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Abstract

Taxonomy completion, enriching existing tax-001
onomies by inserting new concepts as parents002
or attaching them as children, has gained sig-003
nificant interest. Previous approaches embed004
concepts as vectors in Euclidean space, which005
makes it difficult to model asymmetric rela-006
tions in taxonomy. In addition, they introduce007
pseudo-leaves to convert attachment cases into008
insertion cases, leading to an incorrect bias009
in network learning dominated by numerous010
pseudo-leaves. To address these issues, we pro-011
pose a novel taxonomy completion framework,012
called TAXBOX, which leverages the geometric013
properties of insertions and attachments in the014
box embedding space. By mapping concepts015
to box embeddings, TAXBOX can capture the016
complex relations between them, relying on the017
geometric connections between boxes. We also018
introduce a granular box constraint loss based019
on the hierarchy of the taxonomy, leading to020
more accurate concept mapping. Moreover, we021
design two geometric scorers, one for insertion022
and the other for attachment, which take into023
account the distinct behaviors of these two oper-024
ations in the box embedding space. To balance025
the scores from the two scorers, we employ a026
dynamic ranking loss to adaptively adjust the027
magnitudes of the insertion score and the attach-028
ment score. Experiments on four real-world029
datasets show that TAXBOX significantly out-030
performs previous methods, yielding average031
performance improvements of 6.7%, 34.9%,032
and 51.4% in MRR, Hit@1, and Prec@1, re-033
spectively.034

1 Introduction035

Taxonomy, a critical knowledge graph with an "is-036

a" relationship, plays a vital role in information037

retrieval, recommendation systems, and question038

answering (Chatterjee and Das, 2022; Chuang and039

Chien, 2003; Kejriwal et al., 2022; Kerschberg040

et al., 2001; Suchanek et al., 2007; Huang et al.,041

2019; Yang et al., 2017; Yu et al., 2021). How-042
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Figure 1: Example of taxonomy completion with our
TAXBOX framework.

ever, manual taxonomy enrichment is inefficient 043

and costly due to the constant emergence of new 044

concepts. To address the challenge of incorporat- 045

ing new concepts, taxonomy completion has been 046

introduced, with new concepts either inserted as 047

both parents and children or attached only as chil- 048

dren (Jiang et al., 2022; Zhang et al., 2021; Wang 049

et al., 2022; Zeng et al., 2021). This task goes be- 050

yond taxonomy expansion, which primarily treats 051

new concepts as leaf nodes and tends to have lim- 052

itations in downstream applications (Shen et al., 053

2020; Liu et al., 2021; Yu et al., 2020; Manzoor 054

et al., 2020; Phukon et al., 2022; Jiang et al., 2023). 055

056

Taxonomy completion entails a more compre- 057

hensive incorporation of new concepts with two 058

operations: insertion and attachment. For instance, 059

in Figure 1, new query concepts such as cat and 060

insect are added to the existing animal taxonomy. 061

The process requires enumerating all possible can- 062

didate positions within the original taxonomy, in- 063

cluding existing edges like <Animal, Vertebrate> 064
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and implicit edges from each node to its descen-065

dants such as <Animal, Tiger>. Each candidate066

position is then paired with the query concept, and067

a confidence score is calculated. Finally, insect is068

attached as a child of animal and cat is inserted as a069

parent of Siamese cat and children of Domestic An-070

imal and Vertebrate according to their confidences.071

Recent research on taxonomy enrichment has072

examined various practical methods (Jiang et al.,073

2022; Zhang et al., 2021; Wang et al., 2022; Zeng074

et al., 2021). Nevertheless, all of these approaches075

embed concepts as vectors in Euclidean space,076

which makes them less capable of modeling the077

asymmetric relationship ("is-a") in taxonomy. Box-078

TAXO (Jiang et al., 2023) tried to employ box em-079

bedding, a representation method that can capture080

more prosperous and asymmetric relationships like081

inclusion, disjoint, and proximity among concepts082

through its geometric properties. However, this083

method is limited in real-world applications for its084

reliance only on the volume property, rendering085

it suitable only for the taxonomy expansion and086

even incapable of discerning optimal ancestor con-087

cepts and handling multiple parents during infer-088

ence. Moreover, methods for taxonomy completion089

(Zhang et al., 2021; Wang et al., 2022) suffer from090

using a "pseudo-leaf" as a child node in attachment091

cases, leading to confusion in the matching. It is092

attributed that attachment cases often predominate093

due to leaf nodes’ prevalence in real taxonomies.094

Therefore, learning too much about the pseudo-leaf095

in the attachment cases may reduce the network’s096

perceptual ability for child nodes in the insertion097

cases.098

To overcome these limitations, we present a099

novel framework for taxonomy completion called100

TAXBOX, which is the first to apply box em-101

bedding to taxonomy completion. This approach102

adopts a structurally enhanced box decoder, repre-103

senting concepts as box embeddings (Vilnis et al.,104

2018) encompassing the information of children,105

furnishing richer semantics. Most importantly,106

TAXBOX combines two probabilistic scorers to107

unify the process of insertion and attachment in108

the box embedding space and incorporates both109

the volume and center closeness properties of box110

embedding. Such a design effectively exploits the111

fine-grained geometric attributes of box embed-112

dings, circumventing the need for a pseudo-leaf113

and yielding optimal, feasible results during the114

ranking process. Additionally, we propose two115

novel training objectives, optimizing both box vol-116

ume and position, and rectifying scorer numerical 117

imbalances. 118

The specific contributions of this paper are out- 119

lined as follows: 120

• We introduce TAXBOX, the first framework 121

using box embedding for taxonomy comple- 122

tion with a structurally enhanced box decoder. 123

• We establish insertion and attachment scor- 124

ers, obviating the need for pseudo-leaves and 125

ensuring the determination of optimal results. 126

• We design box constraint loss, focusing on 127

both volume and center closeness, and dy- 128

namic ranking loss, rectifying scorer numeri- 129

cal imbalance. 130

• Experimental outcomes from four datasets 131

demonstrate our model’s efficacy, achiev- 132

ing 6.7% MRR, 34.9% Hit@1, and 51.4% 133

Prec@1 improvements over the previous 134

methods. 135

2 Related work 136

Taxonomy Expansion and Completion. Taxon- 137

omy expansion, the process of attaching novel con- 138

cepts into an existing taxonomy, has evolved over 139

time with various approaches (Shen et al., 2018, 140

2020; Yu et al., 2020; Manzoor et al., 2020; Liu 141

et al., 2021; Ma et al., 2021; Phukon et al., 2022; 142

Jiang et al., 2023). Although effective, these meth- 143

ods have limitations in addressing real-world ap- 144

plications. Thus, Zhang et al. (2021) introduced 145

taxonomy completion, a generalization that allows 146

for the insertion of a concept as a parent to existing 147

nodes, generating wider-reaching solutions. Subse- 148

quent research (Wang et al., 2022; Jiang et al., 2022; 149

Zeng et al., 2021) sought to tackle this more chal- 150

lenging version of taxonomy expansion. Jiang et al. 151

(2022) incorporated contextual embeddings into 152

input embeddings, leveraging dual LSTMs to en- 153

code ancestor and descendant information (Staude- 154

meyer and Morris, 2019). Meanwhile, Zeng et al. 155

(2021) devised a generative strategy that concur- 156

rently generates concept names and classifies valid 157

candidate positions. Wang et al. (2022) introduced 158

the Quadruple Evaluation Network (QEN), which 159

utilized pretrained language models (PLM) (De- 160

vlin et al., 2018; Sanh et al., 2019) to augment 161

initial embeddings with semantically rich term rep- 162

resentations. Arous et al. (2023) learns a position- 163
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Figure 2: Overview of TAXBOX architecture. (a) The seed taxonomy tree with a query concept. (b) A structurally
enhanced box decoder maps concepts among all the candidates and the query concept to the box embedding space.
(c) Two probabilistic scorers calculate confidence of insertion or attachment for each candidate position. (d) Find
the best position via ranking to complete the seed taxonomy with the novel concept in box embedding space.

enhanced node representation through anchor sets164

to better find the candidate.165

Box Embedding. Box embedding represents a166

mapping technique that embeds concepts or objects167

within hyperplane boxes. Initially proposed by Vil-168

nis et al. (2018), this approach employs probabilis-169

tic box lattices to encapsulate entities in knowledge170

graphs as n-dimensional rectangles. Subsequently,171

various studies have applied box embedding across172

diverse domains. For instance, Rau et al. (2020)173

predicted visual overlap in images, while Onoe et al.174

(2021) and Patel et al. (2021) focused on entity175

typing and multi-label classification, respectively.176

Moreover, Dasgupta et al. (2022) mapped words to177

capture set-theoretic semantics, and Hwang et al.178

(2022) and Messner et al. (2022) explored relation179

extraction and knowledge graph completion. These180

works highlight box embedding’s suitability for181

nuanced semantic relationship modeling.182

3 Preliminary183

Box embedding (Vilnis et al., 2018; Chheda et al.,184

2021) refers to a mapping that represents a concept185

or object as a hyperplane box. A box x = [xm, xM ]186

is a hyperrectangle such that xm ∈ Rd and xM ∈187

Rd where xm and xM represent the minimum and188

maximum endpoints of the box respectively along189

the d axis and xm,i ≤ xM,i holds for each axis190

i ∈ {1, 2, ..., d}. The center of box embedding is191

formulated as:192

Cen(x) =
xM + xm

2
(1)193

There are two important operations: Intersection194

and Volume which are required for the calculation195

of the conditional probability of boxes’ contain- 196

ment. Given two box embedding x = [xm, xM ], 197

y = [ym, yM ], the Intersection of them is defined 198

as follows: 199

Inter(x, y) = [max(xm, ym),min(xM , yM )] (2) 200

where min(·, ·) and max(·, ·) in Equation 2 201

perform element-wise operations. Specifically, 202

min(a, b) = [min(a1, b1), ...,min(ad, bd)], and 203

similarly for max(·, ·). The Volume is defined as: 204

Vol(x) =
d∏

i=1

τ∗softplus(
xMi − xmi

τ
)

softplus(a) = log(1 + exp a)

(3) 205

where τ is a hyperparameter to adjust the smooth- 206

ness. The probability of box x containing box y or 207

the conditional probability of x given y is: 208

Pr(x|y) = Vol(Inter(x, y))
Vol(y)

(4) 209

4 The TAXBOX Framework 210

In this section, we elaborate on the proposed 211

TAXBOX framework, as shown in Figure 2. We 212

begin by defining the problem in Section 4.1. Then, 213

in Section 4.2, we introduce the structurally en- 214

hanced box decoder, which maps concepts into 215

box embeddings with hierarchical information en- 216

hanced. Section 4.3 focuses on the discussion of 217

two probabilistic scorers that evaluate the query 218

and candidate boxes, providing attachment and in- 219

sertion scores. Finally, in Section 4.4, we elucidate 220

the learning objectives that contribute to improved 221

optimization of box decoding and scorer balancing. 222
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4.1 Problem Definition223

A taxonomy is a directed acyclic graph and is de-224

fined as T 0 = (N 0, E0) where each node n ∈ N 0225

represents a concept and each edge ⟨p, c⟩ ∈ E0 rep-226

resents the "is-a" relationship edge between con-227

cepts. Given a seed taxonomy T 0 and a set of new228

concepts C, the definition of taxonomy completion229

is to construct a new taxonomy T = (N , E) where230

N = N 0 ∪ C and E is updated by adding new231

edges among C and N 0. To fulfill the task, all the232

candidate positions P = {⟨p, c⟩|∀p ∈ N 0, ∀c ∈233

descendants(p)} have to be evaluated given a234

novel concept n ∈ C. The whole training paradigm235

follows self-supervised learning. For each node in236

the seed taxonomy, we pretend it to be a query and237

optimize it with a reconstructed taxonomy without238

the node.239

4.2 Structurally Enhanced Box Decoder240

The structurally enhanced box decoder includes a241

graph aggregation module to aggregate the hierar-242

chical features from the ego subtree, as well as two243

box projectors map aggregated features and query244

embedding to box embedding space, respectively.245

An ego subtree of node n is defined as a tree only246

containing n and its one-hop children, denoted by247

T(n).

P

C1
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Linear & Activation

Aggregated
Embedding of p

C4
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C6

C7 P

Figure 3: Details of Graph aggregation module.
248

For a query q and a possible candidate ⟨p, c⟩ ∈249

P , we first obtain the embedding of each concept250

in the candidate along with their hierarchical in-251

formation. As illustrated in Figure 3, we design252

a graph aggregation module to achieve this. The253

formulation is given by Equation 5:254

Fk =Lin(R(GAT(T(k)) + T(k))), k ∈ {p, c}
(5)

255

where Fk is the aggregated feature and R(·) is a256

readout method, which implies that we only read257

out the root embedding of an ego subtree. Lin258

denotes a linear layer with activation. To effec-259

tively fuse more information from relevant child260

nodes, we opt for GAT (Graph Attention Net- 261

work) (Veličković et al., 2018) to aggregate these 262

trees in our implementation. 263

Next, two box projectors with identical Highway 264

network(Srivastava et al., 2015) structure project 265

aggregated features and query embedding to box 266

embeddings, respectively, as formulated in Equa- 267

tion 6. To avoid potential conflicts arising from dif- 268

ferent latent spaces, we do not use a shared weight 269

module for the aggregated parent/child features and 270

query embedding. 271

Bq = QProjector(Fq)

Bk = CProjector(Fk), k ∈ {p, c}
(6) 272

where Fq denotes query embedding and Bq, Bp, Bc 273

represent the box embedding of query, candidate 274

parent, and candidate child, respectively. QProjec- 275

tor is the query box projector, and CProjector is the 276

candidate box projector. 277

4.3 Insertion and Attachment Scorer 278

To make the best use of the geometric properties of 279

box embedding like volume and center closeness, 280

we design insertion scorer and attachment scorer to 281

separately give confidence corresponding to these 282

two cases. 283

Insertion Scorer. Assumes that our model cap- 284

tures fine-grained semantic relationships between 285

two concept boxes optimized by box constraint 286

loss (Section 4.4). Given a query concept n, we 287

first introduce its positive candidate set Cpos(n) = 288

{⟨p, c⟩|∀p ∈ P(n), ∀c ∈ C(n)} and negative can- 289

didate set Cneg(n) = {⟨p, c⟩|∃p /∈ P(n) ∨ ∃c /∈ 290

C(n)} where P and C refers to the parents and chil- 291

dren of a node. Note that C(n) can be an empty 292

set. For a positive candidate pair, the parent box 293

can reliably hold the child box, while two boxes 294

within a negative pair are disjoint. The closer the 295

pair is in position, the more overlapping their box 296

embedding will be. Based on this, we propose an 297

insertion scorer (SI ) that represents the likelihood 298

of performing insertion into the candidate as fol- 299

lows: 300

SI(Bq, Bp, Bc) =Pr(Bp|Bq) · Pr(Bq|Bc)

· NRDt(Bq, Bp, Bc)
(7) 301

where NRDt(·, ·, ·) is the normalized reciprocal dis- 302

tance measuring the center closeness between the 303

candidate parent and a query as well as that be- 304

tween the query and the candidate child. It is for- 305
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mulated as:306

RD(Bq, Bpi) =
1

||Cen(Bq)− Cen(Bpi)||2
NRDp(Bq, Bp) = softmaxni=1(RD(Bq, Bpi))

NRDt(Bq, Bp, Bc) = NRDp(Bq, Bp)

· NRDp(Bq, Bc)

(8)

307

where softmaxni=1 represents applying softmax308

along a mini-batch and Bpi is a candidate in the309

mini-batch. RD(·, ·) is the reciprocal distance, and310

NRDp(·, ·) only measures the closeness between311

the query and one side in the candidate.312

Attachment Scorer. Similar to the insertion scorer,313

when faced with the scenario of a candidate pair314

with no child, an attachment scorer (SA) is pro-315

posed. The attachment scorer is calculated as fol-316

lows:317

SA(Bq, Bp) = Pr(Bq|Bp) · NRDp(Bq, Bp) (9)318

4.4 Multiple Learning Objectives319

Classification Loss. The primary objective of our320

model is to determine the most suitable positions321

among all the candidate positions. We consider322

each candidate position as an independent category.323

Therefore, the problem can be reduced to a multi-324

label classification problem with a binary cross-325

entropy loss as:326

Lc = − 1

|B|
∑

(Xi,yi)∈B

yilog(Sk(Xi))

+ (1− yi)log(1− Sk(Xi)), k ∈ {I, A}
(10)327

where Xi = (Bqi , Bpi , Bci), B refers to a mini-328

batch consisting of one positive sample and several329

negative samples, y ∈ {0, 1} denotes whether the330

sample is positive or not. Sk(k ∈ {I, A}) means331

applying the insertion scorer if the candidate pair332

has both sides or the attachment scorer if it only333

has the parent side.334

Box Constraint Loss. To better model the granu-335

larity of the "is-a" relationships amongst concepts336

using box embeddings, we focus on the geomet-337

ric constraints originating from three properties of338

boxes: inclusion (lin) and disjointness (ldis) model339

the unidirectional relationships between two boxes,340

and centrality similarity (lcen) facilitates scorers341

by obliging unrelated box pairs to assume orthog-342

onal positions. Based on this, the loss functions343

for concept inclusion Lin and disjoint Ldis are as 344

follows: 345

lin(a, b) = −log Pr(b|a)
ldis(a, b) = max(0, log(1− γ(a, b))

− log(1− Pr(a|b)))
lcen(a, b) = max(0, log(1− γ(a, b))

− log(1− Cen(a) · Cen(b)))

Lin(a, b) = lin(a, b) + ldis(a, b)

Ldis(a, b) = ldis(a, b) + ldis(b, a) + lcen(a, b)

(11)

346

The dynamic margin, γ(a, b), between two con- 347

cepts a and b, is adapted from the Wu&P simi- 348

larity(Wu and Palmer, 1994) and modulates their 349

semantic distance: 350

γ(a, b) = α · 2× depth(LCA(a, b))

depth(a) + depth(b)
(12) 351

where LCA(·, ·) is the least common ancestor, 352

depth(·) indicates the depth in the seed taxonomy, 353

and α is a relaxation factor. By imposing con- 354

straints on volume(lin, ldis), position (lcen), and 355

distance (SI/A), the optimization search space is 356

effectively reduced. 357

Given a query box Bq, for a box Bk(k ∈ {p, c}) 358

in a candidate, there are three possible scenarios: 359

1) Bq is contained within Bk. 2) Bk is contained 360

within Bq. 3) both boxes are disjoint. When con- 361

sidering both sides of the candidate with a total of 362

6 possible cases, the box constraint loss is: 363

Lb =
1

|B|
∑

(Xi,li)∈B

l1i · Lin(Bqi , Bpi)

+ l2i · Lin(Bci , Bqi)

+ l3i · Lin(Bpi , Bqi)

+ l4i · Lin(Bqi , Bci)

+ (1− l1i)(1− l3i) · Ldis(Bqi , Bpi)

+ (1− l2i)(1− l4i) · Ldis(Bci , Bqi)

(13) 364

where li = (l1i , l2i , l3i , l4i) denotes whether the 365

two sides of the candidate pair indeed contain the 366

query concept or are contained by the query. 367

Ranking Loss. It’s evident that the values of two 368

scorers are numerically unbalanced, namely SI ≤ 369

SA when considering the same candidate parent. 370

In fact, there is no need for concern, as when a 371

query is inserted into this candidate position, it 372

is implicitly attached as a leaf. Our focus should 373

be on guaranteeing SI(Xpos) ≥ SA(Xneg) where 374
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Method MAG-CS
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 1523 0.099 0.004 0.027 0.049 0.017 0.023 0.021
ARBORIST 1142 0.133 0.008 0.044 0.075 0.037 0.038 0.033

TMN 639 0.204 0.036 0.099 0.139 0.156 0.086 0.060
QEN† 3960 0.147 0.017 0.062 0.097 0.076 0.054 0.042

TaxoEnrich* 5545 0.184 0.043 0.107 0.158 0.142 0.075 0.055

TAXBOX 596 0.240 0.051 0.139 0.184 0.238 0.131 0.087

Method MAG-PSY
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 728 0.253 0.015 0.092 0.163 0.031 0.038 0.033
ARBORIST 547 0.344 0.062 0.185 0.256 0.126 0.076 0.052

TMN 212 0.471 0.141 0.305 0.377 0.287 0.124 0.077
QEN† 1778 0.293 0.103 0.150 0.206 0.103 0.059 0.042

TaxoEnrich* 2201 0.357 0.082 0.219 0.293 0.167 0.089 0.036

TAXBOX 211 0.479 0.145 0.317 0.393 0.328 0.143 0.089

Method Wordnet-Verb
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 1799 0.227 0.024 0.095 0.140 0.036 0.029 0.021
ARBORIST 1637 0.206 0.016 0.073 0.116 0.024 0.022 0.018

TMN 1445 0.304 0.072 0.163 0.215 0.108 0.049 0.032
QEN* 2095 0.331 0.074 0.178 0.233 0.113 0.054 0.036

TaxoEnrich* 2873 0.320 0.069 0.168 0.229 0.106 0.052 0.035

TAXBOX 1286 0.330 0.105 0.212 0.262 0.179 0.072 0.045

Method SemEval-Food
MR ↓ MRR Hit@1 Hit@5 Hit@10 Prec@1 Prec@5 Prec@10

TaxoExpan 688 0.207 0.041 0.101 0.166 0.083 0.041 0.034
ARBORIST 700 0.129 0.013 0.053 0.088 0.027 0.022 0.018

TMN 559 0.211 0.037 0.113 0.160 0.074 0.046 0.032
QEN 353 0.313 0.070 0.176 0.234 0.146 0.074 0.049

TaxoEnrich† 305 0.348 0.113 0.247 0.290 0.230 0.100 0.063

TAXBOX 281 0.359 0.132 0.264 0.295 0.318 0.127 0.071

Table 1: Overall results on four taxonomy completion datasets. The ↓ denotes that the lower the metric is the higher
performance the model has. Baselines are reported by Zhang et al. (2021) and Wang et al. (2022). * means our
reproduction. † means our implementation on new datasets. We report the mean results of 5 runs.

the subscripts pos and neg indicate positive and375

negative samples, respectively. Consequently, for376

k, k′ ∈ {I, A}, the ranking loss is strategically377

designed to circumvent this particular case.378

Lr =
1

|B|
∑
Xi∈B

max(0, γ(Xpos, Xneg)

+ Sk(Xneg)− Sk′(Xpos))

(14)379

Here, the dynamic margin compels SI(Xpos) to be380

greater than SA(Xneg) to a specific extent based on381

their structural similarity. The final loss combines382

all of the three losses mentioned above:383

L = Lc + Lb + Lr (15)384

5 Experiments 385

5.1 Experiment Setup 386

Datasets. We assess TAXBOX’s performance in 387

taxonomy completion on four real-world datasets: 388

two Microsoft Academic Graph subgraphs, MAG- 389

CS and MAG-PSY, plus two WordNet subgraphs, 390

Wordnet-Verb and SemEval-Food. Also, two public 391

datasets from SemEval-16, Science and Environ- 392

ment are evaluated for taxonomy expansion. Fur- 393

ther dataset details are available in Appendix A. 394

Evaluation metrics consist of Mean Rank (MR), 395

Mean Reciprocal Rank (MRR), Wu&P, Hit@k, and 396

Prec@k, with elaboration in Appendix B. 397

Compared Methods. We select three recent 398

SOTA taxonomy completion frameworks, Triplet 399

Matching Network (TMN) (Zhang et al., 2021), 400

QEN (Wang et al., 2022) and TaxoEnrich(Jiang 401
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et al., 2022), and two taxonomy expansion frame-402

works, TaxoExpan (Shen et al., 2020) and AR-403

BORIST (Manzoor et al., 2020), as baselines for404

the four completion datasets. Additionally, we com-405

pare BoxTAXO(Jiang et al., 2023) and TaxoExpan406

demonstrating TAXBOX’s superiority in taxonomy407

expansion. A further explanation is presented in408

Appendix C.409

Implementation Details. The Adam optimizer410

was employed with a 0.001 learning rate and the411

ReduceLROnPlateau scheduler with a 10-epoch412

patience, training our model across all datasets for413

100 epochs. Four attention heads were fixed with414

0.1 dropout rate in GAT. The dynamic margin re-415

laxation factor α was 0.5. The training and predic-416

tion smoothness factor τ were 10 and 20 respec-417

tively. Batch and negative sample size were set418

at 16 and 63, while box dimensions were set at 64419

for SemEval-Food, 128 for Wordnet-Verb and MAG-420

CS, and 160 for MAG-PSY. Initial embeddings were421

the word2vec for the MAG datasets, fasttext for the422

Wordnet datasets, barring the PLM-based methods,423

and BERT embedding for two expansion datasets424

for fair comparison. All the experiments were con-425

ducted with one RTX3090.426

5.2 Experimental Results427

Table 1 demonstrates the superior performance of428

TAXBOX in taxonomy completion datasets, reflect-429

ing average improvements of 6.7%, 34.9%, and430

51.4% in MRR, Hit@1, and Prec@1. It outper-431

forms prior SOTA models, such as QEN and Tax-432

oEnrich, which utilize the pre-trained language433

models (PLM) to enhance the representation. It434

showcases TAXBOX’s performance when handling435

datasets with varied scales. TAXBOX’s efficacy436

originates from its box embedding’s superior abil-437

ity to capture asymmetric relationships among con-438

cepts and shows a significant improvement over439

conventional vector representations. PLM-based440

models like QEN, which lean on rich concepts’ de-441

scriptions from various internet-based data sources,442

tend to induce noise, particularly when dealing with443

larger datasets with obscure, overlapping concepts.444

Similarly, TaxoEnrich’s taxonomy-contextualized445

embeddings may reveal a variance in distribution446

between the training and testing phases, chiefly447

due to the test phase’s exclusion of query-related448

information.449

On MAG-PSY and Wordnet-Verb datasets,450

TAXBOX outperforms in Hit@k and Prec@k met-451

rics but has less exceptional MRR scores. A statisti-452

cal analysis revealed that in MAG-CS and SemEval- 453

Food datasets, the ratios of the maximum number 454

of positive candidates in the training set to that in 455

the test set are 2.5 and 1.5, respectively, whereas 456

for MAG-PSY and Wordnet-Verb, the ratios are 14 457

and 11. It suggests the need for TAXBOX to opti- 458

mize for all the concept boxes under relatively re- 459

laxed conditions to accommodate numerous ground 460

truth positions in the training set. This presents a 461

challenge when identifying test queries with fewer 462

ground truth positions, constricting MRR scores 463

while showing significant improvements in other 464

metrics. 465

5.3 Ablation Study 466

To assess the efficacy of our proposed learning 467

objectives (Lr, Lb) and graph aggregation module, 468

we performed ablation studies using SemEval-Food 469

and Wordnet-Verb datasets (Table 2). The model’s 470

overall performance deteriorated when any com- 471

ponent was removed, more noticeably so with Lb. 472

This is due to Lb explicitly constraining box loca- 473

tion and volume, while Lr primarily balances the 474

gap between scorers, which is implicitly addressed 475

during the optimization process of Lc. Despite that, 476

Lr still yields a crucial 10% performance gain. The 477

graph aggregation module demonstrated a signifi- 478

cant improvement, underscoring its essential role 479

in enhancing candidate feature enrichment. 480

Method SemEval-Food
MRR Hit@1 Prec@1

TAXBOX w/o Lr 0.346 0.104 0.250
TAXBOX w/o Lb 0.304 0.084 0.202

TAXBOX w/o GAM 0.347 0.112 0.270
TAXBOX w/o Lb &Lr 0.285 0.079 0.189

TAXBOX 0.359 0.132 0.318

Method Wordnet-Verb
MRR Hit@1 Prec@1

TAXBOX w/o Lr 0.316 0.097 0.165
TAXBOX w/o Lb 0.211 0.053 0.091

TAXBOX w/o GAM 0.310 0.100 0.173
TAXBOX w/o Lb& Lr 0.220 0.046 0.079

TAXBOX 0.330 0.105 0.179

Table 2: Ablation study on SemEval-Food and Wordnet-
Verb datasets. GAM means graph aggregation module.

5.4 How Two Scorers Work for Attachment 481

and Insertion 482

Table 3 highlights the superior performance of 483

TAXBOX over SemEval-Food and Wordnet-Verb 484

datasets in terms of attachment and insertion, com- 485

pared to other methods. It excels in all attachment 486
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metrics, emphasizing the aptitude of its scorer to487

utilize box embeddings’ spatial aspects, while ig-488

noring child boxes. For insertion, TAXBOX outper-489

forms prevailing methods, indicating its scorer’s490

accuracy in identifying optimal candidate positions491

considering overlap and center similarity. This con-492

firms the effectiveness and necessity of our method,493

and the insufficiency of pseudo leaf introduction in494

prior methods.

Method
SemEval-Food

Attachment Insertion
MRR Hit@1 MRR Hit@1

TMN 0.633 0.214 0.069 0.000
QEN 0.644 0.178 0.084 0.011

TAXBOX 0.678 0.288 0.133 0.032

Method
Wordnet-Verb

Attachment Insertion
MRR Hit@1 MRR Hit@1

TMN 0.456 0.139 0.121 0.004
QEN 0.466 0.125 0.160 0.007

TAXBOX 0.481 0.165 0.185 0.050

Table 3: Performance in attachment and insertion cases.
495

5.5 How TAXBOX Solves the Limitation of496

BoxTAXO497

Method Environment
Prec@1 MRR Wu&P

TaxoExpan 11.1 32.3 54.8
BoxTAXO 38.1 47.1 75.4
TAXBOX 44.2 55.0 77.8

Method Science
Prec@1 MRR Wu&P

TaxoExpan 27.8 44.8 57.6
BoxTAXO 31.8 45.3 64.7
TAXBOX 44.7 54.3 81.3

Table 4: The performance of TAXBOX on taxonomy
expansion datasets. Baselines are reported by Jiang et al.
(2023). *Please note that we have not scaled MRR by
10 and have applied a 100x scale to all results here.

Table 4 reveals that TAXBOX surpassed Box-498

TAXO in all metrics to show the TAXBOX’s su-499

periority over BoxTAXO. BoxTAXO’s limitations500

largely stem from its simplification of taxonomies501

into sheer tree structures, resorting to containment502

or non-intersection. This approach engenders two503

primary concerns: 1) Hard boundaries inhibiting504

multiple parent nodes accommodation, and 2) unre-505

liable inference criteria due to volume containment506

probability being the chief confidence score. Con-507

trarily, TAXBOX mitigates these constraints with508

its soft margin-based constraints accommodating 509

overlaps, and improves inference criteria with box 510

center-position distance. Consequently, TAXBOX’s 511

predictions are more precise, and it capably pro- 512

cesses nodes with multiple parents, outperforming 513

BoxTAXO. 514

5.6 How Dynamic Margin Affects Box 515

Constraint 516

Table 5 highlights the dynamic margin’s efficiency 517

in box constraint loss, in spite of comparable MRR 518

results. Discrepancies in Hit@1 and Prec@1 across 519

fixed margins accentuate the dynamic margin’s su- 520

periority in accurately modeling inter-box relation- 521

ships. While a 0.3 fixed margin in SemEval-Food 522

might parallel its performance, determining the op- 523

timal margin remains challenging. Notably, the 524

dynamic margin outperforms all fixed margins in 525

Wordnet-Verb, further underscoring its adaptability. 526

Margin SemEval-Food
MRR Hit@1 Prec@1

0.1 0.357 0.107 0.256
0.3 0.355 0.121 0.291
0.5 0.352 0.104 0.250

dynamic 0.359 0.132 0.318

Margin Wordnet-Verb
MRR Hit@1 Prec@1

0.1 0.318 0.096 0.164
0.3 0.328 0.092 0.157
0.5 0.322 0.090 0.154

dynamic 0.330 0.105 0.179

Table 5: The results of different margins in the box
constrain loss on two datasets.

527

5.7 How to set up TAXBOX 528

We discuss our choice for box dimensionality and 529

the number of negative samples in Appendix D. 530

6 Conclusion 531

In this study, we present TAXBOX, a novel frame- 532

work for taxonomy completion using box embed- 533

dings. Incorporating restricted box constraint loss, 534

dynamic ranking loss, and two probabilistic scorers 535

for attachment and insertion, TAXBOX employs a 536

structurally enhanced box decoder, mitigating the 537

need for pseudo leaves. Experiments on six real- 538

world datasets demonstrate its effectiveness and 539

performance. Future research could refine scor- 540

ers without numerical imbalance and explore post- 541

processing measures like reranking with LLM. 542
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Limitations543

The primary limitations of our proposed methods544

are as follows: (1) The numerical imbalance be-545

tween the two scorers. Although we attempt to546

alleviate this issue by introducing a dynamic rank-547

ing loss, it remains an imperfect solution. Re-548

sults shown in Table 3 indicate that tackling the549

insertion case in real-world practice is still chal-550

lenging, despite TAXBOX achieving significant im-551

provements compared to previous SOTA. A more552

practical scorer should be developed to address553

this. (2) In real-world applications, the quality of554

the initial embedding influences TAXBOX’s perfor-555

mance to some extent. Even when we opt for a556

well-pretrained language model for encoding, the557

concept name and description have a considerable558

impact. Thus, a more adaptive training strategy559

is needed. For example, we could employ data560

augmentation techniques to generate multiple texts561

representing the same meaning and use a PLM562

to obtain an embedding set pointing to a specific563

concept. During training, we can then retrieve dif-564

ferent embeddings to fit the network, consequently565

enhancing its generalization capabilities.566
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A Dataset769

We choose six real-world English datasets in dif-770

ferent domains, four for taxonomy completion and771

two for taxonomy expansion. The statistical infor-772

mation about six datasets is shown in table 6.773

• Microsoft Academic Graph (MAG) (Sinha774

et al., 2015) is a large, multi-disciplinary775

graph. The data in MAG includes informa-776

tion from a wide range of academic disci-777

plines and includes more than 660 thousand778

scientific concepts and more than 700 thou-779

sand taxonomic relations. Following Zhang780

et al. (2021), we use subgraphs related to the781

computer science (MAG-CS) and psychol-782

ogy(MAG-PSY) domains. The initial embed-783

ding is a 250-dimension word2vec embedding784

trained by Zhang et al. (2021).785

• Wordnet (Miller, 1995) is a large lexical786

database of English. Following (Wang et al.,787

2022) and (Zhang et al., 2021), we choose788

Wordnet-Verb (Jurgens and Pilehvar, 2016)789

and SemEval-Food (Bordea et al., 2015)790

which are extracted from wordnet. We em-791

ploy 300-dimension fasttext embedding as our792

initial features following Zhang et al. (2021).793

• SemEval-16 we use two public datasets re-794

leased from SemEval-16 task. Specifically,795

they are small-scaled taxonomy in the do-796

mains of Environment and general Science.797

And their initial embeddings are produced by798

a pre-trained bert(Devlin et al., 2018).799

For MAG-CS, MAG-PSY and Wordnet-Verb, we800

randomly select 1,000 nodes for testing and 1,000801

nodes for validation in each dataset, following the802

approach of Zhang et al. (2021). For SemEval-803

Food, we sample 10% of all the nodes for testing804

and another 10% for validation as done by Wang805

et al. (2022). For Environment and Science, we806

adopt the same protocol by Jiang et al. (2023). Sub-807

sequently, we reconstruct the seed taxonomy using808

the remaining nodes and add edges between the809

Dataset |N | |E | |C|

MAG-CS 24,754 42,329 153,726
MAG-PSY 23,187 30,041 101,077

Wordnet-Verb 13,936 13,408 51,159
SemEval-Food 1,486 1,533 6,122

Science 344 354 344
Environment 209 209 209

Table 6: The statistics of six datasets. |N |, |E |, |C| are
the number of nodes, edges, and candidate positions,
respectively.

parent and child nodes of the test and validation 810

sets to restore the fragmented taxonomy resulting 811

from the dataset split. 812

B Evaluation Metric 813

All the methods as well as our model are ranking- 814

based ones, so we use the ranking-based metric 815

to evaluate performance. Supposing rank(ci) de- 816

notes the predicted rank of ground truth position 817

given a query concept ci ∈ C: 818

• Mean Rank (MR) mainly measures the av- 819

erage tail ranking level and we first calculate 820

the average rank positions of each query and 821

then average all the queries: 822

MR =
1

|C|

|C|∑
i=1

(
1

Mi

Mi∑
j=1

rank(cji )) (16) 823

where Mi denotes the total number of ground 824

truth positions of a query ci and cji denotes 825

the jth prediction of ci. 826

• Mean Reciprocal Rank (MRR) mainly mea- 827

sures the average head ranking level. Its form 828

is similar to MR except that we get the recip- 829

rocal number of the ranks. Here we scale the 830

reciprocal rank by 10 to amplify the differ- 831

ence. 832

RR =
1

Mi

Mi∑
j=1

1

max(1, rank(cji )/10)
(17) 833

MRR =
1

|C|

|C|∑
i=1

RR (18) 834

• Hit@k measures the recall of a model which 835

averages the true rank positions for all queries 836
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in top k:837

Hit@k =

∑|C|
i=1

∑Mi
j=1 1(rank(cji ) ≤ k)∑|C|

i=1Mi

(19)

838

• Prec@k measures the precision of the re-839

sults and it sums the true rank positions of840

all queries in top k, divided by k times the841

total number of queries:842

Prec@k =

∑|C|
i=1

∑Mi
j=1 1(rank(cji ) ≤ k)

k ∗ |C|
(20)

843

• Wu&P(Wu and Palmer, 1994) measures the844

structural similarity:845

Wu&P =
1

|C|

|C|∑
i=1

2× depth(LCA(ai, bi))

depth(ai) + depth(bi)

(21)

846

where ai and bi are the predicted top-1 result847

and the truth potision in taxonomy.848

C Compared Methods849

Here are the details of compared models:850

• TaxoExpan (Shen et al., 2020): a state-of-851

the-art method in taxonomy expansion that852

utilizes a graph neural network to incorporate853

structural information.854

• ARBORIST (Manzoor et al., 2020): a state-855

of-the-art framework for taxonomy expansion856

and it leverages heterogeneous edge semantics857

with a dynamic margin loss.858

• BoxTAXO (Jiang et al., 2023): a state-of-the-859

art method using the property of conditional860

probability of box embedding for taxonomy861

expansion.862

• TMN (Zhang et al., 2021): a state-of-the-art863

method for taxonomy completion that em-864

ploys the channel-wise gate mechanism and865

auxiliary learning with multiple NTNs to eval-866

uate partially positive candidate pairs beside867

positive pairs.868

• QEN (Wang et al., 2022): a state-of-the-art869

model for taxonomy completion which uti-870

lizes a pre-trained language model to enhance871

the initial embedding with semantically rich 872

term representation and enhance the perfor- 873

mance with a sibling detector. 874

• TaxoEnrich (Jiang et al., 2022): a state-of- 875

the-art model for taxonomy completion that 876

leverages Taxonomy-Contextualized Embed- 877

dings and sibling matching modules. 878

D the Effect of Box Dimensionality and 879

Negative Samples 880

We are also interested in how the box dimensional- 881

ity and the number of negative samples affect the 882

performance. Figure 4 shows the results of MRR, 883

Hit@1 and Prec@1 when changing the box dimen- 884

sionality from { 32, 64, 80, 128 } and the total 885

number of samples from { 8, 16, 32, 64 }(where 886

negative samples are { 7, 15, 31, 63 }) over two 887

datasets. 888

Notably, it can be observed that for small 889

datasets SemEval-Food, a dimension of 64 serves 890

as a turning point. Dimensions below 64 exhibit 891

a significant decline in overall performance. On 892

the other hand, dimensions exceeding 64 reach 893

a plateau, indicating that 64 is an appropriate di- 894

mension. Furthermore, increasing the dimension 895

beyond 64 does not yield further performance im- 896

provements; instead, it leads to a decrease. This 897

can be attributed to the fact that a dimension of 898

64 already satisfies the spatial constraints for all 899

boxes in such a scale dataset. Larger dimensions 900

introduce redundancy, thereby increasing the op- 901

timization difficulty. However, for Wordnet-Verb, 902

it is worth noting that there is still some perfor- 903

mance improvement observed after surpassing 64 904

dimensions. This discrepancy can be attributed 905

to the larger dataset size and the initial quality of 906

embeddings, which require more dimensions to 907

effectively accommodate the information. 908

Regarding the setting of negative sample quanti- 909

ties, a general observation can be made that larger 910

numbers of negative samples result in better per- 911

formance on both datasets. However, it is crucial 912

to acknowledge that an increased number of neg- 913

ative samples reduces the attention given to posi- 914

tive samples during the optimization process of the 915

classification loss. Consequently, it becomes neces- 916

sary to elevate the weight assigned to positive sam- 917

ples in calculations. Therefore, the steep decrease 918

observed at the position of 16 is a consequence 919

of equal weighting given to positive and negative 920

12



Figure 4: The effect of box dimensionality and the number of negative samples over three datasets.

samples in the experiment, while higher negative921

sample counts were assigned higher weights. This922

emphasizes the significance of appropriately adjust-923

ing the weight allocation to balance the impact of924

positive and negative samples during training.925
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