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摘要

摘要

近年来，机器学习在多个领域取得了重要突破，但在实际应用中也面临着严重的

可信性问题，如模型的透明性、鲁棒性和安全性等方面，这些问题可能导致模型在部

署时产生不可靠、误导性甚至有害的结果。例如，深度神经网络的复杂性使其决策机

制难以被直观理解，而对抗样本和越狱攻击则可能使机器学习模型产生不准确或有害

的输出。

针对以上问题，本论文从数据分布的视角出发，为解决这些问题提供了新的思路。

与现有关注优化算法或模型设计的可信机器学习研究不同，本论文探索了数据分布在

理解与防御机器学习模型方面的潜力，这在模型规模不断增大的背景下有望突破传统

方法面临的可扩展性等瓶颈。通过对特定数据分布特征的分析与利用，本论文为多种

机器学习模型在机制解释、鲁棒泛化和安全对齐等方面提出了相应的理论与算法。

论文的第一部分提出了可扩展的序列模型抽象提取与解释技术。该框架受到模型

处理自然语言分布动态特征的启发，尽管已有工作致力于从循环神经网络等序列机器

学习模型中提取有限自动机以用于解释和分析，但现有方法在可扩展性或准确性方面

存在局限性。本文中提出的提取与解释框架指出并解决了自然语言任务中自动机提取

的迁移稀疏性和上下文丢失问题。该框架采用启发式方法补全状态转移图中缺失的规

则，并调整转移矩阵以增强自动机的上下文感知能力，同时利用两种数据增强策略进

一步提高提取精度。基于提取结果，本框架还提出了循环神经网络的机制解释方法，包

括一种基于转移矩阵嵌入的词嵌入方法用于面向特定任务的循环神经网络机制解释。

实验表明，所提出的方法不仅在提取精度上优于现有方法，且基于转移矩阵嵌入的解

释方法能够有效用于模型预训练和对抗样本生成等可信应用场景。

论文的第二部分提出了分类校准的公平对抗训练算法。该算法基于对类别对抗数

据分布的分析，能够同时提升模型的整体鲁棒性和最差类别鲁棒性。虽然对抗训练已

被广泛认为是提高深度神经网络提高对抗鲁棒性的有效方法，但大多数现有工作主要

关注提升模型的整体鲁棒性，忽略了最差类别鲁棒性对模型安全性带来的潜在隐患。

本部分从理论和实证两方面研究了不同类别对训练中对抗配置的偏好，包括扰动幅度、

正则化和权重平均等。基于这些研究，我们进一步提出了分类校准的公平对抗训练算

法，能够自动为每个类别定制特定的训练配置，从而有效提升整体鲁棒性和类间公平

性。

论文的第三部分提出了基于上下文数据分布的大语言模型对抗攻防算法。尽管大

语言模型在各种应用中取得了显著成功，但仍然面临越狱攻击的威胁，存在输出有害
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内容等隐患。针对这一问题，受大语言模型独特的上下文学习能力启发，本文探索了

其在控制大语言模型安全对齐方面的潜力。在此视角下，本文提出了上下文攻击，通

过有害示例破坏大语言模型的安全机制，以及上下文防御，通过展示拒绝产生有害回

应的例子增强其安全鲁棒性。本文进一步提供理论见解，解释为何少量的对抗性上下

文示例能够高效地控制模型安全对齐能力。实验表明，本文提出的上下文攻防算法在

多个模型和数据集上具有有效性与可扩展性，为红队测试与实际部署中的安全防护提

供了有效解决方案。这部分工作揭示了上下文学习在大语言模型安全中重要但尚未得

到充分关注的作用，为理解和提升大语言模型安全开辟了新的范式。

总体而言，本论文从数据分布的视角探索了可信机器学习的研究，为机器学习模

型的可解释性、鲁棒性和安全性提供了新的理论与算法。

关键词：可信机器学习，数据分布，机制解释，对抗鲁棒性，安全对齐
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ABSTRACT

Data Distribution Insights into Trustworthy Machine Learning

Zeming Wei (Data Science and Big Data Technology)
Directed by Prof. Meng Sun

ABSTRACT

In recent years, machine learning (ML) has made milestone advancements across a vari-
ety of applications. However, it also faces significant trustworthiness issues that raise concerns
about its practical implementation in real-world scenarios. These issues include perspectives
like transparency, robustness, and safety, which can result in unreliable, misleading, or harm-
ful outcomes in their deployment. For example, the complex nature of deep neural networks
(DNNs) makes their decisions difficult to interpret. Additionally, adversarial examples and
jailbreaking attacks can lead ML models to produce inaccurate or toxic outcomes.

This thesis aims to provide new insights into these research problems from the data dis-
tribution perspective. Complementary to existing trustworthy ML research that emphasizes
optimization or model design, this thesis explores the potential of data distribution for un-
derstanding and defending ML models, which has notable potential as model sizes grow and
traditional methods may encounter scalability bottlenecks. By analyzing and utilizing charac-
teristics of specific data distributions, this thesis proposes theories and algorithms motivated
by them for mechanism interpretation, robust generalization, and alignment inspection across
different types of ML models.

The first part of this thesis proposes a scalable abstract model extraction and explanation
framework inspired by model dynamic characteristics in processing natural language distribu-
tions. While many efforts have been made to extract finite automata from stateful ML models
like Recurrent Neural Networks (RNNs) for explanation and analysis, existing approaches have
limitations in either scalability or precision. In this part, the proposed framework of Weighted
Finite Automata (WFA) extraction and explanation tackles the limitations for natural language
tasks. First, to address the transition sparsity and context loss problems this thesis identified
in WFA extraction for natural language tasks, this part proposes an empirical method to com-
plement missing rules in the transition diagram, and adjust transition matrices to enhance the
context-awareness of the WFA. This part also proposes two data augmentation tactics to track
more dynamic RNN behaviors, which further allows us to improve the extraction precision.
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Based on the extracted model, this part proposes an explanation method for RNNs, includ-
ing a word embedding method named Transition Matrix Embeddings (TME) and TME-based
task-oriented explanation for the target RNN. Our evaluation demonstrates the advantage of
our method in extraction precision over existing approaches, and the effectiveness of the TME-
based explanation method in applications to pretraining and adversarial example generation.

The second part of this thesis proposes an adversarial training algorithm for enhancing
both overall and worst-class robustness, motivated by observations in analyzing class-wise ad-
versarial data distributions. Though adversarial training has been widely acknowledged as the
most effective method to improve the adversarial robustness against adversarial examples for
DNNs, most existing works focus on enhancing the overall model robustness, treating each
class equally during both the training and testing phases. However, there are few efforts aimed
at ensuring fairness in adversarial training at the class level without compromising overall ro-
bustness. This part theoretically and empirically investigates the preference of different classes
for adversarial configurations, including perturbation margin, regularization, and weight aver-
aging. Motivated by these studies, this part further proposes a Class-wise calibrated Fair Ad-
versarial training framework, named CFA, which customizes specific training configurations
for each class automatically. Experiments on benchmark datasets demonstrate that our pro-
posed CFA can improve both overall robustness and fairness notably over other state-of-the-art
methods.

The third part of this thesis explores the safety of Large LanguageModels (LLMs) from an
in-context data distribution perspective. LLMs have demonstrated remarkable success across
diverse applications, yet their susceptibility to malicious exploitation remains a critical chal-
lenge. In this thesis, motivated by the unique effectiveness and scalability of In-Context Learn-
ing (ICL) in LLMs, this part explores its potential to modulate the safety alignment of LLMs.
Specifically, this part proposes the In-Context Attack (ICA), which employs harmful demon-
strations to subvert LLMs’ safety, and the In-Context Defense (ICD), which bolsters their re-
silience through examples that demonstrate refusal to produce harmful responses. By adjusting
the distribution of safety in LLM outputs through adversarial demonstrations, our proposed
in-context attack and defense facilitate effective manipulation of their alignment. This part
first provides theoretical insights to illustrate how minimal in-context demonstrations can ef-
ficiently alter safety alignment. Empirically, this part validates ICA and ICD across multiple
models, datasets, and attack baselines, showing their efficacy and scalability for red-teaming
evaluations and robust safeguards for real-world deployment. Overall, our work unveils the
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pivotal yet understudied role of ICL in LLM safety, opening new avenues for understanding
and improving it.

Overall, this thesis explores trustworthy ML research from data distribution perspectives,
contributing novel insights into the interpretability, robustness, and safety of ML models.

KEY WORDS: Trustworthy Machine Learning, Data Distribution, Mechanism Interpretation,
Adversarial Robustness, Safe Alignment
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CHAPTER 1 INTRODUCTION

Chapter 1 Introduction

Machine Learning (ML) has made tremendous progress across various applications, such
as image classification [42], semantic segmentation [41], and chat completion [87]. Despite
these achievements, ML models face significant trustworthiness challenges, raising serious
concerns about their practical use in the real world [69, 5, 130]. Generally, ML models can be
classified into two categories: discriminative models and generative models. Discriminative
models analyze input data to predict specific labels, such as those used in classification or im-
age segmentation tasks. In contrast, generative models create content, such as text or images,
based on user prompts. Both types of models rely on Deep Neural Networks (DNNs), which
inherit a black-box nature that makes their decision-making processes difficult to understand.
This lack of transparency raises concerns about their reliability, especially in safety-critical
applications. Additionally, discriminative models are particularly vulnerable to adversarial ex-
amples [110, 39], where slight modifications to input data can lead to incorrect predictions.
On the other hand, generative models pose risks of producing harmful or inappropriate con-
tent [106, 129], given their powerful generation capabilities. So far, most threads of research
aimed at improving the trustworthiness of ML have focused on model-centric approaches, such
as the design of robust modules or optimization algorithms. In this thesis, we take a different
approach by examining the issue primarily from the perspective of data distribution, aiming to
contribute new insights to the existing literature on trustworthy ML.

1.1 Motivation and Challenges

Along with the fast development of ML models, a broad series of trustworthy ML models
and algorithms has been designed. For example, abstract models extraction techniques can
provide interpretations for DNNs, while adversarial training has been acknowledged as one of
the most effective approaches for improving their robustness. Unlike many existing works that
explore model or optimization design, the foundational role of data distributions in trustwor-
thy ML problems is relatively underexplored. This thesis aims to probe how to leverage data
distributions to improve various trustworthy perspectives of ML models. The main challenges
we focused on can be outlined as:

• For mechanism interpretability of stateful DNNs, model-based explanation methods
are hard to scale up to large-scale data distributions like natural languages.
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• For adversarial robustness of discriminative models, existing adversarial training meth-
ods mostly take different classes equally, yet overlook the unique function of class-wise
distribution-specific characteristics.

• For safe alignment of generative models, existing evaluation or protection paradigms
based on optimization or heuristic designs fail to leverage the safety properties of lan-
guage distributions, making them inefficient or unscalable.

1.1.1 Scalable Abstract Model Extraction

Stateful ML models like recurrent neural networks (RNNs) have achieved great success
in sequential data processing, e.g., time series forecasting [19], text classification [123], and
language translation [30]. However, the complex internal design and gate control of RNNs
make the interpretation and analysis of their behaviors rather challenging.

Recently, much progress has been made to abstract RNN as a finite automaton with ex-
plicit states and transition matrices to characterize the behaviors of RNN in processing se-
quential data. Up to the present, a series of extraction approaches leverage explicit learning
algorithms (e.g., 𝐿∗ algorithm [3]) to extract a surrogate model of RNN. Such an exact learning
procedure has achieved great success in capturing the state dynamics of RNNs when process-
ing formal languages [131, 132, 83]. However, the computational complexity of the exact
learning algorithm limits its scalability to construct abstract models from RNNs for natural
language tasks. Another technical line for automata extraction from RNNs is the composi-
tional approach, which uses unsupervised learning algorithms to obtain discrete partitions of
RNNs’ state vectors and construct the transition diagram based on the concrete state dynam-
ics of RNNs [122, 121, 37, 34, 36, 140], yet fall short in extraction precision. A precise and
scalable extraction approach for RNNs in the context of natural language tasks is needed.

Regarding model-based explanation, current extraction methods are limited to utilizing
finite automata as a global interpretablemodel with explicit states and transition rules for RNNs.
The information extracted from the transition diagram of automata is not fully exploited in
understanding RNN behaviors for natural language tasks. In particular, given that the alphabet
size of natural language datasets is quite large, the extracted rules in the transition matrix are
difficult to grasp and interpret. Amore comprehensible explanation method that can effectively
exploit the extracted information to assist in understanding RNN behaviors in scalable natural
language distributions remains underexplored.
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1.1.2 Fair Class-wise Adversarial Robustness

The vulnerability of DNNs against adversarial examples [110, 39] has caused serious
concerns about their application in safety-critical scenarios [21, 73]. DNNs can be easily fooled
by adding small, even imperceptible perturbations to the natural examples. To address this
issue, numerous defense approaches have been proposed [91, 29, 138, 8, 82], among which
Adversarial Training (AT) [75, 127] has been demonstrated as the most effective method to
improve the model robustness against such attacks [6, 135].

Although AT and its variants have achieved certain robustness, there still exists a stark
difference among class-wise robustness in adversarially trained models, i.e., the model may
exhibit strong robustness on some classes while it can be highly vulnerable on others, as firstly
revealed in [143, 111, 12]. This disparity raises the issue of robustness fairness, which can lead
to further safety concerns of DNNs, as the models that exhibit good overall robustness may be
easily fooled on some specific classes, e.g., the stop sign in automatic driving. To address
this issue, Fair Robust Learning (FRL) [143] has been proposed, which adjusts the margin
and weight among classes when fairness constraints are violated. However, this approach only
brings limited improvement on robust fairness while causing a drop in overall robustness. A
critical challenge in this regard is how to effectively leverage the characteristics of class-wise
adversarial data distributions for improving robust generalization and fairness.

1.1.3 Large Language Model Safety

Large Language Models (LLMs) have achieved remarkable success across various tasks.
However, their widespread use has raised serious safety concerns [5, 146, 20, 38], particu-
larly regarding their potential for generating harmful content (e.g., toxic, unethical, or illegal
content). To mitigate these concerns, extensive efforts have been made to align these lan-
guage models and prevent harmful outputs during the training [88, 9, 58] and fine-tuning
phases [109, 28, 157]. These aligned language models are expected to properly refuse to an-
swer harmful requests (e.g., how to make a bomb). Despite these efforts, recent works show
that even aligned LLMs are still vulnerable to adversarial attacks, typically called the jailbreak
issue of LLMs [129, 97, 47, 2]. By crafting adversarial prompts, attackers may successfully
bypass the safeguard of LLMs and induce them to generate unethical outputs.

Upon discovery and formulation of jailbreaking attacks [106, 71, 164], recent studies
have established a preliminary research convention of jailbreaking attacks and defenses. Exist-
ing jailbreaking attacks can be generally categorized into two types: optimization-based and
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template-based. Optimization-based attacks iteratively refine a harmful prompt with query or
gradient heuristics to elicit the LLMs to generate harmful content [164, 70, 18, 77], yet often
face the efficiency bottleneck. Template-based attacks manually design persuasive instructions
and attach them to harmful prompts [129, 65, 149], but their derived jailbreak prompts lack flex-
ibility. From the defense side, preliminary techniques are also proposed against jailbreaking,
like pre-processing-based filtering [1, 15] and detection [95, 51] methods. Similar to the attack
scenario, safety prompt templates for defenses like Self-reminder [141] are designed. However,
current attack and defense techniques often encounter a scalability issue, as their prompts can-
not be extended to achieve greater capabilities. For instance, template-based attacks can only
create fixed jailbreaking prompts, making it difficult to enhance them for increased effective-
ness. Such bottlenecks of existing methods call for a more efficient and scalable paradigm of
evaluation and defense for LLM safety.

1.2 Contributions

Scalable automata extraction for natural language distribution. In this part, we pro-
pose a general framework of Weighted Finite Automata (WFA) extraction and explanation for
RNNs to tackle the above challenges. To address the challenge of scalable extraction, we pro-
pose a complete pipeline to extract more precise automata for RNNs in the context of natural
language distributions. We identify two problems that cause precision deficiency in natural
language distributions: (1) transition sparsity: the transition dynamics are usually sparse in
natural language tasks, due to the large alphabet size and the dependency on a finite set of (se-
quential) data in the extraction procedure. (2) context loss: the tracking of long-term context
of RNNs (e.g., LSTM networks [44]) is inevitably compromised due to the abstraction. To
deal with the transition sparsity problem, we propose a method to fill in the missing transition
rules based on the semantics of abstract states. We also propose two tactics to augment the
data samples, enabling the learning of more transition behaviors of RNNs, which further alle-
viates the transition sparsity problem. To enhance the context awareness of WFAs, we adjust
the transition matrices to preserve partial context information from the previous states.

To address the challenge of effective explanation, we utilize the extracted WFAs to inter-
pret the behaviors of RNNs. Motivated by the observation that the transition matrices of the ex-
tractedWFAs capture the behavior of the source RNNs, we propose a word embedding method
– Transition Matrix Embeddings (TME) to construct task-oriented explanations for the target
RNNs. Further, by leveraging the information captured in TME, we propose a global explana-
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tion method for word attribution to RNNs’ decisions and a contrastive method to investigate the
difference between task-oriented TME and pretrained word embeddings (e.g., Glove [93]). We
validate the effectiveness of the contrastive explanation with applications to pretraining boost
and adversarial example generation. The main contributions in this part can be summarized as
follows:

• We propose a complete WFA extraction algorithm from RNNs specialized for natural
language distributions.

• Experiments on benchmark datasets demonstrate that the proposed heuristic methods
effectively improve the extraction precision by alleviating the transition sparsity and
context loss problems.

• We propose a novel word embedding – Transition Matrix Embeddings (TME), based
on which a global explanation method for word attribution and a contrastive approach
for task-oriented explanation of RNNs are proposed.

Class-wise calibrated fair adversarial training. In this part, we first present some the-
oretical insights on how different adversarial configurations impact class-wise robustness, and
reveal that strong attacks can be detrimental to the hard classes (classes that have lower clean
accuracy). This finding is further empirically confirmed through evaluations of models trained
under various adversarial configurations. Additionally, we observe that the worst robustness
among classes fluctuates significantly between different epochs during the training process. It
indicates that simply selecting the checkpoint with the best overall robustness like the previ-
ous method [103] may result in poor robust fairness, i.e., the worst class robustness may be
extremely low.

Inspired by these observations, we propose to dynamically customize different training
configurations for each class, based on their adversarial data distributions. Note that unlike
existing instance-wise customized methods that aim to enhance overall robustness [33, 10,
128, 24, 152], we also focus on the fairness of class-wise robustness. Furthermore, we modify
the weight averaging technique to address the fluctuation issue during the training process.
Overall, we name the proposed framework as Class-wise calibrated Fair Adversarial training
(CFA). The main contributions in this part can be summarized as follows:

• We show both theoretically and empirically that different classes require appropriate
training configurations. In addition, we reveal the fluctuating effect of the worst class
robustness during adversarial training, which indicates that selecting the model with
the best overall robustness may result in poor robust fairness.

5



Data Distribution Insights into Trustworthy Machine Learning

• We propose a novel approach called Class-wise calibrated Fair Adversarial training
(CFA), which dynamically customizes adversarial configurations for different classes
during the training phase, and modifies the weight averaging technique to improve and
stabilize the worst class’s robustness.

• Experiments on benchmark datasets demonstrate that our CFA outperforms state-of-
the-art methods in terms of both overall robustness and fairness, and can also be easily
incorporated into other adversarial training approaches to further improve their perfor-
mance.

Harnessing in-context learning for LLM safety. In this part, motivated by the unique ef-
fectiveness and scalability of In-Context Learning (ICL) [13, 35] in eliciting LLM capabilities,
we explore how in-context data distributions can be utilized within the realm of jailbreaking.
ICL is an intriguing property of LLMs that by prompting a few input-output pairs demon-
strating a new task, LLMs can quickly adapt to the new task and give correct answers to new
test examples without modifying any model parameters. Utilizing this property, we explore a
new paradigm of adversarial attack and defense on LLMs, called In-Context Attack (ICA)
and In-Context Defense (ICD). Specifically, ICA incorporates demonstrations sampled from
harmful data distributions that positively respond to malicious requests to the prompt. In turn,
ICD utilizes a similar notion to defend LLMs with demonstrations sampled from safe data dis-
tributions, which teach the LLM to resist jailbreaking by adding a few examples of refusing
harmful queries.

Notably, unlike conventional demonstrations used in ICL for a particular task, our harm-
ful and safe demonstrations (collectively called adversarial demonstrations) are crafted to
manipulate the general safety of LLMs, which means the task of the demonstrations may be
irrelevant to the query task. For instance, harmful demonstrations of ICA on hacking into a
secure network could successfully deceive the LLM into creating tutorials on bomb-making,
which is unrelated to the demonstration. This intriguing property reveals that the safety distri-
bution in LLM outputs can be easily manipulated by a few adversarial demonstrations of ICA
and ICD. To intuitively understand this underlying mechanism, we build a theoretical frame-
work to interpret the effectiveness of these adversarial demonstrations, where we illustrate how
they can manipulate the safety of the LLM by inducing the generation distribution bias toward
the target language distribution (harmful or safe).

We also present extensive experiments across various models, datasets, and attack base-
lines to demonstrate the effectiveness and potential of ICA and ICD as practical red-teaming
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and safeguarding techniques. For instance, ICA achieved 81% Attack Success Rate (ASR) on
jailbreaking GPT-4 [87] evaluated by the AdvBench dataset [164], and ICD can reduce the
ASR of Llama-2 [112] against transferable GCG attack from 21% to 0% while maintaining the
natural performance of LLMs. These remarkable results demonstrate the power of adversarial
demonstrations, which suggests that aligned LLMs still have great flexibility to be revoked for
certain beneficial or harmful behaviors using a few in-context demonstrations. Finally, wewrap
up our evaluation by assessing the robustness of ICA and ICD in relation to their demonstration
selection, highlighting the universality of adversarial demonstrations, and further exploring the
interaction between ICA and ICD. In summary, our research reveals the essential role of in-
context data distributions in modulating the safety of LLMs, paving the way for new evaluation
and defense paradigms of LLM safety. The main contributions in this part can be summarized
as follows:

• We explore the power of in-context learning in manipulating the safety of LLMs and
propose In-Context Attack (ICA) and Defense (ICD) with adversarial demonstrations
for jailbreaking and safeguarding purposes.

• Theoretically, we build a simplified framework to analyze how a few adversarial demon-
strations can manipulate the safety of LLMs, offering insights into the effectiveness of
ICA and ICD.

• Empirically, we show the effectiveness and practicality of ICA and ICD in terms of
attacking and defending LLMs through comprehensive experiments, shedding light on
the potential of adversarial demonstrations for advancing the safety and security of
LLMs.

1.3 Thesis Outline
This thesis is outlined in the following structure. Chapter 2 presents the preliminaries

about ML models and algorithms related to this thesis, followed by related work on model-
based analysis, adversarial robustness, and LLM jailbreaking issues. Chapter 3 presents the
weighted finite automata extraction and explanation framework designed for natural language
distributions. In Chapter 4, we present a class-wise adversarial data calibrated AT algorithm
for robust generalization. In Chapter 5, we present harnessing in-context data distributions for
evaluating and safeguarding LLMs. Chapter 6 concludes the thesis and highlights potential
future research directions.
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Chapter 2 Preliminaries and Backgrounds

In this chapter, we present the preliminaries and related works of this thesis.

2.1 Preliminaries

We start with introducing backgrounds on ML models, from DNNs to RNNs and LLMs.
Then we present the stateful abstract model, WFA, which was applied to our extraction frame-
work. Lastly, we introduce backgrounds on adversarial robustness of DNNs and the in-context
learning paradigm of LLMs.

2.1.1 Machine Learning Models

2.1.1.1 Deep Neural Networks (DNNs)

DNNs have revolutionizedML by demonstrating hierarchical feature learning capabilities
surpassing traditional shallow architectures. Generally, a DNN comprisesmultiple hierarchical
transformation layers that learn feature representations through nonlinear function composition,
which are called Multilayer Perceptron (MLP) modules.

Multilayer Perceptron (MLP) Modules. An MLP model contains 𝐿 + 1 perception
layers, where the network depth 𝐿 corresponds to the number of hidden layers. Taking fully
connected layers as example, for an input vector in the 𝑙-th layer, x ∈ R𝑑in , the activation h(𝑙)

at layer 𝑙 is computed as:
h(𝑙) = 𝜙

(
W(𝑙)h(𝑙−1) + b(𝑙)

)
(2.1)

where W(𝑙) ∈ R𝑑𝑙×𝑑𝑙−1 denotes the weight matrix, b(𝑙) ∈ R𝑑𝑙 the bias vector, and 𝜙(·) an
element-wise activation function (e.g., ReLU: 𝜙(𝑧) = max(0, 𝑧)). During inference, the input
data x is processed by the first layer, whose output h(1) becomes the input vector of the next
layer. Finally, the output of the last layer h(𝐿) gives the output of the model.

Parameter Optimizations. To learn the parameters of the DNNs, backpropagation ef-
ficiently computes gradients through automatic differentiation and the chain rule. Denote all
learnable parameters in the DNN as 𝜃, e.g. {W(𝑙) , b(𝑙)}𝐿𝑙=1 in the example above. These param-
eters can be optimized via empirical risk minimization (ERM):

min
𝜃

E(x,𝑦)∼D [L( 𝑓 (x; 𝜃), 𝑦)] (2.2)
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where L(·) represents the task-specific loss function (e.g., cross-entropy for classification).
Then, with the gradient descent algorithms, the parameters can be updated using a learning
rate 𝜂 > 0:

𝜃𝑡+1 = 𝜃𝑡 − 𝜂∇𝜃L(𝜃𝑡), (2.3)

where 𝜃𝑡 denotes the parameters in step 𝑡 during optimization.

2.1.1.2 Recurrent Neural Networks (RNNs)

This section presents the notations and definitions for RNN abstraction and explanation.
Given a finite alphabet Σ, we use Σ∗ to denote the set of sequences over Σ and 𝜀 to denote the
empty sequence. For 𝑤 ∈ Σ∗, we use |𝑤 | to denote its length, its 𝑖-th word as 𝑤𝑖, and its prefix
with length 𝑖 as 𝑤[: 𝑖]. For 𝑥 ∈ Σ, 𝑤 · 𝑥 represents the concatenation of 𝑤 and 𝑥.

Definition 1 (RNN) A Recurrent Neural Network (RNN) for natural languages is a tuple R =

(X,S,O, 𝑓 , 𝑝), whereX is the input space; S is the internal state space; O is the probabilistic
output space; 𝑓 : S ×X → S is the transition function; 𝑝 : S → O is the prediction function.

RNN Configuration. Our abstraction framework considers RNN a black-box model and
focuses on its stepwise probabilistic output for each input sequence. The following configura-
tion definition characterizes the probabilistic outputs in response to a sequential input fed to
the RNN. Given an alphabet Σ, let 𝜉 : Σ → X be the function that maps each word in Σ to
its embedding vector in X. We define 𝑓 ∗ : S × Σ∗ → S recursively as 𝑓 ∗(𝑠0, 𝜉 (𝑤 · 𝑥)) =
𝑓 ( 𝑓 ∗(𝑠0, 𝜉 (𝑤)), 𝜉 (𝑥)) and 𝑓 ∗(𝑠0, 𝜀) = 𝑠0, where 𝑠0 is the initial state of R. The RNN configu-
ration 𝛿 : Σ∗ → O is defined as 𝛿(𝑤) = 𝑝( 𝑓 ∗(𝑠0, 𝑤)).

Output Trace. To record the stepwise behavior of RNN when processing an input se-
quence 𝑤, we define the Output Trace of 𝑤, i.e., the probabilistic output sequence, as 𝑇 (𝑤) =
{𝛿(𝑤[: 𝑖])} |𝑤 |𝑖=1. The 𝑖-th item of 𝑇 (𝑤) indicates the probabilistic output given by R after taking
the prefix of 𝑤 with length 𝑖 as input.

2.1.1.3 Large Language Models (LLMs)

Building upon attention mechanisms [116], LLMs have achieved milestone success in
modern ML research. We briefly formulate their principles below.

Transformer Architecture. The transformer architecture [116] introduced a paradigm
shift in sequence modeling through self-attention mechanisms. Given an input sequence rep-
resented as token embeddings X ∈ R𝑛×𝑑, where 𝑛 denotes the sequence length (number of
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tokens) and 𝑑 specifies the embedding dimension, the scaled dot-product attention computes
contextualized representations through learned linear projections.

The attention mechanism first transforms the input embeddings into three distinct com-
ponents: queries Q = XW𝑄, keys K = XW𝐾 , and values V = XW𝑉 . Here, W𝑄 ∈ R𝑑×𝑑𝑘

and W𝐾 ∈ R𝑑×𝑑𝑘 are trainable projection matrices that map the input embeddings into a 𝑑𝑘-
dimensional key-query space, whileW𝑉 ∈ R𝑑×𝑑𝑣 projects the embeddings into a 𝑑𝑣-dimensional
value space. The attention scores are computed through the matrix product QK> ∈ R𝑛×𝑛,
whose elements (QK>)𝑖 𝑗 represent the compatibility between the 𝑖-th query and 𝑗-th key.
These weights are then multiplied with the value matrix V to produce the final attention output
Attention(Q,K,V) ∈ R𝑛×𝑑𝑣 , where each row corresponds to a contextualized token representa-
tion aggregating information from all positions through the learned attention patterns. Overall,
the transformer block in DNNs can be formulated as:

Attention(Q,K,V) = softmax
(
QK>
√
𝑑𝑘

)
V. (2.4)

Pre-training Paradigms. Modern LLMs employ self-supervised pre-training objectives
over web-scale corpora C. For example, the masked language modeling (MLM) [32] objective
reconstructs randomly masked tokens:

LMLM = −Ex∼C
∑
𝑚∈M

log 𝑃(𝑥𝑚 |x\M), (2.5)

where M denotes the masked token positions. By contrast, the causal language modeling
(CLM) [99] objective maximizes:

LCLM = −Ex∼C

𝑇∑
𝑡=1

log 𝑃(𝑥𝑡 |x<𝑡). (2.6)

Post-training Pipelines. After pre-training, LLMs often take post-training strategies be-
fore deployment. These post-training pipelines may include Supervised Fine-Tuning (SFT),
which is domain adaptation on curated datasets DSFT = {(x𝑖, y∗𝑖 )}𝑁𝑖=1:

LSFT = −
|y∗ |∑
𝑡=1

log 𝑃(𝑦∗𝑡 |x, y∗<𝑡) (2.7)

where y∗ represents expert demonstrations. This phase typically uses a very small amount of
pretraining compute while improving instruction-following capabilities. Besides, Reinforce-
ment Learning from Human Feedback (RLHF) improves human alignment with human prefer-
ence reward modeling. In this phase, human preferences are encoded through reward models
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trained on pairwise comparisons, and the final policy of RLHF is optimized using algorithms
like proximal policy optimization (PPO) [105].

2.1.2 Stateful Abstract Models

In this part, we elaborate on the preliminaries for the WFA used in our extraction scheme.

Definition 2 (WFA) Given a finite alphabet Σ, a Weighted Finite Automaton (WFA) over Σ is
a tuple A = (𝑆, Σ, 𝐸, 𝑠0, 𝐼, 𝐹), where 𝑆 is the finite set of abstract states; 𝐸 = {𝐸𝜎 |𝜎 ∈ Σ} is
the set of transition matrix 𝐸𝜎 with size |𝑆 | × |𝑆 | for each token 𝜎 ∈ Σ; 𝑠0 ∈ 𝑆 is the initial
state; 𝐼 is the initial vector, a row vector with size |𝑆 |; 𝐹 is the final vector, a column vector
with size |𝑆 |.

Abstract States. Given a RNN R and a datasetD, let Ô denote all stepwise probabilistic
outputs given by executing R on D, i.e. Ô =

⋃
𝑤∈D

𝑇 (𝑤). The abstraction function 𝜆 : Ô → 𝑆

maps each probabilistic output to an abstract state 𝑠 ∈ 𝑆. As a result, the output set is divided
into a number of abstract states by 𝜆. For each 𝑠 ∈ 𝑆, the state 𝑠 has explicit semantics that the
probabilistic outputs corresponding to 𝑠 has a similar distribution. In this paper, we leverage
the k-means algorithm to construct the abstraction function. We cluster all probabilistic outputs
in Ô into some abstract states. In this way, we construct the set of abstract states 𝑆 with these
discrete clusters and an initial state 𝑠0.

For a state 𝑠 ∈ 𝑆, we define the center of 𝑠 as the average value of the probabilistic outputs
𝑜 ∈ Ô which are mapped to 𝑠. More formally, the center of 𝑠 is defined as follows:

𝜌(𝑠) = Avg
𝜆(�̂�)=𝑠

{𝑜}. (2.8)

The center 𝜌(𝑠) represents an approximation of the distribution tendency of probabilistic out-
puts 𝑜 in 𝑠. We then use the center 𝜌(𝑠) as its weight for each state 𝑠 ∈ 𝑆. The final vector 𝐹
is thus formulated as (𝜌(𝑠0), 𝜌(𝑠1), · · · , 𝜌(𝑠 |�̂� |−1))𝑡 .

Abstract Transitions. In order to capture the dynamic behavior of RNN R, we define
the abstract transition as a triple (𝑠, 𝜎, 𝑠′) where the original state 𝑠 is the abstract state cor-
responding to a specific output 𝑦, i.e. 𝑠 = 𝜆(𝑦); 𝜎 is the next word of the input sequence to
consume; 𝑠′ is the destination state 𝜆(𝑦′) after R reads 𝜎 and outputs 𝑦′. We use T to denote
the set of all abstract transitions tracked from the execution of R on training samples.

Abstract Transition Count Matrices. For each word 𝜎 ∈ Σ, the abstract transition
count matrix of 𝜎 is a matrix 𝑇𝜎 with size |𝑆 | × |𝑆 |. The count matrices record the number
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of times that each abstract transition is triggered. Given the set of abstract transitions T , the
count matrix of 𝜎 can be calculated as

𝑇𝜎 [𝑖, 𝑗] = T .𝑐𝑜𝑢𝑛𝑡 ((𝑠𝑖, 𝜎, 𝑠 𝑗)), 1 ≤ 𝑖, 𝑗 ≤ |𝑆 |. (2.9)

As for the remaining components, the alphabet Σ is consistent with the alphabet of the
training set D. The initial vector 𝐼 is formulated according to the initial state 𝑠0. For an input
sequence 𝑤 = 𝑤1𝑤2 · · ·𝑤𝑛 ∈ Σ∗, the WFA will calculate its weight following

𝐼 · 𝐸𝑤1 · 𝐸𝑤2 · · · 𝐸𝑤𝑛
· 𝐹. (2.10)

2.1.3 Adversarial Robustness

We offer brief formulations for adversarial examples and AT is in this section.

Adversarial Examples. DNNs are known to be vulnerable to adversarial examples [39,
110], which can be generally formulated as:

max
‖𝑥′−𝑥 ‖≤ 𝜖

L(𝜽; 𝑥′, 𝑦), (2.11)

where 𝜖 is the margin of perturbation, 𝑥 is the original input example, 𝑥′ is the adversarial
example that fools the DNN (represented by parameter 𝜽) into misprediction, and L is the loss
function, e.g. the cross-entropy loss. Generally, Projected Gradient Descent (PGD) attack [75]
has shown satisfactory effectiveness to find adversarial examples in the perturbation bound
B(𝑥, 𝜖) = {𝑥′ : ‖𝑥′ − 𝑥‖ ≤ 𝜖}, which is commonly used in solving the maximization problem:

𝑥𝑡+1 = ΠB(𝑥,𝜖 ) (𝑥𝑡 + 𝛼 · sign(∇𝑥𝑡L(𝜽; 𝑥𝑡 , 𝑦))), (2.12)

where Π is the projection function and 𝛼 controls the step size of gradient ascent.

Adversarial Training (AT). To defend against such attacks and robustify DNNs, AT has
been acknowledged as one of the most reliable paradigms [6, 16]. AT can be formulated as the
following min-max optimization problem:

min
𝜽

E(𝑥,𝑦)∼D max
‖𝑥′−𝑥 ‖≤ 𝜖

L(𝜽; 𝑥′, 𝑦), (2.13)

where D is the data distribution. TRADES [151] is another variant of AT, which adds a regu-
larization term to adjust the trade-off between robustness and accuracy [113, 119]:

min
𝜽

E(𝑥,𝑦)∼D {L(𝜽; 𝑥, 𝑦) + 𝛽 max
‖𝑥′−𝑥 ‖≤ 𝜖

K( 𝑓𝜽 (𝑥), 𝑓𝜽 (𝑥′))}, (2.14)

whereK(·) is the KL divergence and 𝛽 is the robustness regularization to adjust the robustness-
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accuracy trade-off.

2.1.4 In-context Learning

In-Context Learning (ICL) [13, 35] is an intriguing property that emerges in LLMs in
which they learn a specific task demonstrated by a few input-label pair examples. Formally,
considering a mapping 𝑓 : X → Y in this task and given a demonstration set

𝐶 = {(𝑥1, 𝑦1), · · · , (𝑥𝑘 , 𝑦𝑘) | 𝑓 (𝑥𝑖) = 𝑦𝑖} (2.15)

where 𝑥𝑖 are query inputs and 𝑦𝑖 are their corresponding labels in this task, a model can learn
this mapping and successfully predict the label 𝑦new = 𝑓 (𝒙new) of a new input query 𝒙new by
prompting [𝑥1, 𝑦1, · · · , 𝑥𝑘 , 𝑦𝑘 , 𝒙new] as a concatenation of the demonstrations𝐶 and input query
𝒙new.

This mysterious property of LLMs has attracted much research attention on understand-
ing [139, 81, 27, 23] and improving [158, 124, 80, 142] ICL. However, unlike existing works
that mainly focus on leveraging ICL to improve the performance of a specific task (e.g., classi-
fication), our work focuses on manipulating the safety level of LLMs, which can be regarded as
a more general generation property. Therefore, our work collects demonstrations from broad
types of tasks that are not necessarily aligned with the query 𝒙new, but at a specific safety level.
Moreover, our proposed in-context attack and defense only require simple input-output pairs
from the target safety distribution that do not require additional format editions, which is also
different from general ICL application that often requires meticulous design of demonstration
formats.

2.2 Related Work

2.2.1 Model-based Interpretation and Analysis

Many research efforts have been made to understand the behaviors of RNNs with an ex-
tracted model. We discuss the extraction methods and their applications respectively in the
following.

2.2.1.1 Model Extraction of RNNs

As reviewed in [50], the extraction approach of RNNs can be divided into two categories:
pedagogical approaches and compositional approaches.
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Pedagogical Approaches. Many research works consider using pedagogical approaches
to abstract RNNs by leveraging explicit learning algorithms, such as the 𝐿∗ algorithm [3]. Ear-
lier works date back to two decades ago, when Omlin et al. attempted to extract a finite model
for Boolean-output RNNs [86, 84, 85]. Recently, Weiss et al. [131] proposed an approach to
extracting DFA from RNN-acceptors based on 𝐿∗ algorithm. Later, they presented a weighted
extension of 𝐿∗ algorithm that extracted probabilistic determininstic finite automata (PDFA)
from RNNs [132]. Okudono et al. [83] proposed a weighted extension of 𝐿∗ algorithm to ex-
tract WFA for real-value-output RNNs. Overall, pedagogical approaches have achieved great
success in abstracting RNNs for small-scale languages, particularly formal languages. Such ex-
act learning approaches have intrinsic limitation in scalability w.r.t. the language complexity,
thus are not suitable for automata extraction for natural language models.

Compositional Approach. Another technical line for automata extraction from RNNs is
the compositional approach, which leverages unsupervised algorithms (e.g. k-means, GMM) to
cluster state vectors as abstract states [150, 17]. Wang et al. [122] studied the key factors in the
compositional approach that influence the reliability of the extraction process, and proposed an
empirical rule to extract DFA fromRNNs. Later, Zhang et al. [155] followed the state encoding
of compositional approach and proposed a WFA extraction approach from RNNs, which can
be applied to both grammatical languages and natural languages. In this paper, the proposed
WFA extraction approach from RNNs also falls into the line of compositional approach, but
aims at proposing transition rule extraction method to address the transition sparsity problem
and enhance the context-aware ability, which is customized for natural language tasks.

2.2.1.2 Model-based RNN Analysis and Explanation

There are a series of works focusing on deriving the extracted models for further applica-
tions, where the abstract models are more amenable to analysis and explanation.

Model-based Analysis. Model extraction techniques have been widely used to aid the
analysis of RNNs, since the extracted models can be regarded as an approximation of the target
RNNs, on which are easier to operate and perform analysis. [37] is a representative work for
model-based RNN analysis, which leverages the extractedmodel to detect adversarial examples
and increase test coverage of the target RNNs. Later, [36] proposed a model-based approach
for robustness analysis of RNNs. Xie et al. [140] proposed to leverage the extracted model to
identify buggy behaviors and further for automatic repairment of RNNs. In this paper, based on
the extractedWFA, we proposed a new embedding method TME, which provides a new insight
on RNN analysis for natural language tasks. With the proposed contrastive pairs derived by
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TME, we can analyze task-oriented semantics of the target RNNs, which further can be applied
to boost pretraining and adversarial example generation for RNNs.

Model-based Explanation. There are also several works devoted to explaining the mech-
anism of RNNs with the aid of surrogate models. Krakovna et al. [59] presented an interpreta-
tion method for RNNs by using hidden markov models (HMMs) to simulate the source RNNs.
Hou et al. [45] proposed an approach to interpreting the effect of gates on the mechanism of
RNNs by using the extracted finite state automata. Jiang et al. [55] proposed a hybrid model
FA-RNNs, which is trainable, generalizable as well as interpretable. There are also works oper-
ating directly on the structure of RNNs. Guo et al. [40] proposed an interpretable LSTM neural
network equippedwith tensorized hidden states, which could learn variable-specific representa-
tions. In this work, by leveraging the extractedWFA, we proposed a global explanationmethod,
which computes the word-wise influence score on RNN decisions, and a contrastive explana-
tion method, where the identified collaborative and adversarial repairs effectively characterize
the task-oriented semantics learned by the target RNN.

2.2.2 Adversarial Training

This section discusses the perspectives of AT related to our work, including two key con-
cepts: class-wise adversarial robustness and adaptive AT.

2.2.2.1 Class-wise Adversarial Robustness

This metric focuses on the adversarial robustness of the DNNmodel exhibited on different
classes, particularly on the worst class. Since adversaries may create examples specifically
from one class, a difference between the worst-class robustness and overall robustness could
provide a false sense of confidence in model safety when evaluating only the overall robustness.
However, DNNs under AT consistently exhibit significant disparity of class-wise robustness,
which was first revealed and discussed concurrently in [143] and [12]. For example, a model
on the CIFAR-10 dataset [60] can achieve 5̃0% average robust accuracy after AT, but its worst-
class robustness may be lower than 20%. Tomitigate this issue, FRL [143] is the first algorithm
towards addressing this issue by enlarging the class-wise margin and weight, but it decreases
the overall robustness significantly. Later, Tian et al. [111] analyzed the class-wise robustness
systematically and showed that the robust fairness issue also exists in various datasets. Ma
et al. [74] and Hu et al. [46] theoretically study the trade-offs between overall robustness and
worst-class robustness through linear functions. Besides these, the unfairness issue in AT has
not been well explored and solved yet.
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2.2.2.2 Adaptive AT

To enhance the overall robustness of adversarial training, a series of adaptive AT methods
were proposed [14, 33, 10, 128, 24, 127, 153]. These methods dynamically adjust the train
configurations, e.g., maximizing perturbation margin [33], adjusting loss function [128], and
early-stopping on attack iteration [152], typically based on customization based on instance-
wise analysis. Though achieving improvement over vanilla AT, the instance-wise methods
only focus on improving overall robustness, yet overlook robust fairness. Moreover, how to
leverage class-wise data distributions for adaptive AT, which may calibrate the training con-
figurations more holistically than instance-wise data adjustment, has also not been explored in
this literature.

2.2.3 Jailbreaking Attack and Defense

As for the LLM safe alignment, we present jailbreaking attacks and defenses, as well as
in-context perspectives on alignment that are related to this thesis, in the following.

2.2.3.1 Jailbreaking Attack on LLMs

Despite techniques like Reinforcement Learning from Human Feedback (RLHF) [88, 9,
58, 109] are dedicated to aligning the value of LLMs with humans and teaching them not to
generate any harmful content [94, 52, 28], recent studies show that LLMs are still vulnera-
ble against jailbreaking attacks [71, 106, 129], where carefully crafted jailbreak prompts can
bypass the safeguard of LLMs and trick them generate the requested harmful content. One
popular thread of attacks attempts to manually design jailbreaking templates that attach a per-
suasive instruction to the harmful prompt, like DAN (do anything now) [106], prefix injection
(start with ”sure, here’s”) [129] and DeepInception [65] that construct a fictitious scene to
modify the personification ability of LLMs.

Another line of research extends these manually designed templates by optimizing an ad-
versarial substring in the jailbreak prompt with heuristics derived from gradients or queries.
Gradient-heuristic attacks like GCG attack [108, 164] which attach a suffix to the harmful
request and then optimize it with gradient heuristics, but often require the white-box access
to the victim model and also face the bottleneck of optimization efficiency [160, 156]. Be-
sides, Query-heuristic attacks derive jailbreak prompts by collecting responses from the model
with existing prompts and then refining the jailbreak prompt with them. For example, Auto-
DAN [70] and GA [63] utilize genetic algorithms to refine the prompt, while PAIR [18] and
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TAP [77] use another red-teaming LLM to achieve this.

In addition to these template- and optimization-based attacks, other attack paradigms like
cipher encoding [148, 102, 56], low-resource languages [31, 147], and training generative mod-
els for jailbreaking prompts [67, 92, 11, 62] are also explored. Nevertheless, current jailbreak-
ing techniques encounter a shared limitation: their capabilities are often static and hard to scale
up.

2.2.3.2 Defending LLMs against Jailbreaking

In response to these jailbreaking attacks, several preliminary defense techniques are de-
signed. Notably, unlike conventional neural networks where Adversarial Training (AT) [75]
is one of the most effective defenses against adversarial attacks [16], the huge amount of
parameters and data of LLMs makes it impractical and ineffective to direct conduct AT on
them [51, 136, 107]. Therefore, current defense methods are typically designed during the
inference of LLMs, including pre-processing, inference, and post-processing stages.

Pre-processing methods detect or purify the potential harmful prompts before generation,
like perplexity filter [1], harmful string detection [61, 15], retokenization [51], and prompt
smoothing [22, 104]. These methods are easy to plug into the model but may cause unaf-
fordable false positives [115]. Inference-based defenses incorporate safe instruction into the
prompt [141] or modify decoding logic [66, 145]. Post-processing monitors the output [48]
or hidden spaces of LLMs [154, 161]. Notably, the evaluations of most defenses except safe
prompts are generally not adaptive [22], which undermines the reliability of their evaluation.
Besides, many existing defenses face the bottleneck of over-refusal [89] and computational
overhead [145] issues, limiting their practicality for real-world applications.

2.2.3.3 In-Context Perspectives for LLM Alignment

The mysterious ICL ability of LLMs has inspired researchers to investigate diverse as-
pects of LLM alignment from in-context perspectives. For example, URIAL [68] improves
the alignment of LLMs by in-context token distribution shift, and CaC [125] studies the self-
correction ability of LLMs through in-context alignment. Another research position considers
attacking LLMs with ICL, like injecting backdoor triggers [159, 137] or undermining classifi-
cation robustness [120, 101, 98] with malicious in-context demonstrations.

In addition to these different perspectives of LLM alignment, this work places a primary
focus on the safety of LLMs with a particular view on jailbreaking. Concurrent with our work,
a few ICL-based jailbreak attacks were also proposed, like long-context window scaling [4] or
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incorporating system tokens and random search [90]. Unlike those focusing on tricks of ICL
prompt design, our work investigates the fundamental problem of manipulating the safety of
LLMs with naive adversarial demonstrations, from both attack and defense perspectives.
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Chapter 3 Scalable Automata Extraction and Explanation

This chapter proposes a scalable automata extraction and explanation framework designed
for natural language distributions, which is organized as follows. In Section 3.1, we present
our automata extraction approach, including an overview of the automata extraction procedure,
the transition rule complement method for transition sparsity, the transition rule adjustment
method for context-awareness enhancement, and the data augmentation tactics. In Section
3.2, we present the experimental evaluation of the extraction consistency of our approach on
two natural language tasks. We introduce the transition matrix embedding-based explanation
framework for RNNs in Section 3.3, and also discuss our extraction algorithm, including com-
putational complexity analysis and applicability to other RNNs, at the end of this Section.
Finally, we summarize this chapter in Section 3.4.

3.1 Weighted Automata Extraction Scheme

3.1.1 Overview

We present the workflow of our extraction procedure in Figure 3.1. As the first step, we
generate an augmented sample set D from the original training set D0 to enrich the transition
dynamics of RNN behaviors and alleviate the transition sparsity. Then, we execute RNN R
on the augmented sample set D, and record the probabilistic output trace 𝑇 (𝑤) of each input
sentence 𝑤 ∈ D. With the output set �̂� =

⋃
𝑤∈D

𝑇 (𝑤), we cluster the probabilistic outputs into

abstract states 𝑆, and generate abstract transitions T from the output traces {𝑇 (𝑤) |𝑤 ∈ D}.
All transitions constitute the abstract transition count matrices 𝑇𝜎 for all 𝜎 ∈ Σ.

Next, we construct the transitionmatrices 𝐸 = {𝐸𝜎 |𝜎 ∈ Σ}. Based on the abstract states 𝑆
and count matrices 𝑇 , we construct the transition matrix 𝐸𝜎 for each word 𝜎 ∈ Σ. Specifically,
we use frequencies to calculate the transition probabilities. Suppose that there are 𝑛 abstract
states in 𝑆. The 𝑖-th row of 𝐸𝜎, which indicates the probabilistic transition distribution over
states when R is in state 𝑠𝑖 and consumes 𝜎, is calculated as

𝐸𝜎 [𝑖, 𝑗] =
𝑇𝜎 [𝑖, 𝑗]
𝑛∑
𝑘=1
𝑇𝜎 [𝑖, 𝑘]

. (3.1)

This empirical rule faces the problem that the denominator of (3.1) could be zero, which means
that the word 𝜎 never appears when the RNN R is in abstract state 𝑠𝑖. In this case, one should
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Figure 3.1 An illustration of our approach to extracting WFA from RNN.

decide how to fill in the transition rule of the missing rows in 𝐸𝜎. In Section 3.1.2, we present
a novel approach for transition rule complement. Further, to preserve more contextual infor-
mation, we propose an approach to enhancing the context-awareness of WFA by adjusting the
transition matrices, which is presented in Section 3.1.3.

3.1.2 Missing Rows Complement

Existing approaches for transition rule extraction usually face the problem of transition
sparsity, i.e., missing rows in the transition diagram. In the context of formal languages, the
probability of the occurrence of missing rows is quite low, since the size of the alphabet is
small and each token in the alphabet can appear sufficient times. However, in the context of
natural language processing, the occurrence of missing rows is quite frequent. The following
proposition gives an approximation of the occurrence frequency of missing rows.

Proposition 1 Assume an alphabet Σ with 𝑚 = |Σ | words, a natural language datasetD over
Σ which has 𝑁 words in total, a RNN R trained onD, the extracted abstract states 𝑆 and transi-
tions T . Let 𝜎𝑖 denote the 𝑖-th most frequent word occurred inD and 𝑡𝑖 = T .𝑐𝑜𝑢𝑛𝑡 ((∗, 𝜎𝑖, ∗))
indicates the occurrence times of 𝜎𝑖 in D. The median of {𝑡𝑖 |1 ≤ 𝑖 ≤ 𝑚} can be estimated as

𝑡 [ 𝑚2 ] =
2𝑁

𝑚 · ln𝑚 . (3.2)

Proof. The Zipf’s law [96] shows that

𝑡𝑖
𝑁
≈ 𝑖−1

𝑚∑
𝑘=1
𝑘−1

. (3.3)
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Note that
𝑚∑
𝑘=1
𝑘−1 ≈ ln𝑚 and take 𝑖 to be 𝑚

2 , we complete our proof.

Example 1 In the QC news dataset [64], which has 𝑚 = 20317 words in its alphabet and
𝑁 = 205927 words in total, the median of {𝑡𝑖} is approximated to 2𝑁

𝑚·ln𝑚 ≈ 2. This indicates
that about half of 𝐸𝜎 are constructed with no more than 2 transitions. In practice, the number
of abstract states is usually far more than the transition numbers of these words, making most
rows of their transition matrices missing rows.

Filling themissing rowwith ®0 is a simple solution, since no informationwas provided from
the transitions. However, as estimated above, this solution will lead to the problem of transition
sparsity, i.e., the transition matrices for uncommon words are nearly null. Consequently, if the
input sequence includes some uncommon words, the weights over states tend to vanish. We
refer to this solution as null filling.

Another simple idea is to use the uniform distribution over states for fairness. In [132],
the uniform distribution is used as the transition distribution for unseen tokens in the context of
formal language tasks. However, for natural language processing, this solution still loses infor-
mation about the current word, despite the fact that it avoids the weight vanishing over states.
We refer to this solution as uniform filling. Besides, [155] uses the synonym transition distri-
bution for an unseen token at a certain state. However, it increases the computation overhead
when performing inference on test data, since it requires calculating and sorting the distance
between the available tokens at a certain state and the unseen token.

To this end, we propose a novel approach to constructing the transition matrices based
on two empirical observations. First, each abstract state 𝑠 ∈ 𝑆 has explicit semantics, i.e.,
the probabilistic distribution over labels, and similar abstract states tend to share more similar
transition behaviors. The semantic distance between abstract states is defined as follows.

Definition 3 (State Distance) For two abstract states 𝑠1 and 𝑠2, the distance between 𝑠1 and
𝑠2 is defined by the Euclidean distance between their center:

𝑑𝑖𝑠𝑡 (𝑠1, 𝑠2) = ‖𝜌(𝑠1) − 𝜌(𝑠2)‖2.

We calculate the distance between each pair of abstract states, which forms a distance
matrix 𝑀 where each element

𝑀 [𝑖, 𝑗] = 𝑑𝑖𝑠𝑡 (𝑠𝑖, 𝑠 𝑗), 1 ≤ 𝑖, 𝑗 ≤ |𝑆 |. (3.4)

For amissing row in 𝐸𝜎, following the heuristics that similar abstract states aremore likely
to have similar behaviors, we observe the transition behaviors from other abstract states, and
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simulate the missing transition behaviors weighted by the distance between states. Particularly,
in order to avoid numerical underflow, we leverage softmin on distance to bias the weight to
states that share more similarity. Formally, for a missing row 𝐸𝜎 [𝑖], the weight of information
set for another row 𝐸𝜎 [ 𝑗] is defined by 𝑒−𝑀 [𝑖, 𝑗 ] .

Second, it is also observed that sometimes the RNN just remains in the current state after
reading a certain word. Intuitively, this is because some words in the sentence do not deliver
significant information in the task. Therefore, we consider simulating behaviors from other
states whilst remaining in the current state with a certain probability.

In order to balance the trade-off between referring to behaviors from other states and
remaining still, we introduce a hyper-parameter 𝛽 named reference rate, such that when WFA
is faced with a missing row, it has a probability of 𝛽 to refer to the transition behaviors from
other states, and in themeanwhile has a probability of 1−𝛽 to keep still. We select the parameter
𝛽 according to the proportion of self-transitions, i.e., transitions (𝑠, 𝜎, 𝑠′) in T where 𝑠 = 𝑠′.

To sum up, the complete transition rule for the missing row is

𝐸𝜎 [𝑖, 𝑗] = 𝛽 ·

𝑛∑
𝑘=1
𝑒−𝑀 [𝑖,𝑘 ] · 𝑇𝜎 [𝑘, 𝑗]

𝑛∑
𝑙=1

𝑛∑
𝑘=1
𝑒−𝑀 [𝑖,𝑘 ] · 𝑇𝜎 [𝑘, 𝑙]

+ (1 − 𝛽) · 𝛿𝑖, 𝑗 . (3.5)

Here 𝛿𝑖, 𝑗 is the Kronecker symbol:

𝛿𝑖, 𝑗 =


1, 𝑗 = 𝑖

0, 𝑗 ≠ 𝑖
. (3.6)

In practice, we can calculate
𝑛∑
𝑘=1
𝑒−𝑀 [𝑖,𝑘 ] · 𝑇𝜎 [𝑘, 𝑗] for each 𝑗 and then make division on their

summation once and for all, which can reduce the computation overhead on transition rule
extraction.

3.1.3 Context-Awareness Enhancement

For NLP tasks, the memorization of long-term context information is crucial. One of the
advantages of RNN and its advanced designs, like LSTM networks, is the ability to capture
long-term dependency. We expect the extracted WFA to simulate the step-wise behaviors of
RNNs whilst keeping track of context information along with the state transition. To this end,
we propose an approach to adjusting the transition matrix such that the WFA can remain in the
current state with a certain probability.

Specifically, we select a hyper-parameter 𝛼 ∈ [0, 1] as the static probability. For each
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word 𝜎 ∈ Σ and its transition matrix 𝐸𝜎, we replace the matrix with the context-awareness
enhanced matrix �̂�𝜎 as follows:

�̂�𝜎 = 𝛼 · 𝐼𝑛 + (1 − 𝛼) · 𝐸𝜎 (3.7)

where 𝐼𝑛 is the identity matrix.

The context-awareness enhanced matrix has explicit semantics. When theWFA is in state
𝑠𝑖 and ready to process a new word 𝜎, it has a probability of 𝛼 (the static probability) to remain
in 𝑠𝑖, or follows the original transition distribution 𝐸𝜎 [𝑖, 𝑗] with a probability 1 − 𝛼.

Here we present an illustration of how context-awareness enhanced matrices deliver long-
term context information through the proposition below. Suppose that a context-awareness
enhanced WFA A is processing a sentence 𝑤 ∈ Σ∗ with length |𝑤 |. We denote 𝑑𝑖 as the
distribution over all abstract states afterA reads the prefix 𝑤[: 𝑖], and particularly 𝑑0 = 𝐼 is the
initial vector ofA. We use 𝑍𝑖 to denote the decision made byA based on 𝑑𝑖−1 and the original
transition matrix 𝐸𝑤𝑖

. Formally, 𝑑𝑖 = 𝑑𝑖−1 · �̂�𝑤𝑖
and 𝑍𝑖 = 𝑑𝑖−1 · 𝐸𝑤𝑖

. The 𝑑𝑖 can be regarded as
the information obtained from the prefix 𝑤[: 𝑖] by A before it consumes 𝑤𝑖+1, and 𝑍𝑖 can be
considered as the decision made by A after it reads 𝑤𝑖.

Proposition 2 The 𝑖-th step-wise information 𝑑𝑖 delivered by processing 𝑤[: 𝑖] contains the
decision information 𝑍 𝑗 of prefix 𝑤[: 𝑗] with a proportion of (1 − 𝛼) · 𝛼𝑖− 𝑗 , 1 ≤ 𝑗 ≤ 𝑖.

Proof. Since �̂�𝑤𝑖
= 𝛼 · 𝐼𝑛 + (1 − 𝛼) · 𝐸𝑤𝑖

, we can calculate that

𝑑𝑖 = 𝑑𝑖−1 · �̂�𝑤𝑖
= 𝑑𝑖−1 · [𝛼 · 𝐼𝑛 + (1 − 𝛼) · 𝐸𝑤𝑖

] = 𝛼 · 𝑑𝑖−1 + (1 − 𝛼) · 𝑍𝑖 . (3.8)

Using (3.8) recursively, we have

𝑑𝑖 = (1 − 𝛼)
𝑖∑
𝑘=1

𝛼𝑖−𝑘 · 𝑍𝑘 + 𝛼𝑖 · 𝐼 .

This analysis shows the information delivered by 𝑤[: 𝑖] refers to the decision made byA
on each prefix included in 𝑤[: 𝑖], and the portion vanishes exponentially. The effectiveness of
the context-awareness enhancement method for transition matrix adjustment will be discussed
in Section 3.2.

A concrete example of the pipeline. The following example presents the complete ap-
proach for transition rule extraction, i.e., to generate the transition matrix �̂�𝜎 with the missing
row filled in and context enhanced, from the count matrix 𝑇𝜎 for a word 𝜎 ∈ Σ.
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Example 2 Assume that there are three abstract states in 𝑆 = {𝑠1, 𝑠2, 𝑠3}. Suppose the count
matrix for 𝜎 is 𝑇𝜎.

𝑇𝜎 =


1 3 0

1 1 0

0 0 0

 , 𝐸𝜎 =


0.25 0.75 0

0.5 0.5 0

0.15 0.35 0.5

 , �̂�𝜎 =


0.4 0.6 0

0.4 0.6 0

0.12 0.28 0.6

 . (3.9)

For the first two rows (states), there exist transitions for 𝜎. Thus, we can calculate the transition
distribution of these two rows in 𝐸𝜎 in the usual way. However, the third row is a missing row.
We set the reference rate as 𝛽 = 0.5, and suppose that the distance between states satisfies
𝑒−𝑀 [1,3] = 2𝑒−𝑀 [2,3] , generally indicating the distance between 𝑠1 and 𝑠3 is nearer than 𝑠2 and
𝑠3. With the transitions from 𝑠1 and 𝑠2, we can complement the transition rule of the third
row in 𝐸𝜎 through (3.5). The result shows that the behavior from 𝑠3 is more similar to 𝑠1

than 𝑠2, due to the smaller distance. Finally, we construct �̂�𝜎 with 𝐸𝜎. Here we set the static
probability 𝛼 = 0.2, thus �̂�𝜎 = 0.2 · 𝐼3 + 0.8 · 𝐸𝜎. The result shows that the WFA with �̂�𝜎 has
a higher probability of remaining in the current state after consuming 𝜎, which can preserve
more information from the prefix before 𝜎.

3.1.4 Data Augmentation

Our proposed approach for transition rule extraction provides a solution to the transition
sparsity problem. Still, we hope to learn more dynamic transition behaviors from the target
RNN, especially for the words with relatively low frequency, to characterize their transition
dynamics sufficiently based on the finite data samples. Different from formal languages, we
can generate more natural language samples automatically, as long as the augmented sequential
data are reasonable with clear semantics and compatible with the original learning task. Based
on the augmented samples, we are able to track more behaviors of the RNN and build the
abstract model with higher precision. In this section, we introduce two data augmentation
tactics for natural language processing tasks: Synonym Replacement and Dropout.

Synonym Replacement. Based on the distance quantization among the word embedding
vectors, we can obtain a list of synonyms for each word in Σ. For a word 𝜎 ∈ Σ, the synonyms
of 𝑤 are defined as the top-𝑘 most similar words of 𝜎 in Σ, where 𝑘 is a hyper-parameter and we
set 𝑘 to 5 by default based on an empirical observation that top-5 similar words are sufficiently
reasonable to keep the semantics. The similarity among the words is calculated based on the
Euclidean distance between the word embedding vectors over Σ.

Given a dataset D0 over Σ, for each sentence 𝑤 ∈ D0, we generate a new sentence 𝑤′
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by replacing some words in 𝑤 with their synonyms. Specifically, each word is replaced by a
randomly selected synonym in its top-𝑘 synonyms with probability 𝑝𝑟 (0.4 by default).

Dropout. Inspired by the regularization technique dropout, we also propose a similar
tactic to generate new sentences from D0. Initially, we introduce a new word named unknown
word and denote it as 〈unk〉. For the sentence 𝑤 ∈ D0 that has been processed by synonym
replacing, we further replace the words that haven’t been replaced with 〈unk〉 with a certain
probability 𝑝𝑑 (0.2 by default). Finally, new sentences generated by both synonym replacement
and dropout form the augmented dataset D.

With the dropout tactic, we can observe the behaviors of RNNs when it processes an
unknown word �̂� ∉ Σ that hasn’t appeared in D0. Therefore, the extracted WFA can also
have better generalization ability. The complete pipeline of the data augmentation algorithm
is elaborated in Algorithm 11. Note that the 𝑟𝑎𝑛𝑑 () function samples from [0, 1] in a uniform
manner.

Algorithm 1: Data Augmentation for Transition Rule Extraction
Input: Original dataset D0, hyper-parameter 𝑘 = 5, 𝑝𝑟 = 0.4, 𝑝𝑑 = 0.2
Output: Augmented dataset D

1 Obtain the synonyms 𝜎1, 𝜎2, · · · , 𝜎𝑘 of each word 𝜎 ∈ 𝑤 in the vocabulary of D;
2 D ← {};
3 for each sentence 𝑤 ∈ D0 do
4 for each word 𝜎 ∈ 𝑤 do
5 if 𝑟𝑎𝑛𝑑 () < 𝑝𝑟 then
6 Replace 𝜎 with selected synonym from {𝜎1, 𝜎2, · · · , 𝜎𝑘};
7 else
8 if 𝑟𝑎𝑛𝑑 () < 𝑝𝑑 then
9 Replace 𝜎 with 〈unk〉;

10 Obtain a new sentence 𝑤′, and add 𝑤 to D;
11 return D;

We illustrate the above data augmentation algorithm using the following example to gen-
erate a new sentence 𝑤′ from D0.

Example 3 Consider a sentence 𝑤 from the original training set D0, 𝑤 =[‘I’, ‘really’, ‘like’,
‘this’, ‘movie’].

First, the word ‘like’ is chosen to be replaced by one of its synonyms, ‘appreciate’. Next,
the word ‘really’ is dropped from the sentence, i.e., replaced by the unknown word 〈unk〉.
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Finally, we get a new sentence 𝑤′ =[‘I’, ‘〈unk〉’, ‘appreciate’, ‘this’, ‘movie’] and put it into
the augmented dataset D. Since the word ‘appreciate’ may be an uncommon word in Σ, we
can capture new transition information provided by RNNs. We can also capture the behavior
of RNN when it reads an unknown word after the prefix [‘I’].

Note that the role of data augmentation in our extraction approach is different from that
used in the training phase of RNNs. While data augmentation used in the training phase aims
to improve the performance of RNNs, the goal of data augmentation in this work is to improve
the WFA extraction precision. To this end, we use data augmentation in the testing phase to
extract more transition dynamics to construct the abstract model.

3.2 Evaluation

In this section, we evaluate our extraction approach on two natural language datasets and
demonstrate its performance on precision and scalability.

3.2.1 Datasets and RNNs

We select two popular datasets for NLP tasks and train the target RNNs on them.

• The CogComp QC Dataset (abbrev. QC) [64] contains news titles which are labeled
with different topics. The dataset is divided into a training set containing 20k samples
and a test set containing 8k samples. Each sample is labeled with one of seven cate-
gories. We train an LSTM model R on the training set, which achieves an accuracy of
81% on the test set.

• The Jigsaw Toxic Comment Dataset (abbrev. Toxic) [57] contains comments from
Wikipedia’s talk page edits, with each comment labeled toxic or not. We select 25k
non-toxic samples and toxic samples respectively, and divide them into the training set
and test set in a ratio of four to one. We train an LSTM model which achieves 90%

accuracy on the test set.

Metrics. We use Consistency Rate (CR) and Jensen–Shannon Divergence (JSD) as our
evaluation metrics. For a sentence in the test set 𝑤 ∈ D𝑡𝑒𝑠𝑡 , we use R(𝑤) [𝑖] and A(𝑤) [𝑖] to
denote the prediction score on class 𝑖 of the RNNs and WFA, respectively. The Consistency
Ratemeasures the consistency of the output decision between the twomodels, which is formally
defined as

𝐶𝑅 =
|{𝑤 ∈ 𝐷𝑡𝑒𝑠𝑡 : arg max

𝑖
A(𝑤) [𝑖] = arg max

𝑖
R(𝑤) [𝑖]}|

|D𝑡𝑒𝑠𝑡 |
. (3.10)
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Table 3.1 Evaluation results of different filling approaches on missing rows.

Dataset QC Toxic
Metric CR(↑) JSD(↓) Time(s) CR(↑) JSD(↓) Time(s)

A0 0.26 0.25 47 0.57 0.09 167
A𝑈 0.60 0.21 56 0.86 0.06 180
A𝐸 0.80 0.10 70 0.91 0.02 200

The Jensen–Shannon Divergence [78] measures the distance of two probability distribu-
tions, i.e., the outputs of WFA and RNN, which is formally defined as

𝐽𝑆𝐷 =
1
2

∑
𝑖

(A(𝑤) [𝑖] log( 2A(𝑤) [𝑖]
A(𝑤) [𝑖] + R(𝑤) [𝑖] ) + R(𝑤) [𝑖] log( 2R(𝑤) [𝑖]

A(𝑤) [𝑖] + R(𝑤) [𝑖] )).

(3.11)
Note that the Consistency Rate measures the consistency of the classification decision between
the WFA and the RNN, while Jensen–Shannon Divergence evaluates the similarity of the out-
put probability distributions between the two models. These two metrics evaluate the consis-
tency between the abstract model and RNN to a different degree. In this chapter we mainly
focus on the consistency of predicted labels, hence we apply Consistency Rate as our major
measurement.

3.2.2 Missing Rows Complementing

As discussed in Section 3.1.2, we take two approaches as baselines, the null filling and
the uniform filling. The extracted WFA with these two approaches are denoted asA0 andA𝑈,
respectively. The WFA extracted by our empirical filling approach is denoted as A𝐸 .

Table 3.1 shows the evaluation results of three rule filling approaches. We conduct the
comparison experiments on QC and Toxic datasets and select the cluster number for state ab-
straction as 40 and 20 for the QC and Toxic datasets, respectively.

The three rows labeled with the type of WFA show the evaluation results of different
approaches. For theA0 based on null filling, the WFA returns the weight of most sentences in
D with ®0, which fails to provide sufficient information for prediction. For the QC dataset, only
a quarter of the sentences in the test set are classified correctly. The second row shows that the
performance ofA𝑈 is better thanA0. The last row presents the evaluation result ofA𝐸 , which
fills in the missing rows by our approach. In this experiment, the hyperparameter reference rate
is set as 𝛽 = 0.3. We can see that our empirical approach achieves significantly better accuracy,
which is 20% and 5% higher than uniform filling on the two datasets, respectively. As for JSD,

29



Data Distribution Insights into Trustworthy Machine Learning

Table 3.2 Evaluation results of with and without context-awareness enhancement.

Rule Config. QC Toxic
CR(↑) JSD(↓) Time(s) CR(↑) JSD(↓) Time(s)

A𝑈
None 0.60 0.21 56 0.86 0.06 180

Context 0.71 0.22 64 0.89 0.06 191

A𝐸
None 0.80 0.10 70 0.91 0.02 200

Context 0.82 0.13 78 0.92 0.03 211

we can see that our empirical approach also outperforms the baselines notably over both QC
and Toxic datasets.

The columns labeled Time show the execution time of the whole extraction workflow,
from tracking transitions to evaluation on test set, but not include the training time of RNNs.
We can see that the extraction overhead of our approach (A𝐸) is about the same as A𝑈 and
A0.

3.2.3 Context-Awareness Enhancement

In this experiment, we leverage the context-awareness enhanced matrices when construct-
ing the WFA. We adopt the same configuration on cluster numbers 𝑛 as the comparison exper-
iments above, i.e., 𝑛 = 40 and 𝑛 = 20. The experiment results are summarized in Table 3.2.
The columns titled Config. indicate if the extracted WFA leverages context-awareness matri-
ces. We also take the WFA with different filling approaches, the uniform filling and empirical
filling, into comparison. Experiments on null filling are omitted due to limited precision.

For the QC dataset, we set the static probability as 𝛼 = 0.4. The consistency rate of WFA
A𝑈 improves 11% with the context-awareness enhancement, and A𝐸 improves 2%. As for
the Toxic dataset, we take 𝛼 = 0.2 and the consistency rate of the two WFA improves 3% and
1% respectively. This shows that the WFA with context-awareness enhancement retains more
context information from the prefixes of sentences, making it simulate RNNs’ classification
decision better. However, the WFA equipped with context-awareness enhancement exhibits
larger JSD, which is caused by the fact that context-awareness enhancement reduces the transi-
tion magnitude, since larger 𝛼 leads to higher probability of remaining in the current state. This
reveals a trade-off between the abstraction precision evaluated by decision label consistency
and prediction score consistency.

Still, the context-awareness enhancement processing costs little time, since we only cal-
culate the adjusting formula (3.7) for each 𝐸𝜎 in 𝐸 . The additional extra time consumption is
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Rule Data QC Toxic
CR(↑) JSD(↓) Time(s) CR(↑) JSD(↓) Time(s)

A𝑈
D0 0.71 0.22 64 0.89 0.06 191
D 0.76 0.18 81 0.91 0.05 295

A𝐸
D0 0.82 0.13 78 0.92 0.03 211
D 0.84 0.12 85 0.94 0.02 315

Table 3.3 Evaluation results of with and without data augmentation.

8s for the QC dataset and 11s for the Toxic dataset.

3.2.4 Data Augmentation

Finally, we evaluate the WFA extracted with transition behaviors from augmented data.
Note that the two experiments above are based on the primitive datasetD0. In this experiment,
we leverage the data augmentation tactics to generate the augmented training setD, and extract
WFA with data samples from D. In order to get the best performance, we build WFA with
context-awareness-enhanced matrices.

Table 3.3 shows the results of the consistency rate of WFA extracted with and without
augmented data. The rows labeled D0 show the results of WFA that are extracted with the
primitive training set, and the result from the augmented data is shown in rows labeled D.
With more transition behaviors tracked, the WFA extracted with D demonstrates better pre-
cision. Specifically, the WFA extracted with both empirical filling and context-awareness en-
hancement achieves a further 2% increase in consistency rate on the two datasets. In addition,
the extractions with augmented data also exhibit better JSD.

To summarize, by using our transition rule extraction approach, the consistency rate of
extracted WFA on the QC dataset and the Toxic dataset achieves 84% and 94%, respectively.
Taking the primitive extraction algorithm with uniform filling as the baseline, whose experi-
mental results in terms of CR are 60% and 86%, our approach achieves an improvement of 22%

and 8% in consistency rate. Regarding the Jensen–Shannon Divergence, though the context-
awareness enhancement makes a little drop, our approach still outperforms the baseline meth-
ods significantly. Taking uniform filling for comparison, our overall approach improves the
JSD from 0.21 to 0.12 on QC dataset and 0.06 to 0.02 on Toxic dataset. For the time com-
plexity, the time consumption of our approach increases from 56𝑠 to 81𝑠 on QC dataset, and
from 180𝑠 to 315𝑠 on Toxic dataset. There is no significant time cost increase when adopting
our approach for complicated natural language tasks. We can conclude that our transition rule
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Figure 3.2 CR and JSD on the two datasets under different 𝛽.

extraction approach makes a better approximation of RNNs, and is also efficient enough to be
applied to practical applications for large-scale natural language tasks.

3.2.5 Parameter Effect Evaluation

In this section, we conduct experiments to evaluate the impact of the hyperparameter on
the validity of our extraction approach, including the reference rate 𝛽, static probability 𝛼, and
the number of clusters 𝐾 .

Reference rate 𝛽. We first evaluate the impact of the reference rate. To this end, we set
𝛽 to different values from {0.1, 0.3, 0.5, 0.7, 0.9}. Meanwhile, we set 𝛼 to a fixed value 0. The
results are shown in Figure 3.2, where we take the uniform filling as baseline (the dotted lines).
We observe that our filling method outperforms uniform filling for a large range of parameter
values (less than 0.7), under both CR and JSD metrics. A relatively small 𝛽 (e.g., less than 0.5)
leads to better extraction precision.

Static probability 𝛼. Similarly, we conduct an experiment to evaluate the impact of
different static probability values 𝛼 ∈ {0, 0.2, 0.4, 0.6, 0.8, 1.0} on the performance of our
approach. We set 𝛽 to 0.3 based on the above evaluation results. The results are illustrated in
Figure 3.3. Compared with the case of 𝛼 = 0 where we do not apply the context-awareness
enhancement, it leads to improvements on the CRs when setting 𝛼 to values from {0.2, 0.4}.
Meanwhile, as discussed before, context-awareness enhancement reduces the transition scale
of WFA, which leads to performance degradation in terms of JSD. This reveals a trade-off
between CR and JSD among different selections on 𝛼. Based on the results, we suggest setting
𝛼 to a small positive value (less than 0.4).

Cluster number𝐾 . Finally, we evaluate the impact of cluster number𝐾 ∈ {10, 20, 30, 40, 50}
on the performance of our approach. The results are shown in Figure 3.4, where our approach
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Figure 3.3 CR and JSD on the two datasets under different 𝛼.

is denoted by 𝐴𝐸 , and the uniform filling and null filling are denoted as 𝐴𝑈, 𝐴0 respectively.
We can see that our approach outperforms the baselines in all cases. Note that as 𝐾 increases
from 10 to 50, the performance of 𝐴𝑈 and 𝐴0 consistently decreases, which is caused by the
identified transition sparsity problem. The evaluation results demonstrate the robustness of our
method against the cluster number 𝐾 .

(a) CR on QC dataset (b) JSD on QC dataset

(c) CR on Toxic dataset (d) JSD on Toxic dataset

Figure 3.4 Overall comparison under different 𝐾.
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3.3 Weighted Automata-based Explanation of RNNs

In this section, we propose a novel explanation framework of RNNs for natural language
tasks based on the extracted WFA, as illustrated in Figure 3.5. In the explanation framework,
we consider using the transition matrix 1 𝐸𝜎 for each word 𝜎 as its word embedding, named as
Transition Matrix Embeddings (TME). In the following, we first introduce TME and explain
its difference from traditional pretrained word embeddings. Next, we present a global expla-
nation and contrastive explanation method based on TME to interpret the behaviors of RNNs,
including two perspectives:

1. Global explanation, wherewe use TME to calculate theword-wise attribution of RNN’s
decisions,

2. Contrastive explanation, where we compare TME with the conventional word embed-
ding method to analyze the task-oriented word semantics learned by RNNs.

We also reveal two intriguing properties of RNNs identified by the contrastivemethod, and
validate the effectiveness of the proposed embedding and explanation framework for RNNs by
applying it to pretraining and adversarial example generation.

3.3.1 Transition Matrix as Word Embeddings

Suppose the extracted WFA A from RNN R has 𝑛 = |𝑆 | words. For each word 𝜎 and
its corresponding transition matrix 𝐸𝜎 ∈ R𝑛×𝑛 in A, recall that the (𝑖, 𝑗)-th element of 𝐸𝜎
represents the transition probability of A from 𝑠𝑖 to 𝑠 𝑗 after reading word 𝜎, which is an
approximation of the transition probability of R between these two states. Therefore, if two
words share similar transition matrices, they trigger similar behaviors of RNN R, and hence
represent similar semantics from the RNN R’s perspective for the current task.

This observation motivates us to use the transition matrices to craft word embeddings. In
order to obtain the task-oriented embedding vector, we flatten the transition matrix 𝐸𝜎 ∈ R𝑛×𝑛

into a vector 𝒆𝜎 of 𝑁 = 𝑛2 dimensions:

𝒆𝜎 [ 𝑗 + 𝑛 · (𝑖 − 1)] = 𝐸𝜎 [𝑖, 𝑗], for 1 ≤ 𝑖, 𝑗 ≤ 𝑛, (3.12)

which we refer to as Transition Matrix Embeddings (TME).

Note that TMEs are fundamentally different from the traditional pretrained word embed-
dings,e.g., Word2vec [79], Gloves [93]. The TME characterize transition behaviors of RNNs
when processing each word, which are task oriented (e.g., text classification), while pretrained

1 In this section, we focus on the final extracted transition matrix �̂�𝜎 , and abuse the notation 𝐸𝜎 for the sake of simplicity.
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Figure 3.5 WFA-based explanation framework.

embeddings are word-semantic oriented. Therefore, for two words 𝜎1 and 𝜎2, they may share
similar TME 𝒆𝜎1 , 𝒆𝜎2 , yet represent different semantics and hence their embedding differences
in pretrained embeddings may be large. We detail such cases in Section 3.3.3. Further, the ap-
plications of TME are different from the general pretrained embeddings. The extracted TME
can be seen as a global explanation of the source RNN R (see Section 3.3.2 for details), which
aids us in understanding the decision logic of the source RNN.

3.3.2 Word-Wise Attribution with TME

We introduce a global explanation method based on TME for analyzing the decision attri-
bution of the source RNN R. We investigate the impact of each word 𝜎 on the decision of R
based on its TME 𝒆𝜎. Recall that each abstract state 𝑠 has an explicit semantic represented by
its center 𝜌(𝑠), the probability distribution of labels. Therefore, each transition between two
states, such as 𝑠1 → 𝑠2, can be interpreted as a shift in the probability distribution of labels,
𝜌(𝑠1) → 𝜌(𝑠2). By multiplying the transition probability between states, which is saved in
𝒆𝜎, we can calculate the average variation of prediction scores among labels after R reading
word 𝜎. More formally, the variation contributed by the abstract transition (𝑠𝑖, 𝜎, 𝑠 𝑗) is given
by 𝒆𝜎 [ 𝑗 + 𝑛 · (𝑖 − 1)] × (𝜌(𝑠 𝑗) − 𝜌(𝑠𝑖)).

Additionally, we take into account the uneven significance among all abstract states, where
states that appear more frequently should be assigned a larger weight. To reflect this, we cal-
culate the frequency of each abstract state 𝑠 as 𝑢(𝑠) and incorporate it into the computation of
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Table 3.4 Top-10 Influential Words for 7 classes in the QC news Dataset [64]

Label Category Top-10 Influencial Words

0 Sport players, lockout, rangers, sox, knicks,
basketball, coach, bruins, champions, djokovic

1 World libyan, pakistan, yemen, sudan, gaddafi,
syrian, egypt, mubarak, syria, afghans

2 US florida, county, wildfire, layoffs, massachusetts,
mid-atlantic, wildfires, cpsc, firefighters, blagojevich

3 Business stocks, dollar, consumer, goldman, mortgage,
wall, companies, rosneft, s&p, sec

4 Health disease, crackers, cancer, asthma, patients,
exercise, prevention, symptoms, therapy, obesity

5 Entertainment idol, cannes, arthur, gotti, beaver,
mccreery, mariah, lohan, baldwin, diana

6 Sci_tech 3ds, playstation, icloud, software, gmail,
windows, tablets, linkedin, tablet, climate

the influence score as a weight. Formally, the Influence Score (IS) of word 𝜎 is formulated as

IS(𝜎) =
𝑛∑
𝑖=1

𝑢(𝑠𝑖){
𝑛∑
𝑗=1

𝒆𝜎 [ 𝑗 + 𝑛 · (𝑖 − 1)] × (𝜌(𝑠 𝑗) − 𝜌(𝑠𝑖))}. (3.13)

For class 𝑖, the 𝑖-th element of the influence score for word 𝜎 represents how this word
impacts the decision of the RNN on this class. Therefore, we can investigate the influential
words for the source RNN’s decisions by sorting the input words in descending order of IS. To
demonstrate the effectiveness of the proposed influence analysis method, we compute the IS
of all words in the vocabulary of the QC news dataset, and show the top-10 influential words
for each class in Table 3.4. Due to the presence of inappropriate language in the Toxic dataset,
we exclude the experiment results on this dataset. From Table 3.4 we can see that for each
category, its most influential words are highly correlated to that domain. This confirms that
the proposed influence score based on TME can indeed identify the input features (words) that
RNN R relies on to make decisions on each class.

We can also use the TME to characterize the relative importance of an individual word for
different labels. For instance, we show the influence scores of the words “Basketball”, “Dol-
lar”, “Apple”, and “Happy” in Figure 3.6. As shown in Figure 3.6, the ISs of “Basketball” and
“Dollar” demonstrate that they lead to high prediction tendency on class “Sport” and “Busi-
ness”, respectively, which is strongly correlated to their semantic domains. In contrast, the
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(a) Basketball (b) Dollar

(c) Apple (d) Happy

Figure 3.6 Influence Scores (ISs) visualization for some words.

word “Apple” shows high influence score on class “Business” and “Sci_tech”, which is consis-
tent with the intuition that this word is active in both business and technology news. Finally,
the word “Happy”, which has no particular influence on any class, demonstrates uniform IS on
each class.

To sum up, the proposed TME provides a global explanation of the source RNN R. As
discussed above, by computing the TME-based influential score, we can give explanations on
R from both class-wise and word-wise perspectives.

3.3.3 Contrastive Word Relation

Based on the Transition Matrix Embeddings (TME), we propose a contrastive method to
investigate the relations of words in TME and conventional word embeddings, which reveals
two intriguing properties.
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(a) TME (b) Glove

Figure 3.7 t-SNE visualization of two kinds of word embeddings on QC dataset. Each color
represents a class.

First, to demonstrate the difference between TME andGlove embeddings, we use t-SNE [114]
to visualize the embedding vectors of TME and Glove, which is shown in Figure 3.7. Specif-
ically, we select top-50 influential words from each class in QC news dataset with each color
representing a class. We can see that the selected 350 (50 × 7) words demonstrate different
clustering properties in these two word embeddings. This shows our TMEs are quite different
from pretrained word embeddings, wherein the word semantics are task-oriented.

We now characterize the contrastive relations betweenwords in TME and the conventional
word embeddings. We define ‖ · ‖ as the 𝑝−norm of a matrix or a vector divided by the
number of its elements, and we set 𝑝 to 2. We compute the distance between two words given
by TME and their conventional semantics, respectively. For words 𝜎1, 𝜎2, we define their
transition distance as 𝑑𝑇 (𝜎1, 𝜎2) = ‖𝒆𝜎1−𝒆𝜎2 ‖. In order to analyze their conventional semantic
distance, we use the Glove [93] word embeddings 𝒈𝜎1

, 𝒈𝜎2
, and define the semantic distance

as 𝑑𝑆 (𝜎1, 𝜎2) = ‖𝒈𝜎1
− 𝒈𝜎2

‖. By analyzing these two embedding distances between words,
we find that there exist some contrastive word pairs demonstrating different properties. We
formally define two types of contrastive word pairs in the following.

Definition 4 ((𝝐, 𝜹)-Collaborative Pair) A (𝜖, 𝛿)-Collaborative Pair is a pair of words (𝜎1, 𝜎2)
satisfying that

𝑑𝑇 (𝜎1, 𝜎2) ≤ 𝜖, 𝑑𝑆 (𝜎1, 𝜎2) ≥ 𝛿. (3.14)

Here 𝜖 is a small positive number to guarantee that the word pair 𝜎1 and 𝜎2 trigger similar
transition behaviors of the source RNN R. On the other hand, 𝛿 is a relatively larger positive
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Table 3.5 Examples of Collaborative Pairs and Adversarial Pairs.

Label Category Collaborative Pairs Adversarial Pairs
0 Sport (‘lakers’,‘wozniacki’) (‘cup’,‘cups’)
1 World (‘yemen’,‘gaddafi’) (‘yemen’,‘usa’)
2 US (‘wildfire’,‘texas’) (‘wildfire’,‘tsunami’)
3 Business (‘wall’,‘mortage’) (‘wall’,‘behind’)
4 Health (‘therapy’,‘rice’) (‘exercise’,‘sports’)
5 Entertainment (‘cannes’,‘bieber’) (‘diana’,‘williams’)
6 Sci_tech (‘climate’,‘software’) (‘windows’,‘open’)

number, indicating these two words have quite different semantics in terms of conventional
embeddings. Hence the collaborative pairs are the word pairs that have distinct meanings, but
are similar from the RNN R’s perspective on the specific task. In contrast, the adversarial
pairs are defined in a symmetric manner, which means the words share similar meanings, but
are quite different from the RNN R’s understanding in a particular task.

Definition 5 ((𝝐, 𝜹)-Adversarial Pair) An (𝜖, 𝛿)-Adversarial Pair is a pair of words (𝜎1, 𝜎2)
satisfying that

𝑑𝑇 (𝜎1, 𝜎2) ≥ 𝛿, 𝑑𝑆 (𝜎1, 𝜎2) ≤ 𝜖 . (3.15)

The above contrastive pairs allow us to understand how RNN learns the semantics of the
words. When a dataset and a task are given, the semantics of a word in the vocabulary is not
learned fully obeying general word embedding, but task-oriented.

To make the task-oriented word semantics clearer, we show some examples of (𝜖, 𝛿)-
Collaborative Pairs and Adversarial Pairs found by our algorithm in Table 3.5. The (𝜖, 𝛿)
is set to be (0.012, 0.1) for collaborative pairs, and (0.2, 0.01) for adversarial pairs. Note that
the size of (𝜖, 𝛿) for adversarial pairs is significantly different from that for collaborative pairs.
In collaborative pairs, 𝜖 is set to a relatively small positive value, ensuring that the embedding
distances in RNN are small, while for adversarial pairs, 𝜖 is set to a larger value to avoid strict
constraints on semantic distance that would make the resulting adversarial words too similar.
The value of 𝛿 is also set for similar reasons. From these examples, we identify two intriguing
properties of the source RNN. The collaborative pairs are pairs of words that the source RNN
processes similarly with regard to the current task, but are not synonyms in conventional se-
mantics. On the other hand, the adversarial pairs are actually synonyms, but when considered
in the current task, the behaviors of RNNs are triggered differently. These contrastive pairs
capture the RNN’s specific understanding of word semantics, which are task-oriented.
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Next, we analyze the adversarial pairs with a concrete example. Note that the collabora-
tive pairs can be analyzed in a similar way. Consider the adversarial pair (“exercise”, “sports”)
as an example, which are synonyms in general word semantics. But when we analyze their
influence on RNNs’ decisions, they demonstrate significant differences. The influence analy-
sis results show that “exercise” is a word that has a high influence score on the class “Health”,
while “sports” is a word that is most influential to the “Sports” category. We further present an
adversarial example generated by leveraging this adversarial pair. Consider the following sen-
tence in the test set, “exercise helps her age swimmingly”, on which the RNN outputs “Health”
with a probability of 98.9%. When we feed the sentence “sports helps her age swimmingly”
to the RNN instead, the output probability of category “Sport” rises to 92.7%. However, the
two sequences have nearly the same semantics.

Based on the above results, we see that synonyms with regard to general embeddings are
understood differently by RNNs. Therefore, TME and TME-based explanation can help us
better understand what the target RNN learns and how it makes decisions. In this way, by
identifying and analyzing the collaborative examples, we can understand what task-oriented
synonyms are from the target RNN’s perspective, though they may be distinct in conventional
embedding semantics. On the other hand, characterizing adversarial pairs provides explana-
tions of the target RNN on distinguishing similar words in the context of the current task. We
further validate the effectiveness of the contrastive pairs with the following two applications.

3.3.3.1 TME for RNN Pretraining

The identification of collaborative pairs reveals that TME is able to characterize task-
oriented semantics, compared with the conventional embedding method, such as Glove. We
next show the effectiveness of TME in boosting RNN training when serving as pretrained
embeddings.

In the experiment, we consider training RNNs on the QC news dataset and the Toxic
dataset with three word embedding initialization strategies: (i) TME, (ii) Glove, and (iii) ran-
dom initialization. Figure 3.8 shows the comparison results. We can see that the initialization
with TME outperforms Glove and random initialization on convergence speed in terms of loss
and accuracy on the test set, which validates the effectiveness of TME in boosting RNN pre-
training.

Note that there is a steep rise in accuracy observed during the training process. In fact, for
general NLP tasks, neural networks tend to experience a rapid initial improvement in accuracy
and then reach a plateau as training progresses. In our benchmark tasks, the initialization of
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(a) Loss on test set, QC (b) Accuracy on test set, QC

(c) Loss on test set, Toxic (d) Accuracy on test set, Toxic

Figure 3.8 Comparison of three initialization strategies for RNN training.

word embedding vectors has a significant impact on the network’s ability to learn the correct
patterns. It is only after the network learns the correct semantics from these embeddings that
the neural network can enter the phase of improvement in accuracy. As our pre-trained word
embeddings are initialised with clearer semantics, the network is able to reach this phase of
improvement at an earlier stage in the training process.

3.3.3.2 TME for Adversarial Example Generation

Previous investigations have shown that TME can be utilized to identify adversarial pairs
and decision vulnerabilities of RNNs. Inspired by the investigation results, we apply TME to
generate adversarial examples for the source RNN. We perform comparison experiments of
using TME and Glove as embeddings in crafting adversarial examples. To evaluate the effec-
tiveness of different methods in adversarial example generation, we use Attack Success Rate
(ASR) as the evaluation metric, namely the proportion of crafted sequences that successfully
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Table 3.6 Comparison results of Attack Success Rate (ASR) with different embedding meth-
ods.

Embeddings QC Toxic
𝑘 = 1 𝑘 = 2 𝑘 = 1 𝑘 = 2

Glove 0.17 0.22 0.06 0.11
Weak Adversarial Pairs 0.34 0.46 0.11 0.23
Strong Adversarial Pairs 0.44 0.59 0.15 0.25

mislead the RNN to produce false outputs.

To generate adversarial examples, we select the top-𝑘 influential words in each sentence
from the test set, measured by ℓ2-norm of IS, and replace them with their synonyms with re-
gard to different embedding methods. To ensure the generation of adversarial pairs, we set
a lower bound for the TME semantic distance between the original word 𝜎 and the selected
synonym 𝜎′, that is, 𝑑𝑇 (𝜎, 𝜎′) ≥ 0.01. For Glove, we simply replace the top-𝑘 influential
words with their synonyms. For TME, we leverage the Adversarial Pair under two settings
with 𝑑𝑆 (𝜎, 𝜎′) ≤ 0.15, 𝑑𝑆 (𝜎, 𝜎′) ≤ 0.18, respectively, to generate adversarial examples.
Here, when 𝜖 is set to 0.15, the constraint on semantic distance for natural language is rela-
tively strict. The resulting adversarial samples are semantically clear and have minor changes
compared to the original sentences. We denote this kind of adversarial pair as Weak Adver-
sarial Pairs. When 𝜖 is set to 0.18, however, the constraint on semantic distance becomes
more relaxed. The resulting sentences have different semantics and there might be some local
grammar issues, but still can be classified into the same label as the original ones. We refer to
this type of adversarial pair as Strong Adversarial Pairs. For Toxic, we set 𝜖 to 0.12 and 0.2
for Weak Adversarial Pairs and Strong Adversarial Pairs, respectively. The comparison results
are shown in Table 3.6. We can see that using adversarial pairs guided by TME achieves higher
ASR than using Glove. For example, on the QC news dataset, we’ve gained an average increase
of 21% for Weak Adversarial Pairs and 32% for Strong Adversarial Pairs. The evaluation re-
sults validate the effectiveness of TME in capturing the decision logic and vulnerability of the
target RNN.

3.3.4 Discussion

Computational Complexity. The time complexity of the whole workflow is analyzed as
follows. Suppose that the set of training samples D0 has 𝑁 words in total and its alphabet Σ
contains 𝑛words, and is augmented asD with 𝑡 epochs (i.e. each sentence inD0 is transformed
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to 𝑡 new sentences in D), hence |D| = (𝑡 + 1)𝑁 . Assume that a probabilistic output of RNNs
is a 𝑚-dim vector, and the abstract states set 𝑆 contains 𝑘 states.

To start with, the augmentation of D0 and tracking of probabilistic outputs in D will be
completed in O(|D|) = O(𝑡 · 𝑁) time. Besides, the time complexity of k-means clustering
algorithm is O(𝑘 · |D|) = O(𝑘 · 𝑡 · 𝑁). The count of abstract transitions will be done in O(𝑛).
As for the processing of transition matrices, we need to calculate the transition probability for
each word 𝜎 with each source state 𝑠𝑖 and destination state 𝑠 𝑗 , which costs O(𝑘2 · 𝑛) time.
Finally, the context-aware enhancement on transition matrices takes O(𝑘 · 𝑛) time.

Note that O(𝑛) = O(𝑁), hence we can conclude that the time complexity of our whole
workflow is O(𝑘2 · 𝑡 · 𝑁). So the time complexity of our approaches only takes linear time
w.r.t. the size of the dataset, which provides theoretical extraction overhead for large-scale data
applications.

For the explanation analysis, the IS score can be computed in constant time, as this process
simply involvesmultiplying twomatrices. Assuming the vocabulary contains a total of 𝑛words,
and a sequence 𝑠 with 𝑘 words, conducting an adversarial attack on this sequence requires
O(𝑘 + 𝑚 log 𝑘) time to find the top-𝑚 influential words, and it costs O(𝑛) time to find an
optimal adversarial pair in the entire vocabulary through enumeration. Thus, if 𝑚 words need
to be replaced, the time complexity for the entire process is 𝑂 (𝑘 + 𝑚 log 𝑘 + 𝑛𝑚).

Applicability to other data distributions. Although the proposed framework for WFA
extraction and explanation of RNNs is customized for natural language distributions, we point
out that some of its components can be generalized to other types of RNNs as well.

First, the identified transition sparsity and context-awareness problems inWFA extraction
for natural language tasks may also occur in RNNs used in other domains. Thus, the proposed
methods to address these problems are applicable to them as well. Thus, the empirical method
to complement the missing rules in the transition diagram and the adjustment of transition ma-
trices to enhance the context-awareness of theWFA can also be applied to other types of RNNs.
However, the data augmentation tactics proposed in the chapter may need to be adapted to suit
the specific characteristics of other types of RNNs. Specifically, we can perform data augmen-
tation on natural language samples as long as the synthetic sentences make sense. However,
other datasets, such as formal languages, do not possess this property.

As for the explanation analysis, the application of our method for RNN explanation is not
limited to natural language tasks. As long as a WFA can be extracted from the target RNN, the
method for explanation is applicable. In fact, our study on RNN explainability only involves
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the extraction of the vector representation of words through the transition matrices of the WFA.
Thus, this component of our framework is highly generalizable and can be applied to various
other domains beyond natural language distributions.

3.4 Summary
In this chapter, we propose a general framework for extracting and explaining weighted

automata from RNNs specialized for natural language distributions. We introduce a novel
approach to extracting transition rules of weighted finite automata from recurrent neural net-
works. In particular, we address the transition sparsity problem and complement the transition
rules of missing rows, effectively improving the extraction precision. In addition, we present a
heuristic method to enhance the context-awareness of the extracted WFA. We further propose
two augmentation tactics to track more transition behaviors of RNNs. Both theoretical anal-
ysis and experimental results demonstrate the efficiency and precision of our rule extraction
approach for natural language tasks. Based on the extracted model, we propose a word embed-
ding method, TransitionMatrix Embeddings (TME), to construct task-oriented explanations of
the target RNN, including a word-wise global explanation method of RNNs, and a contrastive
method to interpret the word semantics that the RNNs learned from the task.
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Chapter 4 Class-wise Calibrated Fair Adversarial Training

This chapter proposes a fair adversarial training algorithm based on class-wise adversar-
ial data distributions, which is organized as follows. In Section 4.1, we conduct a theoretical
analysis of the impact of AT configurations on the robustness of different classes. Then, in
Section 4.2, we offer comprehensive empirical studies to validate these theoretical insights.
Motivated by them, we propose our class-wise calibrated fair adversarial training (CFA) algo-
rithm in Section 4.3. Finally, we conduct comprehensive experiments to demonstrate that our
CFA improves both overall robustness and fairness in Section 4.4 and summarize this chapter
in Section 4.5. The proof of theorems in this chapter can be found in Section 4.6.

4.1 Theoretical Class-wise Robustness Analysis

In this section, we present our theoretical insights on the influence of different adversarial
configurations on class-wise robustness.

4.1.1 Notations

For a 𝐾-classification task, we use 𝑓 : X → Y to denote the classification function which
maps from the input space X to the output labels Y = {1, 2, · · · , 𝐾}. For an example 𝑥 ∈ X,
we use B(𝑥, 𝜖) = {𝑥′ | ‖𝑥′ − 𝑥‖ ≤ 𝜖} to restrict the perturbation. In this chapter, we mainly
focus on the 𝑙∞ norm ‖ · ‖∞, and note that our analysis and approach can be generalized to other
norms similarly.

We use A( 𝑓 ) and R( 𝑓 ) to denote the clean and robust accuracy of the trained model 𝑓 :

A( 𝑓 ) = E(𝑥,𝑦)∼D 1( 𝑓 (𝑥) = 𝑦),

R( 𝑓 ) = E(𝑥,𝑦)∼D 1(∀𝑥′ ∈ B(𝑥, 𝜖), 𝑓 (𝑥′) = 𝑦).
(4.1)

We useA𝑘 ( 𝑓 ) and R𝑘 ( 𝑓 ) to denote the clean and robust accuracy of the 𝑘-th class respectively
to analyze the class-wise robustness.

4.1.2 A Binary Classification Task

We consider a simple binary classification task that is similar to the data model used
in [113], but the properties (hard or easy) of the two classes are different.

45



Data Distribution Insights into Trustworthy Machine Learning

Data Distribution. Consider a binary classification task where the data distribution D
consists of input-label pairs (𝑥, 𝑦) ∈ R𝑑+1 × {−1, +1}. The label 𝑦 is uniformly sampled, i.e.,
𝑦

u.a.r.∼ {−1, +1}. For input 𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑑+1), let 𝑥1 ∈ {−1, +1} be the robust feature,
and 𝑥2, · · · , 𝑥𝑑+1 be the non-robust features. The robust feature 𝑥1 is labeled as 𝑥1 = 𝑦 with
probability 𝑝 and 𝑥1 = −𝑦 with probability 1 − 𝑝 where 0.5 ≤ 𝑝 < 1. For the non-robust
features, they are sampled from 𝑥2, · · · , 𝑥𝑑+1 i.i.d∼ N(𝜂𝑦, 1) where 𝜂 < 1/2 is a small positive
number. Intuitively, as discussed in [113], 𝑥1 is robust to perturbation but not perfect (as 𝑝 < 1),
and 𝑥2, · · · , 𝑥𝑑+1 are useful for classification but sensitive to small perturbations. In our model,
we introduce some differences between the two classes by letting the probability of 𝑥1 = 𝑦

correlate with its label 𝑦. Overall, the data distribution is

𝑥1 =


+𝑦, w.p. 𝑝𝑦

−𝑦, w.p. 1 − 𝑝𝑦
and 𝑥2, · · · , 𝑥𝑑+1 i.i.d∼ N(𝜂𝑦, 1). (4.2)

We set 𝑝+1 > 𝑝−1 in our model. Therefore, the robust feature 𝑥1 is more reliable for class
𝑦 = +1, while for class 𝑦 = −1, the robust feature 𝑥1 is noisier and their classification depends
more on the non-robust features 𝑥2, · · · , 𝑥𝑑+1.

Hypothesis Space. Consider a SVM classifier (without bias term)

𝑓 (𝑥) = sign(𝑤1𝑥1 + 𝑤2𝑥2 + · · · + 𝑤𝑑+1𝑥𝑑+1). (4.3)

For the sake of simplicity, we assume 𝑤1, 𝑤2 ≠ 0, and 𝑤2 = 𝑤3 = · · · = 𝑤𝑑+1 since 𝑥2, · · · , 𝑥𝑑+1
are equivalent. Then, let𝑤 =

𝑤1

𝑤2
, themodel can be simplified as 𝑓𝑤(𝑥) = sign(𝑥1+

𝑥2 + · · · + 𝑥𝑑+1
𝑤

).
Without loss of generality, we further assume 𝑤 > 0 since 𝑥2, · · · , 𝑥𝑑+1 ∼ N(𝜂𝑦, 1) tend to
share the same sign symbol with 𝑦.

4.1.3 Theoretical Insights

Illustration Example. An example of the data distribution for the case 𝑑 = 1 is visualized
in Figure 4.1(a). The data points for class 𝑦 = +1 are colored red, and for 𝑦 = −1 are colored
blue. We can see that the robust feature 𝑥1 of class 𝑦 = −1 seems to be noisier than 𝑦 = +1, since
the frequency of blue dots appearing on the line 𝑥1 = 1 is higher compared to the frequency
of red dots appearing on the line 𝑥1 = −1, with 𝑝+1 > 𝑝−1. Therefore, class 𝑦 = −1 might be
more difficult to learn. Furthermore, we plot the clean and robust accuracy of the two classes
of 𝑓𝑤 for different 𝑤 in Figure 4.1(b). In this toy model, we select 𝑝+1 = 0.85 > 0.7 = 𝑝−1

and 𝜂 = 0.4. The variance 𝜎2 is set to be 0.6 for better visualization in this toy model, and in
the following theoretical analysis, we set 𝜎2 = 1 for simplicity. In Figure 4.1(a), we randomly
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(a) (b)

Figure 4.1 A visualization of the toy model for the case 𝑑 = 1. (a) Sampled data from the
distribution. Red dots are labeled 𝑦 = +1 and blue dots are labeled 𝑦 = −1. (b) Clean and robust
accuracy of the two classes. Solid lines indicate robust accuracy, and dotted lines indicate clean
accuracy.

sample 100 pairs of (𝑥1, 𝑥2) for each class 𝑦 ∈ {+1,−1}. In Figure 4.1(b), the robustness is
evaluated under perturbation bound 𝜖 = 2𝜂 = 0.8, which is consistent with the evaluation
in [113].

The parameter 𝑤 can be regarded as the strength of adversarial attack in adversarial train-
ing, since a larger𝑤 indicates the classifier 𝑓𝑤 places less weight on non-robust features𝑤2, · · · , 𝑤𝑑+1
and pays more attention to robust feature 𝑤1. As 𝑤 increases, the clean accuracy of 𝑦 = −1

drops significantly faster than 𝑦 = +1, but the robustness improves more slowly. We formally
prove this observation in the following.

The Intrinsically Hard Class. First, we formally distinguish the classes 𝑦 = −1, +1 as
the hard and easy classes in Theorem 1.

Theorem 1 For any𝑤 > 0 and the classifier 𝑓𝑤 = sign(𝑥1+
𝑥2 + · · · + 𝑥𝑑+1

𝑤
), we haveA+1( 𝑓𝑤) >

A−1( 𝑓𝑤) and R+1( 𝑓𝑤) > 𝑅−1( 𝑓𝑤).

Theorem 1 shows that the class 𝑦 = −1 is more difficult to learn than class 𝑦 = +1, both in
robust and clean settings. This reveals the potential reason why some classes are intrinsically
difficult to learn in the adversarial setting, that is, their robust features are less reliable.

Relation Between 𝑤 and Attack Strength. Consider the model is adversarially trained
with perturbation margin 𝜖 . The following Theorem 2 shows using larger 𝜖 enlarges 𝑤.

Theorem 2 For any 0 ≤ 𝜖 ≤ 𝜂, let 𝑤∗ = arg max
𝑤
R( 𝑓𝑤) be the optimal parameter for adver-

sarial training with perturbation bound 𝜖 , then 𝑤∗ is monotone increasing at 𝜖 .
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Theorem 2 bridges the gap between model parameters and attack strength in adversarial train-
ing. Next, we can implicitly investigate the influence of attack strength on class-wise robustness
by analyzing the parameter 𝑤.

Impact of Attack Strength on Class-wise Robustness. Here, we demonstrate how ad-
versarial strength influences class-wise clean and robust accuracy.

Theorem 3 Let 𝑤∗𝑦 = arg max
𝑤
A𝑦( 𝑓𝑤) be the parameter for the best clean accuracy of class 𝑦,

then 𝑤∗+1 > 𝑤∗−1.

Theorem 3 shows that the clean accuracy of the hard class 𝑦 = −1 reaches its best performance
earlier than 𝑦 = +1. In other words, A−1( 𝑓𝑤) starts dropping earlier than A+1( 𝑓𝑤). As the
model further distracts its attention from its clean accuracy to robustness by increasing the
parameter 𝑤, the hard class 𝑦 = −1 loses more clean accuracy yet gains less robust accuracy,
as shown in Theorem 4.

Theorem 4 Suppose Δ𝑤 > 0, then for ∀𝑤 > 𝑤∗+1, A−1( 𝑓𝑤+Δ𝑤
) − A−1( 𝑓𝑤) < A+1( 𝑓𝑤+Δ𝑤

) −
A+1( 𝑓𝑤) < 0, and for ∀𝑤 > 0, 0 < R−1( 𝑓𝑤+Δ𝑤

) − R−1( 𝑓𝑤) < R+1( 𝑓𝑤+Δ𝑤
) − R+1( 𝑓𝑤).

In this section, we demonstrate that the unreliability of robust features is a possible expla-
nation for the intrinsic difficulty in learning some classes. Then, by implicitly expressing the
attack strength with parameter 𝑤, we analyze how adversarial configurations influence class-
wise robustness. Theorems 3 and 4 highlight the negative impact of strong attacks on the hard
class 𝑦 = −1.

4.2 Observations on Class-wise Robustness
In this section, we present our empirical observations on the class-wise robustness of mod-

els adversarially trained under different configurations. Taking vanilla AT [75] and TRADES
[151] as examples, we compare two key factors in the training configurations: the perturbation
margin 𝜖 in vanilla AT and the regularization 𝛽 in TRADES. We also reveal the fluctuation
effect of the worst class robustness during the training process, which has a significant impact
on the robust fairness in adversarial training.

4.2.1 Different Margins

Following the vanilla AT [75], we train 8 models on the CIFAR10 dataset [60] with 𝑙∞-
norm perturbation margin 𝜖 from 2/255 to 16/255 and analyze their overall and class-wise
robustness.
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(a) (b) (c)

Figure 4.2 Comparison of overall and class-wise robustness of models adversarially trained
on CIFAR10 with different perturbation margin 𝜖 . (a): Overall robust accuracy with different
perturbation margin 𝜖 from 2/255 to 16/255. (b): Average class-wise robust accuracy at epoch
101 − 120 (each line represents a class). (c): Average class-wise robust accuracy at epoch
181 − 200 (each line represents a class).

The comparison of overall robustness is shown in Figure 4.2(a). The robustness is eval-
uated under PGD-10 attack bounded by 𝜖0 = 8/255, which is commonly used for robustness
evaluation. Intuitively, using a larger margin can lead to better robustness. For 𝜖 < 𝜖0, the
attack is too weak and hence the robust accuracy of the trained model is not comparable with
𝜖 ≥ 𝜖0. However, for the three models trained with 𝜖 > 𝜖0, although their robustness outper-
forms the case of 𝜖 = 𝜖0 at the last epoch, they do not make significant progress on the best-case
robustness (around 100-th epoch).

We take a closer look at this phenomenon by investigating their class-wise robustness in
Figure 4.2(b) and Figure 4.2(c). For each class, we calculate the average class-wise robust
accuracy among the 101−120-th epochs (where the model performs the best robustness) and
181−200-th epochs, respectively. From Figure 4.2(b), we can see that a larger training mar-
gin 𝜖 does not necessarily result in better class-wise robustness. For the easy classes, which
perform higher robustness, their robustness monotonously increases as 𝜖 enlarges from 2/255

to 16/255. By contrast, for the hard classes (especially classes 2, 3, 4), their robustness drops
when 𝜖 enlarges from 8/255. However, for the last several checkpoints in Figure 4.2(c), we can
see a consistent increase in class-wise robustness when the 𝜖 enlarges. Revisiting the overall
robustness, we can summarize that the class-wise robustness is boosted mainly by reducing the
robust over-fitting problem in the last checkpoint. This can explain why Fair Robust Learning
(FRL) [143] can improve robust fairness by enlarging the margin for the hard classes, since the
model reduces the over-fitting problem on these classes. Considering the overall robustness is
lower in the last checkpoint (robust fairness is better, though), we hope to improve the best-case
robust fairness in the situation of a relatively high overall robustness.
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In summary, a larger perturbation is harmful to the hard classes in the best case, while it
can marginally improve the class-wise robustness in the later stage of training. For easy classes,
a larger perturbation is useful at the best and last checkpoints. Therefore, a specific and proper
perturbation margin is needed for each class.

4.2.2 Different Regularization

In this section, we also conduct a similar experiment on the selection of robustness reg-
ularization 𝛽 in TRADES. We compare models trained on CIFAR10 with 𝛽 from 1 to 8, and
plot the average class-wise robust and clean accuracy among the 151 − 170-th epochs (where
TRADES performs the best) in Figure 4.3. We can see that biasing more weight on robustness
(using a larger 𝛽) causes different influences among classes. Specifically, for easy classes, im-
proving 𝛽 can improve their robustness at the cost of little clean accuracy reduction, while for
hard classes (e.g., classes 2, 3, 4), improving 𝛽 can only obtain limited robustness improvement
but drop clean accuracy significantly.

(a) (b)

Figure 4.3 Comparison of class-wise robustness trained by TRADES with different robust-
ness regularization parameters 𝛽. (a) Class-wise robust accuracy. (b) Class-wise clean accu-
racy.

This result is consistent with Theorem 4. Recall that in the toy model, hard class 𝑦 = −1

costs more clean accuracy to exchange for little robustness improvement than easy class 𝑦 = +1.
Therefore, similar to the analysis on perturbation margin 𝜖 , we also point out that there exists
a proper 𝛽𝑦 for each class.
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(a) (b)

Figure 4.4 Comparison of overall robustness, the worst class robustness, and the absolute
variation of the worst class robustness between adjacent checkpoints. (a): Vanilla AT. (b): AT
with fairness aware weight averaging (FAWA), start from epoch 50.

4.2.3 Fluctuation Effect

In this section, we reveal an intriguing property regarding the fluctuation of class-wise ro-
bustness during adversarial training. In Figure 4.4(a), we plot the overall robustness, the worst
class robustness, and the variance of the worst robustness between adjacent epochs in vanilla
adversarial training. By contrast, the overall robustness tends to be more stable between adja-
cent checkpoints (except when the learning rate decays), the worst class robustness fluctuates
significantly. Particularly, many adjacent checkpoints between the 101−120-th epochs exhibit
a nearly 10% difference in the worst class robustness, while changes in overall robustness are
negligible (less than 1%).

Therefore, previous widely used methods for selecting the best checkpoint based on over-
all robustnessmay result in an extremely unfair model. Taking the plotted training process as an
example, the model achieves the highest robust accuracy of 53.2% at the 108-th epoch, which
only has 23.5% robust accuracy on the worst class. In contrast, the checkpoint at epoch 110,
which has 52.6% overall and 28.1% worst class robust accuracy, is preferred when considering
fairness.

4.3 Class-wise Calibrated Fair Adversarial Training

With the above analysis, we introduce our proposedClass-wise calibratedFairAdversarial
training (CFA) framework in this section. Overall, the CFA framework consists of three main
components: Customized Class-wise perturbation Margin (CCM), Customized Class-wise
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Regularization (CCR), and Fairness Aware Weight Averaging (FAWA). The CCM and CCR
customize appropriate training configurations for different classes, and FAWAmodifies weight
averaging to improve and stabilize fairness.

4.3.1 Class-wise Calibrated Margin (CCM)

In Section 4.2.1, we have demonstrated that different classes prefer specific perturba-
tion margin 𝜖 in adversarial training. However, it is impractical to find the optimal class-
wise margin directly. Inspired by a series of instance-wise adaptive adversarial training ap-
proaches [33, 128, 10], which customize the training setting for each instance according to the
model’s performance on the current example, we propose to leverage the class-wise training
accuracy as the measurement of difficulty.

Suppose the 𝑘-th class achieved train robust accuracy 𝑡𝑘 ∈ [0, 1] in the last training epoch.
In the next epoch, we aim to update the margin 𝜖𝑘 for class 𝑘 based on 𝑡𝑘 . Based on our analysis
in Section 4.2.1, we consider using a relatively smaller margin for the hard classes, which are
more vulnerable to attacks, and identify the difficulty among classes by the train robust accuracy
tracked from the previous epoch. To avoid 𝜖𝑘 too small, we add a hyper-parameter 𝜆1 (called
base perturbation budget) on all 𝑡𝑘 and set the calibrated margin 𝜖𝑘 by multiply the coefficient
on primal margin 𝜖 :

𝜖𝑘 ← (𝜆1 + 𝑡𝑘) · 𝜖, (4.4)

where 𝜖 is the original perturbation margin, e.g., 8/255 that is commonly used for CIFAR-10
dataset. Note that the calibrated margin 𝜖𝑘 can adaptively converge to find the proper range
during the training phase, for example, if the margin is too small for class 𝑘 , the model will
perform high train robust accuracy 𝑡𝑘 and then increase 𝜖𝑘 by schedule (4.4).

4.3.2 Class-wise Calibrated Regularization (CCR)

We further customize different robustness regularization 𝛽 of TRADES for different classes.
Recall the objective function (2.14) of TRADES, we hope the hard classes tend to bias more
weight on its clean accuracy. Still, we measure the difficulty by the train robust accuracy 𝑡𝑘 for
class 𝑘 , and propose the following calibrated robustness regularization 𝛽𝑘:

𝛽𝑘 ← (𝜆2 + 𝑡𝑘) · 𝛽. (4.5)
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where 𝛽 is the originally selected parameter. The objective function (2.14) can be rewritten as:

L𝜽 (𝛽; 𝑥, 𝑦) =
L(𝜽; 𝑥, 𝑦) + 𝛽𝑦 max

‖𝑥′−𝑥 ‖≤ 𝜖
K( 𝑓𝜽 (𝑥), 𝑓𝜽 (𝑥′))

1 + 𝛽𝑦
. (4.6)

To balance the weight between different classes, we add a denominator 1 + 𝛽𝑦 since 𝛽𝑦
is distinct among classes. Therefore, for the hard classes which have lower 𝛽𝑦 tend to bias
higher weight

1
1 + 𝛽𝑦

on its natural loss L(𝜽; 𝑥, 𝑦). Note that simply replacing 𝜖 in (4.6) with
𝜖𝑘 can combine the calibrated margin with this calibrated regularization. On the other hand,
for general adversarial training algorithms, our calibrated margin schedule (4.4) can also be
combined.

4.3.3 Fairness Aware Weight Average (FAWA)

As plotted in Figure 4.4(a), the worst class robustness changes largely, among which part
of the checkpoints perform extremely poorly in terms of robust fairness. Previously, there are a
series of weight averaging methods to make the model training stable, e.g., exponential moving
average (EMA) [49, 118], thus we hope to further improve the worst class robustness by fixing
the weight average algorithm.

Inspired by the large fluctuation of the robustness fairness among checkpoints, we consider
eliminating the unfair checkpoints out in the weight averaging process. To this end, we propose
a Fairness Aware Weight Average (FAWA) approach, which sets a threshold 𝛿 on the worst class
robustness of the new checkpoint in the EMA process. Specifically, we extract a validation set
from the dataset, and each checkpoint is adopted in the weight average process if and only
if its worst class robustness is higher than 𝛿. Figure 4.4(b) shows the effect of the proposed
FAWA. The difference between adjacent epochs is extremely small (less than 1%), and the
overall robustness also outperforms vanilla AT.

4.3.4 Discussion

Overall, by combining the above components, we accomplish our CFA framework. An
illustration of incorporating CFA to TRADES is shown in Alg. 2. Note that for other methods
like AT, we can still incorporate CFA by removing the CCR schedule specified for TRADES.
Moreover, we discuss the difference between our proposed CFA and other works.

Comparison with Fair Robust Learning (FRL) [143]. Here we highlight the differ-
ences between our CFA framework and Fair Robust Learning (FRL), the only existing adver-
sarial training algorithm designed to improve the fairness of class-wise robustness. The FRL
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Algorithm 2: TRADES with CFA
Input: A DNN classifier 𝑓𝜽 (·) with parameter 𝜽; Train dataset 𝐷 = {(𝑥𝑖, 𝑦𝑖)}𝑁𝑖=1;

Batch size 𝑚; Initial perturbation margin 𝜖 and robustness regularization 𝛽;
Train epochs 𝑁; Batch size 𝑚; Learning rate 𝜂; Weight average decay rate 𝛼;
Fairness threshold 𝛿

Output: A fair and robust DNN classifier 𝑓�̄� (·)
/* Initialize parameters and datasets */

1 Initialize 𝜽 ← 𝜽0, �̄� ← 𝜽;
2 Split 𝐷 = 𝐷 train ∪ 𝐷valid;
3 for 𝑦 ∈ Y do

/* Initialize 𝜖𝑦 and 𝛽𝑦 */
4 𝜖𝑦 ← 𝜖, 𝛽𝑦 ← 𝛽;
5 for 𝑇 ← 1, 2, · · · 𝑁 do
6 for Every minibatch (𝑥, 𝑦) in 𝐷 train do

/* Use 𝜖𝑦 and 𝛽𝑦 to train */
7 𝑥′ ← arg max

𝑥′∈B(𝑥,𝜖𝑦 )
K( 𝑓𝜽 (𝑥), 𝑓𝜽 (𝑥′));

8 𝜽 ← 𝜽 − 𝜂∇𝜽L𝜽 (𝛽𝑦; 𝑥, 𝑦);
9 for 𝑦 ∈ Y do

10 𝑡𝑦 ← 𝑇𝑟𝑎𝑖𝑛_𝐴𝑐𝑐( 𝑓𝜃 , 𝑇);
/* Update 𝜖𝑦, 𝛽𝑦 with 𝑡𝑦 */

11 𝜖𝑦 ← (𝜆1 + 𝑡𝑘) · 𝜖 ;
12 𝛽𝑦 ← (𝜆2 + 𝑡𝑘) · 𝜖 ;

/* Fairness Aware Weight Average */
13 if min𝑦∈Y R𝑦( 𝑓𝜽 , 𝐷valid) ≥ 𝛿 then
14 �̄� ← 𝛼�̄� + (1 − 𝛼)𝜽;

15 return 𝑓�̄�;

framework consists of two components: remargin and reweight. Initially, a robust model is
trained, and a fairness constraint on the difference in robustness among classes is set. When
the constraint is violated, the model is fine-tuned persistently by increasing the perturbation
bound 𝜖𝑘 and weighting the loss of the hard classes. Although CFA also includes adaptive mar-
gin and regularization weight schedules, our work is fundamentally distinct from FRL. Firstly,
as discussed in Section 4.2.1, a larger margin only mitigates the robust over-fitting problem but
does not provide higher peak performance. In contrast, our approach aims to customize the
proper margin for each class, which boosts the best performance. Secondly, FRL improves ro-
bust fairness at the cost of reducing overall robustness, which could be seen as unfair to other
classes. However, our CFA framework improves both overall and worst class performance.
In addition, FRL requires an initial robust model before fairness fine-tuning, resulting in an
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extra computational burden. Finally, the fluctuation effect discussed in Section 4.2.3 is not
considered in FRL.

Comparison with Instance-wise Adversarial Training. Though there exists a series of
instance-wise adaptive adversarial training [33, 10, 128, 24, 152, 153, 14, 127] toward better
robust generalization, to the best of our knowledge, we are the first work to pursue this from a
class-wise perspective. Here, we demonstrate several differences between our class-wise and
other instance-wise adversarial training algorithms. First of all, CFA focuses on improving
both overall and the worst class robust accuracy, while all existing instance-wise approaches
only focus on overall robustness. Unfortunately, as shown in Section 4.4, the instance-wise
ones are not comparable with our CFA from the perspective of fairness. In addition, instance-
wise methods can be seen as finding the solution for each individual sample, while class-wise
ones are finding the solution for multiple samples. Thus, class-wise methods can alleviate the
frequent fluctuation while retaining the specificity (a class of samples) of configurations among
training samples. Therefore, our class-wise calibration achieves a better trade-off between
flexibility and stability. Finally, some instance-wise approaches can be well-combined with our
CFA framework to boost their performance further. For example, we show the combination of
CFA and Friendly Adversarial Training (FAT)[152] in the next section.

4.4 Experiment

In this section, we demonstrate the effectiveness of our proposed CFA framework to im-
prove both overall and class-wise robustness.

4.4.1 Experimental Setup

Weconduct our experiments on the benchmark dataset CIFAR-10 [60] using the PreActResNet-
18 (PRN-18) [43] model.

Baselines. We select vanilla adversarial training (AT) [75] and TRADES [151] as our
baselines. Additionally, since our Fairness Aware Weight Average (FAWA) method is a variant
of the weight average method with Exponential Moving Average (EMA), we include baselines
with EMA as well. For instance-wise adaptive adversarial training approaches, we include
FAT [152], which adaptively adjusts attack strength on each instance. Finally, we compare
our approach with FRL [143], the only existing adversarial training algorithm that focuses on
improving the fairness of class-wise robustness.

Training Settings. Following the best settings in [103], we train a PRN-18 using SGD
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with momentum 0.9, weight decay 5 × 10−4, and initial learning rate 0.1 for 200 epochs. The
learning rate is divided by 10 after epoch 100 and 150. All experiments are conducted by
default with a perturbation margin 𝜖 = 8/255, and for TRADES, we initialize 𝛽 = 6. For
the base attack strength for Class-wise Calibrated Margin (CCM), we set 𝜆1 = 0.5 for AT
and 𝜆1 = 0.3 for TRADES since the training robust accuracy of TRADES is higher than AT.
For FAT, we set 𝜆1 = 0.7 to avoid the attack being too weak to hard classes. Besides, we set
𝜆2 = 0.5 for Class-wise Calibrated Regularization (CCR) in TRADES. For the weight average
methods, the decay rate of FAWA and EMA is set to 0.85, and the weight average processes
begin at the 50-th epoch for better initialization. We draw 2% samples from each class as the
validation set for FAWA, and train on the remaining 98% samples, hence FAWA does not lead
to extra computational costs.

Metrics. We evaluate the clean and robust accuracy both in average and in the worst
case among classes. The robustness is evaluated by AutoAttack (AA) [25], a well-known
reliable attack for robustness evaluation. To perform the best performance during the training
phase, we adopt early stopping in adversarial training [103] and present both the best and last
results among training checkpoints. Further, as discussed in Section 4.2.3, the worst class
robust accuracy changes drastically, so we select the checkpoint that achieves the highest sum
of overall and the worst class robustness to report the results for a fair comparison.

4.4.2 Robustness and Fairness Performance

We implement our proposed training configuration schedule on AT, TRADES, and FAT.
To evaluate the effectiveness of our approach, we conduct five independent experiments for
each method and report the mean result and standard deviation.

As summarized in Table 4.1, CFA helps each method achieve a significant robustness
improvement both in average and the worst class at the best and last checkpoints. Furthermore,
when compared with baselines that use weight average (EMA), our CFA still achieves higher
overall and the worst class robustness for each method, especially in the worst class at the best
checkpoints, where the improvement exceeds 2%. Note that the vanilla FAT only achieves
17.2% the worst class robustness at the best checkpoint which is even lower than TRADES,
which verifies the discussion in Section 4.3.4 that instance-wise adaptive approaches are not
helpful for robustness fairness.

We also compare our approach with FRL [143]. However, since FRL also applies a re-
margin schedule, we cannot incorporate our CFA into FRL. Therefore, we only report results
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Table 4.1 Overall comparison of our proposed CFA framework with original methods.

Best (Avg. / Worst) Last (Avg. / Worst)
Method Clean Accuracy AA. Accuracy Clean Accuracy AA. Accuracy

AT 82.3 ±0.8 / 63.9 ±1.6 46.7 ±0.5 / 20.1 ±1.3 84.1 ±0.2 / 65.1±2.4 43.0 ±0.4 / 15.5 ±1.8

AT + EMA 81.9 ±0.3 / 61.6 ±0.5 49.6 ±0.2 / 21.3 ±0.8 84.8 ±0.1 / 67.7 ±0.7 44.3 ±0.5 / 18.1 ±0.5

AT + CFA 80.8 ±0.3 / 64.6 ±0.4 50.1 ±0.3 / 24.4 ±0.3 83.6 ±0.2 / 68.7 ±0.7 47.7 ±0.4 / 20.5 ±0.4

TRADES 82.3 ±0.1 / 67.8 ±0.6 48.3 ±0.3 / 21.7 ±0.5 83.9 ±0.3 / 66.9 ±1.5 46.9 ±0.3 / 18.5 ±1.3

TRADES + EMA 81.2 ±0.4 / 65.0 ±0.7 49.7 ±0.3 / 24.2 ±0.6 84.5 ±0.1 / 67.9 ±0.1 48.3 ±0.2 / 20.7 ±0.3

TRADES + CFA 80.4 ±0.2 / 66.2 ±0.5 50.1 ±0.2 / 26.5 ±0.4 83.0 ±0.1 / 68.1 ±0.3 49.3 ±0.1 / 21.5 ±0.3

FAT 84.6 ±0.4 / 69.2 ±0.8 45.7 ±0.6 / 17.2 ±1.3 85.4 ±0.2 / 70.8 ±1.9 42.1 ±0.1 / 14.8 ±1.6

FAT + EMA 85.2 ±0.2 / 66.7 ±0.6 48.6 ±0.1 / 18.3 ±0.5 85.7 ±0.2 / 71.2 ±0.4 43.2 ±0.1 / 15.7 ±0.7

FAT + CFA 82.1 ±0.3 / 64.7 ±0.9 49.6 ±0.1 / 20.9 ±0.8 84.3 ±0.1 / 69.4 ±0.3 45.1 ±0.2 / 16.7 ±0.2

FRL 82.8 ±0.1 / 71.4 ±2.4 45.9 ±0.3 / 25.4 ±2.0 82.8 ±0.2 / 72.9 ±1.5 44.7 ±0.2 / 23.1 ±0.8

FRL + EMA 83.6 ±0.3 / 69.5 ±0.7 46.1 ±0.2 / 25.6 ±0.4 81.9 ±0.2 / 74.2 ±0.3 44.9 ±0.2 / 24.5 ±0.3

of FRL with and without EMA in Table 4.1. As FRL is a variant of TRADES that applies
the loss function of TRADES, we compare the results of FRL with those of TRADES and
TRADES+CFA. From Table 4.1, we observe that FRL and FRL+EMA show only marginal
progress (less than 2%) in the worst class robustness as compared to TRADES+EMA, but at
an expensive cost (about 3%) of reducing the average performance. As demonstrated in Sec-
tion 4.2.1, a larger margin, which is adopted in FRL, mainly mitigates the robust over-fitting
issue but does not bring satisfactory best performance. This is further confirmed by the per-
formance of the final checkpoints of FRL, where FRL exhibits better performance in the worst
class robustness. In contrast, we calibrate the appropriate margin for each class rather than sim-
ply enlarging them, thus achieving both better robustness and fairness at the best checkpoint,
i.e., our TRADES+CFA outperforms FRL+EMA in both average (about 4%) and the worst
class (about 1%) robustness.

4.4.3 Ablation Study

In this section, we show the usefulness of each component of our CFA framework. Note
that we still apply AutoAttack (AA) to evaluate robustness.

4.4.3.1 Components of CFA

First, we compare our calibrated adversarial configuration, including CCM 𝜖𝑦 and CCR
𝛽𝑦, with vanilla ones for AT, TRADES, and FAT. As Table 4.2 shows, both the average and
worst class robust accuracy are improved for all three methods by applying CCM. Besides,
CCR, which is customized for TRADES, also improves the performance of vanilla TRADES.
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All experiments verify that our proposed class-wise adaptive adversarial configurations are
effective for robustness and fairness improvement.

Table 4.2 Comparison of models with/without our class-wise calibrated configurations in-
cluding margin 𝜖 and regularization 𝛽.

Method Avg. Robust Worst Robust

AT 46.7 20.1
+ CCM 47.6 22.8
TRADES 48.3 21.7
+ CCM 48.4 22.5
+ CCR 48.9 23.5
+ CCM + CCR 49.2 23.8
FAT 45.7 17.2
+ CCM 46.8 18.9

For FAWA, we present the results of FAWA compared with the simple EMA method in
Table 4.3. By eliminating the unfair checkpoints, our FAWA achieves significantly better per-
formance than EMA on the worst class robustness (nearly 2% improvement) with negligible
decrease on the overall robustness (less than 0.3%). This verifies the effectiveness of FAWA
on improving robust fairness.

Table 4.3 Comparison of simple EMA and our FAWA.

Method Avg. Robust Worst Robust

AT + EMA 49.6 21.3
AT + FAWA 49.3 23.1
TRADES + EMA 49.7 24.2
TRADES + FAWA 49.4 25.1
FAT + EMA 48.6 18.3
FAT + FAWA 48.5 19.9

4.4.3.2 Perturbation budgets for CCM

We also investigate the influence of base perturbation budget 𝜆1 by conducting five exper-
iments of AT incorporated CCM with 𝜆1 varying from 0.3 to 0.7. The comparison is plotted
in Figure 4.5(a). We can see that all models with different 𝜆1 show better overall and the worst
class robustness than vanilla AT, among which 𝜆1 = 0.5 performs best. We can say that CCM
has satisfactory adaptive ability on adjusting 𝜖𝑘 and is not heavily rely on the selection of 𝜆1.
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Figure 4.5(b) shows the class-wise margin used in the training phase for 𝜆1 = 0.5. We can see
the hard classes (classes 2,3,4,5) use smaller 𝜖𝑘 than the original 𝜖 = 8/255, while the easy
classes use larger ones, which is consistent with our empirical observation on different margins
in Section 4.2.1 and can explain why CCM is helpful to improve performance.

(a) (b)

Figure 4.5 Analysis on the base perturbation budget 𝜆1. (a): Average and the worst class
robustness of models trained with different 𝜆1 (solid) and vanilla AT (dotted). (b): Class-wise
calibrated margin 𝜖𝑘 in the training phase of 𝜆1 = 0.5.

4.4.3.3 Perturbation budgets for CCR

Similarly, we conduct a comparison experiment on analyzing the influence of regular-
ization budget 𝜆2 for TRADES + CCM + CCR in Figure 4.6. In Figure 4.6(a), we compare
the selection of 𝜆2 from 0.3 to 0.7. The robustness is evaluated under PGD-10. The base
perturbation budget 𝜆1 of CCM is still selected as 0.3. Compared to vanilla TRADES, our
TRADES+CCM+CCR outperforms in the worst class robustness significantly, and the overall
robustness is marginally higher than TRADES for 𝜆2 = 0.4, 0.5, and 0.6.

Figure 4.6(b) shows the 𝛽𝑦 used in the case 𝜆2 = 0.4. We can see that the hard classes
use 𝛽𝑦 ≈ 6, while the easy classes use a higher 𝛽𝑦. This is consistent with our analysis on
class-wise robustness under different regularization 𝛽 in Sec 4.2.2.

4.5 Summary
In this chapter, we first give a theoretical analysis of how attack strength in adversarial

training impacts the performance of different classes. Then, we empirically show the influence
of adversarial configurations on class-wise robustness and the fluctuating effect of robustness
fairness and point out there should be some appropriate configurations for each class. Based
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(a) (b)

Figure 4.6 Analysis on the base regularization budget 𝜆2. (a): Average and the worst class
robustness of models trained with different 𝜆2 (solid) and vanilla TRADES (dotted). (b): Class-
wise calibrated regularization 𝛽𝑦 in the training phase of 𝜆2 = 0.4.

on these insights, we propose a Class-wise calibrated Fair Adversarial training (CFA) frame-
work to adaptively customize class-wise training configurations for improving robustness and
fairness. Experiment shows our CFA outperforms state-of-the-art methods both in overall and
fairness metrics, and can be easily incorporated into existing methods to further enhance their
performance.
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4.6 Proofs of Theorems

Preliminaries. We denote the distribution function and the probability density function
of the normal distribution N(0, 1) as 𝜙(𝑥) and Φ(𝑥):

Φ(𝑥) =
∫ 𝑥

−∞

1
√

2𝜋
𝑒
−
𝑥2

2 d𝑡 = Pr .(N (0, 1) < 𝑥),

𝜙(𝑥) = 1
√

2𝜋
𝑒
−
𝑥2

2 = Φ′(𝑥).

(4.7)

Recall that the data distribution is

𝑥1 =


+𝑦, w.p. 𝑝𝑦,

−𝑦, w.p. 1 − 𝑝𝑦,

𝑥2, · · · , 𝑥𝑑+1 i.i.d∼ N(𝜂𝑦, 1),

(4.8)

where 1 > 𝑝+1 > 𝑝−1 >
1
2
. First we calculate the clean accuracy A𝑦( 𝑓𝑤) and the robust

accuracy R𝑦( 𝑓𝑤) for any class 𝑦 ∈ {+1,−1} and 𝑤 > 0. Also recall that the classifier

𝑓𝑤 = sign(𝑥1 +
𝑥2 + · · · + 𝑥𝑑+1

𝑤
) (4.9)

Note that 𝑤 > 0, we have

A+1( 𝑓𝑤) = Pr .(sign( 𝑓𝑤) = 1)

= Pr .(𝑥1 +
𝑥2 + · · · + 𝑥𝑑+1

𝑤
> 0)

= 𝑝+1 · Pr .(1 + 𝑥2 + · · · + 𝑥𝑑+1
𝑤

> 0) + (1 − 𝑝+1) · Pr .(−1 + 𝑥2 + · · · + 𝑥𝑑+1
𝑤

> 0)

= 𝑝+1 · Pr .(𝑥2 + · · · + 𝑥𝑑+1 > −𝑤) + (1 − 𝑝+1) · Pr .(𝑥2 + · · · + 𝑥𝑑+1 > 𝑤)

= 𝑝+1 · Pr .(N (𝑑𝜂, 𝑑) > −𝑤) + (1 − 𝑝+1) · Pr .(N (𝑑𝜂, 𝑑) > 𝑤)

= 𝑝+1 · Pr .(N (0, 𝑑) > −𝑑𝜂 − 𝑤) + (1 − 𝑝+1) · Pr .(N (0, 𝑑) > −𝑑𝜂 + 𝑤)

= 𝑝+1 · Pr .(N (0, 1) < 𝑑𝜂 + 𝑤
√
𝑑
) + (1 − 𝑝+1) · Pr .(N (0, 1) < 𝑑𝜂 − 𝑤

√
𝑑
)

= 𝑝+1Φ(
𝑑𝜂 + 𝑤
√
𝑑
) + (1 − 𝑝+1)Φ(

𝑑𝜂 − 𝑤
√
𝑑
).

(4.10)

Similarly, we have

A−1( 𝑓𝑤) = 𝑝−1Φ(
𝑑𝜂 + 𝑤
√
𝑑
) + (1 − 𝑝−1)Φ(

𝑑𝜂 − 𝑤
√
𝑑
). (4.11)
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For the robustness, following the evaluation in the original model [113], we evaluate the robust-
nessR𝑦 under 𝑙∞-norm perturbation bound 𝜖 = 2𝜂 < 1. Consider the distribution of adversarial
examples 𝑥 = (𝑥1, 𝑥2, · · · , 𝑥𝑑+1). Since we restrict the robust feature 𝑥1 ∈ {−1, +1} and 𝜖 < 1,
we have 𝑥1 = 𝑥1. For the non-robust features 𝑥𝑖 ∼ N(𝜂𝑦, 1), the corresponding adversarial
example has 𝑥𝑖 ∼ N(−𝜂𝑦, 1) under the perturbation bound 𝜖 = 2𝜂. Therefore, the distribution
of adversarial examples is

𝑥1 =


+𝑦, w.p. 𝑝𝑦

−𝑦, w.p. 1 − 𝑝𝑦
and 𝑥2, · · · , 𝑥𝑑+1 i.i.d∼ N(−𝜂𝑦, 1). (4.12)

By simply replacing 𝜂 with −𝜂 in derivative process of (4.10), for any 𝑤 > 0, we have

R+1( 𝑓𝑤) = 𝑝+1Φ(
−𝑑𝜂 + 𝑤
√
𝑑
) + (1 − 𝑝+1)Φ(

−𝑑𝜂 − 𝑤
√
𝑑
),

R−1( 𝑓𝑤) = 𝑝−1Φ(
−𝑑𝜂 + 𝑤
√
𝑑
) + (1 − 𝑝−1)Φ(

−𝑑𝜂 − 𝑤
√
𝑑
).

(4.13)

Proof of Theorem 1. Note that 𝑝+1 > 𝑝−1, and Φ( 𝑑𝜂 + 𝑤√
𝑑
) > Φ( 𝑑𝜂 − 𝑤√

𝑑
), we have

A+1( 𝑓𝑤) = 𝑝+1Φ(
𝑑𝜂 + 𝑤
√
𝑑
) + (1 − 𝑝+1)Φ(

𝑑𝜂 − 𝑤
√
𝑑
)

= 𝑝+1(Φ(
𝑑𝜂 + 𝑤
√
𝑑
) −Φ( 𝑑𝜂 − 𝑤√

𝑑
)) +Φ( 𝑑𝜂 − 𝑤√

𝑑
)

> 𝑝−1(Φ(
𝑑𝜂 + 𝑤
√
𝑑
) −Φ( 𝑑𝜂 − 𝑤√

𝑑
)) +Φ( 𝑑𝜂 − 𝑤√

𝑑
)

= A−1( 𝑓𝑤).

(4.14)

Proof of Theorem 2. Similar to the adversarial example distribution analysis (4.12), un-
der the perturbation bound 𝜖 , the data distribution of the crafted adversarial example for training
is

𝑥1 =


+𝑦, w.p. 𝑝𝑦

−𝑦, w.p. 1 − 𝑝𝑦
,

𝑥2, · · · , 𝑥𝑑+1 i.i.d∼ N((𝜂 − 𝜖)𝑦, 1).

(4.15)

We use Ã( 𝑓𝑤), Ã𝑦( 𝑓𝑤) to denote the overall and class-wise train accuracy of the classifier 𝑓𝑤
on training data distribution (4.15). Let 𝑝 = 𝑝+1 + 𝑝−1. Then the overall train accuracy of 𝑓𝑤
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is

Ã( 𝑓𝑤) =
1
2
(Ã+1( 𝑓𝑤) + Ã−1( 𝑓𝑤))

=
1
2
(𝑝+1Φ(

𝑑 (𝜂 − 𝜖) + 𝑤
√
𝑑

) + (1 − 𝑝+1)Φ(
𝑑 (𝜂 − 𝜖) − 𝑤
√
𝑑

)

+ 𝑝−1Φ(
𝑑 (𝜂 − 𝜖) + 𝑤
√
𝑑

) + (1 − 𝑝−1)Φ(
𝑑 (𝜂 − 𝜖) − 𝑤
√
𝑑

))

=
1
2
(𝑝Φ( 𝑑 (𝜂 − 𝜖) + 𝑤√

𝑑
) + (2 − 𝑝)Φ( 𝑑 (𝜂 − 𝜖) − 𝑤√

𝑑
)).

(4.16)

Now we calculate the best parameter 𝑤 for Ã( 𝑓𝑤). Note that Φ′(𝑥) = 𝜙(𝑥), we have

𝜕Ã( 𝑓𝑤)
𝜕𝑤

=
1

2
√
𝑑
(𝑝𝜙( 𝑑 (𝜂 − 𝜖) + 𝑤√

𝑑
) − (2 − 𝑝)𝜙( 𝑑 (𝜂 − 𝜖) − 𝑤√

𝑑
))

=
1

2
√

2𝜋𝑑
{𝑝 exp[−1

2
( 𝑑 (𝜂 − 𝜖) + 𝑤√

𝑑
)2] − (2 − 𝑝) exp[−1

2
( 𝑑 (𝜂 − 𝜖) − 𝑤√

𝑑
)2]}

(4.17)

Therefore,
𝜕Ã( 𝑓𝑤)
𝜕𝑤

> 0 is equivalent to

𝑝 exp[−1
2
( 𝑑 (𝜂 − 𝜖) + 𝑤√

𝑑
)2] > (2 − 𝑝) exp[−1

2
( 𝑑 (𝜂 − 𝜖) − 𝑤√

𝑑
)2]

⇐⇒ exp[−1
2
(( 𝑑 (𝜂 − 𝜖) + 𝑤√

𝑑
)2 − ( 𝑑 (𝜂 − 𝜖) − 𝑤√

𝑑
)2)] > 2 − 𝑝

𝑝

⇐⇒ exp[− 1
2𝑑
· (4𝑑 (𝜂 − 𝜖)𝑤)] > 2 − 𝑝

𝑝

⇐⇒ exp[−2(𝜂 − 𝜖)𝑤] > 2 − 𝑝
𝑝

⇐⇒ −2(𝜂 − 𝜖)𝑤 > ln(2 − 𝑝
𝑝
)

⇐⇒ 𝑤 <
1

2(𝜂 − 𝜖) ln( 𝑝

2 − 𝑝 ) := �̂�𝜖 .

(4.18)

Recall that we assume 𝑝+1, 𝑝−1 >
1
2
, thus 𝑝 = 𝑝+1 + 𝑝−1 > 1 and

𝑝

2 − 𝑝 > 1. Therefore,

𝜕Ã( 𝑓𝑤)
𝜕𝑤

> 0 when 𝑤 < �̂�𝜖 , and
𝜕Ã( 𝑓𝑤)
𝜕𝑤

< 0 when 𝑤 > �̂�𝜖 . We can conclude that 𝑓𝑤
obtains the optimal parameter 𝑤, i.e., 𝑤 achieves the highest train accuracy, when 𝑤 = �̂�𝜖 =

1
2(𝜂 − 𝜖) ln( 𝑝

2 − 𝑝 ), which is monotone increasing at 𝜖 .

Proof of Theorem 3. As calculated in (4.10) and (4.11), we haveA𝑦( 𝑓𝑤) = 𝑝𝑦Φ(
𝑑𝜂 + 𝑤
√
𝑑
)+
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(1 − 𝑝𝑦)Φ(
𝑑𝜂 − 𝑤
√
𝑑
) and

𝜕A( 𝑓𝑤)
𝜕𝑤

=
1
√
𝑑
(𝑝𝑦𝜙(

𝑑𝜂 + 𝑤
√
𝑑
) − (1 − 𝑝𝑦)𝜙(

𝑑𝜂 − 𝑤
√
𝑑
)). (4.19)

Therefore,
𝜕A( 𝑓𝑤)
𝜕𝑤

> 0 is equivalent to

exp{−1
2
[( 𝑑𝜂 + 𝑤√

𝑑
)2 − ( 𝑑𝜂 − 𝑤√

𝑑
)2]} >

1 − 𝑝𝑦
𝑝𝑦

⇐⇒ exp{−2𝜂𝑤} >
1 − 𝑝𝑦
𝑝𝑦

⇐⇒ −2𝜂𝑤 > ln(
1 − 𝑝𝑦
𝑝𝑦
)

⇐⇒ 𝑤 <
1
2𝜂

ln(
𝑝𝑦

1 − 𝑝𝑦
).

(4.20)

Similar to the proof of Theorem 2, we have 𝑤∗𝑦 = arg maxA𝑦( 𝑓𝑤) =
1
2𝜂

ln(
𝑝𝑦

1 − 𝑝𝑦
). Since

1 > 𝑝+1 > 𝑝−1 >
1
2
, we have

𝑝+1
1 − 𝑝+1

>
𝑝−1

1 − 𝑝−1
> 1 and hence 𝑤∗+1 > 𝑤

∗
−1.

Proof of Theorem 4. First we prove for 𝑢 > 𝑤∗+1,

A−1( 𝑓𝑤+Δ𝑤
) − A−1( 𝑓𝑤) < A+1( 𝑓𝑤+Δ𝑤

) − A+1( 𝑓𝑤) < 0. (4.21)

Since we have

A𝑦( 𝑓𝑤+Δ𝑤
) − A𝑦( 𝑓𝑤) =

∫ 𝑤+Δ𝑤

𝑤

𝜕A𝑦( 𝑓𝑢)
𝜕𝑢

d𝑢, (4.22)

It’s suffice to show that

𝜕A−1( 𝑓𝑢)
𝜕𝑢

<
𝜕A+1( 𝑓𝑢)

𝜕𝑢
< 0, ∀𝑢 > 𝑤∗+1. (4.23)

Recall that in the proof of Theorem 3, we have shown

𝜕A( 𝑓𝑢)
𝜕𝑤

=
1
√
𝑑
(𝑝𝑦𝜙(

𝑑𝜂 + 𝑤
√
𝑑
) − (1 − 𝑝𝑦)𝜙(

𝑑𝜂 − 𝑤
√
𝑑
))

=
1
√
𝑑
{𝑝𝑦 [𝜙(

𝑑𝜂 + 𝑤
√
𝑑
) + 𝜙( 𝑑𝜂 − 𝑤√

𝑑
)] − 𝜙( 𝑑𝜂 − 𝑤√

𝑑
)}.

(4.24)

Therefore, since 𝑝−1 < 𝑝+1 and 𝜙( 𝑑𝜂 + 𝑤√
𝑑
) + 𝜙( 𝑑𝜂 − 𝑤√

𝑑
) > 0, we have

𝜕A−1( 𝑓𝑢)
𝜕𝑢

<
𝜕A+1( 𝑓𝑢)

𝜕𝑢
. (4.25)

Further, since 𝑢 > 𝑤∗+1, we have
𝜕A+1( 𝑓𝑢)

𝜕𝑢
< 0 as shown in the proof of Theorem 3.
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Next, we prove that for ∀𝑤 > 0,

0 < R−1( 𝑓𝑤+Δ𝑤
) − R−1( 𝑓𝑤) < R+1( 𝑓𝑤+Δ𝑤

) − R+1( 𝑓𝑤). (4.26)

Similarly, it suffice to show

0 <
𝜕R−1( 𝑓𝑢)

𝜕𝑢
<
𝜕R+1( 𝑓𝑢)
𝜕𝑢

, ∀𝑢 > 0. (4.27)

Recall the expression (4.13), we have

R𝑦 = 𝑝𝑦Φ(
−𝑑𝜂 + 𝑤
√
𝑑
) + (1 − 𝑝𝑦)Φ(

−𝑑𝜂 − 𝑤
√
𝑑
), (4.28)

hence
𝜕R𝑦( 𝑓𝑤)
𝜕𝑤

=
1
√
𝑑
{𝑝𝑦𝜙(

−𝑑𝜂 + 𝑤
√
𝑑
) − (1 − 𝑝𝑦)𝜙(

−𝑑𝜂 − 𝑤
√
𝑑
)}

=
1
√
𝑑
{𝑝𝑦 [𝜙(

−𝑑𝜂 + 𝑤
√
𝑑
) + 𝜙(−𝑑𝜂 − 𝑤√

𝑑
)] − 𝜙(−𝑑𝜂 − 𝑤√

𝑑
)}

(4.29)

Since 𝑝+1 > 𝑝−1 and 𝜙(−𝑑𝜂 + 𝑤√
𝑑
) + 𝜙(−𝑑𝜂 − 𝑤√

𝑑
) > 0, we have

𝜕R−1( 𝑓𝑢)
𝜕𝑢

<
𝜕R+1( 𝑓𝑢)
𝜕𝑢

. (4.30)

Finally, as 𝑑, 𝜂, 𝑤 > 0, we have (−𝑑𝜂 + 𝑤√
𝑑
)2 < (−𝑑𝜂 − 𝑤√

𝑑
)2 by comparing their absolute value.

This indicates 𝜙(−𝑑𝜂 + 𝑤√
𝑑
) > 𝜙(−𝑑𝜂 − 𝑤√

𝑑
). Also note that 𝑝−1 >

1
2
and 𝑝−1 > (1 − 𝑝−1), we

have
1
√
𝑑
{𝑝−1𝜙(

−𝑑𝜂 + 𝑤
√
𝑑
) − (1 − 𝑝−1)𝜙(

−𝑑𝜂 − 𝑤
√
𝑑
)} > 0, (4.31)

which completes our proof.

65



Data Distribution Insights into Trustworthy Machine Learning

66



CHAPTER 5 IN-CONTEXT LARGE LANGUAGE MODEL SAFETY

Chapter 5 In-context Large Language Model Safety

This chapter explores a new paradigm for LLM safety by harnessing in-context adver-
sarial data distributions, which is organized as follows. First, we elaborate on our proposed
In-Context Attack (ICA) and In-Context Defense (ICD) algorithms in Section 5.1. We further
provide theoretical insights to understand their underlying mechanisms in Section 5.2, where
we show how adversarial data distributions can manipulate the LLM’s safety through their con-
text window. Finally, we also conduct experiments to demonstrate the effectiveness of ICA and
ICD in Section 5.3, and summarize this chapter in Section 5.4. The proof of theorems in this
chapter can be found in Section 5.5.

5.1 In-Context Attack and Defense

In this section, we introduce our proposed in-context attack and defense methods.

5.1.1 In-Context Attack

First, we propose an In-Context Attack (ICA) on aligned LLMs. Since LLMs can effi-
ciently learn a specific task through only a few in-context demonstrations, we wonder whether
they can learn to behave maliciously through a set of harmful demonstrations.

Motivated by this notion, we propose to craft a harmful demonstration set consisting of a
few query-response pairs that the language model answers some toxic requests, as illustrated
in Algorithm 3. Specifically, before prompting the model with the target attack request 𝒙,
we first collect some other harmful prompts {𝑥𝑖} (can be manually written or from adversar-
ial prompt datasets like advbench [164] or harmbench [76]), as well as their corresponding
harmful outputs {𝑦𝑖} (can also be manually written or from attacking a surrogate model with
𝑥𝑖) to construct the harmful demonstration set. Note that the attacker can save this adversar-
ial demonstration set to attack other models or queries. Then, by concatenating the demon-
strations [𝑥1, 𝑦1, · · · , 𝑥𝑘 , 𝑦𝑘] and the target attack prompt 𝒙, we obtain the final attack prompt
𝑃attack = [𝑥1, 𝑦1, · · · , 𝑥𝑘 , 𝑦𝑘 , 𝒙]. By prompting 𝑃attack to the victim LLM, our proposed ICA can
successfully get the target harmful response of request 𝒙. An example ICA prompt is shown
in Figure 5.1 (3rd example).

Discussion. We highlight the proposed ICA enjoys several advantages as follows:
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Algorithm 3: In-Context Attack (ICA)
1 Input: A generative language model 𝑓 (·), a target attack prompt 𝒙, number of

in-context attack demonstrations 𝑘
2 Output: A harmful response to 𝒙 generated by 𝑓
3 1. Collect some other harmful prompts {𝑥1, 𝑥2, · · · , 𝑥𝑘} (may be irrelevant to 𝒙; can

be reused)
4 2. Collect the corresponding harmful response {𝑦1, 𝑦2, · · · , 𝑦𝑘} of each

𝑥𝑖 (𝑖 = 1, 2, · · · , 𝑘)
5 3. Gather the demonstrations {(𝑥𝑖, 𝑦𝑖)} and 𝑥 as the adversarial prompt

𝑃attack = [𝑥1, 𝑦1, · · · , 𝑥𝑘 , 𝑦𝑘 , 𝒙]
6 return 𝑓 (𝑃attack)

1. Stealthy. While adversarial suffix attacks [164, 163] may be easily detected with a
simple perplexity filter [1, 51], the prompt of ICA is thoroughly in a natural language
form and cannot be easily detected. Further, for closed-source models, the attacker can
practically use the conversation API provided by the model developer (e.g., the OpenAI
API for GPT-4) to add them.

2. Efficiency. To attack different models and harmful prompts, the attacker only needs to
generate the demonstrations for the adversarial demonstration set [𝑥1, 𝑦1, 𝑥2, 𝑦2, · · · , 𝑥𝑘 , 𝑦𝑘]
once. During attacking, ICA only requires a single forward pass to attack a single
prompt.

3. Scalability. Unlike existing attacks with fixed prompt lengths whose capabilities are
difficult to scale up, ICA can easily strengthen the attack with more adversarial demon-
strations, showing its scalability for better attack performance.

5.1.2 In-Context Defense

Similar to our proposed ICA, we also explore whether a few safe demonstrations can
enhance the robustness of LLMs against jailbreak attacks. To this end, we propose an In-
Context Defense (ICD) approach that crafts a set of safe demonstrations to guard the model
not to generate anything harmful. Contrary to ICA, ICD uses the desired safe response in the
demonstrations that refuse to answer harmful requests. Specifically, we still collect a set of
malicious requests {𝑥𝑖} and the corresponding safe responses {𝑦𝑖} to craft the demonstrations.
Similar to ICA, the requests {𝑥𝑖} can be collected from harmful prompt datasets, and the safe
responses {𝑦𝑖} can be collected by directly prompting {𝑥𝑖} to the aligned model without at-
tack, where the model can generate desired safe response as expected. Finally, by appending
these demonstrations to the conversation template of the defense target LLM 𝑓 (·), we trans-
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Figure 5.1 An illustration of LLM conversation under various settings. In the default setting
(1st example), the LLM refuses to generate harmful content as desired. However, under the
adversarial prompt (2nd example) by jailbreaking attacks, the model is induced to generate
harmful content. Our proposed In-Context Attack (ICA, 3rd example) can achieve this by adding
harmful demonstrations on responding to other malicious queries, even if they are irrelevant to
the inference prompt. On the other hand, our proposed In-Context Defense (ICD, 4th example)
can enhance the model’s robustness against jailbreaking with safe demonstrations that teach
the model to refuse to answer harmful prompts.

form it into a more safe and robust language model 𝑔(·) = 𝑓 ([𝑥1, 𝑦1, 𝑥2, 𝑦2, · · · , 𝑥𝑘 , 𝑦𝑘 , ·]).
For any user query 𝒙, the model developer returns the response of the LLM by prompting
𝑃𝑥 = [𝑥1, 𝑦1, 𝑥2, 𝑦2, · · · , 𝑥𝑘 , 𝑦𝑘 , 𝒙] as detailed in Algorithm 4. An example ICD prompt is
shown in Figure 5.1 (4th example).

Discussion. We also highlight several advantages of ICD as follows:

1. Model-agnostic. Since ICD only requires the conversation API of the target LLM, it
does not need access to the model parameters like perplexity filter [51] or modify the in-
ternal generation logic like RAIN [66], and even not need to change the systemmessage
like self-reminders [141]. Thus, ICD can be easily deployed for AI-plugin products by
simply adding these demonstrations to the conversation, which is particularly useful for
downstream tasks.
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Algorithm 4: In-Context Defense (ICD)
1 Input: A generative language model 𝑓 (·), user query 𝒙, number of in-context

defense demonstrations 𝑘
2 Output: A safe response to 𝒙 generated by 𝑓
3 1. Collect some harmful requests {𝑥1, 𝑥2, · · · , 𝑥𝑘} (can be reused)
4 2. Collect their corresponding safe responses {𝑦1, 𝑦2, · · · , 𝑦𝑘} of each 𝑥𝑖

(𝑖 = 1, 2, · · · , 𝑘)
5 3. Gather the safe demonstrations {(𝑥𝑖, 𝑦𝑖)} and 𝑥 as the safe prompt with the

requests and responses 𝑃safe = [𝑥1, 𝑦1, · · · , 𝑥𝑘 , 𝑦𝑘 , 𝒙]
6 return 𝑓 (𝑃safe)

2. Efficiency. Since ICD only adds a few demonstrations to the conversation template, it
only requires negligible computational overhead (no more than 2%).

3. Harmless. While existing defense methods, particularly filter-based [1] and detection-
based [61, 51], are known to may cause unaffordable false positive cases that reject
benign prompts, our proposed ICD does not have this concern. In our experiments, we
evaluate ICD with GLUE [117] and MT-bench [162] to show that ICD does not hurt
natural performance.

5.2 Theoretical Insights into Adversarial Demonstrations
In this section, we provide theoretical insights into understanding how a few adversarial

demonstrations can manipulate the safety of LLMs. We build this hypothetical framework by
decoupling safe and harmful language distributions and then illustrate how these demonstra-
tions can guide the model generation bias to the target distribution (harmful or safe).

5.2.1 Problem Formulation

We start building our framework by modeling the language distributions and harmfulness
quantization, followed by fitting adversarial demonstrations into this framework.

Decoupling language model distributions. Consider modeling a language model as
probability distribution P(·) over text (prompt or response) sentences. We use Σ to denote all
possible such sentences, therefore for a sentence sequence 𝑠∗ = [𝑠1, 𝑠2, · · · , 𝑠𝑛] where 𝑠𝑖 ∈ Σ,
P(𝑠∗) is the probability of the language model generating this sequence (without prompting).

To decouple the safe and harmful generations in this language distribution, similar to
concurrent theoretical frameworks [133, 134], we can assume that

P = 𝜆 P𝐻 + (1 − 𝜆) P𝑆, (5.1)
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where P𝐻 (·) is the harmful generation distribution and P𝑆 (·) is the safe generation distribution
derived from this LLM. 𝜆 ∈ (0, 1) can be regarded as a coefficient indicating the harmful extent
of this language model. For any sequence of sentence 𝑠∗, we have P(𝑠∗) = 𝜆P𝐻 (𝑠∗) + (1 −
𝜆)P𝑆 (𝑠∗).

Generally, the safety training and fine-tuning techniques for LLMs like RLHF encourage
𝜆 as small as possible to reduce the harmful generation probability. However, the extensive
harmful contents that exist in the training corpus make it idealistic to keep 𝜆 = 0 exactly, as
empirically justified and estimated by [134].

Harmful risk quantization. Tomeasure the harmfulness of a given sentence, we use 𝑅(·)
that given any sentence 𝑎 ∈ Σ, denote 𝑅(𝑎) ∈ [0, 1] as its harmfulness. A higher 𝑅(𝑎) signifies
an increased risk level. Additionally, we care about how harmful the content generated by the
language model is when given a prompt. Therefore, we propose the following measurement
for prompt harmfulness:

Definition 6 (Expectation of harmfulness for prompt) Given any prompt 𝑞 and language
model distribution 𝑃, denote

R𝑃 (𝑞) = E𝑎∼𝑃 ( · |𝑞) [𝑅(𝑎)] (5.2)

as the expected risk level of prompting 𝑞 for the language model.

Based on this definition, we can use RP(𝑝) to measure the harmful risk by prompting 𝑝.
We also have intuitive properties of RP𝐻 (𝑝) and RP𝑆 (𝑝) derived from the definitions of these
distributions. For example, RP𝐻 (𝑝) can be sufficiently high, as prompting a harmful query 𝑝
in P𝐻 stands a good chance of returning the requested harmful response.

Adversarial demonstrations. Now, we introduce the formulation of safe and harmful
demonstrations into this framework. Consider a harmful request distribution Q𝐻 that is com-
posed of various malicious prompts. We model the distribution of a set of 𝐾 harmful demon-
strations as 𝐷𝐻 ∼ [𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘], where

𝑞𝑖
i.i.d.∼ Q𝐻 , 𝑎𝑖 = arg max

𝑎
P𝐻 (𝑎 |𝑞𝑖). (5.3)

Similarly, the set of safe demonstrations 𝐷𝑆 is sampled from 𝐷𝑆 ∼ [𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘], where

𝑞𝑖
i.i.d.∼ Q𝐻 , 𝑎𝑖 = arg max

𝑎
P𝑆 (𝑎 |𝑞𝑖). (5.4)

Note that the term arg max used in the above two equations only indicates the response 𝑎𝑖 of
the request 𝑞𝑖 is generated by prompting 𝑎𝑖 in the corresponding distributions. In practice, we
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do not need these 𝑎𝑖 to perfectly fit the exact arg max of P𝐻 or P𝑆, so we can manually modify
or design the response as long as they are harmful or safe.

To study how adversarial demonstrations behave in this framework, we make several as-
sumptions in the following. First, since in the conversation scenario, the difference between
the two distributions only lies in the response rather than the queries, we have the following
assumption that the probability of each request prompt is the same for the two distributions:

Assumption 1 (Independence on requests) For any request ∀𝑞 ∼ Q𝐻 and its prefix prompt
𝑝∗, we have P𝐻 (𝑞 |𝑝∗) = P𝑆 (𝑞 |𝑝∗).

Further, though the generation distribution P of the LLM may be affected by previous
demonstrations, we assume that a single distribution of P𝐻 or P𝑆 is robust to the context. In
other words, the previous conversation 𝑑 cannot influence the output of the current request 𝑞
when restricted to one of the two distributions:

Assumption 2 (Robustness of a single distribution) For any demonstration set 𝑑 and request
𝑞, we have

P𝐻 (𝑎 | [𝑑, 𝑞]) = P𝐻 (𝑎 |𝑞), and P𝑆 (𝑎 | [𝑑, 𝑞]) = P𝑆 (𝑎 |𝑞). (5.5)

Finally, given the divergence of the two distributions, it is less likely for a harmful output
𝑎𝐻 to be generated from the safe distribution, so we can assume the probability ratio P𝐻 (𝑎𝐻 |𝑞)

P𝑆 (𝑎𝐻 |𝑞)

has a lower bound, and vice versa for safe outputs. We use a constant Δ to model this difference
in the following assumption:

Assumption 3 (Divergence between the distributions) There exists a constant Δ > 0 such
that for any request ∀𝑞 ∼ Q𝐻 , let 𝑎𝐻 = arg max P𝐻 (𝑎 |𝑞) be the desired response from the
harmful language distribution. Similarly, Let 𝑎𝑆 = arg max P𝑆 (𝑎 |𝑞) be the response from the
safe language distribution. Then we have

ln
(
P𝐻 (𝑎𝐻 |𝑞)
P𝑆 (𝑎𝐻 |𝑞)

)
> Δ and ln

(
P𝑆 (𝑎𝑆 |𝑞)
P𝐻 (𝑎𝑆 |𝑞)

)
> Δ. (5.6)

5.2.2 Main Results

Based on the aforementioned framework, we can derive safety risk bounds of adversarial
demonstrations. Our primary theorem offers insights into how ICA and ICD influence safety
risk by characterizing an individual distribution. We then broaden our analysis to includemixed
safety demonstration scenarios.
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Understanding adversarial demonstrations. In the following theorem, we show that
adversarial demonstration sets can approximate the generation safety risks close to the target
distribution with only a logarithmic scale:

Theorem 5 Given a target harmful request 𝑞 ∼ Q𝐻 .
For ∀𝜖 > 0, by a set of 𝑘 numbers of harmful demonstrations 𝐷𝐻 where 𝑘 ≥ 1

Δ (ln 2 +
ln 1

𝜆
+ ln 1

𝜖
), it’s sufficient to increase the model’s safety risk to

RP𝐻 (𝑞) − RP([𝐷𝐻 , 𝑞]) ≤ 𝜖 . (5.7)

In contrast, by a set of 𝑘 numbers of safe demonstrations 𝐷𝑆 where 𝑘 ≥ 1
Δ (ln 2 + ln 1

1−𝜆 +
ln 1

𝜖
), it’s sufficient to decrease the model’s safety risk to

RP([𝐷𝑆, 𝑞]) − RP𝑆 (𝑞) ≤ 𝜖 . (5.8)

proof sketch. To prove Theorem 5, we need the following lemma, which bounds the dif-
ference between the safety risks between P, P𝐻 , and P𝑆 with probability ratios:

Lemma 1 Consider a prompt 𝑝∗ = [𝐷, 𝑞] composed of a query 𝑞 ∼ Q𝐻 and a set of demon-
strations 𝐷. We have

|RP(𝑝∗) − RP𝐻 (𝑝∗) | ≤
2
𝜆
· P𝑆 (𝑝

∗)
P𝐻 (𝑝∗)

(5.9)

and
|RP(𝑝∗) − RP𝑆 (𝑝∗) | ≤

2
1 − 𝜆 ·

P𝐻 (𝑝∗)
P𝑆 (𝑝∗)

. (5.10)

This lemma can be derived by expanding R𝑃 (𝑝∗) =
∑
𝑎 𝑅(𝑎)𝑃(𝑎 |𝑝∗) for the three distri-

butions and using triangle inequalities. Then, by expanding P𝑆 (𝑝∗) and P𝐻 (𝑝∗) in the bound
from Lemma 1 with Assumption 1 and 2, their ratio can be simplified as products of multiple
individual probability ratios

P𝑆 (𝑎𝑖 |𝑞𝑖)
P𝐻 (𝑎𝑖 |𝑞𝑖)

. Finally, using Assumption 3 on these ratios can derive
the target bound.

This theorem shows that for the queried harmful request 𝑞, to achieve comparable harm-
fulness with prompting the 𝑞 in the harmful distribution P𝐻 , i.e. higher than RP𝐻 (𝑞) − 𝜖 , it
only requires O(ln 1

𝜆
+ ln

1
𝜖
) demonstrations that on a logarithmic scale of

1
𝜖

and
1
𝜆
, where

1
𝜆

measures the intrinsic safety of the model and
1
𝜖

measures how close is the safety risk to
the harmful distribution. In contrast, decreasing the risk level of 𝑞 comparable with the safe
distribution, i.e. RP𝑆 (𝑞) + 𝜖 , only requires O(ln 1

1 − 𝜆 + ln
1
𝜖
) demonstrations. Notably, since

for aligned models the 𝜆 tends to 0, the term ln
1

1 − 𝜆 may be significantly smaller than ln
1
𝜆
.
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This notion aligns well with our experiment in the following section, where the number of
demonstrations we used in ICD (1-2 shots) is significantly less than in ICA.

Extension on mixed distributions. We further extend this theory to the scenario that
both safe and harmful demonstrations are included in the prompt. This can help us understand
the robustness of LLMs guarded by safety prompts, exemplified by the case of attacking ICD
guarded models with ICA. Under this setting, we additionally deduced the following corollary:

Corollary 1 Suppose that a set of mixed demonstrations 𝐷 = [𝐷𝑆, 𝐷𝐻] consists of 𝑘 safe
demonstrations

𝐷𝑆 = [𝑞1, 𝑎
𝑆
1 , 𝑞2, · · · , 𝑞𝑘 , 𝑎𝑆𝑘 ] (5.11)

and 𝑙 harmful demonstrations

𝐷𝐻 = [𝑞′1, 𝑎𝐻1 , · · · , 𝑞′𝑙, 𝑎𝐻𝑙 ], (5.12)

where 𝑞𝑖, 𝑞′𝑗 ∼ 𝑄𝐻 . Let Δ𝑆1 ,Δ𝑆2 , · · · ,Δ𝑆𝑘 be the divergence between the distributions used in

Assumption 3 for the safe demonstrations, i.e. Δ𝑆𝑖 = ln(
P𝑆 (𝑎𝑆𝑖 |𝑞𝑖)
P𝐻 (𝑎𝑆𝑖 |𝑞𝑖)

), and similarly let Δ𝐻𝑖 =

ln(
P𝐻 (𝑎𝐻𝑖 |𝑞𝑖)
P𝑆 (𝑎𝐻𝑖 |𝑞𝑖)

) for harmful demonstrations. For a harmful query 𝑞 ∼ 𝑄𝐻 with prompt 𝑝∗ =

[𝐷𝑆, 𝐷𝐻 , 𝑞], we have the following safety risk bounds:

RP([𝐷, 𝑞]) ≤ RP𝑆 (𝑞) +
2

1 − 𝜆 ·
exp(Δ𝐻1 + Δ𝐻2 + · · · + Δ𝐻𝑙 )
exp(Δ𝑆1 + Δ𝑆2 + · · · + Δ𝑆𝑘 )

, (5.13)

and
RP( [𝐷, 𝑞]) ≥ RP𝐻 (𝑞) −

2
𝜆
·

exp(Δ𝑆1 + Δ𝑆2 + · · · + Δ𝑆𝑘 )
exp(Δ𝐻1 + Δ𝐻2 + · · · + Δ𝐻𝑙 )

. (5.14)

The deduction of this corollary is similar to the proof of Theorem 5, where the difference
is that we use the Δ𝑆𝑖 ,Δ

𝐻
𝑗 instead of Assumption 3 that the inequality for Δ. This corollary

shows that the safety risk for a harmful query 𝑞 with mixed safe/harmful demonstrations can
be bounded with Δ𝑆𝑖 ,Δ𝐻𝑗 , which are the divergence between the distributions for all demonstra-
tions. The Δ𝐻𝑗 can be regarded as the harmfulness level of the demonstrations, since a more
harmful example makes itself more distinguished from the safe distribution, and similarly, a
higher Δ𝑆𝑖 stands for stronger safety for safe demonstrations. This insight aligns with the intu-
ition that more severe harmful examples lead to stronger attacks. Moreover, since the defense
examples are fixed, the attacker, as a backhand in this interaction, can add more harmful exam-
ples to increase exp(Δ𝐻1 +Δ𝐻2 +· · ·+Δ𝐻𝑙 ), which increases the lower bound of RP([𝐷, 𝑞]). This
observation unveils an intrinsic limitation of defenses against attacks for LLMs, yet it can still
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mitigate these safety risks to a certain extent. We further validate this observation by evaluating
ICA v.s. ICD in the next section.

5.3 Experiments

In this section, we evaluate ICA and ICD to show their potential in practical attack and
defense situations, beginning with an overview of the experimental setups.

5.3.1 Overall Evaluation Setups

Models and benchmarks. Following common practice [164, 70, 18], we mainly eval-
uate our proposed attack and defense on 4 popular aligned LLMs, including 3 open-sourced
models (Vicuna-7b-v1.5 [162], Llama2-7b-chat [112], and QWen-7b-v2 [7]) and 1 closed-
sourced model (GPT-4 [87]). For the malicious requests, we use AdvBench [164], which
consists of about 500 harmful behavior prompts, and HarmBench [76], a popular benchmark
for evaluating red-teamingmethods. However, we only use AdvBench for ICD evaluation since
HarmBench did not provide defense implementation interfaces. The generation configurations
and system messages are the same as the official default implementations.

Evaluation metric. As discussed by previous work [72, 65], different evaluation metrics
may not report consistent results on attack success rates (ASR). To align with existing results
and ensure a fair comparison with baselines, we use the original evaluation proxy proposed
by the benchmarks. For Advbench, following GCG and subsequent works [164, 70, 163], we
apply rejection string detection (i.e., whether the response includes a rejection sub-string like
`I cannot') to judge the success of jailbreak. ForHarmbench [76], we apply their official fine-
tuned judging model (from Llama-13b) provided by the benchmark to check the harmfulness
of a generated response.

Adversarial demonstrations. As discussed in Section 5.1, the demonstrations for ICA
and ICD can be collected manually or automatically generated from jailbreak prompts. In our
experiments, we randomly select 20 harmful requests from AdvBench and craft their corre-
sponding harmful responses with GCG attack on vicuna-7b to generate the harmful demon-
strations for ICA. For ICD, we collect the demonstrations by directly prompting the vanilla
harmful requests on vicuna-7b to get the safe responses. We have manually checked that the
responses are indeed harmful or safe for these demonstrations.
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Table 5.1 ICA evaluation with different numbers of shots on AdvBench and Harmbench. Re-
sults that could not be completed due to the limited context window are indicated with a ’-’.

Attack Success
Rate (ASR)

AdvBench HarmBench
Vicuna Llama2 QWen Mistral GPT-4 Vicuna Llama2 QWen Mistral GPT-4

No Attack 1% 0% 0% 1% 0% 19% 3% 9% 14% 11%

ICA (1 shot) 8% 0% 1% 6% 0% 24% 19% 10% 18% 11%
ICA (5 shots) 45% 12% 43% 31% 1% 59% 38% 43% 44% 12%
ICA (10 shots) 77% 58% 50% 70% 46% 60% 50% 46% 48% 32%
ICA (15 shots) 89% - 55% 85% 79% 62% - 53% 69% 55%
ICA (20 shots) - - - - 81% - - - - 65%

5.3.2 Evaluation on In-Context Attack

We conduct experiments to validate the effectiveness of ICA. First, we examine ICA with
different numbers of shots to reveal their stealthy and scalability. Then, we compare ICA with
some advanced attacking methods to show that it can achieve comparable ASR with them.

5.3.2.1 Scaling number of attacking shots

We consider applying ICA with {1, 5, 10, 15, 20} shots to attack the evaluation models
and summarize the results in Table 5.1. With only a single (1 shot) ICA demonstration, we can
increase the ASR from 1% to 8% for Vicuna on AdvBench and from 3% to 19% for Llama-2
on HarmBench, showing the notable effectiveness of harmful demonstrations. Furthermore,
as the number of demonstrations increases to 10, ICA significantly increases the ASR to 87%
for vicuna and also successfully jailbreaks the closed-source model GPT-4 with a 46% ASR,
validating the strong scalability of ICA that more harmful demonstrations can further boost the
strength of the attack. Finally, we tried to scale up the numbers of demonstrations to 15 and 20
shots to sufficiently utilize the context window, where the ASRs on GPT-4 can be increased to
81% and 65% on the two datasets, respectfully. However, for the three 7b-size open-source
models, their context windows are relatively limited (4096 tokens) and can only accommodate
15-shot ICA (10-shot for Llama-2 due to its very long system message), but the ASRs of ICA
are still improved.

5.3.2.2 Benchmark results

To further validate the effectiveness of ICA, we also compare ICA with some advanced
jailbreak attacks which achieved good performance on HarmBench [76], including three white-
box attacks (GCG, GCG-Multiple [164], AutoDAN [70]) and four black-box attacks (GCG-
Transfer [164], PAIR [18], TAP, TAP-Transfer [77]). To ensure a fair comparison, we im-
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Table 5.2 ICA evaluation on HarmBenhch [76] and its comparison with existing baselines.

Attack Success Rate (ASR) White-box attacks Black-box attacks
Source Model GCG GCG-M AutoDAN GCG-T PAIR TAP TAP-T ICA (ours)

Open source

Vicuna-7b 66% 62% 66% 61% 54% 51% 60% 62%
Vicuna-13b 67% 61% 66% 55% 48% 55% 62% 65%
Llama2-7b-chat 33% 21% 1% 20% 9% 9% 8% 50%
QWen-7b-chat 59% 53% 47% 38% 50% 53% 59% 53%
Mistral-7b-v2 70% 64% 72% 65% 53% 63% 66% 69%

Average (↑) 58.8% 52.0% 49.2% 47.6% 42.6% 46.1% 51.0% 59.8%

Close source Mistral-8x7b - - - 63% 61% 70% 68% 77%
GPT-4 - - - 22% 39% 43% 55% 65%

plemented ICA on the official repository of HarmBench with the default generation configu-
rations and the maximum number of shots, then compared the results reported on the bench-
mark 1 , as summarized in Table 5.2. We also involved more models to show the universality of
ICA, including Mistral-7b-v2 [53], and larger models like vicuna-13b-v1.5 [162] and Mistral-
8x7b [54]. The average ASR is calculated over 5 white-box models.

These results indicate that our ICA reaches an average of approximately 60% ASR on
white-boxmodels, while exceeding 65%ASR on black-boxmodels, consistently demonstrating
effective attacking performance across various models. Additionally, when compared to other
advanced attack methods, ICA provides comparable results with just one forward pass or query,
whereas others often require multiple queries or white-box access. Overall, ICA demonstrates
a strong potential as a practical attack or evaluation on LLM safety.

5.3.3 Evaluation on In-Context Defense

On the other hand, we conduct comprehensive evaluations to show how our ICD can
mitigate jailbreak threats of LLMs while maintaining their natural performance, validating
its practicality as a safeguard technique for LLM safety risks. We start with evaluating ICD
against black-box attacks and white-box (adaptive) attacks, then study their impact on LLM
natural performance. For the demonstrations used in ICD, we still randomly select malicious
requests fromAdvBench and use Vicuna to generate safe demonstrations by directly prompting
the request without attacks. However, we show that only 1 or 2 demonstrations are sufficient
to decrease the ASR of various attacks to a certain extent, which is much fewer than ICA.

1 https://www.harmbench.org/results
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Table 5.3 ASR comparison of ICD and baselines against black-box attacks.

Attack GCG-T PAIR
Defense Vicuna Llama-2 QWen GPT-4 Average (↓) Vicuna Llama-2 QWen GPT-4 Average (↓)
No defense 60% 21% 35% 1% 29% 59% 26% 43% 20% 37%
Self-reminder 39% 14% 32% 0% 21% 50% 25% 34% 16% 31%

ICD (1 shot) 12% 0% 22% 0% 8% 51% 16% 14% 8% 22%
ICD (2 shots) 4% 0% 21% 0% 6% 48% 2% 12% 2% 16%

5.3.3.1 Attacks and Baseline Defenses

We first introduce the considered attacks for evaluation as well as baselines for ICD. To
show the effectiveness of ICD in terms of defending against various types of jailbreaking at-
tacks, following the similar setting of ICA, we evaluate ICD with various popular attacks, in-
cluding GCG-T, PAIR (black-box), GCG, and AutoDAN (white-box). For GCG-T, the trans-
ferred suffix for open-source models (Vicuna, Llama-2, QWen) is trained with the other two
models ensembled with 100 steps GCG, and for GPT-4 is trained with the three models ensem-
bled. For PAIR, we follow the official implementation that uses 20 steps and the same model as
the red-teaming LLM. Following AutoDAN [70], we apply 100 steps for optimization for both
AutoDAN prefix and GCG suffix generation with the default hyperparameters in the official
implementation.

Since our ICD is a prompt-based defensemethod, we compare it with Self-Reminder [141],
which adds a safe instruction that reminds the LLM to generate safe content only in the system
message as a baseline. However, as discussed, our ICD only requires adding conversations and
does not require access to the system prompt. We additionally discuss other forms of defenses
at the end of this section.

5.3.3.2 Defending against Black-box attacks

We first consider evaluation against black-box attacks, including GCG-T and PAIR, and
summarize the ASR evaluated for the four models with different defenses in Table 5.3. Without
any defense, these models exhibit fairly high ASR, particularly for the relatively weak Vicuna,
which achieves about 60% under the two attacks. Though Self-Reminder can reduce the ASRs
to a certain degree, in most cases, it remains undesired like Vicuna still has 39% against GCG-
T. By contrast, with only a single safe demonstration (1 shot) incorporated into the context,
ICD can significantly reduce the ASR (e.g. to 12% in the aforementioned case) on average,
and further decrease it to nearly 0% in most cases when two shots demonstrations are applied,
showing the desirable robustness against black-box jailbreak attacks.
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Table 5.4 ASR comparison of ICD and baselines against white-box adaptive attacks.

Attack GCG AutoDAN
Defense Vicuna Llama-2 QWen Mistral Average (↓) Vicuna Llama-2 QWen Mistral Average (↓)
No defense 95% 38% 63% 60% 64% 91% 54% 55% 40% 60%
Self-reminder 80% 36% 44% 20% 45% 88% 51% 53% 42% 58%

ICD (1 shot) 68% 26% 38% 32% 41% 86% 36% 47% 12% 45%
ICD (2 shots) 60% 20% 24% 16% 30% 81% 27% 23% 0% 33%

5.3.3.3 Defending against White-box (Adaptive) attacks.

To further assess the worst-case robustness of ICD, we also evaluate it with white-box
adaptive attacks, including GCG and AutoDAN. Please note that AutoDAN is a white-box at-
tack since the leveraged cross-entropy loss requires logits over tokens during generation. Dur-
ing the optimization process of the suffix and prefix, we incorporate the safe demonstrations
when responding to the attack query, so the evaluation of ICD is fully adaptive.

The evaluation results are shown in Table 5.4. Given the strong capabilities of the attack-
ers, the ASRs under these attacks are significantly high without defense, and the effectiveness
of Self-reminder becomes more limited than black-box settings. However, our ICD can still
notably reduce these ASRs to a certain extent, e.g. reduce the average ASR of GCG from 64%
to 30% on average with 2 shots. These results evidence that ICD is still effective even against
strong adaptive attacks.

5.3.3.4 Natural Performance

One key concern of deploying existing defenses is that they may decrease the natural
performance of LLMs [26, 144]. To assess the influence of ICD on natural performance, we
evaluate ICD in terms of both vanilla generation and computational costs.

For generation quality, we apply MT-bench [162], which is a popular benchmark that
evaluates the instruction-following capability and generation helpfulness of LLMs. We eval-
uate vanilla generation and ICD with these benchmarks with both open-source (vicuna and
mistral) and close-source (GPT-4) models and report the generation scores in Table 5.5, where
the natural performance of ICD is still comparable with vanilla generation, showing the safety
demonstration does not affect general generation quality. In some cases, the score of ICD is
even slightly better than the vanilla generation, e.g. GPT-4 with 2-shots ICD (9.2) performs
better than vanilla (8.9) on MT-Bench, which we identify as an intriguing property and worth
further investigations.

We also estimate the computation cost of ICD and compare it with the vanilla generation,
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Table 5.5 Average score of tasks from the MT-bench for different models and defenses.

Benchmark MT-Bench (↑)
Defense Vicuna Mistral GPT-4 Average
No defense 6.7 7.9 8.9 7.8

ICD (1 shot) 6.8 7.9 9.2 8.0
ICD (2 shots) 6.6 7.8 9.2 7.9

as shown in Table 5.6. The generation time is averaged on computation during evaluation on
MT-bench. Compared with the vanilla generation, Vicuna with two shots ICD only increases
no more than 2% computational overhead, while the cost for GPT is less than 1%, which is
negligible for practical usage. To summarize, we can conclude that ICD has only little influence
on natural generation, making it an admissible defense technique against jailbreak attacks.

Table 5.6 Average inference time for different models and defenses.

Benchmark Inference time (↓)
Defense Vicuna Mistral GPT-4 Average
No defense 1.00× 1.00× 1.00× 1.00×
ICD (1 shot) 1.01× 1.02× < 1.01× +1%
ICD (2 shots) 1.02× 1.02× < 1.01× +2%

5.3.3.5 Additional Baselines

In this part, we further compare and discuss ICD and other defense paradigms in addition
to prompt-based defenses. These defenses include pre-processing based perplexity filter [1]
and paraphrasing [51], inference-based Direct Representation Optimization (DPO) [161] and
BackTranslation [126], as listed in Table 5.7. A common limitation of these defenses is that
their evaluation is not adaptive, undermining their worst-case robustness assessment [100, 22].
For non-adaptive attacks, taking the GCG-T attack as an example, the performance of ICD
is comparable with these baselines. Additionally, white-box defenses such as perplexity fil-
tering and DRO cannot defend black-box models like GPT-4, which restricts their applicable
scenarios.

5.3.4 Further Discussions

We finally discuss some interesting properties of ICA and ICD. First, we study their ro-
bustness against the selection of examples, followed by exploring their interactions.
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Table 5.7 Comparing ICD and more baseline defenses.

Metric GCG-T ASR. MT-bench

Defense vicuna GPT-4 vicuna GPT-4

No defense 60% 1% 6.7 8.9
Perplexity 0% N/A 6.7 N/A

Paraphrasing 16% 0% 6.7 8.4
BackTranslation 2% 0% 6.4 8.6

DRO 0% N/A 6.5 N/A

ICD (1 shot) 12% 0% 6.8 9.2
ICD (2 shots) 4% 0% 6.6 9.2

5.3.4.1 Robustness of Demonstrations

To assess the performance of ICA and ICD with different sets of examples, we craft a
demonstration pool with 50 harmful and safe examples, respectively.

Robustness of ICA examples. To evaluate the robustness of ICA against varying demon-
stration selections, we randomly sample multiple sets of 10 shots harmful examples from our
demonstration pool and report the quartile statistics on vicuna-7b in Table 5.8. The average
ASR reaches 73.5% on AdvBench and 62% on HarmBench, indicating that diverse sets of
adversarial demonstrations can achieve desirable attack performance on average. Meanwhile,
the overall standard deviation reveals moderate variance across different example sets. This
suggests that while ICA maintains strong overall effectiveness, the attack success rate depends
partially on the selection of examples, which may be influenced by factors like the persuasive-
ness or harmfulness of demonstrations. Crafting demonstrations that clearly exhibit harmful
behaviors and cover diverse malicious intents may further stabilize ICA’s performance, which
we consider as an interesting future work.

Table 5.8 Robustness of demonstrations for ICA (10 shots) evaluated on vicuna.

Metric AdvBench Harmbench

No Attack 1% 19%

Upper quartile ASR 85% 66%
Avg. ASR ± Std. 73.5% ± 17.4% 62.0% ± 6.9%
Lower quartile ASR 64% 57%

Robustness of ICD examples. We similarly assess the robustness of ICD by testing its
defense efficacy with randomly sampled 1 shot safe demonstrations against both black-box
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(GCG-T) and white-box (GCG) attacks, as shown in Tables 5.9 and 5.10. Against GCG-T,
ICD reduces the average ASR from 60% to 11.1% ± 2.3% on AdvBench and from 61% to
12.1% ± 1.8% on HarmBench, with tight quartile ranges, demonstrating consistent robustness
across different safe examples. In contrast, against the adaptive GCG attack, ICD’s ASR
reduction (95% → 54.1% ± 11.3% on AdvBench; 66% → 39.5% ± 7.9% on HarmBench)
exhibits relatively higher variance, indicating that stronger attacks may partially undermine
the defense’s stability, which may correlate with the clarity of refusal patterns and the explicit
reinforcement of ethical guidelines in the safe demonstrations.

Table 5.9 Robustness of demonstrations for ICD against GCG-T (1 shot) on vicuna-7b.

Metric AdvBench Harmbench

No Attack 60% 61%

Lower quartile ASR 9% 11%
Avg. ASR ± Std. 11.1% ± 2.3% 12.1% ± 1.8%
Upper quartile ASR 13% 14%

Table 5.10 Robustness of demonstrations for ICD against GCG (2 shots) on vicuna-7b.

Metric AdvBench Harmbench

No Attack 95% 66%

Lower quartile ASR 56% 34%
Avg. ASR ± Std. 64.1% ± 11.3% 39.5% ± 7.9%
Upper quartile ASR 69% 42%

5.3.4.2 Evaluating ICD v.s. ICA.

Finally, we explore how the LLM performs when ICA is leveraged to attack ICD, where
the prompt is organized as starting with safe demonstrations (added by the model developer)
and followed by harmful demonstrations (added by the attacker).

Table 5.11 ASRs of ICD against ICA.

Attack
Defense ICA (1 shot) ICA (5 shots) ICA (10 shots)

No defense 8% 45% 87%

ICD (1 shot) 2% 38% 59%
ICD (2 shots) 1% 36% 56%
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We evaluate this on vicuna-7b and report the results in Table 5.11, where we can see
that when the attacker only uses 1 shot harmful demonstration, ICD with similar numbers of
demonstrations can easily eliminate the threat. However, when the attack’s capacity scales up
to 5 or 10 shots, the harmful demonstrations can subvert the safe ones andmaintain a fairly high
ASR, showing the consistent effectiveness of ICAwhen the number of harmful demonstrations
is scaled up. Nevertheless, ICD is still useful in this setting as it can reduce the harmfulness
with less capacity. These insights also align with our observation in Corollary 1, where ICD
can reduce the safety risk to a certain extent.

Overall, our proposed ICA and ICD show strong potential for attacking and defending
against LLMs, providing new avenues for safety research on LLMs.

5.4 Summary
In this chapter, we uncover the power of in-context demonstrations in manipulating the

alignment ability of LLMs for both attack and defense purposes by the proposed two tech-
niques: In-Context Attack (ICA) and In-Context Defense (ICD). For ICA, we show that a few
demonstrations of responding to malicious prompts can jailbreak the model to generate harm-
ful content. On the other hand, ICD enhances model robustness by demonstrations of rejecting
harmful prompts. We also provide theoretical understandings to illustrate the effectiveness
of only a few adversarial demonstrations. Finally, our comprehensive evaluations illustrate the
practicality and effectiveness of ICA and ICD, highlighting their significant potential on LLMs
alignment and safety and providing a new perspective to study this issue.
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5.5 Proofs of Theorems
In this section, we provide complete proof of Theorem 5. We start with the proof of

Lemma 1:

Proof of Lemma 1. Note that��RP(𝑝∗) − RP𝐻 (𝑝∗)
�� (5.15)

=

�����∑
𝑎

𝑅(𝑎)P(𝑎 |𝑝∗) −
∑
𝑎

𝑅(𝑎)P𝐻 (𝑎 |𝑝∗)
����� (5.16)
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�����∑
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𝑅(𝑎) [P(𝑎 |𝑝∗) − P𝐻 (𝑎 |𝑝∗)]
����� (5.17)
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Similarly, we can derive Equation (5.10) by symmetry.
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Proof of Theorem 5. Note that
P𝑆 (𝑝∗)
P𝐻 (𝑝∗)

=
P𝑆 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘 , 𝑞])
P𝐻 ([𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘 , 𝑞])

=
P𝑆 (𝑞 | [𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘])
P𝐻 (𝑞 | [𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘])

· P𝑆 ([𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘])
P𝐻 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘])

=
P𝑆 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘])
P𝐻 ([𝑞1, 𝑎1, · · · , 𝑞𝑘 , 𝑎𝑘])

(Assumption 1)

=
P𝑆 (𝑎𝑘 | [𝑞1, 𝑎1, · · · , 𝑞𝑘])
P𝐻 (𝑎𝑘 | [𝑞1, 𝑎1, · · · , 𝑞𝑘])

· P𝑆 ([𝑞1, 𝑎1, · · · , 𝑞𝑘])
P𝐻 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘])

=
P𝑆 (𝑎𝑘 |𝑞𝑘)
P𝐻 (𝑎𝑘 |𝑞𝑘)

· P𝑆 ([𝑞1, 𝑎1, · · · , 𝑞𝑘])
P𝐻 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘])

(Assumption 2)

=
P𝑆 (𝑎𝑘 |𝑞𝑘)
P𝐻 (𝑎𝑘 |𝑞𝑘)

· P𝑆 (𝑞𝑘 | [𝑞1, 𝑎1, · · · , 𝑞𝑘−1, 𝑎𝑘−1])
P𝐻 (𝑞𝑘 | [𝑞1, 𝑎1, · · · , 𝑞𝑘−1, 𝑎𝑘−1])

· P𝑆 ([𝑞1, 𝑎1, · · · , 𝑞𝑘−1, 𝑎𝑘−1])
P𝐻 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘−1, 𝑎𝑘−1])

=
P𝑆 (𝑎𝑘 |𝑞𝑘)
P𝐻 (𝑎𝑘 |𝑞𝑘)

· P𝑆 ([𝑞1, 𝑎1, · · · , 𝑞𝑘−1, 𝑎𝑘−1])
P𝐻 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘−1, 𝑎𝑘−1])

(Assumption 1)

=
P𝑆 (𝑎𝑘 |𝑞𝑘)
P𝐻 (𝑎𝑘 |𝑞𝑘)

· P𝑆 (𝑎𝑘−1 |𝑞𝑘−1)
P𝐻 (𝑎𝑘−1 |𝑞𝑘−1)

· P𝑆 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘−2, 𝑎𝑘−2])
P𝐻 ( [𝑞1, 𝑎1, · · · , 𝑞𝑘−2, 𝑎𝑘−2])

= · · ·

=
𝑘∏
𝑖=1

P𝑆 (𝑎𝑖 |𝑞𝑖)
P𝐻 (𝑎𝑖 |𝑞𝑖)

≤
𝑘∏
𝑖=1

𝑒−Δ (Assumption 3)

=𝑒−𝑘Δ.

(5.28)

Note that by Assumption 2, we have
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Therefore, by Lemma 1, we have

RP( [𝐷𝐻 , 𝑞]) = RP(𝑞) ≥ RP𝐻 ([𝐷𝐻 , 𝑞]) −
2
𝜆
· P𝑆 (𝑝

∗)
P𝐻 (𝑝∗)

≥ RP𝐻 (𝑞) −
2
𝜆
· 𝑒−𝑘Δ. (5.30)
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2
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Similarly, for 𝑘 ≥ 1
Δ

(
ln 2 + ln 1

(1−𝜆) + ln 1
𝜖

)
, we have

RP([𝐷𝑆, 𝑞]) ≤ RP𝑆 (𝑞) + 𝜖 . (5.32)
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Proof of Corollary 1. By the same deduction of Theorem 5 we have
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Similar to Equation (5.30), we have
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and
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) . (5.38)
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Chapter 6 Conclusion and Future Work

This chapter summarizes the research contributions presented in the thesis towards trust-
worthy machine learning from data distribution perspectives and highlights potential future
research directions.

6.1 Conclusion

In this thesis, we propose a thread of insights into improving the trustworthiness of ma-
chine learning models, inspired by their corresponding data distributions. Concretely, the re-
search contents include:

• Scalable Automata Extraction and Explanation Framework. We propose a novel
framework for extracting and explaining weighted finite automata (WFA) from recur-
rent neural networks (RNNs) for natural language tasks. Our method addresses tran-
sition sparsity and context loss problems, and introduces Transition Matrix Embed-
dings (TME) for model explanation. Experiments demonstrate the effectiveness of
our approach in improving extraction precision and providing task-oriented insights
for RNNs.

• Class-wise Calibrated Fair Adversarial Training (CFA). We present a theoretical
analysis of how different adversarial configurations impact class-wise robustness and
propose the CFA framework. CFA dynamically customizes training configurations for
each class, improving both overall and worst-class robustness. Our experiments show
that CFA outperforms state-of-the-art methods in terms of both robustness and fairness.

• In-context Attack and Defense for Large Language Model Safety. We explore the
use of in-context learning to manipulate the safety alignment of LLMs. We propose
In-Context Attack (ICA) and In-Context Defense (ICD) methods, supported by theo-
retical analysis and empirical evaluation. Our results demonstrate the effectiveness
of these methods in attacking and defending LLMs, highlighting the potential of in-
context learning for improving LLM safety.

Overall, this thesis provides novel insights into the interpretability, robustness, and safety
of machine learning models from a data distribution perspective.
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6.2 Future Work
This thesis presents novel data distribution insights into trustworthy ML, warranting fur-

ther research through this perspective. Based on our three main contributions, we list a few
concrete future research directions as follows.

• Representation-guided abstract model extraction from large models. Extending
from RNNs to large models may inherently be challenging to extract abstract models
that can comprehensively simulate the behaviors of LLMs. However, future research
could focus on advanced techniques for deriving abstract models from LLMs based
on specific model representations. This would entail developing methods that can ef-
ficiently capture essential representations through a trustworthy-specific distribution,
such as safety or fairness, to analyze and interpret the model’s behaviors from a partic-
ular perspective.

• Advanced adversarial training tailored by class-wise features. Building on our
class-wise adversarial data analysis, future research could investigate more sophisti-
cated class-wise data distribution modeling and AT strategies. This may include in-
depth investigations of class-wise data and feature interactions, as well as adaptive
methods that dynamically adjust AT configurations based on the characteristics of class-
wise and inter-class data distributions during training.

• In-context safeguarding for LLM-driven agents. LLM-based agents have become
one of the most successful applications of LLMs, yet they also suffer from more com-
plex trustworthiness risks. As these agents are increasingly deployed in real-world ap-
plications, there is a need for robust safeguarding mechanisms. Based on our proposed
ICA and ICD paradigms, future work could focus on developing in-context safeguard-
ing techniques that can dynamically adapt to emerging threats and ensure the safe op-
eration of LLM-driven agents in various scenarios.
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