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ABSTRACT

Federated Learning (FL) is a decentralized machine learning paradigm that enables clients
to collaboratively train models while preserving data privacy. However, surmounting the
obstacles introduced by data heterogeneity in heterogeneous federated learning remains
a profound challenge, as it drives each client towards distinct convergence trajectories,
impeding the global model’s convergence. To transcend these challenges, we propose
DFED, a novel data-free ensemble knowledge distillation method designed to counteract
the effects of data heterogeneity. DFED leverages multi-source Generative Adversarial
Networks (GANs) to generate synthetic data that aligns with local distributions, ensur-
ing privacy while promoting diverse feature representations across clients. Additionally,
DFED aggregates client models into an ensemble based on their specialized knowledge,
and applies ensemble distillation to refine the global model, mitigating the issues caused
by disparities in data distributions. Across a variety of image classification benchmarks,
DFED demonstrates superior performance compared to several state-of-the-art (SOTA)
methods. The source code will be made publicly accessible once the paper has been ac-
cepted for publication.

1 INTRODUCTION

Federated Learning (FL) has emerged as a pivotal paradigm in the realm of machine learning, driven by
the increasing demand for privacy-preserving computational frameworks (Yang et al., 2019; Aledhari et al.,
2020a). In contrast to traditional centralized learning, FL enables multiple clients, each possessing their
own local datasets, to collaboratively train a global model without the need to exchange raw data (Li et al.,
2023). This methodology not only facilitates effective collaboration but also strengthens privacy protection
by eliminating the direct transfer of sensitive information, thereby significantly reducing the risks of data
leakage and unauthorized access(Matsuda et al., 2021; Shi et al., 2024).

However, the promise of Federated Learning does not come without significant challenges, chief among
them being data heterogeneity (Li et al., 2020; Konecny et al., 2015; Ye et al., 2023; Mendieta et al., 2022).
In practical scenarios, data possessed by different clients can vary significantly due to differences in user
behavior, local environments, or underlying data-generating processes(Zhang et al., 2021). This variation
in data, typically characterized as non-IID (Independent and Identically Distributed), further exacerbates
the difficulty in achieving a uniformly performing global model(Aledhari et al., 2020b; Zhao et al., 2018;
Zhu et al., 2021a). Specifically, when clients possess heterogeneous data, their local models tend to diverge
during training, adapting to the distinct characteristics of their respective datasets. This divergence, known
as client drift(Karimireddy et al., 2020), leads to models that reflect the disparities of private data rather
than contributing towards a unified global objective. As a result, the trained global model may perform well

1



047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093

Under review as a conference paper at ICLR 2025

on some clients’ data but struggle to generalize effectively to others, causing inconsistent performance and
reduced fairness across clients (Shang et al., 2022). Directly aggregating model parameters or updates in
such scenarios can further reduce the global model’s overall performance, leading to fairness concerns and
diminished transferability.

Figure 1: Overview of the federated learning framework with multi-source GANs for data-free ensemble
distillation. In the general phase, represented by ➀–➃, the global model is distributed, local GANs and
models are trained and uploaded. In the meta phase, shown by ➄–➅, the ensemble models and meta-head
are trained across selected clients, leveraging EMA to prevent forgetting. After the meta phase, knowledge
distillation ➆–➇ is performed using the synthetic data generated by the GANs to improve the global model.

With the progression of Federated Learning (FL), Knowledge Distillation (KD)(Hinton et al., 2015) has
emerged as a pivotal technique for transferring knowledge from a large, complex model (teacher) to a
smaller, more efficient model (student)(Gou et al., 2021; Wu et al., 2021). Widely applied in tasks such as
model compression, transfer learning, and domain adaptation, KD enables the student model to assimilate
the teacher’s knowledge with minimal performance degradation(Park et al., 2019). This not only simplifies
model complexity but also enhances adaptability and robustness, particularly in settings characterized by
diverse data distributions. Unlike conventional FL approaches that aggregate model weights—often exacer-
bating heterogeneity—KD facilitates learning from a distilled global representation, allowing client models
to better align with their local data and architecture(Zhang et al., 2024b; Qiao et al., 2023). For instance, the
works of Jiang et al. (2020) and Ma et al. (2022) illustrate how knowledge distillation can enhance feder-
ated learning by efficiently transferring knowledge from local models and mitigating catastrophic forgetting,
thereby improving the global model’s performance across heterogeneous and continual learning scenarios.
Nevertheless, methods such as FedMD(Li & Wang, 2019), which depend on publicly available datasets
for distillation, present challenges in privacy-sensitive contexts due to the risk of exposing sensitive client
information.

To address these limitations, data-free knowledge distillation (DFKD) has emerged as a promising alter-
native(Lopes et al., 2017; Luo et al., 2020; Liu et al., 2024). By eliminating the dependency on public
datasets, DFKD ensures that sensitive client data remains protected while still allowing the global model to
leverage the knowledge of individual clients(Zhu et al., 2021b). Building upon the framework of DFKD,
we propose a novel approach called DFED to address data heterogeneity and privacy concerns in federated
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learning by integrating ensemble knowledge distillation with Generative Adversarial Networks (GANs) for
synthetic data generation. Firstly, to safeguard data privacy, we deploy GANs on each client to generate
synthetic data reflective of their local distributions. These GANs are subsequently integrated into a unified
collection on the server, offering valuable and diverse samples for the knowledge distillation process. Sub-
sequently, to mitigate the inherent Non-IID nature of the data—which restricts local models to excel in only
distinct tasks—we aggregate the local models into a specialized ensemble, with each model focusing on
particular objectives, leading to a substantial improvement in predictive performance compared to the global
model alone. Lastly, we refine this integration through attention-based meta-learning, followed by knowl-
edge distillation, wherein the model ensemble serves as the teacher and the global model as the student. This
three-step methodology ensures iterative enhancement of the global model’s performance.

Our primary contributions are summarized as follows. First, we introduce an innovative federated learning
method that enhances the model’s effectiveness in heterogeneous environments. Second, we explore the
use of GANs in scenarios characterized by data imbalance, where each client trains its own GAN. The
collective deployment of these GANs generates diverse synthetic data, ensuring both distribution uniqueness
and privacy preservation. Moreover, we leverage a combination of model ensembles and attention-based
meta-learning to significantly elevate the performance of the ensemble beyond that of a conventional global
model. Finally, we utilize knowledge distillation with the generated synthetic data alongside the high-
performing model ensemble, resulting in further performance improvements. Our approach demonstrates
significant superiority over several state-of-the-art methods on the CIFAR-10 and CIFAR-100 datasets.

2 RELATED WORK

Due to space limitations, this part have been moved to Appendix A.1.

3 PROPOSED METHOD

In this section, we first introduce some basic notations and then provide a detailed explanation of the pro-
posed method DFED. We consider DFED as a optimization technique specifically designed to address the
challenges posed by data heterogeneity in federated learning. The framework of DFED is depicted in Fig. 1,
illustrating its key components and workflow.

3.1 PRELIMINARIES

Notations. In this paper, we consider a classical federated learning setup with N clients, each owning private
labeled datasets {(Xi, Yi)}Ni=1, where Xi = {xb

i}
ni

b=1 follows the data distribution Di over feature space Xi,
i.e., xb

i ∼ Di. These clients collaborate on a classification task with C classes, where Yi = {ybi }
ni

b=1 ⊂
{1, . . . , C} represents the ground-truth labels corresponding to the samples in Xi. Notably, We focus only
on the issue of data heterogeneity. Specifically, while the feature space remains the same for all clients, the
data distributions may differ across clients. This manifests as label distribution skewness among clients, i.e.,
Xi = Xj and Di ̸= Dj , ∀i ̸= j, i, j ∈ [N ].

The batch size used for local training is represented by B, the weight matrix of the final classification layer
is denoted by W = [w1, w2, . . . , wC ]

⊤ ∈ RC×d, and for simplicity, bias terms are omitted. Our objective is
to train a global model without requiring the clients to upload their data to the central server. The objective
of the global model optimization can be formulated as minimizing the following loss function:

min
θ

N∑
i=1

|Di|
|Dtotal|

Li(Fθ(Di), Yi)
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where θ represents the parameters of the global model, Li denotes the local loss function for client i, and
|Dtotal| =

∑N
i=1 |Di| is the total size of datasets across all clients.

Basic Algorithm of Federated Learning. We use FedAvg (McMahan et al., 2016) as the core algorithm.
The standard federated learning process follows these steps: In round t, the server distributes the global
model wt to all participating clients. Each client k, based on its local dataset Dk, updates the local model
wt

k using the following rule:

wt+1
k ← wt

k − η∇wℓ(wt
k;Dk),

where η is the learning rate, and ℓ denotes the local loss function. After local updates, the selected clients Kt

upload their models to the server. The server then aggregates the updates by computing a weighted average:

wt+1 =
∑
k∈Kt

|Dk|∑
k∈Kt

|Dk|
wt+1

k .

3.2 TRAINING GENERATOR

Leveraging generators for produce data knowledge distillation is not a novel concept. For instance, Zhang
et al. (2022b) introduced FedFTG, which uses a server-side GAN to simulate synthetic data based on
knowledge aggregated from multiple clients. While this approach effectively captures some unique char-
acteristics from each client’s data using hard samples, it falls short in fully harnessing diversity. Similarly,
DENSE (Zhang et al., 2022a) synthesizes data on the server using a GAN trained on ensemble models
uploaded from clients. Although this method strives to generate data that accurately represents the client
distributions, it faces limitations in fully capturing the nuanced diversity of each client’s local data. In con-
trast, our method avoids reliance on a single centralized generator by employing a group of GAN models,
each specifically tailored to its client’s data. At this stage, well-behaved generators Gi are trained on each
client i, capturing the data distribution Di over the feature space Xi. Instead of uploading compressed rep-
resentations to the server, we upload the trained GAN models {Gi}Ni=1, preserving the diversity D of each
client’s local data. To validate our approach, we compare the performance of different generator training
strategies. Specifically, we assess a single generator G trained on a global dataset Dglobal against multiple
GANs {Gi}, each trained on highly skewed, non-IID datasets Di. The results in Fig. 2 demonstrate that
the data quality remains comparable across both methods, confirming the robustness of our distributed GAN
setup in addressing data heterogeneity.

In our approach, the method for generating synthetic data is inspired by DeGAN (Addepalli et al., 2019), a
data-free knowledge distillation framework. Building on DeGAN, we adopt a three-player adversarial game
between the generator Gi, a discriminator Ti, and a pre-trained classifier Ci on each client i. The generator
Gi produces samples from a latent space Z ∼ N (0, I), while the discriminator Ti ensures that the generated
samples align with the distribution of the proxy dataset on client i. The classifier Ci, a standard model
trained on the client, ensures that the generated samples are representative of the true data distribution Di by
minimizing classification entropy.

The generator’s loss LG incorporates three key components. We consider y as the classifier output corre-
sponding to the generator input z, where z is sampled from a Gaussian distribution Z ∼ N (0, I). The
expectation over classifier outputs across a batch of samples from the latent space is denoted by w:

y = Ci(Gi(z)), w = Ez∼Z [Ci(Gi(z))]

The losses used to train the generator are as follows:
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Figure 2: Illustration comparing various GAN training approaches in identical non-IID data settings with
ω = 0.01: (a) FedFTG, where a single generator aggregates knowledge from multiple clients; (b) DENSE,
using an ensemble of models from clients to train a centralized generator; (c) a DeGAN-based generator
G trained on a global dataset Dglobal; (d) multiple DeGAN-based generators {Gi}Ni=1 trained on non-IID
datasets Di from different clients. This comparison demonstrates that utilizing a group of GAN models,
each tailored to its client’s dataset, results in great data quality and diversity.

The adversarial losses (Goodfellow et al., 2014), Ladv,real and Ladv,fake, ensure that the distribution of the
generated images closely approximates the target data distribution:

Ladv,real = Ex∼Di(x)[log Ti(x)], Ladv,fake = Ez∼Z [log(1− Ti(Gi(z)))]

The entropy loss Lentropy reduces the classifier’s output uncertainty, ensuring that each generated sample is
confidently assigned to one of the classifier’s classes:

Lentropy = Ez∼Z

[
−

C∑
k=0

yk log(yk)

]
where yk represents the classifier’s output for class k.

The diversity loss Ldiversity ensures that the classifier’s outputs across a batch are uniformly distributed among
classes, preventing the generated samples from being biased toward any particular class:

Ldiversity = −
C∑

k=0

wk log(wk)

where wk is the expected classifier output for class k across the batch.

Building upon the DeGAN framework, we introduce further enhancements to address non-IID data by in-
corporating an inversion loss, inspired by DeepInversion (Yin et al., 2020). This loss Linversion guides the
generator to align the generated data’s features with those of the global model. It achieves this by mini-
mizing the discrepancy between the feature statistics of the global model and the generated data, which is
formulated as:

Linversion =

L∑
l=1

(
∥µl(x)− µl(G(z))∥22 + ∥σl(x)− σl(G(z))∥22

)
,

where µl(x) and σl(x) represent the running mean and variance of the feature maps at layer l in the global
model, while G(z) denotes the generator’s output. By focusing on these feature statistics, the inversion loss
pushes the generator towards learning representations consistent with the global model’s feature space.

The sign of the hyperparameter λinv plays a crucial role in controlling the behavior of the generator. When
λinv is positive, it works in coordination with the diversity loss to enhance the variety of the generated
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samples, encouraging a broader range of features to be represented by integrating information from multiple
data distributions. Conversely, a negative λinv shifts the focus toward local data specifics, allowing the
generator to capture the unique aspects of the local data distribution and produce more specialized samples.

The generator’s loss LG builds upon the adversarial, entropy, and diversity components introduced in De-
GAN, with the inversion loss added to adapt to non-IID data. The total loss is expressed as:

LG = Ladv + λeLentropy − λdLdiversity + λinvLinversion,

where λe, λd, and λinv are hyperparameters that control the relative importance of the entropy, diversity, and
inversion losses, respectively.

3.3 ENSEMBLE DISTILLATION

Rather than aggregating models solely by sample quantities (Qi et al., 2024), we propose an approach that
capitalizes on task-specific data distributions to form an ensemble. Specifically, we aggregate models from
N clients according to the distribution of class-specific labels, resulting in C specialized models, each dedi-
cated to a particular class. The aggregation for class c is formalized as:

w(t+1)
c =

N∑
i=1

|Dc,i|
|Dc,total|

w
(t)
i ,

where w
(t+1)
c represents the aggregated model for class c at round t + 1, |Dc,i| is the number of samples

of class c held by client i, and |Dc,total| =
∑N

i=1 |Dc,i| is the total number of samples of class c across all
clients.

By aggregating C specialized models, the ensemble exploits the individual strengths of each model, better
addressing the heterogeneity of data distributions than a single global model. Once the ensemble is estab-
lished, an attention-based meta-head M is introduced to dynamically adjust the weights αc for each model
within the ensemble. This meta-head, built upon a transformer architecture (Vaswani et al., 2017), ensures
that the ensemble achieves optimal performance across tasks.

In the proposed meta-training framework, each meta-training cycle consists of multiple rounds, denoted by
t, in which the server selects a subset of clients Kt to receive the ensemble model E(t) and the meta-head
M (t). Notably, while both the ensemble and the meta-head are distributed to the clients, only the updated
meta-head M (t+1) is uploaded to the server for aggregation after local training, with the ensemble model
E(t) kept frozen throughout the entire meta-training process. During each round t, clients refine the meta-
head M (t) using their local datasets Dk, aggregating the predictions of each model within the ensemble as
follows:

ymeta,k =

C∑
c=1

α(t)
c yc,k,

where yc,k represents the prediction of each model in the ensemble for client k, and α
(t)
c are the correspond-

ing weights learned by the meta-head at cycle t. This process is repeated across multiple rounds within a
meta-training cycle, typically spanning T rounds.

An Exponential Moving Average (EMA) (Kingma & Ba, 2014) is applied to the meta-head, stabilizing the
training process and mitigating catastrophic forgetting. The EMA update is expressed as:

α(t+1)
c = βα(t)

c + (1− β)α(t+1)
c ,

where β is the decay rate, controlling how much of the previous meta-head weights are retained during each
update. This process unfolds over several cycles, allowing the meta-head to steadily enhance its perfor-
mance.
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To further augment the global model, we employ the synthetic dataset {(XS
i , Y

S
i )}Ni=1 generated by the

GAN group {Gi}Ni=1, where XS
i represents the generated data samples and Y S

i are the corresponding labels
produced by the ensemble. This data is then leveraged to distill knowledge from the ensemble of specialized
models into the global model, serving as a student. This data-free knowledge distillation enhances the global
model’s ability to generalize across all classes, thus improving performance in non-IID scenarios.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this study, we assess the performance of various methods using two image classification
datasets, CIFAR-10 and CIFAR-100 (Alex, 2009). To simulate the inherent data heterogeneity among
clients, we follow the approach adopted in previous works (Luo et al., 2023; Wang et al., 2020; Yurochkin
et al., 2019), where the Dirichlet distribution Dir(ω) is applied to partition the training dataset for each client.
The concentration parameter ω controls the extent of data heterogeneity, with smaller values of ω resulting
in more non-uniform data distributions. The same partitioning process is employed for both CIFAR-10
and CIFAR-100 datasets. This setup provides a suitable foundation for evaluating the effectiveness of our
proposed methods under different levels of data non-IID conditions.

Baselines. We compare our method with the following baselines: FedAvg (McMahan et al., 2016), Fe-
dRS (Li & Zhan, 2021), Focal Loss (Lin et al., 2017), FedLF (Lu et al., 2024), DENSE (Zhang et al.,
2022a), DFRD (Luo et al., 2023), and FedFTG (Zhang et al., 2022c). The first four methods focus on ad-
dressing data heterogeneity, while the last three methods, similar to ours, are based on data-free knowledge
distillation techniques. These methods extract knowledge from local models at the client side to synthesize
data and perform knowledge distillation on the global model in a fine-tuning manner. We place particular
emphasis on comparing the performance of these latter three approaches. Further configurations can be
found in Appendix A.2.

4.2 RESULTS AND ANALYSIS

We conducted an in-depth analysis of the performance of various methods under different degrees of data
heterogeneity on the CIFAR-10 and CIFAR-100 datasets, as shown in Table 1. In the table, bold results
represent the highest accuracy, and underlined results represent the second-highest accuracy for the global
model in each column. It is evident that as the value of ω decreases, all methods experience a significant
performance degradation. Our proposed method, DFED, consistently outperforms the baseline method,
FedAvg, across various settings. The first four methods listed in the table—FedAvg, FedRS, FedLF, and
LocalLoss—are not data-free knowledge distillation approaches, yet they still demonstrate robust capabili-
ties in handling data heterogeneity. In contrast, the latter three methods—FedFTG, DFRD, and Dense—are
data-free knowledge distillation methods, which serve as the primary focus of our comparative analysis.
Further analysis and discussions can be found in Appendix A.3.

4.3 ABLATION STUDY

In this section, we rigorously demonstrate the efficacy and indispensability of the core modules and key
hyperparameters of our method under the same settings. To assess their impact, particularly the inversion
loss during GAN training process and the meta-head in ensemble learning, we conduct a series of ablation
experiments. By systematically removing or adjusting these elements, we aim to discern their individual
contributions to the model’s performance. Further analysis and discussions can be found in Appendix A.4.
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Table 1: Top test accuracy (%) of distinct methods across ω ∈ {0.01, 0.1, 1.0} on CIFAR-10 and CIFAR-
100 datasets.

Algs. CIFAR-10 CIFAR-100
ω = 1.0 ω = 0.1 ω = 0.01 ω = 1.0 ω = 0.1 ω = 0.01

FedAvg 69.18 ±1.10 54.31 ±1.83 32.41 ±2.75 44.16 ±0.37 38.56 ±0.51 29.71 ±1.38

FedRS 76.62 ±1.23 70.14 ±1.65 34.24 ±1.97 50.17 ±0.48 41.02 ±0.65 31.29 ±1.04

FedLF 79.63 ±1.80 69.21 ±1.59 32.84 ±1.42 53.10 ±0.36 43.37 ±0.28 32.77 ±1.24

Focalloss 76.64 ±1.67 66.83 ±1.22 34.41 ±2.13 46.11 ±0.71 36.27 ±0.33 29.64 ±1.08

FedFTG 69.88 ±1.26 56.27 ±1.62 35.71 ±1.69 45.41 ±0.23 39.82 ±0.49 30.31 ±1.46

DFRD 72.03 ±0.91 59.74 ±1.21 40.42 ±1.65 49.45 ±0.27 43.49 ±0.99 33.28 ±1.18

DENSE 69.73 ±0.69 55.49 ±1.16 33.85 ±1.22 45.41 ±0.35 39.25 ±0.82 30.54 ±1.55

DFED 71.27 ±0.94 60.15 ±1.11 42.17 ±1.83 48.89 ±0.33 44.11 ±0.67 34.28 ±1.99

Table 2: Comparison of Different Ensemble Methods on CIFAR-10 Dataset Across Various ω Values.

Ensemble Method CIFAR-10

ω = 1.0 ω = 0.1 ω = 0.01

DENSE-ensemble 62.22 ±2.69 50.15 ±2.13 24.95 ±3.32

DFED-ensemble-basic 77.64 ±1.33 59.21 ±1.89 40.41 ±0.98

DFED-ensemble-meta 79.09 ±0.45 63.15 ±1.11 54.33 ±1.12

DFED-ensemble-meta-EMA 80.12 ±0.84 65.44 ±0.76 59.86 ±1.70

5 CONCLUSION

In this work, we present a novel federated learning framework designed to improve model performance in
heterogeneous environments. Our approach utilizes GANs at the client level to handle data imbalance, where
each client trains its own GAN, generating diverse synthetic data while maintaining privacy and ensuring
unique distribution characteristics. By integrating model ensembles with attention-based meta-learning, we
significantly enhance the ensemble’s performance, surpassing traditional global models. Furthermore, we
employ knowledge distillation using both the synthetic data generated by the GANs and the high-performing
ensemble, leading to further improvements in accuracy. Our method achieves superior results compared to
several state-of-the-art baselines, as demonstrated on the CIFAR-10 and CIFAR-100 datasets.
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A APPENDIX

A.1 RELATED WORK

Heterogeneous federated learning (HFL) has emerged as a crucial field of study, primarily due to the diverse
and decentralized nature of client environments and data distributions(Gao et al., 2022). One of the central
challenges in HFL is addressing data heterogeneity and ensuring robust performance across non-IID data
distributions. To address these issues, Xu et al. (2021) develop an adaptive federated averaging technique
that enhances communication efficiency and reduces convergence time by dynamically adjusting learning
rates to better accommodate local data distributions. Additionally, Tan et al. (2023) propose FedICON,
which uses contrastive learning to handle feature shifts by extracting invariant information across clients,
enhancing robustness in non-IID federated learning scenarios. In parallel, Shen et al. (2023) propose a
closed-form classifier framework that enhances cross-device learning by optimizing aggregation strategies,
resulting in faster convergence and more stable training dynamics. While these methods offer substantial
advancements, they often neglect the challenge of client drift, a phenomenon where the non-IID nature of
data causes divergence in client updates, leading to misaligned aggregation. This drift impairs the global
model’s ability to converge effectively. As a result, without adequately addressing client drift, existing
approaches may struggle to maintain stability and consistent performance as data heterogeneity increases in
federated learning environments.

Data-Free Knowledge Distillation (DFKD) has become a pivotal approach in scenarios where data privacy
and availability are constrained. In contrast to traditional distillation methods that require access to original
training data, DFKD facilitates knowledge transfer from teacher to student models by generating synthetic
data, ensuring the protection of sensitive information. Recent advancements in this domain have introduced
innovative techniques aimed at improving the quality and efficiency of synthetic data generation. For in-
stance, Yu et al. (2023) employ channel-wise feature exchange and spatial activation region constraints to
enhance data diversity, resulting in more robust student models without relying on real data. Similarly,
Tran et al. (2023) propose NAYER, a method that shifts the source of randomness to a noisy layer, paired
with label-text embeddings to produce high-quality samples. This approach accelerates the training process
while maintaining competitive accuracy. Another significant contribution comes from Shin & Choi (2024),
who present the Teacher-Agnostic DFKD (TA-DFKD), which redefines the role of the teacher model as a
lenient expert, allowing for more diverse sample generation by reducing class-prior restrictions. Despite
these innovations, DFKD still faces challenges in generating diverse, high-fidelity samples. Methods often
struggle to capture the full distribution of the original data, especially in imbalanced scenarios, which can
lead to biased student models. Nonetheless, DFKD continues to evolve, driven by the increasing demand for
privacy-preserving techniques in machine learning, establishing itself as a rapidly advancing field.

Data-Free Knowledge Distillation (DFKD) in Federated Learning (FL) offers a privacy-preserving solution
for knowledge transfer, eliminating the need for raw data exchanges between clients. By generating syn-
thetic data for distillation, DFKD ensures sensitive information remains protected while facilitating effective
knowledge transfer from global teacher models to local student models. This approach is particularly suitable
for handling data heterogeneity and non-IID distributions, as these issues often undermine model aggregation
in FL. Luo et al. (2023) introduce DFRD, a method that employs a conditional generator on the server to syn-
thesize training data, addressing distribution shifts and enhancing the diversity of synthetic samples. Yang
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et al. (2023) propose FedFed, a framework designed to combat data heterogeneity through feature distilla-
tion. In this method, clients retain robust features locally while sharing performance-sensitive features with
added noise, significantly improving model performance without compromising privacy. Similarly, Zhang
et al. (2024a) present FedKTL, a knowledge transfer method that leverages a server-side pre-trained gener-
ator, efficiently addressing both model and data heterogeneity while minimizing communication overhead.
While these methods excel in generating diverse synthetic data and have demonstrated impressive effective-
ness in addressing data heterogeneity through DFKD, they fall short in mitigating client drift, which can
lead to misaligned updates in non-IID settings. Our approach, by employing an ensemble learning strategy,
not only preserves data diversity but also effectively tackles client drift. This ensures greater stability and
enhanced performance in federated learning environments, offering a more comprehensive solution to both
data diversity and alignment challenges.

A.2 EXPERIMENTAL SETUP

Configurations. Unless otherwise specified, all experiments are conducted in a centralized network with
N = 10 active clients. To simulate varying degrees of data heterogeneity, we use ω ∈ {0.01, 0.1, 1.0},
where smaller values of ω indicate stronger data imbalances. All baselines adopt the same configuration
to ensure fair comparison. All experiments utilize ResNet-18 (He et al., 2016) as the base model and are
executed in PyTorch on an Nvidia GeForce RTX 3080 GPU. Unless stated otherwise, most hyperparameters
for these baselines are configured according to the original literature, and we utilize the official open-source
codes for these methods. Regarding the meta-training process, we opt to update the meta model every ten
communication rounds, setting the meta phase T to 20, with the number of selected clients per round ranging
from 1 to 3, contingent upon the distribution setup.

Evaluation Metrics. We evaluate the performance of different FL methods solely based on global test
accuracy. Specifically, we employ the global model on the server to assess the overall performance of
various FL methods using the original test set. To ensure reliability, we report the average results for each
experiment over 5 different random seeds.

A.3 ANALYSIS IN OUR EXPERIMENTS

When ω = 1, the data distribution across clients is relatively uniform. Although data-free knowledge dis-
tillation methods can address data heterogeneity to some extent, they fail to exhibit a significant advantage
in this scenario, as the knowledge disparity between clients is not sufficiently pronounced. However, as ω
decreases to 0.01, exacerbating the data heterogeneity, the advantages of data-free knowledge distillation
become more pronounced. In this extreme scenario, DFED achieves the best overall performance, demon-
strating its superior ability to handle highly heterogeneous data environments. Notably, both DENSE and
DFED leverage ensemble methods in their respective frameworks. The results of the comparison are pre-
sented in Table 2. In our data partitioning experiments, we evaluated the performance of DENSE’s ensemble
strategy; however, its ensemble yielded lower accuracy compared to the global model. This outcome can
be attributed to DENSE’s simplistic approach of averaging the outputs of the client models, which does not
necessarily yield optimal results as it may fail to effectively account for the specialized strengths of indi-
vidual client models based on their specific expertise. In contrast, our ensemble method, applied under the
same partitioning scheme, achieved remarkable performance across a variety of configurations, significantly
surpassing the results of the DENSE ensemble.

Overall, our method achieved impressive outcomes in all experiments. Although it performed slightly below
the first four methods when data heterogeneity was less pronounced, it surpassed the three data-free knowl-
edge distillation methods. Furthermore, our approach yielded exceptional results under extreme partitioning
conditions.
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A.4 ABLATION STUDY

Impacts of hyperparameters on the GAN group’s loss components. Building upon the DeGAN frame-
work, we include the adversarial loss Ladv, entropy loss Lentropy, and diversity loss Ldiversity, with the addi-
tional inversion loss Linv incorporated to handle the challenges posed by non-IID data distributions. Our
primary focus is on the inversion loss. We observe that the quality of data generated by the GAN group is
influenced by the number of clients participating in training process. When a small proportion of clients
participate in the training, the inversion loss significantly enhances the quality of the generated data. How-
ever, as the majority of clients are involved, the inversion loss diminishes its effectiveness and, at larger
scales, begins to hinder the overall data generation process. When the inversion loss is negative, it intro-
duces considerable instability, generally resulting in adverse effects on the training dynamics and overall
model performance. However, when using a ResNet18 classifier trained on the homogeneous dataset, such
as CIFAR-10 with a classifier pre-trained on CIFAR-100, the negative inversion loss contributes to perfor-
mance improvement. We found that setting the hyperparameter λinv to 10 is most suitable, and it is preferable
to omit the inversion loss when the number of active clients exceeds 60%, while applying inversion loss is
more beneficial when the number of active clients is below 60%.

Impacts of the meta-head on ensemble learning.

Our approach aggregates models according to the local data distributions of each client, resulting in im-
proved accuracy by leveraging models that specialize in specific data categories. Subsequently, we leverage
a transformer-based meta-head to assign adaptive weights to the outputs of the model ensemble. During
meta-training, we select and distribute 1 client model per round, updating the meta-head after each round. In
our configuration, 50 rounds of meta-training strike a balance between communication overhead and train-
ing adequacy, as more rounds increase communication costs, while fewer rounds may lead to underfitting.
In the case of CIFAR-100, which contains a larger number of categories, we distribute the training weights
for only a subset of the ensemble models per round, rather than distributing all 100 models at once. Table 2
presents the results. The term ”basic” refers to the models that were not trained using the meta-head, while
”meta” indicates that the outputs were weighted using the meta-head during training without applying EMA.
In contrast, the ”meta-EMA” column represents the results where EMA was applied to the meta-head during
training to further stabilize the model.

Figure 3: Illustration of global model accuracy curves during the knowledge distillation process using GAN-
generated images on the CIFAR-10 dataset. (a) Comparison of a single GAN model trained with positive
inversion loss, without inversion loss, and with negative inversion loss using a classifier pre-trained on the
CIFAR-100 dataset. (b) Comparison of the number of GANs using positive inversion loss. (c) Comparison
of ten models utilizing different loss configurations.
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A.5 POTENTIAL ERRORS IN COMPARATIVE EXPERIMENTS

In the interest of transparency, we must disclose some potential issues encountered during the comparative
experiments. We referred to the open-source codebases of FedLF (Lu et al., 2024) and DFRD (Luo et al.,
2023) for reproduction and comparison, but significant discrepancies were observed. Our experiments were
primarily based on the DFRD framework, which includes FedAvg, FedFTG, DENSE, and DFRD itself.
Initially, we directly used their provided code for testing; however, the latter three algorithms (FedFTG,
DENSE, and DFRD) demonstrated issues on the CIFAR-10 and CIFAR-100 datasets, where the global
model’s accuracy remained consistently low and failed to converge. Subsequently, we referred to the source
code of each method and conducted our own reproduction, which resulted in improved but still varied per-
formance.

For the FedLF codebase, we utilized only FedRS, LocalLoss, and FedLF methods, but observed some in-
accuracies and instability. Specifically, the results obtained by applying the Dirichlet-based partitioning
method from DFRD to FedLF’s open-source code yielded exceptionally strong outcomes, far surpassing
the baseline FedAvg. To further investigate the issue, we attempted to reproduce the algorithms within the
DFRD framework, and the results were found to be slightly inferior compared to those obtained from the
FedLF implementation.

To ensure fairness and respect, we have chosen to present the results obtained using FedLF’s open-source
code along with our data partitioning method. It is important to note that while there was a substantial
performance gap between the methods when ω = 1 and ω = 0.1, the results were consistent in highlighting
data heterogeneity issues when ω = 0.01. Due to time constraints, we have not yet fully integrated both
codebases, but we aim to provide a more thorough and scientifically rigorous comparison in future open-
source releases.

A.6 ADDITIONAL ANALYSIS ON HYPERPARAMETER IMPACT

In this subsection, we provide further analysis and discussions on the impact of the key hyperparameters
introduced in the main text. Building upon the DeGAN framework, we include the adversarial loss Ladv, en-
tropy loss Lentropy, and diversity loss Ldiversity, with the additional inversion loss Linv incorporated to handle
the challenges posed by non-IID data distributions. Our experiments reveal a certain degree of homogeneity
between the inversion and diversity losses. The integration of global model features facilitates the GAN’s
ability to generate diverse distributions. However, when the model is exposed to a dataset containing only a
single class, the diversity loss fails to assist the generator in synthesizing high-confidence images from other
classes, while the inversion loss can partially mitigate this limitation. It is important to highlight that the
inversion loss interferes with the discriminator T , affecting its confidence in generated samples. Although
the generator continues to produce images that exhibit favorable knowledge distillation effects, with most
generated samples closely approximating the local data, the discriminator assigns these samples an excep-
tionally low confidence score, interpreting them as significantly different from the real data. Consequently,
in scenarios where only a subset of active clients participate in the federated learning process, the inversion
loss aids the GAN group in capturing global information, enabling the generation of richer and more diverse
samples. However, when the majority of clients are involved in the training process, the GAN group already
possesses a broad range of sample knowledge, reducing the effectiveness of the inversion loss, which may
even hinder the synthesis of high-quality samples. Another comparison arises when the inversion loss is
set to a negative value, meaning that the generated images are more deviated from the global features and
may lean toward specific categories in the local dataset. Additionally, this approach introduces a level of
antagonism with the diversity loss. GAN training becomes highly unstable under these conditions, as global
features still encompass characteristics of the local data, and in the worst-case scenario, the generated images
tend to resemble noise. However, in some of our experiments, the GAN trained with a negative inversion
loss outperformed the one trained without inversion loss, particularly for clients that rarely participate in
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the training process. We test the negative inversion loss by utilizing a CIFAR-100 classifier on the CIFAR-
10 dataset, achieving promising results with a small number of GANs. However, when using a CIFAR-10
classifier on the CIFAR-100 dataset, the results are not as significant.

Figure 4: This figure shows an example of the comparison between positive and negative inversion loss and
the absence of inversion loss during the GAN training process.

We also conducted experiments with varying numbers of GAN models and different values of the inversion
loss hyperparameter, λinv. Our findings indicate that excessively high or low values of λinv negatively impact
performance, diminishing the quality of both the discriminator and the generator, ultimately affecting the
efficacy of knowledge distillation.

A.7 LIMITATIONS AND SHORTCOMINGS OF OUR METHOD

The foremost limitation of our method is the substantial communication overhead it generates, as well as the
high storage requirements for the clients. This is evident in several aspects: in terms of communication, both
the GANs and the local models are uploaded to the server, and during the meta-training phase, an ensemble
of models is distributed to clients for multiple rounds of communication. This results in a considerable
communication burden, which may not be feasible in practical applications. While this is still manageable
for the CIFAR-10 dataset, the ensemble for CIFAR-100 becomes too large. To mitigate this, we distribute a
subset of the ensemble models for weight updates in each round, rather than all 100 models at once, thereby
reducing the communication load across more rounds. However, this also means that the typical federated
learning training process will be paused for an extended period during these rounds.

In terms of storage, we assume that the server has unlimited storage capacity, but for clients, it is challenging
to store large-scale models and provide sufficient memory for training. This presents a significant limita-
tion of our method in practical applications. Our approach essentially trades off space and time for better
performance, which is a key aspect of our design philosophy.

Another shortcoming of our method lies in the DeGAN framework. We have not conducted in-depth research
on this data synthesis technique and have borrowed methods from other works, which may not be fully suited
to our use case. In both DeGAN and traditional data-free knowledge distillation methods, the teacher model
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typically has very high accuracy. For instance, 95% of the teacher models have excellent features, enabling
the training of student models with up to 80% accuracy on the CIFAR datasets. However, when the accuracy
of the teacher model drops to around 60%-80%, the effectiveness of knowledge distillation is significantly
reduced. Our 60% model ensemble can only distill student models with around 40% accuracy, and the 80%
model ensemble can only distill student models with approximately 60% accuracy, which represents a major
loss in efficiency.

If we had access to a public dataset, the accuracy of the student model post-distillation could even surpass
that of the model ensemble. We conducted some preliminary experiments on the CIFAR-10 dataset to test
this hypothesis.
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