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ABSTRACT

Multi-modal large language models (MLLMs) have shown remarkable abilities
in various visual understanding tasks. However, MLLMs still struggle with fine-
grained visual recognition (FGVR), which aims to identify subordinate-level cat-
egories from images. This can negatively impact more advanced capabilities of
MLLMs, such as object-centric visual question answering and reasoning. In our
study, we revisit three quintessential capabilities of MLLMs for FGVR, includ-
ing object information extraction, category knowledge reserve, object-category
alignment, and position of the root cause as a misalignment problem. To ad-
dress this issue, we present Finedefics, an MLLM that enhances the model’s
FGVR capability by incorporating informative attribute descriptions of objects
into the training phase. We employ contrastive learning on object-attribute pairs
and attribute-category pairs simultaneously and use examples from similar but in-
correct categories as hard negatives, naturally bringing representations of visual
objects and category names closer. Extensive evaluations across multiple popu-
lar FGVR datasets demonstrate that Finedefics outperforms existing MLLMs of
comparable parameter sizes, showcasing its remarkable efficacy.

1 INTRODUCTION

Multi-modal Large Language Models (MLLMs) (Bai et al., 2023; Chen et al., 2023; Zhang et al.,
2023b; Zhu et al., 2023; Dong et al., 2024; Liu et al., 2024b;a; Laurençon et al., 2024a;b) have
achieved remarkable advancements in understanding visual data, showcasing potential in advancing
general artificial intelligence. These models enable users to interact with images as inputs, fostering
seamless communication grounded in visual information. The impressive capabilities allow MLLMs
to excel in various vision tasks while adeptly handling complex content comprehension and genera-
tion. However, despite their versatility and linguistic proficiency, MLLMs still face challenges in a
fundamental task of machine vision: fine-grained visual recognition (FGVR) (Zhang et al., 2024b;
Geigle et al., 2024), which aims at identifying subordinate-level categories, such as specific species
of animals or plants (Wei et al., 2021). Poor FGVR performance of MLLMs hinders them from per-
forming more advanced tasks like object-centric visual question answering and reasoning (Zhang
et al., 2024b). For example, in smart agriculture, poor FGVR performance of pests may lead to
incorrect treatment strategies and large-scale reduction in food production.

Early works have investigated the phenomenon (Zhang et al., 2024b) and attempted to improve
the FGVR performance of MLLMs by integrating open-set classification data into pre-training or
fine-tuning stage (Geigle et al., 2024; Zhang et al., 2024b). However, fine-tuning solely on the
classification task harms the general capability of the instruction following, while purely integrating
classification-focused data into the instruction tuning data brings limited improvement (Geigle et al.,
2024), making their direct utilization impractical. To understand why MLLMs underperform in
FGVR, we revisit and evaluate three quintessential capabilities of MLLMs as shown in Figure 1:
(a) Object information extraction. It is essential to accurately and fully extract the necessary
information for distinguishing objects. (b) Category knowledge reserve. MLLMs should reserve
sufficient knowledge of subordinate-level categories. (c) Object-category alignment. With rich
visual information extracted and sufficient category knowledge reserved, visual objects and category
names should be aligned in the representation space to enhance classification performance.
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Figure 1: Three quintessential capabilities of MLLMs for fine-grained visual recognition. Current
MLLMs possess acceptable capabilities in image information extraction and category knowledge
reserve but struggle with aligning objects to their corresponding subordinate-level categories.

We analyze the representation space of MLLMs and their corresponding visual language models
(VLMs) like CLIP (Radford et al., 2021), revealing that: (1) Object information lost exists between
VLMs and MLLMs but is not the bottleneck. During the propagation of object features output from
the vision encoder in modality connector and language model layers, the necessary visual informa-
tion for distinguishing objects is almost preserved. Our observation is consistent with object hallu-
cination in MLLMs (Zhou et al., 2023), which finds that the modality connector tends to decrease
the representation discriminability, while LLM has no significant impact. (2) Category knowledge is
relatively sufficient, but category names cannot fully capture the semantics. Existing LLMs utilized
in MLLMs can output detailed and distinguishing descriptions about subordinate-level categories,
but category names are not discriminative in the representation space of LLMs. (3) Misalignment
between the visual object and category name leads to underperformance. Despite a slight reduction
in both object and category representation discriminability, the current learned modality connector
is insufficient for effectively matching visual object representations to subordinate-level category
names, as most VLMs do.

Motivated by the aforementioned analysis, we propose Finedefics , an MLLM designed to enhance
the model’s ability to identify subordinate-level visual object categories. Our framework builds
upon Idefics2 (Laurençon et al., 2024b) and is specifically tailored to boost the power of FGVR.
To facilitate alignment between visual objects and category names, descriptions summarized from
information visual attributes are utilized as the intermediate point to bind them in the representation
space of LLMs. Concretely, we separately feed token sequences of visual objects, attribute de-
scriptions, and category names into MLLMs to obtain global representations from the last layer of
LLMs respectively. Contrastive learning is performed on global representations of object-attribute
pairs and attribute-category pairs simultaneously, with additional hard negatives from similar but
incorrect categories, bringing representations of visual objects and category names closer. Subse-
quently, being trained solely on both open-set and closed-set FGVR data through instruction tuning,
Finedefics demonstrates exceptional FGVR performance gains. Benefiting from attribute augmented
alignment, Finedefics outperforms established counterparts across six popular FGVR datasets and
notably surpassing Idefics2 (Laurençon et al., 2024b) and Qwen-VL-Chat (Bai et al., 2023) by an
average of +10.89% and +9.43%, respectively.

In summary, our contributions are as follows: (i) We revisit the quintessential capabilities of MLLMs
for FGVR and investigate the root cause of underperformance in FGVR: misalignment between vi-
sual objects and category names. (ii) We propose Finedefics for enhancing the model’s FGVR ac-
curacy, which uses informative attribute descriptions to effectively align visual objects and category
names in the representation space of LLMs. (iii) With extensive experiments on six popular FGVR
datasets, we demonstrate the superiority of Finedefics.

2 WHY DO MULTI-MODAL LARGE LANGUAGE MODELS UNDERPERFORM
IN FINE-GRAINED VISUAL RECOGNITION?

This section scrutinizes the root causes of underperformance in FGVR via comprehensive empiri-
cal analyses on three quintessential capabilities of MLLMs: object information extraction, category

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

0.0
0.2

0.4
0.6

0.8
1.0

PC1
0.0

0.2

0.4

0.6

0.8
1.0

PC2

0.0

0.2

0.4

0.6

0.8

1.0

PC3

Chihuahua
Japanese spaniel
Maltese dog

(a) Object dist. of SigLIP.

0.0
0.2

0.4
0.6

0.8
1.0

PC1
0.0

0.2

0.4

0.6

0.8
1.0

PC2

0.0

0.2

0.4

0.6

0.8

1.0

PC3

Category

(b) Category dist. of SigLIP.
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(c) Object-category dist. of SigLIP.
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(d) Object dist. of Idefics2.
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(e) Category dist. of Idefics2.

0.0
0.2

0.4
0.6

0.8
1.0

PC1
0.0

0.2

0.4

0.6

0.8
1.0

PC2

0.0

0.2

0.4

0.6

0.8

1.0

PC3

Object
Category

(f) Object-category dist. of Idefics2.

Figure 2: Object/Category/Object-category representation visualization of SigLIP and Idefics2.

knowledge reserve, and object-category alignment by comparing the representation space with cor-
responding VLMs (Idefics2 (Laurençon et al., 2024a) and SigLIP (Zhai et al.) in our experiments).

Notations. Assuming an image Ii containing an object Oi is processed by the vision encoder Vα and
learnable modality connector Fβ to be transformed into a visual object token sequence of length m:
Si
o = [oi1, o

i
2, . . . , o

i
m]. Input category name in textual modality Ci is passed through an embedding

layer Eϕ of the LLM to obtain the category embedding sequence of length n: Si
c = [ci1, c

i
2, . . . , c

i
n].

Subsequently, the object embedding sequence Si
o and category embedding sequence Si

c are individ-
ually passed through the LLM layers Lθ to obtain the output from the last layer:

Hi
o = Lθ(S

i
o), (1a)

Hi
c = Lθ(S

i
c), (1b)

where Hi
o = [ôi1, ô

i
2, . . . , ô

i
m], and Hi

c(l) = [ĉi1, ĉ
i
2, . . . , ĉ

i
n]. Afterward, we select two ways to

represent the global semantics of output sequence following (Zhang et al., 2024b): 1) last token
embedding ôim, ĉin, and (b) average of the token embedding sequence ōi = (

∑m
k=1 ô

i
k)/m, c̄i =

(
∑n

k=1 ĉ
i
k)/n. For VLMs, the projected [CLS] embedding outputs from last layer of vision encoder

Vα and text encoder Tγ are taken to represent the global semantics of Oi and Ci, denoted as ôiCLS
and ĉiCLS, respectively.

2.1 OBJECT INFORMATION EXTRACTION

In the task of FGVR, a model that excels at object information extraction is required to have dis-
criminative representations, i.e., large inter-class distance and small intra-class variance. To com-
pare the object representation space of SigLIP and Idefics2, we select three subordinate-level cate-
gories ["Chihuahua","Japanese spaniel","Maltese dog"] from Stanford Dog-120
(Krause et al., 2013), and randomly sample 100 examples per category for t-SNE (Van der Maaten &
Hinton, 2008) visualization. As shown in Figure 2a, since the vision encoder Vα is normally frozen
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Table 1: Feature probing on Idefics2 and SigLIP with features of objects and category descriptions.

(a) Object features.

Model Feature Type Acc.

Idefics2 Last 94.99
Avg. 90.24

SigLIP CLS 95.28
Avg. 94.44

(b) Category description features.

Model Feature Type Acc.

Idefics2 Last 92.51
Avg. 90.41

SigLIP CLS 84.70
Avg. 87.78

throughout training (Liu et al., 2024b;a), the output object token sequence Si
o preserves discrimina-

tive information for classification. We then hypothesize that the information is lost after propagating
through the modality connector Fβ and LLM layers Lθ. However, various objects belonging to the
same subordinate-level categories can still cluster together and distance from each other, as illus-
trated in Figure 2d. To quantitatively compare the representation discriminability, we use feature
probing experiments (Zhang et al., 2024b) to test the hypothesis. Concretely, on top of the last token
embedding ôim or average of the token embedding sequence ōi, we train a linear classifier on the
training set of Oxford-IIIT Pet-37 (Parkhi et al., 2012) and evaluate on the test set. In Table 1a, we
observe that although information is lost, the impact on the performance is limited.

2.2 CATEGORY KNOWLEDGE RESERVE

Trained on enormous internet-scale corpora, LLMs are known for encoding the expert knowledge
for general categories in their weights, but we ask ourselves, is the expert knowledge quintessen-
tial for FGVR already contained in MLLMs? We hypothesize that MLLMs’ underperformance in
FGVR tasks stems from the inadequate knowledge of subordinate-level categories. To test the hy-
pothesis, we investigate whether LLMs utilized in MLLMs can distinguish different categories by
generating discriminative descriptions. Specifically, we probe the knowledge in Idefics2 via us-
ing the prompt ["Give a brief description of distinguishing features of
{CLASS NAME}"]. For each subordinate-level category in Oxford-IIIT Pet-37 (Parkhi et al.,
2012), we set the number of return descriptions to 200 and then equally divided them into the train
set and test set. The class names in returned descriptions are replaced with demonstrative pronouns
to avoid leakage of classification labels. Similarly, we conduct linear probing experiments on top
of ĉin and c̄i. As shown in Table 1b, Idefics2 exhibits better classification performance than the text
encoder of SigLIP, demonstrating its superiority in reserving category knowledge. Despite the rich
semantics of the generated category description, the category names have lower discriminability in
the representation space of Idefics2 than the text model of SigLIP, illustrated in Figure 2b and 2e.

2.3 OBJECT-CATEGORY ALIGNMENT

Since our empirical study shows that Idefics2 has an acceptable capability of object information
extraction and adequate knowledge of subordinate-level categories, we hypothesize that the mis-
alignment between the visual object and category name is the root cause. We randomly sample 120
object-category pairs from Stanford Dog-120 (Krause et al., 2013), and visualize the distributions
of the last token embedding of the object ôim and the category name ĉim in the same representation
space. As shown in Figures 2c and 2f, object and category representations have significant semantic
gaps. Since category names may not fully represent the semantics of the visual data (Lyu et al.,
2024), the object cannot match the ground-truth category in the representation space and thus fails
to decode into the correct category name.

3 METHOD

After thoroughly investigating the root cause of the underperformance in FGVR, this section for-
mally introduces Finedefics, which enhances the model’s FGVR performance by better aligning
visual objects and category names. The framework to build Finedefics is illustrated in Figure 3, com-
posed of two key components: (1) Attribute Description Construction for extracting useful attribute
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Figure 3: An illustration of framework to build Finedefics. Left: Attribute Description Construction,
which aims to obtain informative attribute descriptions of objects. Right: Attribute Augmented
Alignment, which aims to use constructed attribute descriptions to bind visual objects and category
names, thus enhancing the model’s FGVR capability via a two-stage training paradigm.

information that can distinguish different categories. (2) Attribute Augmented Alignment dedi-
cated to using constructed attribute descriptions as the intermediate point to bind visual objects and
category names in the representation space of LLMs, thus boosting the subsequent Classification-
Centered Instruction Tuning.

3.1 ATTRIBUTE DESCRIPTION CONSTRUCTION

Although it has been demonstrated in (Liu et al., 2022; El Banani et al., 2023) that language is
a powerful tool for capturing semantic relationships, dependency on category names exclusively
to align with extracted visual embeddings is unreliable. As discussed in Section 2.2, leveraging
adequate knowledge of subordinate-level categories, LLMs can describe distinguishing features that
better capture category semantics than category names. Inspired by (Liu et al., 2024c) that exploits a
cascade of foundation models to translate useful visual information from visual to textual modality,
we propose constructing sample-wise attribute descriptions for each FGVR training set.

Specifically, the construction comprises three steps: 1) Useful Attribute Discovery by LLMs, such as
GPT-4 (Achiam et al., 2023) and LLaMA (Touvron et al., 2023). These attribute names are employed
as keys to instruct Visual Question Answering (VQA) models (such as BLIP-2 (Li et al., 2023) and
LLaVA (Liu et al., 2024b)) for extracting useful attribute values. 2) Visual Attribute Extraction
by VQA models. These attribute values enrich the information for distinguishing subordinate-level
categories. 3) Attribute Description Summarization by LLMs. These descriptions help alleviate the
gaps between visual objects and category names in the training phase of Finedefics.

Userful Attribute Discovery. Given the super-category of each FGVR dataset, such as aircraft
for FGVC-Aircraft (Maji et al., 2013), we first identify a useful set of attributes that set apart
the subordinate-level categories. For example, the wing shape attribute can help distinguish
various aircraft models. To discover such key visual cues, we tap into the expert knowledge of
LLMs, which is otherwise only restricted to experts. Specifically, we ask LLMs: ["Your task
is to tell me what are the useful attributes for distinguishing
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{SUPERCLASS} {CLASSUNIT} in a photo of a {SUPERCLASS}"]. Formally, LLM
takes a super-category Csup as input and outputs a list of useful attributes:

NCsup = Lθ

(
P dis(Csup)

)
, (2)

where NCsup = {NCsup
1 , . . . , N

Csup
s } are the generated attribute keys for the category Csup, Lθ are

LLM layers, and P dis is the How-to LLM-prompt in (Liu et al., 2024c).

Visual Attribute Extraction. With the discovered attribute names NCsup , we leverage VQA
models that excel at identifying general visual attributes (e.g., shape, color) of objects to extract
each attribute value per sample. For example, if an attribute is wing shape, VQA models
are prompted to give a brief description of the wing shape, which is a much easier task than
recognizing many subordinate-level categories. Following (Liu et al., 2024c), we add a gen-
eral attribute name N

Csup
0 = ["General description of the image"] and its prompt

P ext
0 = ["Questions: Describe this image in details. Answer:"]. For-

mally, VQA model takes as input an image Ii, its super-category Ci
sup and the attribute names NCi

sup ,
the output visual attributes are given as:

Vi = Qϵ

(
Ii, C

i
sup, Pext(N

Ci
sup)

)
, (3)

where Vi = {V i
1 , . . . , V

i
v } denotes the extracted set of visual attributes for image Ii, Qϵ is the VQA

model, and Pext is the Identify VQA-prompt in (Liu et al., 2024c).

Attribute Description Construction. After obtaining the structured set of attribute key-
value pairs, we further ask LLMs: ["Summarize the information you get
about the {SUPERCLASS} from the general description and attribute
description with five sentences."]. The summarized attribute description contains
richer semantics of subordinate-level categories, making it much easier for LLM to understand.
Formally, given the set of attribute names NCi

sup and attribute values Vi, LLM outputs a summarized
attribute description for image Ii:

Ai = Lθ

(
Pcon(N

Ci
sup , Vi)

)
, (4)

where Ai is the attribute description constructed for image Ii, and Pcon is the revised Reason LLM-
prompt in (Liu et al., 2024c) for summarization task only. Expanding upon our newly built attribute
descriptions, we transfer traditional (object, category) pairs in FGVR datasets to (object, attribute,
category) triples. Without specification, the category refers to the subordinate-level category instead
of the super-category in subsequent sections.

3.2 ATTRIBUTE AUGMENTED ALIGNMENT

With the constructed informative attribute descriptions, we introduce a new training paradigm named
Attribute Augmented Alignment to build our Finedefics. It comprises two stages: (I) Attribute Aug-
mented Contrastive Learning for aligning visual objects and category names in the representation
space of LLMs. (II) Classification-Centered Instruction Tuning for enhancing the model’s ability to
follow the FGVR task instruction.

Stage I: Attribute Augmented Contrastive Learning. For each object-attribute-category triple
(Oi, Ai, Ci), we utilize the vision encoder Vα and the learnable modality connector Fβ to trans-
fer Oi into an object embedding sequence of length Si

o = [oi1, o
i
2, . . . , o

i
m] with length m. To

better capture the global representations, we follow (Jiang et al., 2024) to pass an [EOS] to-
ken through an embedding layer Eϕ of LLM to obtain the vector representation and append it to
the visual embedding sequence Si

o. Therefore, we obtain the newly built object embedding se-
quence S̃i

o = [oi1, o
i
2, ..., o

i
m, oiEOS]. Similarity, we obtain the attribute embedding sequence S̃i

a =

[ai1, a
i
2, ..., a

i
p, a

i
EOS] with length (p+1), and category embedding sequence S̃i

c = [ci1, c
i
2, ..., c

i
n, c

i
EOS]

with length (n+ 1). Then, S̃i
o, S̃

i
a, S̃

i
c are individually fed into LLM layers Lθ, and the embeddings

of the last predicted token ôiEOS, â
i
EOS, ĉ

i
EOS are utilized as the global representations of Oi, Ai, Ci,

respectively. Without specified, we use ôi = ôiEOS, â
i = âiEOS, ĉ

i = ĉiEOS for simplicity.

To improve the effectiveness of contrastive learning, we then mine difficult incorrect category names
for each example object Oi used in the FGVR dataset. To do this, we use a CLIP model (Radford
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et al., 2021) for mining hard negative samples: for every example image, we select three images
along with their attribute descriptions from the three most similar but incorrect categories. At-
tribute descriptions and category names from these hard negative samples are subsequently treated
as additional negatives. Thus, the formulation of Object-Attribute Contrastive (OAC) loss with the
inclusion of hard negatives can be described as follows:

Lhn
OA =

∑
(ôi,âi,ĉi)∈B

− log
expSim(ôi,âi)∑

âj∈B
expSim(ôi,âj) +

∑
âw∈Ai

hn

expSim(ôi,âw)
, (5a)

LAO =
∑

(ôi,âi,ĉi)∈B

− log
expSim(ôi,âi)∑

ôk∈B
expSim(ôk,âi)

, (5b)

Lhn
OAC = (Lhn

OA + LAO)/2, (5c)

where Ai
hn denotes the attribute representation set of hard negatives for the object Oi, Sim(·, ·)

measures the cosine similarity in a semantic space.

Similarly, Attribute-Category Contrastive (ACC) loss with the inclusion of hard negatives is formu-
lated as follows:

Lhn
AC =

∑
(ôi,âi,ĉi)∈B

− log
expSim(âi,ĉi)∑

ĉj∈B
expSim(âi,ĉj) +

∑
ĉw∈Ci

hn

expSim(âi,ĉw)
, (6a)

Lhn
CA =

∑
(ôi,âi,ĉi)∈B

− log
expSim(âi,ĉi)∑

âj∈B
expSim(âj ,ĉi) +

∑
âw∈Ai

hn

expSim(âw,ĉi)
, (6b)

Lhn
ACC = (Lhn

AC + Lhn
CA)/2, (6c)

where Ci
hn denotes the category representation set of hard negatives for the object Oi.

As discussed in Section 2.2, it is hard to differentiate between category names in the representa-
tion space of LLMs. Inspired by the intra-modal contrastive loss to promote the model’s ability to
differentiate between hard nagative captions (Zhang et al., 2024a), we additionally define Category-
Category Contrastive (CCC) loss as follows:

LCCC =
∑

(ôi,âi,ĉi)∈B

− log
1∑

ĉk∈Ci
hn

expSim(ĉi,ĉk)
. (7)

To maintain the generative power of the model, we use the attribute descriptions as LLM-augmented
captiona to formulate the attribute description generation task. Therefore, the optimization object of
the first stage can be defined as follows:

OI
β,θ = argmin

β,θ
Latt
G + (Lhn

OAC + Lhn
ACC + LCCC)/2, (8)

where Latt
G denotes the attribute description generation loss.

Stage II: Classification-Centered Instruction Tuning. In the second stage, we formulate the
FGVR dataset as two kinds of instruction tuning data: open-set QA data and closed-set multiple-
choice data. Then we fine-tune the model using this classification-centered instruction tuning data.
Consequently, the optimization object of the second stage can be formulated as:

OII
β,θ = argmin

β,θ
Lcls
G , (9)

where Lcls
G denotes the generation loss of classification-centered instruction tuning data.
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Table 2: Comparison with leading methods on six FGVR datasets. #P denotes parameters count.

Model #P Dogs-120 Bird-200 Aircraft Flowers102 O.-Pet S.-Cars Avg.
LLaVA 1.5 7B 38.96 35.24 34.71 51.37 52.25 46.92 43.24
LLaVA-Next (Mistral) 7B 38.86 34.88 32.49 43.91 53.72 49.48 42.22
MobileVLM v2 7B 39.92 33.90 35.01 54.89 53.69 46.29 43.95
InstructBLIP Vicuna 7B 41.60 32.78 31.68 50.90 54.92 48.25 43.36
InstructBLIP Flan-T5-XL 4B 47.10 32.15 29.19 62.29 59.99 64.58 49.22
Phi-3-Vision 4B 39.80 37.63 42.33 51.59 56.36 54.50 47.04
BLIP2 Flan-T5-XL 4B 46.17 33.70 32.94 64.32 65.00 67.68 51.64
InternLM XComposer 2 7B 41.47 37.42 40.53 54.25 63.23 53.89 48.47
Pali-Gemma 3B 51.68 36.62 39.87 69.64 75.42 64.64 56.31
Idefics1 9B 39.74 36.50 34.62 51.70 48.51 29.42 40.08
Idefics2 8B 57.96 47.17 56.23 72.78 81.28 80.25 65.95
Qwen-VL-Chat 10B 66.18 52.30 45.96 75.95 87.82 76.23 67.41

Finedefics (ours) 8B 72.86 57.61 63.82 89.88 92.18 84.67 76.84
(+6.68) (+5.31) (+7.59) (+13.93) (+4.36) (+4.42) (+9.43)

4 EXPERIMENTS

In this section, we evaluate the performance of Finedefics aiming to answer the following questions:
(1) Can Finedefics effectively improve FGVR accuracy in MLLMs? (2) Does each core design of
Finedefics benefit the accuracy improvement? (3) Is Finedefics effective in aligning visual objects
and category names in the representation space of LLMs?

4.1 IMPLEMENTATION DETAILS

Datasets. We conduct experiments on several popular FGVR datasets that include CaltechUCSD
Bird-200 (Wah et al., 2011), Stanford Car-196 (Krause et al., 2013), Stanford Dog-120 (Krause
et al., 2013), Flower-102 (Nilsback & Zisserman, 2008), Oxford-IIIT Pet-37 (Parkhi et al., 2012),
and FGVC-Aircraft (Maji et al., 2013). Following (Geigle et al., 2024), we leverage the test sets as
resources for annotated data and frame FGVR as a multiple-choice task with well-defined answer
candidates. To facilitate Finedefics, we select the training sets of them to construct attribute descrip-
tion, build open-set QA and closed-set multiple-choice instructing tuning data, ensuring that these
images are different from the ones used in testing.

Evaluated MLLMs. We build Finedefics upon Idefics2 (Laurençon et al., 2024b) for its open-
source accessibility and leading zero-shot performance. Several recent MLLMs of comparable
parameter sizes are evaluated, including LLaVA 1.5 (Liu et al., 2024b), LLaVA-Next (Liu et al.,
2024a), MobileVLM v2 (Chu et al., 2024), InstructBLIP Vicuna (Dai et al., 2024), InstructBLIP
Flan-T5-XL (Dai et al., 2024), Phi-3-Vision (Abdin et al., 2024), BLIP2 Flan-T5-XL (Li et al.,
2023), InternLM XComposer 2 (Dong et al., 2024), Pali-Gemma 1, Idefics1 (Laurençon et al.,
2024a), Idefics2 (Laurençon et al., 2024b), and Qwen-VL-Chat (Bai et al., 2023).

Training Settings. All seeds are fixed across the training procedures for fairness. We train
Finedefics using the QLoRa technique (Dettmers et al., 2024), updating adapters in the LLM and
modality connector including perceiver resampler with 8 NVIDIA A6000 GPUs with 48G of mem-
ory. We use 4-bit quantization, with γ = 8 and α = 8 for LoRa, and a learning rate of 2e-4. For both
stages, the model is trained for one epoch with the warming steps of 60. The accumulated batch size
is set to 64 and 128 for stage I and stage II, respectively.

4.2 MAIN RESULTS

In Table 2, we compare Finedefics with previous leading approaches on six popular FGVR datasets.
Finedefics exhibits a significantly enhanced FGVR capability compared to a wide range of MLLMs.
Notably, Finedefics shows superior performance than Idefics2 by an average of +10.89% and Qwen-
VL-Chat of +9.43% across all datasets. Note that Finedefics is built upon Idefics2 (Laurençon
et al., 2024b), a high-performing model in various vision-language and vision-centric tasks, and the

1https://ai.google.dev/gemma/docs/paligemma/model-card
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Table 3: Analysis of Finedefics. ”Original” represents the zero-shot performance of Idefics2.

(a) FT methods.

Method Avg.
Original 65.95
Finetune 0.03
Finedefics (ours) 76.84

(b) Effectiveness of attributes.

Method Avg.
Original 65.95
CL (obj.-cat.) 72.72
CL (obj.-att.-cat.) 76.84

(c) Training paradigm.

Method Avg.
Original 65.95
One stage 25.42
Two stages 76.84
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Figure 4: Representation visualization of Finetune, CL (object-category) and Finedefics.

enhanced performance on FGVR makes it a valuable foundation to benefit more advanced tasks with
finer granularity.

4.3 ANALYSIS OF FINEDEFICS

Does Fine-tuning Solely on Additional Open-set FGVR Data Bring Performance Gains? In
Table 3a, we fine-tuning Idefics2 solely on additional open-set FGVR data. We observe that it
deteriorates the instruction following capability for answering multiple-choice questions in our test
settings. Finedefics outperforms the fine-tuned model, which indicates that Finedefics effectively
boosts FGVR accuracy by integrating attribute augmented alignment into the training paradigm
rather than solely fine-tuning on additional data.

Does Attribute Descriptions Contribute Performance Gains of Contrastive Learning? To
demonstrate the impact of augmenting contrastive learning with attribute descriptions, we conduct
experiments and report the results in Table 3b. In the ablation experiments, we employ contrastive
learning on object-category pairs without utilizing attribute descriptions. The results show that the
attribute description benefits the alignment between visual objects and category names.

Is Training in Two Stages Necessary for Building Finedefics? We further analyze the necessity
of training in two stages, i.e., representation alignment before instruction tuning. Specifically, we
fine-tune Idefics2 with a combined loss of classification-centered instruction tuning and attribute
augmented contrastive learning. The results are reported in Table 3c. We observe that fine-tuning in
one stage is prone to struggle with optimization and leads to degraded performance, which indicates
the effectiveness of training in two stages.

Visualization - Does Finedefics Effectively Align Visual Objects and Category Names? To
substantiate our objective of enhancing the alignment between visual objects and category names
with the auxiliary visual attributes, we randomly selected 100 data from Oxford-IIIT Pet-37 (Parkhi
et al., 2012) for visualization. As illustrated in Figure 4a, a substantial gap between the object and
category is observable in the data distribution when fine-tuning without contrastive learning. In
Figure 4b, contrastive learning on object-category pairs without attribute descriptions involved fails
to decrease the gap. In Figure 4c, with the usage of contrastive learning on object-attribute-category
triples, the gap decreases significantly, thus boosting FGVR accuracy.
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5 RELATED WORK

Multi-modal Large Language Models. Multimodal Large Language Models (MLLMs) aim to
enhance machines’ ability to understand and process complex information by integrating multiple
data modalities such as vision, text, and audio. In recent years, MLLMs have achieved significant
progress in three key areas. First was large-scale pre-training and fine-tuning, as seen in models like
BLIP-2 (Li et al., 2023), LLaVA (Liu et al., 2024b), MiniGPT-4 (Zhu et al., 2023), PaLM-E (Driess
et al., 2023), Kosmos-2 (Peng et al., 2023) and Visual ChatGPT (Wu et al., 2023), which used pre-
training on vast multimodal datasets and were then fine-tuned for specific tasks, greatly improving
the models’ generalization ability and task performance. The second area was cross-modal consis-
tency, focusing on ensuring information consistency across different modalities through techniques
like contrastive learning. Models such as Shikra (Chen et al., 2023), FROMAGe (Koh et al., 2023),
DLP (Jian et al., 2024), BuboGPT (Zhao et al., 2023b), ChatSpot (Zhao et al., 2023a), and Qwen-VL
(Bai et al., 2023) enhanced performance in multimodal tasks by strengthening the alignment between
modalities. The third area was interpretability and transparency. Models like ViperGPT (Surı́s et al.,
2023), GPT-4 (Achiam et al., 2023), PandaGPT (Su et al., 2023), Video-LLaMA (Zhang et al.,
2023a), and Video-ChatGPT (Maaz et al., 2023) enhanced the explainability of model decision-
making by incorporating attention mechanisms and natural language feedback, enabling users to
understand better and trust the model’s output. Despite these achievements, MLLMs still face chal-
lenges, such as the inability to extract informative visual features, insufficient understanding of
subordinate-level categories, and misalignment between visual objects and category names.

Fine-Grained Visual Recognition. FGVR (Welinder et al., 2010; Maji et al., 2013; Wei et al.,
2021) aims to classify visually similar subordinate categories under a broader super-category, often
requiring expert-provided auxiliary annotations (Krause et al., 2013; Zhang et al., 2014; Vedaldi
et al., 2014; He & Peng, 2017) due to the subtle differences between objects. FGVR methods can be
divided into three types: (i) attention-based methods enhance the model’s ability to recognize sub-
tle differences by focusing on the most critical areas of the image. (ii) hierarchical representation
methods effectively handle the subtle differences between categories by constructing hierarchical
feature representations that allow the model to refine image recognition progressively. (iii) metric
learning methods improve the model’s discriminative power in fine-grained classification tasks by
learning a metric space where samples of the same class are closer and those of different classes are
further apart. Moreover, TransHP (Wang et al., 2023) integrated vision-language models, making
FGVR less reliant on annotations and adaptable across various tasks. HI2R (Chen et al.) introduced
a hypergraph-guided approach that captures intra-class and inter-class relationships, enhancing the
model’s ability to discern subtle distinctions between fine-grained categories. CLEVER (Choud-
hury et al., 2024) extracted non-expert descriptions from images and trained a fine-grained textual
similarity model to match image descriptions with Wikipedia document sentences accurately. Re-
cent advancements like FineR (Liu et al., 2024c) employed large language models to translate visual
attributes into text, enabling category identification without expert-defined labels.

6 CONCLUSION

In this paper, our objective is to analyze and boost the power of FGVR for MLLMs. We investi-
gate the root cause of underperformance from three quintessential capabilities: object information
extraction, category knowledge reserve, object-category alignment, we position the problem as the
misalignment between visual objects and category names. To address the challenge, we propose
Attribute Augmented Alignment, designed to use attribute descriptions as an intermediate point to
bind them. Based on the aligned representation space, we build Finedefics, a new MLLM adept at
identifying the subordinate-level category of the visual object. Our experiments, conducted on six
popular FGVR datasets, demonstrate the remarkable performance of Finedefics. The validity of our
methodology is substantiated through rigorous empirical studies.

Future Works. While Finedefics attains remarkable results across various FGVR datasets, it would
encounter challenges in effectively learning new subordinate-level categories, and thus developing
fine-tuning methods that can boost the continual FGVR capability for MLLMs is a promising future
research direction.
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A APPENDIX

A.1 MORE ABLATION STUDIES

Attribute augmented alignment on other MLLMs. We build Finedefics upon Idefics2 (Laurençon
et al., 2024b). To confirm the general applicability of Finedefics, we conduct attribute augmented
alignment (A3) on another typical MLLM: LLaVA 1.5 (Liu et al., 2024b). As shown in Table 4,
after employing our proposed method, LLaVA 1.5 gains an accuracy improvement by 13.97% on
average, demonstrating the effectiveness and generalizability.

Effects of attribute types. We analyze the effects of specific attribute types in FGVR tasks. Specif-
ically, we selectively remove typical attribute types from [color, shape, texture, size] to evaluate
the contribution to performance improvement. As shown in Table 5, all four types of attributes
play a crucial role in distinguishing subordinate-level categories, but the contribution varies with the
dataset. For example, color and texture are more critical for specific datasets, like flowers and birds.

Effects of hard negatives. We compare using hard negatives and simple negatives for contrastive
learning. Specifically, we replace hard negatives with randomly sampled simple negatives, meaning
that the negatives used for contrastive learning are less visually similar to positives and easier to
distinguish from them. As illustrated in Table 6a, after applying contrastive learning with simple
negatives, the improvement is limited. With the utilization of hard negatives, the modality gap
decreases further, and the model harvests a significant accuracy improvement.

Effects of two-stage training stages. We analyze the effects of two-stage training by evaluating
Finedefics by selectively removing specific training processes within each stage. As shown in Table
6b, pretraining solely fails to follow the task instruction, while instruction tuning (I.T.) solely has a
limited performance gain. Instead, pretraining and instruction tuning are complementary to further
boost the accuracy, confirming the effectiveness of our two-stage training paradigm.

Effects of description quality. We first design an empirical study to evaluate the description quality,
i.e, how reliable the attribute descriptions we built. Similar to the probing experiments in Section 2.2,
we test the representation discriminability of our constructed attribute descriptions on the training
set of Oxford-IIIT Pet-37 Parkhi et al. (2012) with a splitting ratio of 1:1. The accuracy is 68.27%,
showing that the attribute descriptions can be well distinguished from each other though there exist
subtle visual differences that are difficult to describe in words. Furthermore, to evaluate Finedefics’s
sensitivity to the description quality, we use three different quality levels of descriptions: (1) com-
plete descriptions, (2) noisy descriptions (i.e., replacing some attribute descriptions with incorrect
ones by prompting ChatGPT OpenAI (2023)), and (3) no descriptions (i.e., object-category align-
ment w/o attribute). Results in Table 6c demonstrate Finedefics’s robustness to description noise.

Effects of levels of detailed descriptions. To analyze the impact of description length and detail
on alignment effectiveness, we compare three different levels of detailed descriptions: (1) long
descriptions, (2) short descriptions (i.e., generating short descriptions of input images with BLIP-2
Li et al. (2023), and (3) no descriptions (i.e., object-category alignment w/o attribute). Results in
Table 6d demonstrate that rich and informative category information expression plays a crucial role
in boosting the alignment between visual objects and category names.
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Table 4: Effects of employing attribute augmented alignment (A3) on LLaVA 1.5.

Model Dogs-120 Bird-200 Aircraft Flowers102 O.-Pet S.-Cars Avg.
LLaVA 1.5 38.96 35.24 34.71 51.37 52.25 46.92 43.24
LLaVA 1.5 + A3 57.10 43.44 44.49 53.26 78.50 66.47 57.21

Table 5: Effects of attribute types.

Color Shape Texture Size Dogs-120 Bird-200 Aircraft Flowers102 O.-Pet S.-Cars Avg.
✓ ✓ ✓ 71.15 57.40 61.63 88.19 91.36 84.22 75.66

✓ ✓ ✓ 72.49 57.75 62.02 90.19 90.73 85.26 76.41
✓ ✓ ✓ 71.98 55.47 60.82 88.81 89.48 80.70 74.54
✓ ✓ ✓ 70.65 57.84 59.74 91.49 90.30 82.94 75.49
✓ ✓ ✓ ✓ 72.86 57.61 63.82 89.88 92.18 84.67 76.84

Table 6: More ablation studies. ”Original” represents the zero-shot performance of Idefics2.

(a) Negative types.

Method Avg.
Original 65.95
Simple Neg. 74.26
Hard Neg. (ours) 76.84

(b) Training stages.

Pretrain I.T. Avg.
✓ 0.00

✓ 76.13
✓ ✓ 76.84

(c) Description quality.

Method Avg.
None 72.72
Noisy 75.62
Complete (ours) 76.84

(d) Levels of detailed descriptions.

Method Avg.
None 72.72
Short 76.11
Long (ours) 76.84

(e) Description construction.

Method Avg.
Upper-bound 52.52
Tag-based baseline 50.48
Finedefics (ours) 51.12

Comparison with FineR. We compare the clustering accuracy (cAcc) used in FineR Liu et al.
(2024c) with the classification accuracy used in Finedefics. FineR can be considered as improv-
ing the FGVR performance by using the attributes as a zero-shot manner. Note that classification
accuracy can be considered as the perfect case of Hungarian matching used to obtain clustering ac-
curacy. Results in Table 7 show the superiority of building an attribute-aware model compared to a
multi-agent system using attributes in a zero-shot manner.

Effects of attribute description construction. We evaluate the crucial rule of our proposed con-
struction method acquiring per-sample attribute descriptions. To this end, we compare with an
upper-bound and a baseline trained solely on Bird-200 dataset: (1) Upper-bound: we use Bird-200
(Wah et al., 2011)’s per-sample ground-truth attributes, annotated by humans, for pretraining and
instruction tuning. (2) Tag-based baseline: Given the category name, we prompt ChatGPT (Ope-
nAI, 2023) to acquire per-class attribute descriptions for each attribute tag used in our construction
process, without using actual image samples. Then, these per-class sets of attribute-description pairs
are assigned to each sample belonging to the class. Since for the same super category, the attribute
values can differ significantly, this class-wise attribute description construction process introduces
some noise. As shown in Table 6e, Finedefics surpasses the tag-based baseline, demonstrating the
superiority of building detailed per-sample attribute descriptions. Moreover, we can observe that the
accuracy of Finedefics is close to the upper-bound, showing the potential of using LLMs and VQA
models to obtain large-scale attribute data for alignment without human annotations.

Performance on common object recognition. We investigate how Finedefics performs on com-
mon object recognition after pretraining and instruction tuning on FGVR datasets. As shown in
Table 9, we test on ImageNet-adversarial (IN-adversarial) (Hendrycks et al., 2021b), ImageNet-
rendition (IN-rendition) (Hendrycks et al., 2021a), and ImageNet-sketch (IN-sketch) (Wang et al.,
2019). Results show that training solely on FGVR tasks has a minor impact on common object
recognition accuracy. Therefore, training should be performed on a combined dataset comprising
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Table 7: Comparison with FineR. Clustering accuracy and is used in FineR while classification
accuracy is used in Finedefics.

Model Dogs-120 Bird-200 Flowers102 O.-Pet S.-Cars Avg.
FineR 48.10 51.10 63.80 72.90 49.20 57.00
Finedefics (ours) 72.86 57.61 89.88 92.18 84.67 79.44

Table 8: object-category alignment quality for Idefics2 and Finedefics.

Metric Dogs-120 Bird-200 Aircraft Flowers102 O.-Pet S.-Cars Avg.
Idefics2 0.14 0.12 0.12 0.09 0.15 0.18 0.13
Finedefics (ours) 0.28 0.17 0.30 0.28 0.28 0.32 0.27

both coarse-grained and fine-grained recognition tasks. Developing fine-tuning methods that pre-
vent such catastrophic forgetting to enhance FGVR capability without impacting common object
recognition is a promising future research direction.

A.2 MORE EVALUATION METRICS

Confusion matrix analysis. Besides the classification accuracy, we conduct confusion matrix anal-
ysis on Oxford-IIIT Pet-37 (Parkhi et al., 2012) to identify where the model struggles across cat-
egories. As shown in Figure 5, Finedefics can recognize most of the categories correctly, while
struggles in identifying a small portion of categories, such as Wheaten Terrior (52%), Staffordshire
Bull Terrier (58%), Ragdoll (71%), American Bulldog (74%), and Birman (78%).

Alignment quality evaluation. We provide a quantitative analysis of the object-category alignment
quality for Idefics2 and Finedefics in Table 8. The object-category alignment quality is calculated
as the mean cosine similarity between embeddings of visual objects and their corresponding cat-
egory names of each class. We observe that Finedefics significantly increases the object-category
alignment quality, which further demonstrates the effectiveness in boosting alignment.

A.3 DISCRIMINABILITY COMPARISON BETWEEN DIFFERENT DATASETS

For each dataset, we provide a quantified analysis of inter-class distance and intra-class variance for
visual objects, as well as inter-class distance for category names, respectively. As shown in Table
10, Dogs-120 and Aircraft have the smallest inter-class distance for visual objects, meaning that the
subordinate-level categories of dogs and aircrafts are typically more visually similar and difficult to
distinguish. Moreover, O.-Pet and Dogs-120 have the largest intra-class distance for visual objects,
meaning that attribute values differ significantly for the same subordinate-level category of pets.
Most importantly, category names have lower discriminability than visual objects in the representa-
tion space despite the super category. For example, though Flowers102 has large inter-class distance
and small intra-class variance for visual objects, the inter-class distance for category names is not
significantly different from other datasets.

A.4 QUALITATIVE COMPARISON

We visualize and analyze the predictions of Finedefics and Idefics2 in Figure 6. Finedefics suc-
cessfully captures the nuance of the object features, setting them apart from visually similar sub-
ordinate categories. This confirms that Finedefics effectively captures fine-grained visual details
from images, connects them with category names in the representation space, and then generates
precise, fine-grained predictions. Furthermore, Figure 7 shows two examples where Finedefics pre-
dicts incorrect labels. We randomly pick three examples from the incorrect label and observe that
the ground-truth and predicted label share most of the attributes, with only a few exhibiting subtle
differences. Concretely, as shown in the first row, Ragdolls are characterized by their fluffy, medium-
to-long coats with distinct dark markings on the ears and around the eyes, whereas Siamese cats have
short coats with darker color on their faces. Similarly, in the second row, pink primroses feature a
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Table 9: Comparison on common object recognition datasets.

Model IN-adversarial IN-rendition IN-sketch Avg.
Idefics2 79.84 93.23 68.21 80.43
Finedefics (ours) 75.96 92.43 66.77 78.39

Table 10: Discriminability comparison between different datasets. O and C denote visual object and
category name, respectively.

Metric Dogs-120 Bird-200 Aircraft Flowers102 O.-Pet S.-Cars
Inter-class Dist. for O (↑) 0.36 0.37 0.31 0.41 0.43 0.49
Intra-class Var. for O (↓) 0.27 0.20 0.12 0.07 0.28 0.19
Inter-class Dist. for C (↑) 0.95 0.66 0.75 0.90 0.99 0.48

light pink color with yellow-green centers, while tree mallows exhibit a vibrant pink color with dark
purple to black centers.
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Predicted Labels

Abyssinian
American Bulldog

American Pit Bull Terrier
Basset Hound

Beagle
Bengal
Birman

Bombay
Boxer

British Shorthair
Chihuahua

Egyptian Mau
English Cocker Spaniel

English Setter
German Shorthaired

Great Pyrenees
Havanese

Japanese Chin
Keeshond

Leonberger
Maine Coon

Miniature Pinscher
Newfoundland

Persian
Pomeranian

Pug
Ragdoll

Russian Blue
Saint Bernard

Samoyed
Scottish Terrier

Shiba Inu
Siamese
Sphynx

Staffordshire Bull Terrier
Wheaten Terrier
Yorkshire Terrier
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Figure 5: Confusion matrix of Oxford-IIIT Pet-37.
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Figure 6: Qualitative comparison on FGVR datasets, where green indicates correct predictions and
red indicates incorrect ones.

Figure 7: Error analysis examples. The left column shows the image for prediction, while the right
column shows examples of the incorrect label.
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