M1"
uses 4 local clients with full models, 2 local clients with pruned models using pruning policy P4, 2
local clients with pruned models using pruning policy P2 and 2 local clients with pruned models
using pruning policy P3, then we denote its code name as "1111223344" for simpler notation. Note
that we continue to use code name "FedAvg" as a baseline rather than "1111111111". For the rest
of the appendix we continue using such notations for denoting its pruning policy settings. For the
final training results we focus on WP, FS and NP as PT is not found competitive without a carefully
designed algorithm, however we still keep the training details for PT.

(a) Global Loss (b) Accuracy

Figure 10: Results on Weights Pruning on CIFAR10 IID
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Codename PARAs(K) % FLOPs(K) % Testing Accuracy

1111111111 512.80 1.00 653.8 1.00 53.63
1111111122 482.34 0.94 619.6 0.94 53.12
1111112222 451.936 0.88 587.0 0.89 52.66
1111112223 451.936 0.88 587.0 0.89 52.98
1111112233 451.936 0.88 587.0 0.89 54.20
1111113333 451.936 0.88 587.0 0.89 52.96
1111114444 451.936 0.88 587.0 0.89 51.61
1111222222 421.504 0.82 553.7 0.84 51.69
1111222334 421.504 0.82 553.7 0.84 52.20
1111223344 421.504 0.82 553.7 0.84 52.54
1222333444 375.856 0.73 503.6 0.77 49.15

Table 4: Results For Weights Pruning on CIFAR 10

Codename PARAs(K) % FLOPs(K) % Testing Accuracy

1111111111 512.81 1.00 653.80 1.00 54.78
1111111122 476.37 0.92 619.68 0.94 54.10
1111112222 439.93 0.85 585.57 0.89 52.87
1111113333 471.28 0.91 589.48 0.90 53.96
1111113344 467.92 0.91 589.06 0.90 53.90
1111114444 464.57 0.90 588.64 0.90 54.44
1111222222 403.49 0.78 551.46 0.84 52.74
2222333444 372.59 0.72 488.47 0.74 52.35

Table 5: Results For Fixed Sub-network on CIFAR 10

(a) Global Loss (b) Accuracy

Figure 11: Results on Pruning with pre-trained mask on CIFAR10 IID
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(a) Global Loss (b) Accuracy

Figure 12: Results on Fixed Sub-network Pruning on CIFAR10 IID
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