
Streaming Attention Approximation
via Discrepancy Theory

Ekaterina Kochetkova
EPFL

ekaterina.kochetkova@epfl.ch

Kshiteej Sheth
EPFL

kshiteej.sheth@epfl.ch

Insu Han
KAIST

insu.han@kaist.ac.kr

Amir Zandieh
Google Research

zandieh@google.com

Michael Kapralov
EPFL

michael.kapralov@epfl.ch

Abstract

Large language models (LLMs) have achieved impressive success, but their high
memory requirements present challenges for long-context token generation. In
this paper we study the streaming complexity of attention approximation, a key
computational primitive underlying token generation.
Our main contribution is BalanceKV, a streaming algorithm for ϵ-approximating
attention computations based on geometric process for selecting a balanced col-
lection of Key and Value tokens as per Banaszczyk’s vector balancing theory. We
complement our algorithm with space lower bounds for streaming attention com-
putation. Besides strong theoretical guarantees, BalanceKV exhibits empirically
validated performance improvements over existing methods, both for attention
approximation and end-to-end performance on various long context benchmarks.

1 Introduction

Transformer-based models are the foundation of ongoing artificial intelligence revolution. Their
applications span a wide range of domains, from leading-edge language models (LLM) [1, 65] to
text-to-image [58, 66, 69], text-to-video synthesis [70], coding assistance [68] and even in multimodal
domains across text, audio, image, and video [53]. At the core of these models is the Transformer ar-
chitecture, powered by the self-attention mechanism [73], which enables effective capture of pairwise
correlations across tokens in an input sequence. As these models scale in size and context length [41],
they face significant computational challenges, particularly in terms of memory usage. Efficiency and
accuracy are essential to unlock the full potential of LLMs in generating long sequences.

Space bottlenecks in transformer models. Most large language models, along with multimodal
and video models, adopt an autoregressive, decoder-only architecture. This architecture generates
tokens sequentially, applying attention dynamically to each newly generated token. To avoid redun-
dant attention score computations during the generation phase, these models explicitly store the key
and value embeddings of previously generated tokens in a cache in each attention layer. Thus, a
major challenge is the fact that the memory complexity of storing previously generated key value
embeddings scales with both the model size (i.e., the number of layers and attention heads) and,
critically, the context size. Additionally, each model session typically requires its own dedicated
cache for storing key value embeddings, further exacerbating memory usage. This growing demand
has become a significant bottleneck, affecting both memory consumption and computational speed,
particularly for models handling long context lengths.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Streaming attention computation. The main reason for the need of storing the past key and value
embeddings is for the attention computation happening inside each self attention layer during token
generation after processing a context – to generate the next token, each self attention layer computes
the attention between the query embedding of the current token and the key and value embeddings
of all the tokens that were previously generated or part of the context. In this paper we study the
streaming attention approximation problem – the problem of approximately computing attention
using a small amount of space, i.e. without storing all previously seen key and value embeddings.
Our main contribution is BALANCEKV, a novel provably correct algorithm for streaming attention
approximation based on discrepancy theory. The core of our approach is a vector balancing algorithm
from discrepancy theory that exploits the geometry of key and value tokens to deduce a small subset
of them that well approximates the operations happening inside a self-attention layer. We complement
our algorithm with a lower bound on the streaming complexity of approximating attention.

An algorithm for streaming attention approximation can directly be used for compressing the key
value cache which stores the past key value embeddings in each layer in an LLM, thus improving the
efficiency of LLM token generation. We empirically evaluate BALANCEKV both on the problem of
approximating attention and on end-to-end generation tasks, showing performance gains.

1.1 Related Work

For discrepancy theory, Banaszczyk’s seminal works [6, 7] establishing theoretical guarantees for
vector set discrepancy have sparked research in the vector balancing problem [17]. This led to
algorithmic developments in both offline [8] and online [9, 3, 43] settings. The vector balancing
problem has particular relevance to streaming and sublinear algorithms, as minimizing a dataset’s
discrepancy yields small subsets that effectively preserve the original dataset’s properties. Recently
[55, 15] extend these discrepancy theory ideas for kernel density estimation using sublinear memory.

A simple yet effective approach is quantizing previously generated key value embeddings with fewer
bits [80, 78, 26, 40, 49, 35, 84, 81]. Another line of work focuses on token-level pruning, where
redundant or less important tokens get evicted from the set of all previously generated key value
embeddings [10, 85, 48, 76, 83, 46]. Many of the works in this line have used accumulated attention
scores to select important previously generated tokens [85, 46, 76]. Recent works extend those
methods to an adaptive way of budget allocation across layer [14] and head [30].

1.2 Overview of Our Contributions

In this work we take the token subset selection approach to reduce the memory complexity of LLM
token generation: store and maintain only a subset of previously generated key and value embeddings
corresponding to a few “important” tokens in the sequence. Of course, the central question is how to
define “importance” of tokens. Our approach here is to apply discrepancy theory, which, at a high
level, considers a token important if it is crucial to preserving the projection of the total collection of
tokens onto some direction in the token space. This leads to the idea of selecting a subset of tokens
that is “balanced” simultaneously in every direction. Inspired by the recent breakthrough result of [3]
on online discrepancy minimization, we design a method for balancing key-value pairs online using
small space, namely our BALANCEKV algorithm. Interestingly, this algorithm is online, i.e. the
importance of a token is determined only by preceding tokens – in sharp contrast with state of the art
heuristics for token selection such as PyramidKV [14] and SnapKV [46], whose performance, as we
show, our algorithm matches or improves upon. Our contributions are:

1. In Section 3 we propose BALANCEKV, an algorithm for recursively compressing the set of
previously generated tokens using a geometric correlated sampling process based on discrepancy
theory. We show that BALANCEKV gives provable guarantees for streaming attention approxi-
mation under the bounded ℓ2 norm assumption (Theorem 3.1). Using tools from communication
complexity, we also show a lower bound on the memory complexity of any algorithm for stream-
ing attention approximation in Section 3. Section 2 contains the formal problem formulation of
streaming attention approximation, its applicability to key value cache compression, as well as a
technical overview of the main results and techniques of Section 3.

2. In Section 4 we empirically evaluate our algorithm in various settings. In Section 4.1 we
show our approach leads to a lower relative error for single layer attention approximation for
open-source LLMs including Llama-3.1-8B-Instruct [27] and Ministral-8B-Instruct-

2

2410 [52] as compared to uniformly sampling keys and values in the cache. Section 4.1 we also
perform ablation studies to show how various parameters in our algorithm affect the relative
error for single layer attention approximation. In Sections 4.2 and 4.3 we perform end to end
experiments on various benchmarks such as LongBench [5] using models of various sizes such
as Llama-3.1-8B-Instruct,Qwen-2.5-14B-Instruct and Qwen-2.5-32B-Instruct [77, 71],
and Needle in a Haystack [39]. We show that our provable method for attention approximation
when applied to key value cache compression performs better compared to previous existing
token subset selection heuristics on end to end tasks. Finally in Section 4.4 we present system
efficiency metrics regarding our implementation.

2 Technical Overview

In this section, we first set up the formal problem formulation that we tackle, followed by an overview
of our techniques and our main results.

2.1 Streaming Attention Approximation: Formulation and Motivation

Autoregressive Transformers generate tokens one by one and each depends on the previously gener-
ated tokens. When Transformers process a sequence of tokens, the attention mechanism operates by
computing three types of embeddings for each token at every layer: query, key and value. The query
and key capture how different tokens interact, while the value is the actual content to be aggregated.
Such interactions are quantified by so-called attention scores, obtained by applying the softmax to the
inner product between the query of a given token and the keys of all others. These scores determine
how much each previous token’s value contributes to the final output. Once the keys and values are
computed for a given token, they do not need to be recomputed when generating subsequent tokens.

Formally, suppose that we have a stream of query, key and value embeddings
(q1, k1, v1), . . . , (qn, kn, vn), that is the j-th token is represented as a triplet of (qj , kj , vj)
where qj , kj , vj ∈ Rd for all j ∈ [n]. Let Kj , Vj ∈ Rj×d be matrices defined by stacking those keys
and values in their respective rows. To compute the following at every step j to generate j + 1 token,
is called the streaming attention problem:

Attn(qj ,Kj , Vj) := softmax
(
Kj · qj√

d

)T

· Vj . (1)

Keeping all of the key-value pairs in the cache is prohibitively expensive, especially for long sequences.
Instead, we opt for approximate computation by sampling a few key-value pairs. Specifically, our goal
is to construct an algorithm that at every time step j computes an estimator zj for Attn(qj ,Kj , Vj)
in sublinear in n time and memory. In particular for given precision ε > 0, zj should satisfy the
following error constraint:

∥zj − Attn(qj ,Kj , Vj)∥2 ≤ ε

∥∥∥∥softmax
(
Kj · qj√

d

)∥∥∥∥
2

∥Vj∥F . (2)

A sublinear in n time and memory algorithm to compute zj will require knowledge of significantly
less key-value pairs than Kj , Vj , thus reducing the size of the key value cache needed to store them.
This motivates the study of streaming attention approximation, as an algorithm for this can directly be
used for key value cache compression during LLM token generation. In the next section we discuss
how we will construct such an estimator zj at a high level.

2.2 SOFTMAXBALANCE: Attention Approximation via Discrepancy Theory

We now start with presenting the main ideas of our approach. By the definition of softmax, Equa-
tion (1) can be written as

Attn(qj ,Kj , Vj) =
1

Zj
exp

(
Kj · qj√

d

)T

· Vj ,

where for a matrix A we write exp(A) to denote entry-wise exponential function to A and Zj :=∑
i∈[j] exp(⟨ki, qj⟩/

√
d). Our approach to approximate Attn(qj ,Kj , Vj) consists of two subroutines

which approximate:

3

1. Softmax normalization Zj =
∑

i∈[j] exp(⟨ki, qj⟩/
√
d),

2. Matrix-vector product between Vj and exp(Kj · qj/
√
d).

To understand our main idea, suppose we are at the end of the stream (i.e., j = n) and we store all
key-value pairs (k1, v1), . . . , (kn, vn). Then for an arbitrary query qn we aim to approximate the
matrix-vector product exp(Kn ·qn/

√
d)T ·Vn =

∑
i∈[n] exp(⟨ki, qn⟩/

√
d)vi by choosing a subset of

the rows of Kn and Vn of size at most n/2 which corresponds to a compression rate of 0.5. Suppose
we can design an algorithm which splits the set C of all keys and values into two groups C ′ and
C\C ′ so that the matrix-vector product function for any query vector qn is roughly equal over C ′

and C\C ′ that is informally,∑
{k,v}∈C′

exp

(
⟨k, qn⟩√

d

)
v ≈

∑
{k,v}∈C\C′

exp

(
⟨k, qn⟩√

d

)
v.

Then, we are able to approximate the matrix-vector product function with either one of the sums
above since informally:∑

{k,v}∈C

exp

(
⟨k, qn⟩√

d

)
v ≈ 2

∑
{k,v}∈C′

exp

(
⟨k, qn⟩√

d

)
v.

Therefore, it would suffice to keep the smaller subset of C ′ and C\C ′ as the desired subset of key
value embeddings and discard the rest. If we wanted to compress the key value cache to a smaller
size by a factor 2T for some T , we would recursively compress the selected subset using the same
procedure T − 1 more times.

A similar goal is captured by the vector balancing problem studied extensively in discrepancy theory;
given a set of vectors C = {k1, . . . , kn} ⊂ Rd with ∥kj∥2 ≤ 1 for all j, partition them into two
groups C ′, C \ C ′ such that for any q ∈ Rd it holds

∑
k∈C′⟨k, q⟩ ≈

∑
k∈C\C′⟨k, q⟩ with high

probability. The Self-Balancing Walk algorithm [3] is a breakthrough result for the above vector
balancing problem. However we need to develop an algorithm for the vector balancing problem with
respect to function exp(⟨k, ·⟩/

√
d)v instead of the inner product function ⟨k, ·⟩.

Our first contribution is to develop an algorithm for our task, building upon the result from the
self-balancing walk [3], which essentially randomly partitions the set of keys and values C into C ′

and C \ C ′ such that the following holds with high probability under the assumptions that the norms
of the query and key embeddings are bounded,∥∥∥∥∥∥

∑
{k,v}∈C′

exp

(
⟨k, qn⟩√

d

)
v −

∑
{k,v}/∈C′

exp

(
⟨k, qn⟩√

d

)
v

∥∥∥∥∥∥
2

≤ O (log(nd)) ·max
j∈[n]

∥vi∥2.

We refer to this algorithm as SOFTMAXBALANCE, its formal guarantee is presented in Theo-
rem 3.3 and its pseudocode is presented in Algorithm 2. Theorem 3.3 shows that SOFTMAXBAL-
ANCE succeeds to divide C into subsets C ′ and C\C ′ which are balanced with respect to function
exp(⟨k, ·⟩/

√
d)v up to an error which only has logarithmic dependence on the size of C. In addition,

SOFTMAXBALANCE can accept as input value vectors of arbitrary dimension s. Therefore, if instead
of the value vectors v1, . . . , vn ∈ Rd we input the set of scalars v1 = · · · = vn = 1, we will get an
algorithm for the vector balancing problem with respect to function exp(⟨k, ·⟩/

√
d). This implies

that we can use SOFTMAXBALANCE to compress the key value cache to even approximate the soft-
max normalization

∑
i∈[n] exp(⟨ki, qn⟩/

√
d). We now discuss how to use SOFTMAXBALANCE for

streaming attention approximation, i.e. to use it to compute an estimator zj satisfying Equation (2).

2.3 BALANCEKV: Implementing SOFTMAXBALANCE in Streaming

For a sequence of n tokens and a given memory budget of t ≪ n, we aim to design a procedure
which applies SOFTMAXBALANCE to select from n key-value embeddings a set of at most t in
the streaming setting and can compute an estimator zj satisfying Equation (2) for all steps j in the
stream. In the streaming setting one needs to consider the following aspects. As described in the
previous section, one iteration of SOFTMAXBALANCE only allows one to select a n/2 sized subset of

4

n key-value embeddings, which is higher than the desired budget of t embeddings. This can be easily
mitigated by recursively applying SOFTMAXBALANCE 2log(n/t) times, each time halving the set of
key-value embeddings. However, this cannot be implemented in the streaming as we have a limited
memory budget of t which prohibits us from storing all key-value embeddings during recursion.

To deal with this, we use the classical merge and reduce technique used in the design of streaming
algorithms [13, 51, 33]. MERGEANDREDUCE algorithm is a recursive binary tree-based approach
that allows one to implement SOFTMAXBALANCE recursively in a streaming setting with the
total memory not exceeding Õ(dt), where Õ(·) supresses polynomial in log n factors, under the
assumption that the norms of queries and keys are bounded. The guarantees of MERGEANDREDUCE
are presented in Theorem 3.4, its pseudocode in Algorithm 4 and a visual representation in Figure
2. If the norms of all value embeddings in the stream are the same up to constant factors, that is
for all i, j ∈ [n] 0.5 ≤ ∥vi∥2/∥vj∥2 ≤ 2, then the outputs of MERGEANDREDUCE can be used to
construct an estimator zj satisfying our attention approximation guarantee of equation Equation (2)
with precision ε for t = Õ(

√
d/ε). However, the value embeddings may have very different norms.

Our main algorithm BALANCEKV (pseudocode in Algorithm 1) deals with this issue by grouping
the key-value embeddings in the stream according to the norms of the value embeddings, running a
separate instance of MERGEANDREDUCE on each group, and combining the outputs of each instance
of MERGEANDREDUCE. BALANCEKV constructs a final estimator zj satisfying Equation (2) with
precision ε only using Õ(d

√
d/ε) memory and Õ(d2/ε2) runtime per every step j of the stream,

assuming the norms of query and key embeddings are bounded. Existing methods [83] subsample
keys and values independently in the cache, and thus have a 1/ε2 dependence on ε in total memory.
The guarantees of BALANCEKV are presented in Theorem 3.1.

Finally using the lower bound on the communication complexity of INDEX, we show a lower bound
on the memory complexity of any algorithm for streaming attention approximation in Theorem 3.2.

3 Main Theoretical Results

Our main algorithm for streaming attention approximation is BALANCEKV. It takes in as input a
stream of n tokens (q1, k1, v1), (q2, k2, v2), . . . , (qn, kn, vn) and at every step of the stream outputs an
estimate zj to Attn(qj ,Kj , Vj) (see Equation (1) for the definition of Attn(.)) satisfying Equation (2)
with precision ε. Assuming that the ℓ2 norms of qj , kj are at most r for all j, BALANCEKV uses
total space Õ(d

√
de2r

2/
√
d · 1/ε) and uses Õ(d2e4r

2/
√
d · 1/ε2) runtime at each step j of the stream

to output zj . Our main theorem is as follows.

Theorem 3.1. For any r, ε > 0, any positive integers n, d, any set of tokens
(q1, k1, v1), (q2, k2, v2), . . . , (qn, kn, vn) where qj , kj , vj ∈ Rd satisfy ∥qj∥2, ∥kj∥2 ≤ r for all
j, consider an invocation of BALANCEKV with

batch size t = Õ
(√

de2r
2/

√
d/ε
)

and compression rate 2−T with T = log(n/t).

Then BALANCEKV outputs a vector zj satisfying Equation (2) with probability at least 1−1/poly(n)

at every step j of the stream. It uses total memory Õ
(
d
√
de2r

2/
√
d/ε
)

across all steps of the stream

and runtime of Õ
(
d2e4r

2/
√
d/ε2

)
per step of the stream.

A pseudocode of BALANCEKV is described in Algorithm 1. At its core BALANCEKV relies on
our main discrepancy based algorithm, namely SOFTMAXBALANCE– see Section 3.1 for details on
SOFTMAXBALANCE. BALANCEKV uses the output of SOFTMAXBALANCE to compute estimates of
the numerator and denominator of Attn(qj ,Kj , Vj) and returns the desired attention approximation
zj for each streamed index j. There are two subtleties, however. First, it is important to bucket
tokens in the stream according to the norm of the value vectors – see lines 5 and 6. Second, a direct
application of SOFTMAXBALANCE would require too much memory space. To ensure small space
usage, we apply a classical streaming technique, namely the MERGEANDREDUCE algorithm on
top of SOFTMAXBALANCE to reduce the space consumption. The space reduction achieved by
MERGEANDREDUCE is by running a logarithmic number of copies of SOFTMAXBALANCE in a
tree-like fashion. More details are introduced in Section 3.2.

5

Algorithm 1 BALANCEKV((qj , kj , vj)
n
j=1, r, t, T, ε)

1: input: stream of n tokens (qj , kj , vj), diameter r, batch size t, compression rate 2−T , precision
parameter ε.

2: // Bucket the stream and maintain log(n) instances of MERGEANDREDUCE,
MR-NUMERATORi, for each bucket to approximate the numerator of Attn(qj ,Kj , Vj);
and one instance, MR-DENOMINATOR, to approximate its denominator.

3: vmax ← 0
4: repeat
5: Find an index i such that 2i ≥ ∥vj∥2 ≥ 2i−1

6: Send (kj , vj) as input to MR-NUMERATORi // Bucket the stream by ∥v∥2
7: vmax ← max {∥vj∥2, vmax}
8: Erase all MR-NUMERATORi with 2i ≤ ε

2ne
− r2√

d vmax // Erase small norm buckets
9: C0

i , . . . , C
T
i ← the output of MR-NUMERATORi

10: V l ← ∪iCl
i for l = 0, . . . , T // Combine the outputs of MR-Numeratori

11: Send (kj , 1) as input to MR-DENOMINATOR

12: K0, . . .KT ← MR-DENOMINATOR

13: output: zj =
∑T

l=0 2l
∑

{k,v}∈V l exp
(⟨k,qj⟩√

d

)
v∑T

l=0 2l
∑

{k,v}∈Kl exp
(⟨k,qj⟩√

d

)
14: j ← j + 1
15: until token stream ends

To summarize, BALANCEKV groups tokens in the stream according to the norms of the corresponding
value embeddings, runs a separate instance of MERGEANDREDUCE on each group, and combines
the outputs of each instance to construct the final estimate for Attn(qj ,Kj , Vj) at each step j ∈ [n].
Next we present SOFTMAXBALANCE and MERGEANDREDUCE. The full proof of Theorem 3.1 is
given in appendix Section A.1. Finally we state the theorem which provides a lower bound on the
memory complexity of any algorithm for streaming attention approximation below, its full proof is
provided in appendix Section C.

Theorem 3.2. Suppose that r2 ≤ d. Any streaming algorithm which on input
({k1, v1}, . . . , {kn, vn}, q), ∥q∥2, ∥ki∥2 ≤ r, outputs zq satisfying Equation (2) with probability

0.999 has space complexity Ω
(
min{ 1

ε2 , d exp(2r
2/
√
d)}
)
.

3.1 SOFTMAXBALANCE

We now present our main discrepancy based compression algorithm, SOFTMAXBALANCE. Given
a sequence of key and value embeddings C = {(k1, v1), . . . (kn, vn)} (with key and value
embeddings having possibly different dimensions), the goal of SOFTMAXBALANCE is to pro-
duce a partition of C into subsets C ′, C \ C ′ such that for any query q ∈ Rd we have that∑

(k,v)∈C′ exp(⟨k, q⟩/
√
d)v ≈

∑
(k,v)∈C\C′ exp(⟨k, q⟩/

√
d)v with high probability. Without loss

of generality assume that |C ′| ≤ |C|/2, we can then output 2
∑

(k,v)∈C′ exp(⟨k, q⟩/
√
d)v as an

approximation to
∑

(k,v)∈C exp(⟨k, q⟩/
√
d)v, thus achieving a factor 2 compression. Its description

is presented in Algorithm 2 below. We note that while SOFTMAXBALANCE takes as input a sequence
of key and value embeddings, it can nevertheless be used to compute the softmax normalization:
we simply run it on the keys, with the corresponding value vector one-dimensional and all equal
to 1 – see line 11 in BALANCEKV, where SOFTMAXBALANCE is called within the corresponding
invocation of MERGEANDREDUCE with value vectors as 1s. It’s guarantees are as follows.

Theorem 3.3. Given sets K = {k1, . . . , kn} ⊂ Rd, V = {v1, . . . , vn} ⊂ Rs, and failure probability
δ > 0, define C to be the dataset of pairs C = {(k1, v1), . . . , (kn, vn)}. There exists a randomized
algorithm, SOFTMAXBALANCE, which outputs a subset C ′ ⊂ C, |C ′| ≤ |C|/2, such that, for any

6

Algorithm 2 SOFTMAXBALANCE((kj , vj)j , rkey, rvalue, δ)

1: input: stream of ≤ n key-value embeddings (kj , vj), radii rkey, rvalue: maxj ∥kj∥2 ≤ rkey,
maxj ∥vj∥2 ≤ rvalue, probability of failure δ.

2: R← exp(r2key/2
√
d) · rvalue

3: c← 30 log(n/δ)
4: Initialize zero vector η ← {0}
5: for j from 1 and until the end of the stream do
6: y ←

(
exp(⟨ki, kj⟩/

√
d)⟨vi, vj⟩

)
i∈[j]

7: if
∣∣yT η∣∣ > c ·R2 then FAIL

8: pj ← 1
2 −

yT η
2c·R2

9: ηj ←
{

+1 with probability pj
−1 o.w.

10: Add a new zero coordinate ηj+1 ← 0
11: end for
12: if |{(ki, vi) : ηi = 1}| ≤ |{(ki, vi) : ηi = −1}| then
13: output: {(ki, vi) : ηi = 1}
14: else
15: output: {(ki, vi) : ηi = −1}
16: end if

vector q ∈ Rd, with probability at least 1− δ,∥∥∥∥∥∥
∑

{k,v}∈C′

exp

(
⟨k, q⟩√

d

)
v −

∑
{k,v}/∈C′

exp

(
⟨k, q⟩√

d

)
v

∥∥∥∥∥∥
2

≤

O

(
√
s · log(ns/δ) · exp

(
∥q∥22
2
√
d

)
· exp

(
max
j∈[n]

∥kj∥22
2
√
d

)
·max
j∈[n]

∥vj∥2

)
.

The runtime of SOFTMAXBALANCE is O((d+ s)n2) and memory is O((d+ s)n).

The proof of the above theorem uses the breakthrough result of [3] for the vector balancing problem,
one of the main problems in discrepancy theory. Given a set of vectors k1, . . . , kn the result of [3]
produces a subset C of these vectors of at most half the size such that for any vector q we have that∑

k∈C⟨k, q⟩ ≈
∑

k∈[n]\C⟨k, q⟩ with high probability. Our main contribution is an algorithm for the

vector balancing problem with respect to the function exp(⟨k, ·⟩/
√
d)v as compared to ⟨k, ·⟩ in the

case of [3]. We defer the proof of Theorem 3.3 to Appendix A.2.

3.2 MERGEANDREDUCE

As briefly mentioned above in Section 3, MERGEANDREDUCE is a streaming version of SOFT-
MAXBALANCE. The idea is to partition the stream of tokens into batches of size t, apply SOFT-
MAXBALANCE to the batches to reduce the size of each batch by a constant factor, and then repeat
recursively – see Fig. 2 in the appendix.

If we set batch size t to be about 1/ε (see Theorem 3.4 below for the more precise setting), we obtain
a streaming algorithm that approximates

∑j
i=1 exp(⟨ki, qj⟩/

√
d)vi at any point j in the stream using

total space Õ(d
√
de2r

2/
√
d/ε) and runtime Õ(d2e4r

2/
√
d/ε2) per step, where r is an upper bound on

the norms of key and query embeddings.

As before, an important aspect is that MERGEANDREDUCE can handle value embeddings of dimen-
sion not necessarily equal to that of key and query embeddings. Thus, when run on scalars vi = 1 for
all i, it can also be used to approximate softmax normalization at any point j in the stream. This is the
main subroutine used in BALANCEKV to approximate Attn(qj ,Kj , Vj). Its pseudocode description
is presented in Appendix A.3.1, and its proof is in Appendix A.3.2. The formal guarantees are

7

0.10.20.30.40.5
Compression Rate

0.1

0.2

0.3

0.4

0.5

Re
lat

ive
 E

rro
r

Relative Error vs Compression Rate for Llama
Layer 1 - BalanceKV
Layer 1 - Uniform
Layer 2 - BalanceKV
Layer 2 - Uniform
Layer 5 - BalanceKV
Layer 5 - Uniform

0.10.20.30.40.5
Compression Rate

0.1

0.2

0.3

0.4

0.5

0.6

Re
lat

ive
 E

rro
r

Relative Error vs Compression Rate for Mistral
Layer 1 - BalanceKV
Layer 1 - Uniform
Layer 2 - BalanceKV
Layer 2 - Uniform
Layer 5 - BalanceKV
Layer 5 - Uniform

Figure 1: Comparison of relative errors across different layers of Llama-3.1-8B-Instruct (left) and
Ministral-8B-Instruct-2410 (right) on TriviaQA dataset.

Theorem 3.4. For any r, ε > 0, any set of tokens (q1, k1, v1), . . . , (qn, kn, vn) where qj , kj ∈ Rd

satisfy ∥qj∥2, ∥kj∥2 ≤ r, vj ∈ Rs for s ≤ d suppose,

batch size t = Õ(
√
se2r

2/
√
d/ε) and compression rate 2−T with T = log(n/t).

Then MERGEANDREDUCE on input parameters t, r, d, s, ε, outputs at every step j of the stream
subsets of key-value embedding pairs C0, . . . , CT ⊂ C := {(k1, v1), . . . , (kn, vn)} such that,

zj :=
∑T

i=0 2
i
∑

{k,v}∈Ci exp
(

⟨k,qj⟩√
d

)
v, satisfies with probability at least 1− 1/poly(n),

∥∥∥∥∥
j∑

i=1

exp

(
⟨ki, qj⟩√

d

)
vi − zj

∥∥∥∥∥
2

≤ εj · e−r2/
√
d ·max

i∈[n]
∥vi∥2.

Total memory of the algorithm is Õ(d
√
se2r

2/
√
d/ε), its j-th iteration runtime is Õ(dse4r

2/
√
d/ε2).

4 Experiments

In this section we now present our experimental results. The full details of all sections as well as the
experimental setup and implementation can be found in Appendix B.

4.1 Ablation Studies on Single Layer Attention Approximation

We evaluate the effectiveness of BALANCEKV for approximating attention in individual layers of
Llama-3.1-8B-Instruct [27] and Ministral-8B-Instruct-2410 [52] on the TriviaQA dataset
from LongBench [5]. Specifically, we examine layers 1, 2, and 5 and compare against independent
uniform sampling key and value embeddings.

Due to space limitations, we provide the full experimental details in Appendix B.1. For each layer,
we approximate attention for recent tokens using a compressed cache that retains a fixed number of
initial and recent embeddings, alongside intermediate ones selected via BALANCEKV, and measure
its relative error against exact attention. We vary the compression rate 2−T ∈ {1/2, 1/4, 1/8, 1/16}.
As shown in Fig. 1, BALANCEKV consistently yields lower relative approximation error than
approximating attention by uniform sampling past key value pairs across all settings, empirically
validating its advantage as predicted by Theorem 3.1.

For a fixed dataset and layer, we also analyzed how the performance and runtime of BALANCEKV
depend on the batch size and compression rate. More precisely, we repeat the single-layer attention
approximation experiment TriviaQA and layers 1 and 15 of Llama-3.1-8B-Instruct, for batch size
∈ [64, 128, 256] and compression rate 2−T ∈ [1/2, 1/4, 1/8]. The results are presented in Figure 3.
As this experiment suggests, the quality of attention approximation increases as the size of the block
doubles, while the runtime becomes slower as also proven theoretically.

8

Method qasper multi hotpotqa 2wiki gov multinews trec triviaqa samsum p.count p.ret lcc repo-p average

Qwen2.5-32B-Instruct
Exact (Baseline) 44.56 50.65 69.14 60.39 21.3 19.52 75.33 81.14 43.17 22.0 99.67 50.9 35.22 51.77
StreamingLLM 20.12 34.35 51.84 48.23 19.09 17.10 61.00 51.14 28.52 23.33 41.33 39.19 26.54 35.52
PyramidKV 34.47 46.33 67.78 55.92 15.16 15.39 69.33 63.24 40.36 22.67 99.33 48.32 34.35 47.13
SnapKV 36.21 46.78 66.64 57.02 16.35 16.07 70.33 77.53 41.08 22.0 99.33 49.04 35.62 48.77
Uniform 39.28 43.82 64.82 57.84 23.10 19.50 73.00 81.63 39.70 22.00 92.00 44.97 32.19 48.76
BALANCEKV 40.14 43.17 64.46 58.06 22.26 20.32 73.00 80.68 41.07 22.33 92.0 44.95 32.43 48.84

Qwen2.5-14B-Instruct
Exact (Baseline) 43.39 52.63 64.06 53.71 28.07 22.4 74.67 88.75 44.81 22.33 99.0 63.69 46.3 54.14
StreamingLLM 20.73 32.62 49.93 42.39 21.63 18.69 59.67 74.96 29.57 11.67 63.0 46.16 32.25 38.71
PyramidKV 31.76 46.6 62.83 50.0 19.08 17.68 65.0 85.52 42.61 22.0 99.33 60.62 44.4 49.8
SnapKV 32.95 47.53 61.96 50.34 20.29 18.28 60.67 88.75 42.97 22.67 99.33 61.32 45.84 50.22
Uniform 37.07 41.69 61.11 49.96 29.18 22.67 71.67 87.89 40.34 22.0 84.33 58.0 42.57 49.88
BALANCEKV 37.02 41.96 61.74 50.9 29.26 22.64 71.67 88.1 41.14 23.67 87.67 58.64 43.63 50.62

Llama-3.1-8B-Instruct
Exact (Baseline) 42.87 48.54 52.05 38.6 31.31 22.07 71.67 91.85 42.36 20.37 98.13 49.62 42.73 50.17
StreamingLLM 20.65 30.71 39.14 32.43 23.10 18.70 58.00 83.87 28.85 20.36 97.26 33.69 30.46 39.79
PyramidKV 33.86 39.75 47.12 35.96 20.03 17.78 63.67 90.76 40.21 20.4 98.97 45.25 39.51 45.64
SnapKV 33.91 42.55 49.09 36.13 20.48 17.67 62.0 91.7 40.23 20.33 98.86 46.7 39.86 46.12
Uniform 37.18 37.15 47.49 37.82 27.56 21.06 68.67 90.48 36.13 20.33 96.26 45.72 37.09 46.38
BALANCEKV 35.75 37.04 46.37 36.24 27.09 20.84 69.0 90.88 37.88 20.39 96.65 48.45 41.4 46.77

Table 1: Comparison of various cache compression methods on LongBench-E using various models.
The best results among compression methods for each model are highlighted in bold.

4.2 End-to-end Evalution on LongBench

Next we evaluate BALANCEKV on LongBench dataset [5], which tests long-context understanding
across tasks like QA, summarization, few-shot learning, synthetic reasoning, and code completion.
Specifically, we test a version of uniform length distribution (LongBench-E). During inference, we
compress the key-value cache in the prefill stage using a uniform compression rate of (approximately)
0.25 across all methods, while retaining all streamed embeddings during the decoding phase. We
compare against StreamingLLM [76], SnapKV [46], PyramidKV [14], and uniform sampling (see
Section 4.1), using their implementations from MInference [37]. The evaluation follows the Long-
Bench protocol, using three pre-trained models at different scales including Llama-3.1-8B-Instruct,
Qwen-2.5-14B-Instruct and Qwen-2.5-32B-Instruct. The results are reported in Table 1.

Notably, BALANCEKV consistently achieves the best overall performance among compression
methods and across all models, demonstrating its effectiveness in preserving model quality for cache
compression. The full experimental setup details can be found in Appendix B.2.

4.3 Needle-In-A-Haystack Benchmark

We evaluate BALANCEKV on the “Needle-In-A-Haystack“ benchmark [39], comparing it against
SnapKV, PyramidKV, StreamingLLM, and uniform sampling using Llama-3.1-8B-Instruct. The
test challenges the model to retrieve a specific sentence (the “needle”) embedded at an arbitrary
position within a long context (the “haystack”). Following the setup in [29], we hide the needle
at varying depths, from 0% to 100% of the total context length, across documents ranging from
approximately 4K to 100K tokens. As in the previous experiments, all methods are evaluated under a
fixed compression ratio of approximately 0.25.

To further enhance performance, we introduce an augmented version of BALANCEKV that deter-
ministically preserves a small set of tokens whose key embeddings are strongly anti-correlated with
the rest. The standard BALANCEKV procedure is then applied to the remaining tokens within each
layer. As a result, BALANCEKV achieves an average accuracy of 0.99, outperforming SnapKV
(0.83), PyramidKV (0.90), StreamingLLM (0.31), and uniform sampling (0.90). Detailed heatmaps
of performance across different context lengths and needle depths are in Figure 4 in Appendix B.3.

4.4 System Efficiency Metrics

We measure wall-clock times for both the prefill stage (including cache compression) and the decoding
stage using a random input of length 16,384 tokens, followed by the generation of 1,024 tokens.

9

Results are averaged over 10 independent runs, with the minimum runtime reported to enhance
robustness. The full results are provided in Table 2 in Appendix B.4.

All compression methods incur some prefill overhead compared to the uncompressed baseline (Exact).
While StreamingLLM achieves the fastest decoding speed, it suffers from significantly lower accuracy
(see Table 1). Among the remaining methods, BALANCEKV achieves the lowest prefill latency
and consistently delivers the best trade-off between efficiency and accuracy. This demonstrates that
our discrepancy-based approach not only scales well in theory but also brings practical gains in
end-to-end system performance, making it a compelling choice for real-world deployment scenarios.

4.5 Additional Experiments

We additionally conduct the following experiments and provide their results in Appendix B.5 due to
the space limitation.

1. Our main theorem (Theorem 3.4) relies on an upper bound of ℓ2 norms of both query and key
vectors. To validate this, we investigate the ℓ2 norms of queries, keys, and values (QKV) on
the TriviaQA dataset from LongBench [5] using Llama-3.1-8B-Instruct. Specifically, we
analyze prompts in TriviaQA and compute the average ℓ2 norms of all QKV vectors across all
layers and attention heads during the prefill stage. The key findings are that all QKV norms
consistently concentrate around some constants (15 for query, 15 for key, and 3 for value) with
small confidence intervals (CI). Importantly, the norms remain stable across a wide range of
sequence lengths, suggesting that these norms do not grow with input sequence length.

2. We perform the evaluation of BALANCEKV and the uniform sampling when applied to the
InternVL2.5-8B multimodal LLM for compression rates 1/4 and 1/16, for evaluation on the
MS COCO image captioning dataset. The experiment was run on a NVIDIA A100 GPU with
80 GB VRAM.

3. We repeat the experiment in Section 4.2 in the extremely low compression rate regime on some
of the datasets from LongBench [5]. More specifically, we compress the key-value cache in
the prefill stage of inference using a uniform compression rate of (approximately) 0.8, 0.9, and
0.95 with uniform sampling as well as BALANCEKV, while retaining all streamed embeddings
during the decoding phase. BALANCEKV demonstrates improved performance over uniform
sampling across each of the compression rates and datasets.

4. We augment Section 4.2 by adding comparison to ClusterGen [83] using Llama-3.1-8B-
Instruct. The results are reported in Table 6.

5 Conclusion

We propose BALANCEKV, a token pruning method grounded in discrepancy theory. BALANCEKV
enables approximate attention computation, which we both establish theoretically and validate
empirically. To demonstrate the effectiveness of BALANCEKV as a KV cache compression algorithm,
we conduct end-to-end experiments on a range of popular benchmarks and models of varying sizes.
Finally, our work introduces a theoretical problem of optimal streaming attention space complexity.

References
[1] Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni

Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4
technical report. arXiv preprint arXiv:2303.08774, 2023.

[2] Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebron, and
Sumit Sanghai. Gqa: Training generalized multi-query transformer models from multi-head
checkpoints. In Proceedings of the 2023 Conference on Empirical Methods in Natural Language
Processing, pages 4895–4901, 2023.

[3] Ryan Alweiss, Yang P. Liu, and Mehtaab Sawhney. Discrepancy minimization via a self-
balancing walk. Proceedings of the 53rd ACM Symposium on the Theory of Computing (STOC

’2021), 2021.

10

[4] Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron,
Martin Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit
inference in rotated llms. arXiv preprint arXiv:2404.00456, 2024.

[5] Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du,
Xiao Liu, Aohan Zeng, Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench: A bilingual,
multitask benchmark for long context understanding. arXiv preprint arXiv:2308.14508, 2023.

[6] Wojciech Banaszczyk. Balancing vectors and gaussian measures of n-dimensional convex
bodies. Random Structures and Algorithms 12 (1998), 351–360, 1998.

[7] Wojciech Banaszczyk. On series of signed vectors and their rearrangements. Random Structures
and Algorithms 40 (2012), 301–316, 2012.

[8] Nikhil Bansal. Constructive algorithms for discrepancy minimization. 51th Annual IEEE
Symposium on Foundations of Computer Science (FOCS ’2010), arXiv:1002.2259, 2010.

[9] Nikhil Bansal, Haotian Jiang, Sahil Singla, and Makrand Sinha. Online vector balancing and
geometric discrepancy. In Proceedings of the 52nd Annual ACM Symposium on Theory of
Computing (STOC ’2020), arXiv:1912.03350, 2019.

[10] Iz Beltagy, Matthew E Peters, and Arman Cohan. Longformer: The long-document transformer.
arXiv preprint arXiv:2004.05150, 2020.

[11] Aline Bessa, Majid Daliri, Juliana Freire, Cameron Musco, Christopher Musco, Aécio Santos,
and Haoxiang Zhang. Weighted minwise hashing beats linear sketching for inner product
estimation. In Proceedings of the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles
of Database Systems, PODS ’23, page 169–181, New York, NY, USA, 2023. Association for
Computing Machinery.

[12] Stéphane Boucheron, Gábor Lugosi, and Olivier Bousquet. Concentration inequalities. In
Summer school on machine learning, pages 208–240. Springer, 2003.

[13] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain, Sandeep Silwal, and
Samson Zhou. Adversarial robustness of streaming algorithms through importance sampling.
Advances in Neural Information Processing Systems, 34:3544–3557, 2021.

[14] Zefan Cai, Yichi Zhang, Bofei Gao, Yuliang Liu, Tianyu Liu, Keming Lu, Wayne Xiong, Yue
Dong, Baobao Chang, Junjie Hu, et al. Pyramidkv: Dynamic kv cache compression based on
pyramidal information funneling. arXiv preprint arXiv:2406.02069, 2024.

[15] Moses Charikar, Michael Kapralov, and Erik Waingarten. A quasi-monte carlo data structure
for smooth kernel evaluations. In Proceedings of the 35th ACM-SIAM Symposium on Discrete
Algorithms (SODA ’2024), arXiv:2401.02562, 2024.

[16] Moses S Charikar. Similarity estimation techniques from rounding algorithms. In Proceedings
of the thiry-fourth annual ACM symposium on Theory of computing, pages 380–388, 2002.

[17] Daniel Dadush, Aleksandar Nikolov, Kunal Talwar, and Nicole Tomczak-Jaegermann. Balancing
vectors in any norm. 59th Annual IEEE Symposium on Foundations of Computer Science (FOCS
’2018), 2018.

[18] Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

[19] Majid Daliri, Juliana Freire, Christopher Musco, Aécio Santos, and Haoxiang Zhang. Sampling
methods for inner product sketching. Proc. VLDB Endow., 2024.

[20] Majid Daliri, Juliana Freire, Christopher Musco, Aécio Santos, and Haoxiang Zhang. Sampling
methods for inner product sketching, 2024.

[21] Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning. arXiv
preprint arXiv:2307.08691, 2023.

11

[22] Sanjoy Dasgupta and Anupam Gupta. An elementary proof of a theorem of johnson and
lindenstrauss. Random Structures & Algorithms, 22(1):60–65, 2003.

[23] Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems,
35:30318–30332, 2022.

[24] Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient
finetuning of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

[25] Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh
Ashkboos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized
representation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078,
2023.

[26] Shichen Dong, Wen Cheng, Jiayu Qin, and Wei Wang. Qaq: Quality adaptive quantization for
llm kv cache. arXiv preprint arXiv:2403.04643, 2024.

[27] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[28] Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

[29] Yao Fu, Rameswar Panda, Xinyao Niu, Xiang Yue, Hannaneh Hajishirzi, Yoon Kim, and
Hao Peng. Data engineering for scaling language models to 128k context. arXiv preprint
arXiv:2402.10171, 2024.

[30] Yu Fu, Zefan Cai, Abedelkadir Asi, Wayne Xiong, Yue Dong, and Wen Xiao. Not all heads
matter: A head-level kv cache compression method with integrated retrieval and reasoning.
arXiv preprint arXiv:2410.19258, 2024.

[31] Jianyang Gao and Cheng Long. Rabitq: Quantizing high-dimensional vectors with a theoretical
error bound for approximate nearest neighbor search. Proceedings of the ACM on Management
of Data, 2(3):1–27, 2024.

[32] Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles
Foster, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas
Muennighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron,
Lintang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A frame-
work for few-shot language model evaluation, 2023. https://github.com/EleutherAI/
lm-evaluation-harness.

[33] Mina Ghashami, Edo Liberty, Jeff M. Phillips, and David P Woodruff. Frequent directions:
Simple and deterministic matrix sketching. SIAM J. Comput., 45(5):1762–1792, 2016.

[34] Insu Han, Rajesh Jarayam, Amin Karbasi, Vahab Mirrokni, David Woodruff, and Amir Zandieh.
Hyperattention: Long-context attention in near-linear time. arXiv preprint arXiv:2310.05869,
2023.

[35] Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia
Shao, Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm
inference with kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.

[36] Jianqiu Ji, Jianmin Li, Shuicheng Yan, Bo Zhang, and Qi Tian. Super-bit locality-sensitive
hashing. Advances in neural information processing systems, 25, 2012.

[37] Huiqiang Jiang, YUCHENG LI, Chengruidong Zhang, Qianhui Wu, Xufang Luo, Surin Ahn,
Zhenhua Han, Amir H Abdi, Dongsheng Li, Chin-Yew Lin, et al. Minference 1.0: Accelerating
pre-filling for long-context llms via dynamic sparse attention. In The Thirty-eighth Annual
Conference on Neural Information Processing Systems, 2024.

12

https://github.com/EleutherAI/lm-evaluation-harness
https://github.com/EleutherAI/lm-evaluation-harness

[38] William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. Extensions of lipschitz
maps into banach spaces. Israel Journal of Mathematics, 54(2):129–138, 1986.

[39] Greg Kamradt. Needle in a haystack-pressure testing llms. Github Repository, page 28, 2023.

[40] Hao Kang, Qingru Zhang, Souvik Kundu, Geonhwa Jeong, Zaoxing Liu, Tushar Krishna, and
Tuo Zhao. Gear: An efficient kv cache compression recipefor near-lossless generative inference
of llm. arXiv preprint arXiv:2403.05527, 2024.

[41] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[42] Junhyuck Kim, Jongho Park, Jaewoong Cho, and Dimitris Papailiopoulos. Lexico: Ex-
treme kv cache compression via sparse coding over universal dictionaries. arXiv preprint
arXiv:2412.08890, 2024.

[43] Janardhan Kulkarni, Victor Reis, and Thomas Rothvoss. Optimal online discrepancy minimiza-
tion. In Proceedings of the 56th Annual ACM Symposium on Theory of Computing (STOC

’2024), arXiv:2308.01406, 2023.

[44] Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th Symposium on Operating Systems
Principles, pages 611–626, 2023.

[45] Dacheng Li, Rulin Shao, Anze Xie, Ying Sheng, Lianmin Zheng, Joseph Gonzalez, Ion Stoica,
Xuezhe Ma, and Hao Zhang. How long can open-source llms truly promise on context length?,
2023. https://huggingface.co/lmsys/longchat-7b-v1.5-32k.

[46] Yuhong Li, Yingbing Huang, Bowen Yang, Bharat Venkitesh, Acyr Locatelli, Hanchen Ye,
Tianle Cai, Patrick Lewis, and Deming Chen. Snapkv: Llm knows what you are looking for
before generation. arXiv preprint arXiv:2404.14469, 2024.

[47] Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq:
Activation-aware weight quantization for llm compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

[48] Zichang Liu, Aditya Desai, Fangshuo Liao, Weitao Wang, Victor Xie, Zhaozhuo Xu, Anastasios
Kyrillidis, and Anshumali Shrivastava. Scissorhands: Exploiting the persistence of impor-
tance hypothesis for llm kv cache compression at test time. Advances in Neural Information
Processing Systems, 36, 2024.

[49] Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi
Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv
preprint arXiv:2402.02750, 2024.

[50] Namiko Matsumoto and Arya Mazumdar. Binary iterative hard thresholding converges with
optimal number of measurements for 1-bit compressed sensing. J. ACM, 71(5), October 2024.

[51] Jayadev Misra and David Gries. Finding repeated elements. Sci. Comput. Program., 2(2):143–
152, 1982.

[52] Mistral AI team. Mistral ai, 2024. https://mistral.ai/news/ministraux/.

[53] OpenAI. Introducing gpt-4o, 2024. https://openai.com/index/hello-gpt-4o/.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative
style, high-performance deep learning library. Advances in neural information processing
systems, 32, 2019.

[55] Jeff M Phillips and Wai Ming Tai. Near-optimal coresets for kernel density estimates. Discrete
and Computational Geometry, 63(4):867–887, 2020.

13

https://huggingface.co/lmsys/longchat-7b-v1.5-32k
https://mistral.ai/news/ministraux/
https://openai.com/index/hello-gpt-4o/

[56] Yaniv Plan, Roman Vershynin, and Elena Yudovina. High-dimensional estimation with geomet-
ric constraints. Information and Inference: A Journal of the IMA, 6(1):1–40, 2017.

[57] Reiner Pope, Sholto Douglas, Aakanksha Chowdhery, Jacob Devlin, James Bradbury, Jonathan
Heek, Kefan Xiao, Shivani Agrawal, and Jeff Dean. Efficiently scaling transformer inference.
Proceedings of Machine Learning and Systems, 5, 2023.

[58] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical
text-conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 2022.

[59] Machel Reid, Nikolay Savinov, Denis Teplyashin, Dmitry Lepikhin, Timothy Lillicrap, Jean-
baptiste Alayrac, Radu Soricut, Angeliki Lazaridou, Orhan Firat, Julian Schrittwieser, et al.
Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context. arXiv
preprint arXiv:2403.05530, 2024.

[60] Nataniel Ruiz, Yuanzhen Li, Varun Jampani, Yael Pritch, Michael Rubinstein, and Kfir Aberman.
Dreambooth: Fine tuning text-to-image diffusion models for subject-driven generation. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
22500–22510, 2023.

[61] Jay Shah, Ganesh Bikshandi, Ying Zhang, Vijay Thakkar, Pradeep Ramani, and Tri Dao.
Flashattention-3: Fast and accurate attention with asynchrony and low-precision. arXiv preprint
arXiv:2407.08608, 2024.

[62] Noam Shazeer. Fast transformer decoding: One write-head is all you need. arXiv preprint
arXiv:1911.02150, 2019.

[63] Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy
Liang, Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative
inference of large language models with a single gpu. In International Conference on Machine
Learning, pages 31094–31116. PMLR, 2023.

[64] Hanshi Sun, Li-Wen Chang, Wenlei Bao, Size Zheng, Ningxin Zheng, Xin Liu, Harry Dong,
Yuejie Chi, and Beidi Chen. Shadowkv: Kv cache in shadows for high-throughput long-context
llm inference. arXiv preprint arXiv:2410.21465, 2024.

[65] Antropic Team. claude, 2024. https://www.anthropic.com/news/claude-3-family.

[66] FireFly Team. Adobe firefly, 2023. https://firefly.adobe.com/.

[67] Llama3 Team. Llama3, 2024. https://github.com/meta-llama/llama3.

[68] Microsoft Copilot Team. Microsoft copilot, 2023. https://github.com/features/
copilot.

[69] Midjourney Team. Midjourney, 2022. https://www.midjourney.com/home.

[70] OpenAI Team. Sora: Creating video from text, 2024. https://openai.com/index/sora/.

[71] Qwen Team. Qwen2.5: A party of foundation models, September 2024.

[72] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

[73] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. 2017.

[74] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony
Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s trans-
formers: State-of-the-art natural language processing. arxiv. arXiv preprint arXiv:1910.03771,
2019.

14

https://www.anthropic.com/news/claude-3-family
https://firefly.adobe.com/
https://github.com/meta-llama/llama3
https://github.com/features/copilot
https://github.com/features/copilot
https://www.midjourney.com/home
https://openai.com/index/sora/

[75] David Woodruff. Cs 15-859: Algorithms for big data - lecture 11. https:
//www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall20/Scribe_
Lecture_11-1.pdf?utm_source=chatgpt.com, 2020.

[76] Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023.

[77] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jin Xu, Jingren Zhou,
Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin Yang, Mei Li,
Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao, Runji Lin, Shijie
Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin Ge, Xiaodong
Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng Ren, Yang Fan,
Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and
Zhihao Fan. Qwen2 technical report. arXiv preprint arXiv:2407.10671, 2024.

[78] June Yong Yang, Byeongwook Kim, Jeongin Bae, Beomseok Kwon, Gunho Park, Eunho Yang,
Se Jung Kwon, and Dongsoo Lee. No token left behind: Reliable kv cache compression via
importance-aware mixed precision quantization. arXiv preprint arXiv:2402.18096, 2024.

[79] Felix Xinnan X Yu, Ananda Theertha Suresh, Krzysztof M Choromanski, Daniel N Holtmann-
Rice, and Sanjiv Kumar. Orthogonal random features. Advances in neural information process-
ing systems, 29, 2016.

[80] Yuxuan Yue, Zhihang Yuan, Haojie Duanmu, Sifan Zhou, Jianlong Wu, and Liqiang Nie.
Wkvquant: Quantizing weight and key/value cache for large language models gains more. arXiv
preprint arXiv:2402.12065, 2024.

[81] Amir Zandieh, Majid Daliri, and Insu Han. Qjl: 1-bit quantized jl transform for kv cache
quantization with zero overhead. arXiv preprint arXiv:2406.03482, 2024.

[82] Amir Zandieh, Insu Han, Majid Daliri, and Amin Karbasi. KDEformer: Accelerating trans-
formers via kernel density estimation. In Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th Inter-
national Conference on Machine Learning, volume 202 of Proceedings of Machine Learning
Research, pages 40605–40623. PMLR, 23–29 Jul 2023.

[83] Amir Zandieh, Insu Han, Vahab Mirrokni, and Amin Karbasi. Subgen: Token generation in
sublinear time and memory. arXiv preprint arXiv:2402.06082, 2024.

[84] Tianyi Zhang, Jonah Yi, Zhaozhuo Xu, and Anshumali Shrivastava. Kv cache is 1 bit per
channel: Efficient large language model inference with coupled quantization. arXiv preprint
arXiv:2405.03917, 2024.

[85] Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao
Song, Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36, 2024.

15

https://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall20/Scribe_Lecture_11-1.pdf?utm_source=chatgpt.com
https://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall20/Scribe_Lecture_11-1.pdf?utm_source=chatgpt.com
https://www.cs.cmu.edu/afs/cs/user/dwoodruf/www/teaching/15859-fall20/Scribe_Lecture_11-1.pdf?utm_source=chatgpt.com

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?
Answer: [Yes]
Justification: Theorem 3.1 provides the main theorem for the performance of our algorithm.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contri-
butions made in the paper and important assumptions and limitations. A No or NA answer
to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 4.3 we point out that an enhancement of our main algorithm is needed
for better performance on the Needle-In-a-Haystack experiments.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will be
specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [Yes]

16

Justification: Please refer to Section 3 and the proofs of the claims made there to find the full set
of assumptions made and the full proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main
experimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 4 and the links inside to find details of all experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well

by the reviewers: Making the paper reproducible is important, regardless of whether the
code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be
necessary to either make it possible for others to replicate the model with the same dataset,
or provide access to the model. In general. releasing code and data is often one good way
to accomplish this, but reproducibility can also be provided via detailed instructions for
how to replicate the results, access to a hosted model (e.g., in the case of a large language
model), releasing of a model checkpoint, or other means that are appropriate to the research
performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions
to faithfully reproduce the main experimental results, as described in supplemental material?

17

Answer: [Yes]
Justification: The code for all experiments is provided in the supplementary material.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparame-
ters, how they were chosen, type of optimizer, etc.) necessary to understand the results?
Answer: [Yes]
Justification: Please refer to Section 4 for details regarding the experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: The experiments conducted in Section 4 have been performed with error bars
whenever applicable.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall run
with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to
a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the
experiments?

Answer: [Yes]

Justification: Please refer to Section 4 and the links therein to find the details of all details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: All studies conducted in this paper conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?

Answer: [NA]

Justification: The paper is fundamental in nature and has no direct path for societal risks or
consequences. While the motivation comes from large deep learning models, which of course
have myriad such potential ramifications, our paper does not add to those ramifications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g.,
deployment of technologies that could make decisions that unfairly impact specific groups),
privacy considerations, and security considerations.

19

https://neurips.cc/public/EthicsGuidelines

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point
out that an improvement in the quality of generative models could be used to generate
deepfakes for disinformation. On the other hand, it is not needed to point out that a generic
algorithm for optimizing neural networks could enable people to train models that generate
Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mecha-
nisms for monitoring misuse, mechanisms to monitor how a system learns from feedback
over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release
of data or models that have a high risk for misuse (e.g., pretrained language models, image
generators, or scraped datasets)?
Answer: [NA]
Justification: As discussed in answer to the previous question, no specific safeguards are
necessary for the work described in this paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?
Answer: [NA]
Justification: Existing assets are used in adherence to their licenses and usage terms and with
appropriate credit to their creators.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

20

paperswithcode.com/datasets

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their sub-

missions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset
is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: No research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution
of the paper involves human subjects, then as much detail as possible should be included in
the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or
an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: No IRB approval needed for the research described in this paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-
standard component of the core methods in this research? Note that if the LLM is used only for
writing, editing, or formatting purposes and does not impact the core methodology, scientific
rigorousness, or originality of the research, declaration is not required.

21

Answer: [NA]
Justification: We only used LLMs for visualizing results for submission and facilitating or
running experiments.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Full Proofs

A.1 Proof of Theorem 3.1

Finally equipped with Theorem 3.3 and Theorem 3.4 we now state the proof of the main Theorem 3.1.

Proof of Theorem 3.1. Recall that BALANCEKV approximates attention by finding good estimations
for the numerator and the denominator of attention separately. In line (8), we erase those terms from
the numerator, whose value vectors have sufficiently small ℓ2 norms. In what follows, we:

• Bound the space and time requirements of BALANCEKV, as well as it’s probability of failure.
Each of the bounds readily follows from Theorem 3.4,

• Bound the contribution of the erased terms to attention,

• Show that BALANCEKV (or, more concretely, procedures MR-NUMERATORi) approximate the
rest of the terms of the numerator well,

• Show that BALANCEKV (its subroutine MR-DENOMINATOR) approximates the denominator
of attention well.

We begin by analyzing the time/space requirements and probability of success of BALANCEKV. It
never runs MR-NUMERATORi for i > log2(vmax) and i < log2(ε · n−1/2 · vmax), so it never keeps
more than log2(

√
n/ε) = O(log(n)) of them. BALANCEKV at any step j performs one iteration

of procedure MR-DENOMINATOR, one iteration of MR-NUMERATORi with 2i ≥ ∥vj∥2 ≥ 2i−1,
computes the subsets K1, . . . ,KT , V1, . . . , VT and computes a function of the selected points in
the subsets in line. Therefore, the runtime of BALANCEKV during one iteration is bounded by
the maximum of the runtime of MERGEANDREDUCE during one iteration and time to compute
the output. The latter is equal to its total memory. This maximum, by definition of t, is equal to
Õ(d2e4r

2/
√
d/ε2). The memory of the algorithm is the union of memory of MR-NUMERATORi

for all i and MR-DENOMINATOR, so the space complexity of the algorithm is Õ(d
√
de2r

2/
√
d/ε).

The failure probability is bounded by union bounding the failure probabilities of all instances of
MERGEANDREDUCE and at most n queries in the stream, and is equal to 1/poly(n).

Next, we bound the contribution of the erased terms. Formally, let vmax(j) := maxi≤j ∥vi∥2 and

define i(j) := maxi

{
2i ≤ ε√

n
vmax

}
. Observe that∥∥∥∥∥∥∥∥

∑
i:i≤j

∥vi∥2≤2i(j)
exp

(
⟨ki,qj⟩√

d

)
vi∑j

i=1 exp
(

⟨ki,qj⟩√
d

)
∥∥∥∥∥∥∥∥
2

≤

∑
i:i≤j

∥vi∥2≤2i(j)
exp

(
⟨ki,qj⟩√

d

)
∥vi∥2∑j

i=1 exp
(

⟨ki,qj⟩√
d

) by triangle inequality

≤ ε

2
√
n
·

∑
i:i≤j

∥vi∥2≤2i(j)
exp

(
⟨ki,qj⟩√

d

)
∑j

i=1 exp
(

⟨ki,qj⟩√
d

) by the definition of i(j)

≤ ε

2
√
n
vmax

≤ ε ·
∥∥∥∥softmax

(
Kj · qj√

d

)∥∥∥∥
2

· ∥Vj∥F ,

(3)
where the last inequality follows from the general inequality

∥∥∥softmax
(

Kj ·qj√
d

)∥∥∥
2
≥ 1√

j
≥ 1√

n
and

∥Vj∥F ≥ vmax.

We analyze the quality of approximation of the denominator together with the quality of approximation
of the numerator, as both follow from Theorem 3.4. At time step j, procedure MR-DENOMINATOR

23

returns subsets K1, . . . ,KT such that∣∣∣∣∣∣
∑
i∈[j]

exp

(
⟨ki, qj⟩√

d

)
−

T∑
l=0

2l
∑

{k,v}∈Kl

exp

(
⟨k, qj⟩√

d

)∣∣∣∣∣∣ ≤ ε · j · e
−r2√

d ≤ ε ·
∑
i∈[j]

exp

(
⟨ki, qj⟩√

d

)
(4)

as follows from Theorem 3.4 by plugging in scalars v1 = . . . = vj = 1. Next, define Pi,j =
{{kl, vl} : l ≤ j, 2i ≥ ∥vl∥2 ≥ 2i−1}. Intuitively, Pi,j aggregates all of the tokens proccessed
by MR-NUMERATORi which appeated before time step j. MR-NUMERATORi returns subsets
V 1
i , . . . , V

T
i ⊆ Pi,j for all i such that,∥∥∥∥∥∥

∑
{k,v}∈Pi,j

exp

(
⟨k, qj⟩√

d

)
v −

T∑
l=0

2l
∑

{k,v}∈V l
i

exp

(
⟨k, qj⟩√

d

)
v

∥∥∥∥∥∥
2

≤ ε|Pi,j | · e−r2/
√
d · 2i ≤ ε|Pi,j | · 2i√

j
·
∥∥∥∥exp(Kj · qj√

d

)∥∥∥∥
2

,

as follows from Theorem 3.4 observing that maxv:{k,v}∈Pi,j
∥v∥2 ≤ 2i. The last inequality holds

because exp
(

⟨k,q⟩√
d

)
≥ e−r2/

√
d and, therefore,

∥∥∥exp(Kj ·qj√
d

)∥∥∥
2
≥
√
j · e−r2/

√
d.

Now, observe that ∥Vj∥F ≤
√∑

i |Pi,j | · 22i and j =
∑

i |Pi,j |. By the Cauchy-Schwartz inequality,∑
i

|Pi,j | · 2i ≤
√∑

i

|Pi,j | · 22i ·
√∑

i

|Pi,j |. (5)

By triangle inequality, the sum of the outputs of procedures MR-NUMERATORi approximates the
sum of the terms in the numerator of attention that were not erased in line (8) up to an additive error

ε√
j
·
∥∥∥∥exp(Kj · qj√

d

)∥∥∥∥
2

∑
i

|Pi,j | · 2i ≤ ε ·
∥∥∥∥exp(Kj · qj√

d

)∥∥∥∥
2

∥Vj∥F , (6)

where the last inequality follows from Equation (5).

It remains to show how the statement of the theorem follows from the derived bounds. Consider the
following abstract derivation. Let u and u′ be vectors such that ∥u− u′∥2 ≤ α, and let b and b′ be
positive numbers such that

1

1 + γ
· 1
b
≤ 1

b′
≤ 1

1− γ
· 1
b
.

Then, by application of triangle inequalities,∥∥∥∥ub − u′

b′

∥∥∥∥
2

≤ 1

b′
· ∥u− u′∥2 + ∥u∥2 ·

∣∣∣∣1b − 1

b′

∣∣∣∣
≤ α

1− γ
· 1
b
+ ∥u∥2 ·

(
1

1− γ
− 1

)
· 1
b
=

=
α

1− γ
· 1
b
+ ∥u∥2 ·

γ

1− γ
· 1
b
.

(7)

From Equation (4),

1

1 + ε
· 1∑

i∈[j] exp
(

⟨ki,qj⟩√
d

) ≤ 1∑T
l=0 2

l
∑

{k,v}∈V l
i
exp

(
⟨k,qj⟩√

d

) ≤ 1

1− ε
· 1∑

i∈[j] exp
(

⟨ki,qj⟩√
d

) .
(8)

For simplicity of notation, let D ⊆ [j] denote the subset of indices of all tokens discarded
in line (8). Take γ = ε, b =

∑
i∈[j] exp

(
⟨ki,qj⟩√

d

)
, b′ =

∑T
l=0 2

l
∑

{k,v}∈V l
i
exp

(
⟨k,qj⟩√

d

)
,

u =
∑

i∈[j]\D exp
(

⟨ki,qj⟩√
d

)
vi, u′ =

∑T
l=0 2

l
∑

{k,v}∈V l
i
exp

(
⟨k,qj⟩√

d

)
v and, finally, α = ε ·

24

∥∥∥exp(Kj ·qj√
d

)∥∥∥
2
∥Vj∥F . The first of the preconditions of our derivation holds by Equation (6). The

second one holds by Equation (8). Hence,∥∥∥∥∥∥
∑T

l=0 2
l
∑

{k,v}∈V l exp
(

⟨k,qj⟩√
d

)
v∑T

l=0 2
l
∑

{k,v}∈Kl exp
(

⟨k,qj⟩√
d

) − ∑i∈[j]\D exp
(

⟨ki,qj⟩√
d

)
vi∑

i∈[j] exp
(

⟨ki,qj⟩√
d

)
∥∥∥∥∥∥
2

≤ 2ε

1− ε
·
∥∥∥∥softmax

(
Kj · qj√

d

)∥∥∥∥
2

· ∥Vj∥F ,

since ∥u∥2 =
∥∥∥∑i∈[j]\D exp

(
⟨ki,qj⟩√

d

)
vi

∥∥∥
2
≤
∥∥∥exp(Kj ·qj√

d

)∥∥∥
2
∥Vj∥F .

Finally, combining the above with Equation (3) via triangle inequality, we get∥∥∥∥∥∥∥∥∥∥∥

T∑
l=0

2l
∑

{k,v}∈V l

exp

(
⟨k, qj⟩√

d

)
v

T∑
l=0

2l
∑

{k,v}∈Kl

exp

(
⟨k, qj⟩√

d

) − Attn(qj ,Kj , Vj)

∥∥∥∥∥∥∥∥∥∥∥
2

≤ 2ε

1− ε

∥∥∥∥softmax
(
Kj · qj√

d

)∥∥∥∥
2

∥Vj∥F .

By rescaling ε→ ε/4, we get the desired approximation Equation (2).

A.2 Theoretical Guarantees of SOFTMAXBALANCE

Algorithm Self-Balancing Walk introduced in [3] receives as input vectors u1, . . . , un and selects
signs for them so that, for any direction, the signed sum of the vectors is balanced along that direction
with high probability. The following theorem readily follows from theorem 1.1 in [3]:
Theorem A.1 (Theorem 1.1 in [3]). For any n, d ∈ N, there exists a randomized algorithm which
receives as input a set of vectors U = {u1, . . . , un} ∈ Rd and a parameter δ > 0. The algorithm
outputs a (random) subset U ′ ⊂ U such that, for any vector u ∈ Rd, with probability at least 1− δ,∣∣∣∣∣∑

i∈U ′

⟨ui, u⟩ −
∑
i/∈U ′

⟨ui, u⟩

∣∣∣∣∣ ≤ O

(
log(n/δ) ·max

i∈[n]
∥ui∥2 · ∥u∥2

)
.

Algorithm 3 Self-Balancing Walk ((uj)j , r, δ)

1: input: stream of ≤ n vectors uj , radius r: maxj ∥uj∥2 ≤ r, probability of failure δ.
2: c← 30 log(n/δ)
3: U−, U+ ← ∅
4: for i from 1 and until the end of the stream do
5: if

∣∣∣∑u∈U+
⟨u, ui⟩ −

∑
u∈U−

⟨u, ui⟩
∣∣∣ > c · r2 then

6: Fail
7: end if
8: pi ← 1

2 −
∑

u∈U+
⟨u,ui⟩−

∑
u∈U−

⟨u,ui⟩
2c·r2

9: εi ← + with probability pi, and εi ← − with probability 1− pi
10: Uεi ← Uεi ∪ {ki}
11: end for
12: if |U+| ≤ |U−| then
13: output: U+

14: else
15: output: U−
16: end if

Proof of Theorem 3.3. Define for any k ∈ Rd an embedding function φ(k) :

φ(k) =

(
(k/d0.25)⊗i

√
i!

)
i≥0

.

25

It is easy to see that for any two vectors k, q ∈ Rd

⟨φ(k), φ(q)⟩ = exp

(
⟨k, q⟩√

d

)
,

and for any k ∈ Rd

∥φ(k)∥22 = exp

(
∥k∥22√

d

)
.

Consider the set of vectors φ(k1)⊗ v1, . . . , φ(kn)⊗ vn. Run the Self-Balancing Walk algorithm on
the set of vectors φ(k1) ⊗ v1, . . . , φ(kn) ⊗ vn with failure parameter set to δ/s and denote by C ′

and C\C ′ the partition of C returned by the algorithm. Observe that, even though vectors φ(ki)⊗ vi
are infinite dimensional, Self-Balancing Walk still can be implemented. The algorithm never has to
keep these vectors in the memory because the only operation which requires the knowledge of the
embeddings – the inner product – can be performed if we just store vector pairs {ki, vi}:

⟨φ(ki)⊗ vi, φ(kj)⊗ vj⟩ = exp

(
⟨ki, kj⟩√

d

)
· ⟨vi, vj⟩.

Denote by e1, . . . , es the standard orthonormal basis in Rs. By Theorem A.1, for any i ∈ [s] with
probability 1− δ/s∣∣∣∣∣∣

∑
{k,v}∈C′

⟨φ(k)⊗ v, φ(q)⊗ ei⟩ −
∑

{k,v}/∈C′

⟨φ(k)⊗ v, φ(q)⊗ ei⟩

∣∣∣∣∣∣
≤ O

(
log(ns/δ) · max

{k,v}∈C
∥φ(k)⊗ v∥2 · ∥φ(q)⊗ ei∥2

)
,

(9)

and so with probability at least 1− δ all of the above inequalities hold simultaneously. To simplify
the right hand side, notice that ∥φ(k)⊗ v∥2 = exp

(
∥k∥2

2

2
√
d

)
· ∥v∥2 and ∥φ(q)⊗ ei∥2 = exp

(
∥q∥2

2

2
√
d

)
.

Observe that for any i ⟨φ(k) ⊗ v, φ(q) ⊗ ei⟩ = ⟨φ(k), φ(q)⟩ · [v]i = exp
(

⟨k,q⟩√
d

)
· [v]i , where by

[v]i we denote the i-th coordinate of the vector v. Therefore, the left hand side of the expression
above is simply the absolute value of the i-th coordinate of the vector

∑
{k,v}∈C′

exp

(
⟨k, q⟩√

d

)
v −

∑
{k,v}/∈C′

exp

(
⟨k, q⟩√

d

)
v.

Thus, Equation (9) provides a uniform upper bound on the absolute values of coordinates of the above
vector. Since the l∞ norm of a vector is the maximum of the absolute values of its coordinates,

∥∥∥∥∥∥
∑

{k,v}∈C′

exp

(
⟨k, q⟩√

d

)
v −

∑
{k,v}/∈C′

exp

(
⟨k, q⟩√

d

)
v

∥∥∥∥∥∥
∞

= max
i∈[s]

∣∣∣∣∣∣
∑

{k,v}∈C′

⟨φ(k)⊗ v, φ(q)⊗ ei⟩ −
∑

{k,v}/∈C′

⟨φ(k)⊗ v, φ(q)⊗ ei⟩

∣∣∣∣∣∣
≤ O

(
log(ns/δ) · max

{k,v}∈C

(
exp

(
∥k∥22
2
√
d

)
· ∥v∥2

)
· exp

(
∥q∥22
2
√
d

))
.

26

Figure 2: Illustration of the tree structure of MERGEANDREDUCE

Finally, we go from bounding the l∞ norm a vector to bounding its l2 norm:∥∥∥∥∥∥
∑

{k,v}∈C′

exp

(
⟨k, q⟩√

d

)
v −

∑
{k,v}/∈C′

exp

(
⟨k, q⟩√

d

)
v

∥∥∥∥∥∥
2

≤
√
s

∥∥∥∥∥∥
∑

{k,v}∈C′

exp

(
⟨k, q⟩√

d

)
v −

∑
{k,v}/∈C′

exp

(
⟨k, q⟩√

d

)
v

∥∥∥∥∥∥
∞

≤ O

(√
s · log(ns/δ) · max

{k,v}∈C

(
exp

(
∥k∥22
2
√
d

)
· ∥v∥2

)
· exp

(
∥q∥22
2
√
d

))
.

A.3 MERGEANDREDUCE

A.3.1 Pseudocode for MERGEANDREDUCE

The pseudocode for MERGEANDREDUCE is presented in 4.

Algorithm 4 MERGEANDREDUCE((kj , vj)j , t, T, ε)

1: input: stream of ≤ n tokens (kj , vj), batch size t, compression rate 2−T , precision parameter ε.
2: Let SOFTMAXBALANCE be the algorithm as per Theorem 3.3.
3: Initialize i-th level subset Ci, i = 0, . . . , T, to empty
4: repeat
5: C0 ← C0 ∪ {{kj , vj}}
6: if p is not a multiple of t then then
7: output C0, . . . , CT

8: continue
9: end if

10: /*Update subsets every t steps*/
11: p← j/t, i← 0
12: while p is an integer and until i = T do
13: Ci+1 ← Ci+1 ∪ SOFTMAXBALANCE(Ci, rkey, rvalue, 1/poly(n))
14: Ci ← ∅
15: i← i+ 1
16: p← p/2
17: end while
18: output C0, . . . , CT

19: until token stream ends

27

A.3.2 Theoretical Guarantees of MERGEANDREDUCE

We now present the full proof of Theorem 3.4.

Theorem 3.4. For any r, ε > 0, any set of tokens (q1, k1, v1), . . . , (qn, kn, vn) where qj , kj ∈ Rd

satisfy ∥qj∥2, ∥kj∥2 ≤ r, vj ∈ Rs for s ≤ d suppose,

batch size t = Õ(
√
se2r

2/
√
d/ε) and compression rate 2−T with T = log(n/t).

Then MERGEANDREDUCE on input parameters t, r, d, s, ε, outputs at every step j of the stream
subsets of key-value embedding pairs C0, . . . , CT ⊂ C := {(k1, v1), . . . , (kn, vn)} such that,

zj :=
∑T

i=0 2
i
∑

{k,v}∈Ci exp
(

⟨k,qj⟩√
d

)
v, satisfies with probability at least 1− 1/poly(n),∥∥∥∥∥

j∑
i=1

exp

(
⟨ki, qj⟩√

d

)
vi − zj

∥∥∥∥∥
2

≤ εj · e−r2/
√
d ·max

i∈[n]
∥vi∥2.

Total memory of the algorithm is Õ(d
√
se2r

2/
√
d/ε), its j-th iteration runtime is Õ(dse4r

2/
√
d/ε2).

Proof. Let us first consider the performance of the procedure at time steps which are multiples of
t. Note that since in the statement of the theorem T = log2(n/t), condition until in line while
is redundant. Observe that at any such j-th step the procedure is an online implementation of the
following simple offline recursive algorithm on dataset {{k1, v1}, . . . , {kj , vj}}:

1. Set p = j/t and i = 1. Split the dataset {{k1, v1}, . . . , {kj , vj}} into batches B0
1 , . . . , B

0
p of

size t.

2. While p is an integer:

• Run SOFTMAXBALANCE on the batches Bi−1
1 , . . . , Bi−1

p independently

• If p is odd, store the output of SOFTMAXBALANCE on Bi−1
p in Ci

• For every l, merge the outputs of SOFTMAXBALANCE on Bi−1
2l−1 and Bi−1

2l into one batch
and store them in Bi

l ,
• Update p← ⌊p/2⌋, i← i+ 1. Stop when p = 1.

Therefore, we will analyze space complexity and performance guarantees of the above offline
algorithm.

Probability of success.

Note that our algorithm performs correctly if each of the calls to SOFTMAXBALANCE produces small
error on each of the queries q (as in theorem Theorem 3.3). Throughout the stream, we make O(n/t)
calls to SOFTMAXBALANCE, and we apply each to at most n queries, so, it is enough to require that
that all SOFTMAXBALANCE have failure probability parameter δ = 1/poly(n).

Space complexity.

Observe that after each iteration of step 2 the number of batches decreases by a factor of two. The
maximum batch size is always bounded by t. This is because a batch Bl at iteration i of step 2 is a
union of SOFTMAXBALANCE(B2l−1) and SOFTMAXBALANCE(B2l) for B2l−1 and B2l at iteration
i− 1 of step 2, and SOFTMAXBALANCE reduced the size of the dataset which it has been applied to
at least by a factor of 2.

The memory of the procedure is the collection of memory cells Ci, and |Ci| ≤ t. Since at time
step j at most log2(p) ≤ log2(n/t) memory cells are occupied, the total memory is bounded by
O(dt log2(n/t)) = O(dtT), which, using the Õ notation, is equal to Õ(d

√
de2r

2/
√
d/ε).

Performance of the algorithm.

Define Bi = ∪lBi
l – the data points which remained in the batches after i iterations of step 2. By

triangle inequality,

28

∥∥∥∥∥∥
T∑

i=1

2i
∑

{k,v}∈Ci

exp

(
⟨k, qj⟩√

d

)
v −

j∑
i=1

exp

(
⟨ki, qj⟩√

d

)
vi

∥∥∥∥
2

≤
T−1∑
i=0

∥∥∥∥∥∥2i+1
∑

{k,v}∈Bi+1∪Ci+1

exp

(
⟨k, qj⟩√

d

)
v − 2i

∑
{k,v}∈Bi

exp

(
⟨k, qj⟩√

d

)
v

∥∥∥∥∥∥
2

≤
T−1∑
i=0

2i

∥∥∥∥∥∥
∑

{k,v}∈Bi+1∪Ci+1

exp

(
⟨k, qj⟩√

d

)
v −

∑
{k,v}∈Bi\(Bi+1∪Ci+1)

exp

(
⟨k, qj⟩√

d

)
v

∥∥∥∥∥∥
2

.

We will refer to the i-th summand (starting from 0) on the right hand side as the error produced by
the i + 1-st iteration of step 2. At the i + 1-st iteration of step 2 we apply SOFTMAXBALANCE
to p/2i batches Bi

1, B
i
2, . . . of size t, and we save the outputs of SOFTMAXBALANCE in batches

Ci+1, Bi+1
1 , Bi+1

2 , Therefore, by Theorem 3.3 and triangle inequality, the error vector produced
by the procedure at the i+ 1-st iteration of step 2 has l2 norm bounded by

O

(
2i ·
√
s · log(sn) ·

(p

2i

)
· er

2/
√
d max
j∈[n]

∥vj∥2
)

= O

(√
s · log(sn) · p · er

2/
√
d max
j∈[n]

∥vj∥2
)
,

since the error parameter δ of all instances of SOFTMAXBALANCE is set to 1/poly(n). The l2 norm
of the total error of our procedure is bounded by

O

(√
s · log(sn) · T · p · er

2/
√
d max
j∈[n]

∥vj∥2
)
.

By definition, p = j/t. In order to ensure that the statement of the theorem is correct, the upper
bound on the l2 norm of the error vector of the procedure should be less than the desired error
e−r2/

√
d ·maxi∈[n] ∥vi∥2:

O

(√
s · log(sn) · T · j

t
· er

2/
√
d max
j∈[n]

∥vj∥2
)
≤ εj · e−r2/

√
d ·max

j∈[n]
∥vj∥2.

And, since by definition

t = O

(
log2(sn) ·

√
s · e2r2/

√
d

ε

)
,

the above inequality holds.

Runtime during one time step. At worst, during j-th time step the algorithm has to launch
SOFTMAXBALANCE log2(p) ≤ log2(n/t) = T times on batches of size t, so the runtime is bounded
by O(dt2T). In the Õ notation, the runtime is equal to Õ(d2e4r

2/
√
d/ε2).

As the final step, we will analyze the performance of the procedure at time steps j′ which are not
multiples of t. Define jt = ⌊j′/t⌋ · t. Note that at any such time step the procedure simply saves the
triplet (qj′ , kj′ , vj′) and outputs the sum of the approximation zjt such that

∥∥∥∥∥
jt∑
i=1

exp

(⟨ki, q′j⟩√
d

)
vi − zjt

∥∥∥∥∥
2

≤ εjt · e−r2/
√
d ·max

i∈[n]
∥vi∥2,

and
∑j′

i=jt+1 exp
(

⟨ki,q
′
j⟩√

d

)
vi. From the above inequality,

29

∥∥∥∥∥∥
j′∑
i=1

exp

(⟨ki, q′j⟩√
d

)
vi −

zjt +

j′∑
i=jt+1

exp

(⟨ki, q′j⟩√
d

)
vi

∥∥∥∥∥∥
2

≤ εjt · e−r2/
√
d ·max

i∈[n]
∥vi∥2,

as desired.

B Full Experimental Details

Experiments in Section 4.1 and Section 4.3 are performed on a single NVIDIA A100 GPU with
80GB VRAM, and the rest on a single NVIDIA RTX A6000 GPU with 48GB VRAM.

Implementation Detail. To enhance the practical performance of our algorithm, we implement
BALANCEKV with parallel operations. Specifically, we consider the cache embeddings of length
n and dimension d as a sequence of blocks with length b and reshape them into a tensor of shape
b× (n/b)× d . Then, BALANCEKV is applied in parallel to all blocks of length b. For cases where
n is not divisible by b, we pad the embeddings with zeros. After sign assignment to all embeddings
in each block (i.e., line 9 in Algorithm 2), it is reshaped to its original length, and we strictly select
n/2 embeddings, repeating this process for T iterations.

B.1 Ablation Studies on Single Layer Attention Approximation

In this section we re-state with full details the single layer attention approximation experiments
presented in Section 4.1.

We empirically evaluate the performance of BALANCEKV for approximating a single attention
layer, and compare it with independent uniform sampling. We use the pretrained Llama-3.1-8B-
Instruct [27] and Ministral-8B-Instruct-2410 [52] and TriviaQA dataset from LongBench [5],
and consider the 1st,2nd and 5th layers of the models for attention approximation.

For given a prompt with length n, we store the corresponding query, key, and value embeddings
for all layers. Denote a pair of embeddings in some layer by (q1, k1, v1), . . . , (qn, kn, vn) and the
goal is to approximate the attention Attn(qj ,Kj , Vj) for the latest 256 queries, i.e. j ∈ [n− 256, n].
Specifically, we keep several first and recent tokens separately and apply BALANCEKV to the
intermediate row vectors in Kj . This is motivated by StreamingLLM [76] as important contexts
are likely contained in the first and latest tokens. We retain the first 256 embeddings and the
recent ones from n − 256 to j and our compressed cache contains tokens whose indices are in
[256] ∪ S ∪ {n− 256, . . . , j} where S ⊆ [257, n− 256] can be obtained from BALANCEKV. We
explore four compression parameters T ∈ {1, 2, 3, 4} which reduces the cache memory by a factor of
2−T . Let zj be our approximation using BALANCEKV plus the recent and first few embeddings at the
stream j ∈ [n− 256, n]. We compute relative errors ∥zj −Attn(qj ,Kj , Vj)∥F /∥Attn(qj ,Kj , Vj)∥F
for all j ∈ [n − 256, n], batches, heads and input prompts in the dataset. We repeat this with 10
different random seeds and compute their average and standard deviations. We also compare our
method to independent uniform sampling, in which we replace the application of BALANCEKV with
sampling a 2−T fraction of key and value embeddings with indices in [257, n− 256] uniformly at
random. The results are reported in Figure 1.

Next we present the results of the ablation studies described in Section 4.1 which demonstrate how
batch size and compression rate affect the relative error in attention approximation for layers 1 and
15 for Llama-3.1-8B-Instruct.

B.2 End-to-End Evaluation on LongBench

We now provide the complete experimental details on the end-to-end evaluation in Section 4.2. We
benchmark our algorithm on LongBench dataset [5], a comprehensive collection of datasets designed
to evaluate the long-context understanding capabilities of large language models. Specifically, we
test a version of uniform length distribution (LongBench-E). The benchmark consists of various
long-text application scenarios, including single-document question-answering, multi-document
question-answering, summarization, few-shot learning, synthetic tasks and code completion. We
use BALANCEKV to compress the key value cache generated in the prefill stage, and maintain all

30

Batch Size 1/2 1/4 1/8
256 0.0603 0.1190 0.1793
128 0.0320 0.0624 0.0922
64 0.0189 0.0349 0.0508

(a) Layer 1 Runtime (s)

1/2 1/4 1/8
256 0.1036 0.1764 0.2655
128 0.1082 0.1833 0.2741
64 0.1137 0.1921 0.2858

(b) Layer 1 Relative Error

1/2 1/4 1/8
256 0.3920 0.4505 0.5096
128 0.3654 0.3951 0.4256
64 0.3592 0.3753 0.3910

(c) Layer 15 Runtime (s)

1/2 1/4 1/8
256 0.1107 0.1935 0.2798
128 0.1121 0.1952 0.2813
64 0.1141 0.1978 0.2845

(d) Layer 15 Relative Error

Figure 3: Runtime and relative error for across different layers and block sizes. In each figure the
rows are corresponding to various batch sizes and columns corresponding to various compression
rates

streamed embeddings (qj , kj , vj) during the token decoding/generation stage. This is because the
number of generated tokens is much smaller than the input sequence length. We set b = 256 and
T = 2, achieving a consistent compression rate of 0.25 across all inputs.

We evaluate our method against several token-level key value cache compression schemes, including
StreamingLLM [76], SnapKV [46], and PyramidKV [14] as well as uniform sampling described in
Section 4.1. We use their implementations from MInference [37], and configure their hyperparameters
to match a uniform compression rate with 0.25. We follow the same evaluation metrics from [5]. We
test them on Llama-3.1-8B-Instruct as well as bigger 14B and 32B parameter models Qwen-2.5-
14B-Instruct and Qwen-2.5-32B-Instruct [77, 71], with results summarized in Table 1.

Our method consistently achieves the highest average performance among compression methods
and across all models, demonstrating its effectiveness in preserving model quality for the cache
compression. Notably, on the triviaqa dataset, it achieves near-exact scores compared to uncompressed
baselines (e.g., 80.68 vs. 81.14 with Qwen2.5-32B), highlighting its ability to retain high-quality
information. We observe that uniform sampling performs competitively with our method and this
result justifies that a subset obtained from discrepancy theory has practical impacts on various LLM
tasks.

B.3 Needle-In-A-Haystack

In this section we report the plots corresponding to the Needle in a Haystack experiment described in
Section 4.3. They are presented in Figure 4.

B.4 System Efficiency Metrics

In this section we present the prefill and decoding time numbers in Table 2 as described in the system
efficiency experimental details in Section 4.4.

Method Prefill Time (sec) Decoding Time (sec)
Exact 3.032 37.769
SnapKV 3.755 40.426
PyramidKV 3.748 37.241
StreamingLLM 3.681 40.276
BALANCEKV 3.662 38.054

Table 2: Minimum wall-clock runtime (in seconds) over 10 trials for prefill and decoding stages.

31

Figure 4: Comparison of performance on Needle in a Haystack task using Llama-3.1-8B-Instruct.
The methods corresponding to figures from top to bottom are StreamingLLM, SnapKV, PyramidKV,
Unif. Sampling and BALANCEKV respectively.

B.5 Additional Experiments

1. In Table 3, we report the results of the experiment analyzing the ℓ2 norms of query (Q), key
(K) and value (V) embeddings described in Section 4.5. Due to the space limit, we provide
representative results in the below table from (randomly chosen) prompts of various sequence
lengths. We note that the reported ℓ2 norms of keys shifted by their average, as opposed to
the norms of the keys, because our implementation of BALANCEKV shifts the keys by their

32

average before the compression. It is also easy to see that attention is invariant to the operation
of shifting the keys by their average, so it is non-restrictive to assume that the average of the key
values is zero.

Table 3: Statistics of norms of qkv embeddings for randomly chosen prompts from TriviaQA.

Prompt ID Seq Len Query Key Shifted Value
Mean 95% CI Mean 95% CI Mean 95% CI

10 2281 14.4512 0.0029 15.3451 0.0065 3.3398 0.0043
24 3131 14.6003 0.0025 15.6603 0.0058 3.3539 0.0036
30 3388 14.7406 0.0024 15.5152 0.0054 3.3419 0.0035
22 4230 14.8339 0.0021 15.6907 0.0049 3.3468 0.0032
5 5734 14.9259 0.0019 15.7149 0.0041 3.3482 0.0027
14 6616 14.9000 0.0017 15.6757 0.0038 3.3596 0.0025
4 6962 14.9743 0.0017 15.7346 0.0039 3.3450 0.0024
21 8041 14.9364 0.0016 15.7025 0.0035 3.3491 0.0023
26 17337 15.1437 0.0011 15.9531 0.0024 3.3654 0.0016
27 21274 15.2065 0.0010 15.8745 0.0022 3.3683 0.0014

2. In Table 4, we report the results of the multimodal task experiment described in Section 4.5.

Table 4: Comparison of BALANCEKV to uniform sampling on MS-COCO, using InternVL2.5-8B.
The bracket for every method contains the compression rate.

Method Bleu_1 Bleu_2 Bleu_3 Bleu_4 METEOR RougeL CIDEr
Exact 0.795 0.629 0.476 0.351 0.291 0.580 1.255
BalanceKV (1/4) 0.794 0.628 0.475 0.351 0.290 0.579 1.251
Unif (1/4) 0.794 0.629 0.476 0.350 0.290 0.578 1.247
BalanceKV (1/16) 0.789 0.622 0.468 0.343 0.286 0.573 1.221
Unif (1/16) 0.789 0.619 0.465 0.340 0.284 0.571 1.207

3. In Table 5, we present the results of the end-to-end experiment on LongBench in the extremely
low error regime, described in Section 4.5. We note, that etremely low error regime corresponds
to the low compression rate regime, and therefore our experiment is equivalent to exploring the
performance of BALANCEKV in the low compression rate regime. For compression rates of 0.8,
0.9 and 0.95, we randomly select a dataset from LongBench and apply both uniform sampling
and BALANCEKV to achieve the desired compression rate. More specifically, if we wish to
compress a KV cache to 1− α of it’s original size, we select its subset of size 2α, compress it
by a factor of 2 with either uniform sampling or BALANCEKV and keep the rest exactly.

Table 5: Comparison of BALANCEKV to uniform sampling in LongBench in the extremely low-error
regime.

Compression Rate Dataset BalanceKV Uniform Baseline
0.8 HotpotQA 50.2 48.4 51.9
0.8 TriviaQA 91.6 86.3 91.6
0.9 MultiFieldQA 47.5 44.9 47.8
0.9 Qasper 42.3 39.6 43.1
0.95 LCC 49.3 45.7 49.5
0.95 P.Count 20.7 20.1 20.7

4. In Table 6, we present the results of the end-to-end evaluation of ClusterGen [83] as per the
experimental setup in Appendix B.2 and compare its performance to both BALANCEKV and
exact attention.

33

Method qasper multi hotpotqa 2wiki gov multinews trec triviaqa samsum p.count p.ret lcc repo-p average

Llama-3.1-8B-Instruct
Exact (Baseline) 42.87 48.54 52.05 38.6 31.31 22.07 71.67 91.85 42.36 20.37 98.13 49.62 42.73 50.17
ClusterGen 33.93 42.31 50.85 37.24 21.16 19.31 67.67 90.82 39.49 20.20 96.57 47.23 39.26 46.62
BALANCEKV 35.75 37.04 46.37 36.24 27.09 20.84 69.0 90.88 37.88 20.39 96.65 48.45 41.4 46.77

Table 6: Comparison of ClusterGen, BalanceKV and exact attention on LongBench-E using Llama-
3.1-8B-Instruct. The best results among compression methods for each model are highlighted in
bold.

C Lower Bound

In this section, we prove the lower bound on the space complexity of an algorithm approximating the
Attn(·,K, V) function. More formally,
Theorem 3.2. Suppose that r2 ≤ d. Any streaming algorithm which on input
({k1, v1}, . . . , {kn, vn}, q), ∥q∥2, ∥ki∥2 ≤ r, outputs zq satisfying Equation (2) with probability

0.999 has space complexity Ω
(
min{ 1

ε2 , d exp(2r
2/
√
d)}
)
.

The proof will be a reduction to the well-known INDEX problem.

C.1 Reduction to the INDEX Problem

Definition C.1 (The INDEX problem). Alice gets a bit string x ∼ Unif{0, 1}n and Bob gets
i ∼ Unif[n]. Then, the goal is to compute f(x, i) = xi on Bob’s end with a single message m

from Alice. Denote by Rpub,→
δ the public coin one-way communication complexity of computing a

function f(x, y) with error probability at most δ: Alice holds x, Bob holds y, they share a source of
random bits and Alice sends a single message to Bob, after which he must output the correct answer
with probability at least 1− δ.
Theorem C.2 (Proven in [75]).

Rpub,→
2/3 (INDEX) ≥ Ω(n).

Proof of Theorem 3.2. Let c be the small constant such that Rpub,→
2/3 (INDEX) ≥ c · n.

Assume the contrary to the statement of the Theorem 3.2 – that there exists a streaming algorithm
of space complexity const ·min{ 1

ε2 , d exp(2r
2/
√
d)} for any sufficiently small constant const. We

will show that given a string of length min{ 1
ε2 , d exp(2r

2/
√
d)} Alice can solve the INDEX problem

as follows. She instantiates such an algorithm with const < c/C for a sufficiently large constant
C, gives it as input a carefully selected set of keys and values, and sends the state of its memory to
Bob. Bob, on his end, can determine whether any randomly drawn bit i ∼ Unif[n] equals 0 or 1 with
probability 0.8 by issuing a corresponding (carefully crafted) query to the streaming algorithm and
observing its output. Thus, if the streaming algorithm uses small space, we get a contradiction with
Theorem C.2, and therefore obtain a proof of Theorem 3.2.

The reduction. Suppose Alice’s input to the INDEX problem is a bit string x ∈ {0, 1}n of length
n = min{ 1

ε2 , d exp(2r
2/
√
d)}. Using public coins, Alice and Bob jointly generate n/d key vectors

k̃1, . . . , k̃n/d ∼ Unif
{
− r√

d
, r√

d

}d

, function π : [n]→ [n/d]× [d] which randomly partitions the n
bits into groups of size d, and n random signs σ1, . . . , σn ∼ Unif{−1, 1}.
Let π(i)1 ∈ [n/d] be the first component of π(i) and π(i)2 ∈ [d] – the second component of π(i).
Let e1, . . . , ed be the standard orthonormal basis in Rd. We build the dataset of n key-value pairs
in the following way. We associate with the i-th bit the key vector ki := k̃π(i)1 and the value vector
vi := σi · eπ(i)2 .

Define
U = {{ki, vi} : xi = 1}

34

the set of key-value pairs corresponding to entries 1 in Alice’s bit string x. Alice instan-
tiates the streaming algorithm for approximating Attn(·,K, V) with space complexity c

C ·
min{ 1

ε2 , d exp(2r
2/
√
d)} with a big enough constant C which we specify later and sends the state

of it’s memory before reading q to Bob. When Bob receives the message, he uses it to approximate
Attn(qi,K, V) where qi = ki. If the value written in the only non-zero coordinate of vi is larger than
1
40 ·

exp(r2/
√
d)

max{d exp(r2/
√
d),|U |} , Bob reports that the i-th bit of Alice’s string is equal to 1, and otherwise -

0.

Analysis of the reduction.

Proof sketch. Before moving to formal proofs we briefly outline the main idea of the analysis.
Observe that, by the choice of key vectors, any exp(⟨kj , qi⟩/

√
d) for j ̸= i is in expectation

insignificantly small compared to exp(⟨ki, qi⟩/
√
d) – sometimes we will even refer to these terms as

“noise”. This statement is formalized in Lemma C.4. Therefore, when Bob computes an approximation
to Attn(qi,K, V), he will observe a large value in the coordinate where vi is non-zero if {ki, vi} ∈ U
and a small value otherwise.

Lemma C.3. E
x,y∼Unif

{
− r√

d
, r√

d

}d [exp(C⟨x, y⟩/
√
d)] = Θ(1) for any constant C.

Proof.

E
x,y∼Unif

{
− r√

d
, r√

d

}d [exp(C⟨x, y⟩/
√
d)]

=

(
1

2
exp(Cr2/d3/2) +

1

2
exp(−Cr2/d3/2))

)d

= cosh
(
Cr2

d3/2

)d

,

1 ≤ exp(C2r4/4d2) ≤ cosh
(
Cr2

d3/2

)d

≤ exp(C2r4/d2) ≤ exp(C2)

where we used the assumption that r2/d ≤ 1.

Lemma C.4. Fix i ∈ [n], select qi = ki. Let |Ui| be the number of key-value pairs in U \ {ki, vi}
whose value vector has non-zero entry in the same coordinate as vi.

If {ki, vi} ∈ U then with probability > 1− 1
1000 ·

|Ui|
|U |∣∣∣∣∣∣

∑
{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≥ exp(r2/
√
d)−O

(√
|U |
)
.

Otherwise, with probability > 1− 1
1000 ·

|Ui|
|U |∣∣∣∣∣∣

∑
{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≤ O
(√
|U |
)
.

Proof. We prove both statements using Chebyshev’s inequality.

In the first case, i.e. when {ki, vi} ∈ U , the sum contains the term exp(⟨ki, qi⟩/
√
d) = exp(r2/

√
d),

and otherwise it does not. It therefore remains to upper bound the absolute value of the sum

X =
∑

{k,v}∈U,
{k,v}̸={ki,vi}

σk exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩ =

∑
{k,v}∈Ui,

{k,v}≠{ki,vi}

σk exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩,

σk ∼ Unif{−1, 1}, which effectively introduces “noise” in Bob’s estimate of whether xi = 1. We
upper bound this sum now.

35

E[X] = 0, and V ar(X) = |Ui| · V ar
x,y∼Unif

{
− r√

d
, r√

d

}d(exp(⟨x, y⟩/
√
d)) ≤ O (|Ui|) because

V ar
x,y∼Unif

{
− r√

d
, r√

d

}d(exp(⟨x, y⟩/
√
d)) ≤ E

x,y∼Unif
{
− r√

d
, r√

d

}d [exp(2⟨x, y⟩/
√
d)] ≤ exp(4),

by Lemma C.3. We therefore get by Chebyshev’s inequality

Pr
[
|X| ≥ 1000

√
|U |
]
≤ 1

1000
· |Ui|
|U |

.

Therefore, with probability 1− 1
1000 ·

|Ui|
|U |∣∣∣∣∣∣

∑
{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≥ exp(r2/
√
d)− 1000

√
|U |.

In the second case, the entire sum equals X =
∑

k∈Ui
σk exp(⟨k, qi⟩/

√
d). As shown above,

Pr
[
|X| ≥ 1000

√
|U |
]
≤ 1

1000 ·
|Ui|
|U | . Hence, with probability 1− 1

1000 ·
|Ui|
|U |∣∣∣∣∣∣

∑
{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≤ 1000
√
|U |.

Corollary C.5. Suppose bits i1, . . . , id form a group – that is, π(i1)1 = π(i2)1 = . . . = π(id)1.
Then all vi1 , . . . , vid have different non-zero coordinates, and therefore

∑d
j=1 |Uij | ≤ |U |.

Therefore, by the union bound argument, the conclusion of Lemma C.4 holds for all d bits which form
one group simultaneously with probability 0.999.

Lemma C.6. Fix a bit i. With probability 0.98 the following holds:

1. The error of the approximating algorithm in the only non-zero coordinate of vi is bounded by

O

(
ε√
d
· ∥softmax(K · q)∥2 · ∥V ∥F

)
.

2. If the i-th bit is 1 then∣∣∣∣∣∣
∑

{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≥ exp(r2/
√
d)−O

(√
|U |√
d

)
,

and ∣∣∣∣∣∣
∑

{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≤ O

(√
|U |√
d

)
.

otherwise.

Proof. We may think that the process of generating the dataset and the approximating streaming
algorithm has the following order: first Alice and Bob jointly generate the partition π, the key vectors
k̃1, . . . , k̃n/d and the value vectors v1, . . . , vn all using public randomness. To generate Bob’s input
position i ∈ [n] we generate pair a ∼ Unif[n/d], b ∼ Unif[d] and declare i = π−1(a, b). We may
assume that a is chosen before the datasets K and V are generated, and b – after.

36

Before b is drawn, the key vector ki of i = π−1(a, b) is already defined, as well as the datasets K, V
and U . Alice can therefore already apply the streaming algorithm to U , and Bob can already apply it
to qi = ki. Therefore, the error vector which the streaming algorithm yields when applied to qi = ki
is also defined before b is known.

Clearly, there are no more than 0.0001 · d coordinates in which the error of approximation exceeds
10000 · ε√

d
· ∥softmax(K · q)∥2 · ∥V ∥F . Since every value vector has only one non-zero entry, there

are no more than 0.0001 · d coordinates where at least 10000 · Ud of value vectors from U have
non-zero value. We call all coordinates which are in neither of these two groups safe. From the above,
at least 99% of the coordinates are safe. Recall that b ∼ Unif[d], and choosing b is equivalent to
choosing the coordinate in which vi is non-zero. Therefore, with probability 0.99 over the choice of b
the only non-zero coordinate of vi is safe.

At the same time, similarly to Lemma C.4, by Chebyshev inequality, if Ui ⊂ U is the set of all
key-value pairs in U whose value vector has the same non-zero coordinate as vi then with probability
0.999 if the i-th bit is 1 then

∣∣∣∣∣∣
∑

{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≥ exp(r2/
√
d)−O

(√
|Ui|
)
,

and

∣∣∣∣∣∣
∑

{k,v}∈U

exp

(
⟨k, qi⟩√

d

)
⟨v, vi⟩

∣∣∣∣∣∣ ≤ O
(√
|Ui|
)
.

otherwise.

By union bounding over these two events, we get that the statement of the lemma is correct with high
constant probability.

Conclusion of the proof. Let U i ⊂ U be the set of all pairs from U with the same key as {ki, vi}.
Since Alice’s string is drawn from Unif{−1, 1}n, with probability 0.9 |U i| ≥ 0.4 · d. This is because
every bit in the same group as ki belongs to U with probability 1/2.

Observe that by Chebyshev inequality, with high probability 0.999, the denominator of softmax(K ·qi)
lies in range [

|U i| · exp(r2/
√
d) +

1

5
· |U |, |U i| · exp(r2/

√
d) + 20 · |U |

]
,

This is because every summand in the denominator, except for exp(⟨ki, qi⟩/
√
d), is dis-

tributed as exp(⟨x, y⟩/
√
d), x, y ∼ Unif

{
− r√

d
, r√

d

}d

, and the expectation and the vari-
ance of this distribution, as shown in Lemma C.3, is Θ(1). This range is contained in[
1
5 · (max{der2/

√
d, |U |}), 20 · (max{der2/

√
d, |U |})

]
. We will denote the denominator as D.

Similarly, by Chebyshev inequality, with probability 0.999 the numerator of softmax(K · qi) lies in

[√
|U i| · exp(2r2/

√
d) +

1

5
· |U |,

√
|U i| · exp(2r2/

√
d) + 200 · |U |

]

which, since |U | ≤ d exp(2r2/
√
d), is bounded by

√
200 ·

√
der

2/
√
d.

Suppose that the i-th bit is 1. Then,

37

• When 1
ε ≥

√
der

2/
√
d, by selecting |U | = c

C · de
2r2/

√
d for some enough constant C the

value written in the only non-zero coordinate of vi is at least er
2/

√
d

D − 1
100

er
2/

√
d

D and at most
1

100
er

2/
√

d

D otherwise, as follows from Lemma C.4;

• When 1
ε <
√
der

2/
√
d, by selecting |U | = c

C ·
1
ε2 for some big enough constant C the value

written in the only non-zero coordinate of vi is at least er
2/

√
d

D − 1
100 ·

1
ε·D·

√
d

, and at most
1

100 ·
1

ε·D·
√
d

otherwise, as follows from Lemma C.4.

The error which the approximator can have in the non-zero coordinate of vi is bounded by

10000
ε√
d
· ∥softmax(K · q)∥2 · ∥V ∥F ≤ 10000

ε√
d
·
√
20 ·
√
der

2/
√
d

D
·
√
|U |,

as shown in Lemma C.6. Below, we show that this error is smaller than the gap between
1
40 ·

er
2/

√
d

max{der2/
√

d,|U |}
and the value written in the coordinate, which means that, even though the

approximator introduces some error, Bob is still capable to tell whether the i-th bit is 1 or 0.

• When 1
ε ≥

√
der

2/
√
d, the gap between the value written in the coordinate and

1
40

er
2/

√
d

max{der2/
√

d,|U |}
is at least 1

1000 ·
er

2/
√

d

max{der2/
√

d,|U |}
, and the error

10000ε√
d
·
√
20 ·
√
der

2/
√
d

D
·
√
|U | ≤ ε

2000
·
√
d exp(2r2/

√
d)

max{der2/
√
d, |U |}

≤ 1

2000
· er

2/
√
d

max{der2/
√
d, |U |}

by an appropriate choice of C.

• When 1
ε <

√
der

2/
√
d, the gap between the value written in the coordinate and

1
40

er
2/

√
d

max{der2/
√

d,|U |}
is at least 1

1000 ·
er

2/
√

d

max{der2/
√

d,|U |}
and the error

10000ε√
d
·
√
20 ·
√
der

2/
√
d

D
·
√
|U | ≤ ε

2000
· exp(r2/

√
d)

max{der2/
√
d, |U |} · ε

≤ 1

2000
· exp(r2/

√
d)

max{der2/
√
d, |U |}

by an appropriate choice of C.

38

	Introduction
	Related Work
	Overview of Our Contributions

	Technical Overview
	Streaming Attention Approximation: Formulation and Motivation
	SoftmaxBalance: Attention Approximation via Discrepancy Theory
	BalanceKV: Implementing SoftmaxBalance in Streaming

	Main Theoretical Results
	SoftmaxBalance
	MergeAndReduce

	Experiments
	Ablation Studies on Single Layer Attention Approximation
	End-to-end Evalution on LongBench
	Needle-In-A-Haystack Benchmark
	System Efficiency Metrics
	Additional Experiments

	Conclusion
	Full Proofs
	Proof of thm:main-theorem
	Theoretical Guarantees of [alg:BALANCE-V]SoftmaxBalance
	MergeAndReduce
	Pseudocode for MergeAndReduce
	Theoretical Guarantees of [alg:mergereduce]MergeAndReduce

	Full Experimental Details
	Ablation Studies on Single Layer Attention Approximation
	End-to-End Evaluation on LongBench
	Needle-In-A-Haystack
	System Efficiency Metrics
	Additional Experiments

	Lower Bound
	Reduction to the INDEX Problem

