
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

HOW DOES LAYER NORMALIZATION IMPROVE DEEP
Q-LEARNING?

Anonymous authors
Paper under double-blind review

ABSTRACT

Layer normalization (LN) is among the most effective normalization schemes for
deep Q-learning. However, its benefits remain not fully understood. We study LN
through the lens of gradient interference. A gradient interference metric used in
prior works is the inner product between semi-gradients of the temporal difference
error on two random samples. We argue that, from the perspective of minimizing
the loss, a more principled metric is to calculate the inner product between a semi-
gradient and a full-gradient. We test this argument with offline deep Q-learning,
without a target network, on four classic control tasks. However, counterintuitively,
we find empirically that first-order gradient interference metrics positively correlate
with the training loss. We empirically show that adding a second-order gradient
interference term gives more intuitive results. Theoretically, we provide supporting
arguments from the linear regression setting.

1 INTRODUCTION

Deep Q-learning, including deep Q-networks (DQN) (Mnih et al., 2013), is an important reinforce-
ment learning (RL) method with wide applications including robotics (Gu et al., 2017), autonomous
driving (Sallab et al., 2017), and healthcare (Yu et al., 2021). A key characteristic of DQN is that it is
an off-policy algorithm that directly learns the optimal value function, which potentially improves
sample efficiency and reduces the risks associated with on-policy exploration.

However, the benefit of off-policy learning often comes with optimization instabilities. DQN is
prone to error propagation across iterations which could lead to performance drop or gradient
explosion (Luo et al., 2024). Many techniques have been developed to help stabilize DQN, including
target networks (Riedmiller, 2005; Mnih et al., 2015), replay buffers (Lin, 1992; Mnih et al., 2013),
prioritized replay (Schaul et al., 2015), and double Q-learning (Van Hasselt, 2010; Van Hasselt et al.,
2016).

Table 1: Mean return of 20 seeds, each averaging over all
gradient steps of 9 runs, one run for each of 9 learning rates.
The highest return per environment is highlighted , as well
as the return for environments whose 95% CI overlaps the CI
of the highest mean. “None” means no normalization is used.
Trained with SGD. On Pendulum, random actions outper-
form all algorithms other than LN. Details in Appendix G.

Random None LN BN WN

Acrobot -452.604 -384.0 -267.2 -477.6 -409.6
Pendulum -1281.860 -1323.2 -792.8 -1433.7 -1376.5
CartPole 19.545 163.5 289.0 19.0 270.0
MountainCar -194.632 -163.8 -122.2 -169.0 -166.6

One particularly simple yet effective
stabilization technique is Layer Nor-
malization (LN). Empirically, its
benefits can rival — or even sur-
pass — those of the RL-specific tech-
niques above. For example, several
works have empirically shown that
LN can somewhat replace the bene-
fits of a target network. Interestingly,
related methods successful in super-
vised learning, such as batch normal-
ization and weight normalization, do
not typically provide similar benefits
in RL (cf. Bhatt et al. (2024)). This
raises the question of why LN, in par-
ticular, has such a strong effect on DQN’s performance without additional tricks. Notably, this
discrepancy between LN and other normalization methods also extends to LLMs, where only LN has
proven effective (Shen et al., 2020).

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Many works have reported the empirical benefits of LN in RL, but few try to provide theoretical
explanations. An exception is Gallici et al. (2025), which offers theoretical analysis and empirical
backing for deep Q-learning with LN and ℓ2 regularization. However, their theory uses ℓ2 regulariza-
tion, leaving open the understanding of LN by itself. Motivated by this aspect, we revisit LN in DQN.
We defer a precise comparison between our analysis and theirs to future work.

We ask how LN changes interference in temporal-difference learning. We examine (i) first-order
Q-value interference (QGI+), (ii) first-order loss-based metrics using semi-gradients (SGI) and a
mixed semi/full-gradient variant (MGI), and (iii) a second-order–corrected metric (GI2) derived from
a Taylor expansion of the TD-loss decrement.

Across four offline control tasks (SGD, no target network), QGI+ and SGI/MGI positively correlate
with training loss, whereas GI2 negatively correlates with it; LN reduces first-order interference,
increases GI2, and improves return. We support this with a simple linear-regression argument
showing that feature normalization improves an SGD progress–stability tradeoff, and we provide
complementary evidence on isometry and implicit learning-rate decay.

It turns out finding a clean explanation that shows a strict improvement from LN is challenging.
Given the complexity of DQN — combining deep learning, semi-gradients, and off-policy training
— we believe that LN’s effect is likely to be multi-faceted. In this paper, we take a step toward
understanding its effect from multiple perspectives.

For each perspective, we provide theoretical hypotheses and empirical evidence. While no single
perspective gives a full explanation, together they provide a big picture of why LN stabilizes and
accelerates DQN. We hope our first step will inspire future study that advances the theory of both RL
and deep learning.

0.05 0.15 0.25
𝖲𝖦𝖨

1e+0

1e+10

1e+20

1e+5

1e+15

1e+25

tr
ai
ni
ng

 lo
ss

Acrobot

0.05 0.15 0.25
𝖲𝖦𝖨

1e+10

1e+20

1e+5

1e+15

1e+25

Pendulum

0.05 0.15 0.25 0.35
𝖲𝖦𝖨

1e+5
1e+10
1e+15
1e+20
1e+25

CartPole

0.05 0.15 0.25
𝖲𝖦𝖨

1e+0
1e+2
1e+4
1e+6
1e+8
1e+10
1e+12

MountainCar

−1e+50 −1e+30 −1e+10
𝖦𝖨₂

1e+0
1e+5
1e+10
1e+15
1e+20
1e+25

tr
ai
ni
ng

 lo
ss

−1e+50 −1e+30 −1e+10
𝖦𝖨₂

1e+5
1e+10
1e+15
1e+20
1e+25

−1e+50 −1e+30 −1e+10
𝖦𝖨₂

1e+5
1e+10
1e+15
1e+20
1e+25

−1e+10 0e+0
𝖦𝖨₂

1e+0
1e+2
1e+4
1e+6
1e+8
1e+10
1e+12

Figure 1: Deep Q-learning with LN Group 1
Group 2

Group

Triangle up
Triangle down

Triangle markers

or no normalization
Group 1
Group 2

Group

Triangle up
Triangle down

Triangle markers
. A triangle

Group 1
Group 2

Group

Triangle up
Triangle down

Triangle markers
indicates at least one

seed had its network weights clamped to avoid NaNs (Appendix G). First row: On four classic
control tasks, we counterintuitively find that first-order gradient interference (SGI, defined later)
positively correlates with the training loss, despite the standard interpretation of larger gradient
interference as better. Moreover, we find LN tends to decrease first-order gradient interference, even
though it improves the training loss. Second row: We find that including a second-order gradient
interference term gives a metric (GI2) with a more intuitive (i.e., negative) correlation with the loss.
We likewise find that LN tends to increase this metric as it improves the loss and return. MountainCar
largely does not follow these trends. Both rows: 30 seeds per data point. Trained with SGD. The
same plots with return are shown in Appendix I.

2 PROBLEM SETTING

Q-networks. We study offline RL in continuous state spaces with discrete actions, where the state is
denoted by s ∈ Rk and the action is denoted by a ∈ {1, . . . ,m}. The reward function is r(s, a) ∈ R.
To approximate the Q-function, a standard single-layer neural network parameterizes the Q-function
as Qθ(s, a) = ⟨va, (Ws)+⟩, where θ denotes the collection of parameters, W ∈ Rd×k, va ∈ Rd,

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

and (x)+ ∈ Rd is the ReLU activation function. The parameters θ are updated via

θt+1 = θt − η /∇ℓθt(st, at, s
′
t) (1)

where η > 0 is the learning rate, γ ∈ [0, 1) is the discount factor, (st, at, s′t) is drawn from the offline
distribution µ, and /∇ℓθt(s, a, s

′) ≜
(
Qθt(s, a) − r(s, a) − γmaxa′ Qθt(s

′, a′)
)
∇Qθt(s, a) is the

semi-gradient on the squared TD error of (s, a, s′). This method often suffers from instability, which
is commonly mitigated by introducing a target network (Mnih et al., 2015).

Layer Normalization. Throughout this paper, we focus on offline RL, but we speculate that our
results apply to online RL with a replay buffer. For experimental and algorithmic simplicity, we
use no target network at any point in this paper. We test four discrete-action classic control tasks
(Brockman et al., 2016), using an offline dataset of 10,000 uniformly random actions. All returns
we report are averaged over all gradient steps over the course of training in order to measure both
stability and speed. All our results are averaged over 30 random seeds unless otherwise noted. We
primarily study layer normalization,

LN(x) = x−x̄√
1
d

∑d
i=1(xi−x̄)2

, x̄ = 1
d

∑d
i=1 xi, (2)

with which the single-layer Q-network is

Qθ(s, a) = ⟨va, (LN(Ws))+⟩. (3)

While standard LN includes additional shift and scale parameters (an elementwise affine transform),
in our experiments these had little effect on returns, so we all of our results omit them. LN may also be
placed after the ReLU rather than before, but we find the placement before about as effective or better.
Our experiments further suggest, like prior work, that LN might roughly match or outperform other
normalizations, such as batch normalization (BN) (Ioffe & Szegedy, 2015) and weight normalization
(WN) (Salimans & Kingma, 2016). Table 1 shows these results.

3 HOW DOES LAYER NORMALIZATION IMPROVE DEEP Q-LEARNING?

Normalization layers in supervised learning have been explained from many perspectives, including
feature orthogonalization (Daneshmand et al., 2021; Meterez et al., 2024) and automatic learning rate
tuning (Arora et al., 2018). In this study, we ultimately aim for RL-specific explanations. We make
progress on three:

• Gradient interference, various metrics1 for how training gradients between different
training samples interact. In this work, these are the metrics we find most compelling for
explaining why LN improves deep Q-learning (Section 3.1).

• Isometry, how clustered the eigenvalues of the Gram matrix of the learned representations
are (Joudaki et al., 2023). We derive a new version of this metric for the setting where
batches are large compared to feature dimensions, and find LN still improves this new metric
in our RL setting (Appendix C). Theoretically connecting this metric to the convergence
rate (even in supervised learning) is perhaps the most important open question here.

• Implicit learning rate decay, the fact that LN (and other normalizations) implicitly decay
the learning rate as the magnitudes of the weights increase throughout training. Aligning
with Lyle et al. (2024), our results suggest that implicit learning rate decay might sometimes
increase returns, but does not fully account for LN’s increase of returns (Appendix D).

3.1 GRADIENT INTERFERENCE

3.1.1 MOTIVATION FROM TABULAR Q-LEARNING

Tabular Q-learning provably converges to Q⋆ under data coverage and properly tuned learning rates.
In tabular Q-learning (Watkins et al., 1989), only the Q-value of the sampled state-action is directly
updated. In deep Q-learning, every training sample’s gradient contributes not only to the direct update

1Throughout, we use “metric” in the colloquial sense, not in the sense of a distance function.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

at that sample, but also indirect updates to other state-actions. Such indirect updates are how models
generalize to unseen state-actions. While generalization is a common goal in machine learning, it can
also introduce adverse side effects. For example, in classic examples of Q-learning with function
approximation (Baird’s and w-to-2w examples (Sutton et al., 1998)), the model diverges due to
the undesired correlation between the Q-value of indirectly updated Q-values and those of directly
updated Q-values. This becomes an issue in Q-learning but not in supervised learning as Q-learning
is not based on gradient descent.

We refer to such harmful generalization as “interference”, which, as those classic works show, plays
a more central role in RL than in supervised learning. We remark that although a lot of RL research
studies out-of-distribution generalization (e.g., to new state distributions induced by new policies),
our focus here is on in-distribution interference, which primarily affects the stability of the learning
dynamics rather than generalization across distributions. To eliminate the confounding effect of out-
of-distribution states, we generate training data in all our experiments from a broad state distribution.
We focus on this in-distribution generalization.

Below, we compare in more detail the updates of tabular Q-learning (which lacks generalization and
interference, and provably converges under mild conditions) and deep Q-learning (with generalization
and interference, and provably diverges in some simple cases). Recall the tabular Q-learning algorithm
(Watkins et al., 1989):

Qt+1(s, a) = Qt(s, a)− η∆t(st, at, s
′
t)I[(s, a) = (st, at)], (4)

where ∆t(s, a, s
′) = Qt(s, a)−r(s, a)−γmaxa′ Qt(s

′, a′) is the (unsquared) TD error of (s, a, s′),
and I[·] is the indicator function.

In deep Q-learning, we have by first-order approximation and Eq. (1):

Qθt+1(s, a) ≈ Qθt(s, a) + ⟨θt+1 − θt,∇Qθt(s, a)⟩
= Qθt(s, a)− η

〈
/∇ℓθt(st, at, s

′
t),∇Qθt(s, a)

〉
= Qθt(s, a)− η∆θt(st, at, s

′
t) ⟨∇Qθt(st, at),∇Qθt(s, a)⟩ . (5)

Comparing tabular Q-learning (Eq. (4)) and deep Q-learning (Eq. (5)), we observe that (1) for the
directly updated state-action (st, at), the changes of its Q-value in the two algorithms are related
by Qθt+1(st, at) − Qθt(st, at) = (Qt+1(st, at)−Qt(st, at)) ∥∇Qθt(st, at)∥2, meaning that the
two algorithms update Q(st, at) in the same direction. We also observe (2) for other state-actions
(s, a) ̸= (st, at), tabular Q-learning keeps Q(s, a) unchanged, while deep Q-learning modifies
Qθt+1

(s, a) = Qθt(s, a)− η∆t(st, at, s
′
t) ⟨∇Qθt(st, at),∇Qθt(s, a)⟩ via indirect updates. In other

words, in deep Q-learning, direct updates may interfere with the Q-values of other state-actions,
through indirect updates. Using the absolute cosine similarity notation cos+(x, y) ≜

|⟨x,y⟩|
∥x∥∥y∥ , one

way to quantify this interference is the absolute Q-value gradient interference,

QGI+ = E(s,a),(st,at)∼µ | (s,a)̸=(st,at)

[
cos+

(
∇Qθt(st, at),∇Qθt(s, a)

)]
. (6)

Using the absolute value reflects our aim with QGI+ to measure all interference in any direction.
Zero-mean interference would still behave far differently than tabular Q-learning if the variance over
training samples was high. Using the cosine similarity avoids confounding the average directions of
the interference with the magnitudes of the gradients, though see also the later Section 3.3 for another
approach to avoid such confounding.

QGI+ positively correlates with training loss in our experiments. These QGI+ results (row
two of Fig. 2) somewhat align with our hypothesis that larger interference magnitude might cause
instability, increasing loss and decreasing return. However, one limitation of the interference metric
QGI+ is that it only considers the absolute interference between pairs of samples. While it reflects
the correlation of the Q-value changes between pairs of state-actions, it does not help us understand
whether it is a good or bad correlation. Indeed, when function approximation is used, it is impossible
for the learner to learn a good policy if generalized updates do not change the Q-values of other
state-actions.

3.1.2 MIXED-GRADIENT INTERFERENCE FOR TEMPORAL DIFFERENCE LEARNING

To better distinguish good generalization and bad interference, we propose to quantify “how much
the TD error decreases on another state-action if trained on one state-action.” Let ℓθ(s, a, s′) =

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

−6 −5 −4 −3 −2 −1

−450
−400
−350
−300
−250
−200
−150
−100

re
tu
rn

Acrobot

−6 −5 −4 −3 −2 −1
−1,600
−1,400
−1,200
−1,000
−800
−600
−400

Pendulum

−6 −5 −4 −3 −2 −1

50
100
150
200
250

CartPole

−6 −5 −4 −3 −2 −1

−180

−160

−140

−120

MountainCar

−6 −5 −4 −3 −2 −1
0.20

0.25

0.30

0.35

0.40

𝖰
𝖦
𝖨₊

−6 −5 −4 −3 −2 −1

0.20

0.25

0.30

0.35

0.40

−6 −5 −4 −3 −2 −1

0.30

0.35

0.40

0.45

0.50

−6 −5 −4 −3 −2 −1

0.35
0.40
0.45
0.50
0.55
0.60

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30

𝖲
𝖦
𝖨

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30

−6 −5 −4 −3 −2 −1
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30

−6 −5 −4 −3 −2 −1
−1e+56
−1e+48
−1e+40
−1e+32
−1e+24
−1e+16
−1e+8
−1e+0
1e-4

𝖦
𝖨₂

−6 −5 −4 −3 −2 −1
−1e+58
−1e+50
−1e+42
−1e+34
−1e+26
−1e+18
−1e+10
−1e+2
−1e-6

−6 −5 −4 −3 −2 −1
−1e+54
−1e+46
−1e+38
−1e+30
−1e+22
−1e+14
−1e+6
−1e-2

−6 −5 −4 −3 −2 −1
−1e+14
−1e+10
−1e+6
−1e+2
−1e-2
0e+0
1e-2
1e+2
1e+6

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+0
1e+4
1e+8
1e+12
1e+16
1e+20
1e+24
1e+28

tr
ai
ni
ng

 lo
ss

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+2
1e+6
1e+10
1e+14
1e+18
1e+22
1e+26

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+2
1e+6
1e+10
1e+14
1e+18
1e+22
1e+26

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+0
1e+2
1e+4
1e+6
1e+8
1e+10
1e+12

Figure 2: Every data point averages its metric (return, QGI+, SGI, GI2, or training loss) over
30 seeds, each seed averaging over all gradient steps of a training run. Comparing LN Group 1

Group 2

Group

Triangle up
Triangle down

Triangle markers

vs. no
normalization

Group 1
Group 2

Group

Triangle up
Triangle down

Triangle markers
, QGI+ and (more so) SGI positively correlate with the loss. GI2 negatively correlates

with the loss. The QGI+ correlations tend to break once SGD has diverged so far that its weights are
clamped (

Group 1
Group 2

Group

Triangle up
Triangle down

Triangle markers
). Yet, for SGI and GI2, their correlations tend to hold at any given learning rate (LR).

MountainCar is an outlier for the correlation of GI2. Shaded areas are 95% bootstrap CIs. These
results use SGD. Adam results in Appendix F.

(Qθ(s, a)−r(s, a)−γmaxa′ Qθ(s
′, a′))2. After training on (st, at, s

′
t), the decrease of the TD error

on (s, a, s′) is

ℓθt+1
(s, a, s′)− ℓθt(s, a, s

′) ≈ ⟨θt+1 − θt,∇ℓθt(s, a, s
′)⟩ (first-order approximation)

= −η⟨ /∇ℓθt(st, at, s
′
t),∇ℓθt(s, a, s

′)⟩, (7)

where the last equality is by Eq. (1). The last expression can be turned into an interference metric
that uses an inner product between a semi-gradient and a full-gradient. This is different from the
interference metric used in prior work such as Lyle et al. (2023), which uses an inner product between
two semi-gradients, ⟨ /∇ℓθt(st, at, s

′
t), /∇ℓθt(s, a, s

′)⟩. We argue that the mixed “semi–full” version
is more principled from the perspective of minimizing the loss (cf. Fujimoto et al. (2022)), as the
“semi” part reflects how the parameters are updated, and the “full” part, loosely put, reflects the loss
we want to minimize. We call the semi-gradients-only metric semi-gradient interference (SGI), and
the mixed-gradient metric mixed-gradient interference (MGI).

Unlike QGI+ in Section 3.1.1, SGI and MGI do not exclude the self-interference terms (s, a) ̸=
(st, at). We include the self-interference terms because, following the loss minimization view,
the self-interference terms are part of the first-order approximation. Again following the loss

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

minimization view, SGI and MGI do not take the absolute value, i.e. they use the cosine similarity
cos(x, y) ≜ ⟨x,y⟩

∥x∥∥y∥ rather than cos+:

SGI = E(s,a,s′),(st,at,s′t)∼µ

[
cos

(
/∇ℓθt(st, at, s

′
t), /∇ℓθt(s, a, s

′)
)]

, (8)

MGI = E(s,a,s′),(st,at,s′t)∼µ

[
cos

(
/∇ℓθt(st, at, s

′
t), ∇ℓθt(s, a, s

′)
)]

. (9)

Lyle et al. (2023) mentions a standard interpretation of elements of SGI (before taking the expectation):
negative components indicate that “the network cannot reduce its loss on one subset without increasing
its loss on another,” a sign of low plasticity or low trainability that is generally bad for performance.
Conversely, positive elements can indicate better generalization, as reducing the loss on a state-action
helps reducing that of another. However, note that tabular Q-learning’s QGI+ is zero, and its SGI
and MGI are zero aside from the self-interference terms. Recall that this allows it to converge under
milder conditions than algorithms like DQN.

SGI and MGI also positively correlate with training loss in our experiments. We show SGI in row
three of Fig. 2, and MGI (whose results are qualitatively similar) in Appendix F. This is somewhat
surprising: on one hand, this contrasts with the standard interference argument mentioned in Lyle
et al. (2023), where positive gradient interference indicates generalization, a beneficial property.
On the other hand, this aligns with the empirical findings of Lyle et al. (2023; 2025) that gradient
interference magnitudes (i.e. the absolute values) can negatively correlate with task performance for
non-stationary settings.

This also aligns with the combined observations that LN is known to (i) empirically improve returns,
and (ii) theoretically and empirically increase isometry (Appendix C). Higher isometry suggests to
some extent that training is closer to tabular RL, with lessened interference and generalization.

An additional, speculative explanation for the correlation between gradient interference and loss is
overshooting, where training updates move in the correct direction, but too far. This overshooting
may cause instability (Mahmood, 2010; Dabney & Barto, 2012; Mahmood et al., 2012; McLeod
et al., 2021; Kearney, 2023; Javed et al., 2025). In any case, this finding that first-order in-distribution
generalization positively correlates with the loss remains somewhat counterintuitive. In the following
sections, we ultimately aim to more precisely explain this finding, and to come up with a more
intuitive metric.

3.2 A REFINED ANALYSIS

In this subsection, we provide more supporting theory for the empirical findings in Section 3.1.

The empirical findings in Section 3.1 suggests that both the absolute interference metrics (QGI+)
and the signed interference metrics (SGI and MGI) correlate positively with the training loss. While
the former aligns with our hypothesis, the latter does not. In fact, a similar mismatch between the
intuition and the empirical finding also appears in Lyle et al. (2023).

We argue that the first-order approximation on the loss decrement we employ in Section 3.1.2 has
to be refined. If we perform similar approximation as Eq. (7) on the loss decrement, but up to the
second order, then we get
ℓθt+1(s, a, s

′)− ℓθt(s, a, s
′)

≈ ⟨θt+1 − θt,∇ℓθt(s, a, s
′)⟩+ 1

2 (θt+1 − θt)
⊤ [

∇2ℓθt(s, a, s
′)
]
(θt+1 − θt) (10)

= −η⟨ /∇ℓθt(st, at, s
′
t),∇ℓθt(s, a, s

′)⟩︸ ︷︷ ︸
first-order term

+ 1
2η

2 /∇ℓθt(st, at, s
′
t)

⊤ [
∇2ℓθt(s, a, s

′)
]
/∇ℓθt(st, at, s

′
t)︸ ︷︷ ︸

second-order term (⋆)

.

Recall ℓθ(s, a, s′) = (Qθ(s, a) − r(s, a) − γmaxa′ Qθ(s
′, a′))2, and ∆θ(s, a, s

′) = Qθ(s, a) −
r(s, a)− γmaxa′ Qθ(s

′, a′). Direct calculation on the Hessian of the loss function gives:

1
2∇

2ℓθt(s, a, s
′) =

1

ℓθt(s, a, s
′)
∇ℓθt(s, a, s

′)∇ℓθt(s, a, s
′)⊤ +∆θt(s, a, s

′)∇2hθt(s, a, s
′),

where we denote hθ(s, a, s
′) = Qθ(s, a)− γmaxa′ Qθ(s

′, a′). Using this in the second-order term
(⋆) above, we get

(⋆) = η2
⟨ /∇ℓθt(st, at, s

′
t),∇ℓθt(s, a, s

′)⟩2

ℓθt(s, a, s
′)

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

+ η2∆θt(s, a, s
′) /∇ℓθt(st, at, s

′
t)

⊤∇2hθt(s, a, s
′) /∇ℓθt(st, at, s

′
t).

While the second part above is related to the second-order derivative of Qθ, the first part is always
non-negative and is exactly the squared interference (from Eq. (7)) scaled by the loss inverse.

Therefore, we argue that signed interference and absolute/squared interference have to be combined,
along with the second-order shape of the Q-network, to give a more complete picture for the stability
of deep Q-learning. This more complete analysis also suggests that the counterintuitive empirical
results for SGI and MGI might be because they only reflect the first-order term in the loss decrement,
but neglect the effect from the second-order term. The second-order term might dominate when
the learning rate is too large compared to the smoothness of the loss, causing the overshooting we
previously discuss. This may align with claims that LN smooths the loss landscape (Lee et al., 2023).

Measuring this second-order approximation rather than the first-order approximation, MGI, is a
natural next step. For simplicity, we defer to future work the study of the more complicated, second
term in (⋆). We combine the first-order term interference, MGI, with only the first term from (⋆). We
refer to this second-order approximation of the gradient interference as GI2:

GI2 = 2η E(s,a,s′),(st,at,s′t)∼µ

[〈
/∇ℓθt(st, at, s

′
t), ∇ℓθt(s, a, s

′)
〉]

− η2E(s,a,s′),(st,at,s′t)∼µ

[
1

ℓθt(s, a, s
′)

〈
/∇ℓθt(st, at, s

′
t), ∇ℓθt(s, a, s

′)
〉2]

. (11)

GI2 could be further specified as MGI2, but, given our loss minimization argument, we do not measure
the equivalent with semi-gradients only (which could be specified as SGI2).

GI2 negatively correlates with training loss in our experiments (fourth row of Fig. 2). This
aligns with our hypothesis, though leaves unanswered the question of which difference from MGI
is most important for negating the empirical correlation with the loss: (i) the second-order term;
or (ii) the use of the dot product alone, rather than cosine similarity. That is, compared to MGI,
the metric GI2 not only (i) includes a ⟨ /∇ℓθt(st, at, s

′
t),∇ℓθt(s, a, s

′)⟩2 term; but also (ii) lacks the
(∥ /∇ℓθt(st, at, s

′
t)∥∥∇ℓθt(s, a, s

′)∥)−1 factor in its first-order term. However, we find empirically
that the first-order dot-product term alone, which we call DGI (dot-product gradient interference), still
correlates positively with the loss (which we show in Appendix F). This suggests the second-order
term is indeed more important than the first-order term in the setting we study.

3.3 HOW ROBUSTLY DOES LN IMPROVE GI2?

We would like to find the most basic explanation for why LN improves deep Q-learning. One avenue
for better establishing that GI2 may be an important explanation, rather than a side effect, would be
to show that LN improves GI2 even when temporarily added to a training run without LN. That is,
to only add LN periodically throughout training, just to see if it immediately improves GI2 at that
training step, without any actual training. Remarkably, we indeed find that even LN improves GI2
even without any retraining (Fig. 3).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

−6 −5 −4 −3 −2 −1
−1e+60
−1e+50
−1e+40
−1e+30
−1e+20
−1e+10
−1e+0
1e-2

𝖦
𝖨₂

Acrobot

−6 −5 −4 −3 −2 −1
−1e+58
−1e+50
−1e+42
−1e+34
−1e+26
−1e+18
−1e+10
−1e+2
0e+0

Pendulum

−6 −5 −4 −3 −2 −1
−1e+54
−1e+46
−1e+38
−1e+30
−1e+22
−1e+14
−1e+6
−1e-2
1e-2

CartPole

−6 −5 −4 −3 −2 −1
−1e+14
−1e+10
−1e+6
−1e+2
−1e-2
0e+0
1e-2
1e+2
1e+6

MountainCar

−6 −5 −4 −3 −2 −1
log₁₀(LR)

−1e+24
−1e+18
−1e+12
−1e+6
−1e+0
−1e-6
1e-2

𝖦
𝖨₂

−6 −5 −4 −3 −2 −1
log₁₀(LR)

−1e+38
−1e+32
−1e+26
−1e+20
−1e+14
−1e+8
−1e+2
−1e-4
1e-2

−6 −5 −4 −3 −2 −1
log₁₀(LR)

−1e+30
−1e+24
−1e+18
−1e+12
−1e+6
−1e+0
−1e-6
1e+0

−6 −5 −4 −3 −2 −1
log₁₀(LR)

−1e+4
−1e+2
−1e+0
−1e-2
−1e-4
−1e-6
1e-4

Figure 3: We use SGD (top row) and Adam (bottom row) to train without normalization again, but
this time we add LN temporarily Group 1

Group 2

Group

Triangle up
Triangle down

Triangle markers

, periodically throughout training, only to measure GI2. For
comparison, we again show LN Group 1

Group 2

Group

Triangle up
Triangle down

Triangle markers

and no normalization
Group 1
Group 2

Group

Triangle up
Triangle down

Triangle markers
as well. For both SGD and Adam, LN

still tends to improve GI2, even without allowing the network to take even a single training step with
LN in place. MountainCar is again an exception.

3.4 PROVABLE BENEFITS OF NORMALIZATION

As the empirical and theoretical analyses in Section 3.1, Section 3.2, and Section 3.3 suggest, the
squared interference dominates the stability of deep Q-learning, and it is related to the second-order
approximation of the loss decrement. However, we have not understood why normalization stabilizes
or accelerates training. In fact, even for the simpler case of supervised learning, we are not aware of a
compelling theoretical explanation in the literature, though we suspect that our analysis is not likely
to be novel.

In this subsection we provide some theoretical evidence on the effect of feature normalization in
stochastic gradient descent (SGD) for linear regression, a special case of linear Q-learning, the
simplest form of Q-learning with function approximation. The problem setting is formally defined in
Definition 1. In particular, we show that feature normalization improves an SGD progress–stability
tradeoff. This is offered only as supporting context for our second-order interference view, not as a
claim of novelty.

Definition 1 (Stochastic gradient descent for linear regression). Let (x, y) ∈ Rd × R be drawn
from a fixed distribution µ and let the goal be to minimize L(θ) = E(x,y)∼µ[(x

⊤θ − y)2]. With
SGD, at each iteration t, a sample (xt, yt) ∼ µ is drawn and the parameter is updated as θt+1 =
θt − ηxt(x

⊤
t θt − yt).

For simplicity, we assume realizability:

Assumption 1 (realizability). There exists a θ⋆ ∈ Rd such that y = x⊤θ⋆.

Although Assumption 1 assumes noiseless feedback, this is only to simplify our exposition. It is
straightforward to extend it to the case with noise scale E[(y − x⊤θ⋆)|x] = σ2(x) for some function
σ(x) increasing in ∥x∥.

We consider two quantities that are usually used to measure the progress of training. One is R(θ) =
∥θ − θ⋆∥2, the squared distance to the optimal solution. The other is L(θ), the expected loss defined
in Definition 1.

Under Assumption 1, the update of SGD with learning rate η yields a expected distance decrement
equality:

E[R(θt+1)|θt] = R(θt)− 2ηAt + η2Bt,

for some At, Bt > 0 that depends on data distribution µ and θt. They are the first-order and
second-order terms in optimization, similar to Eq. (10). We can prove the following:

Theorem 2. Under fixed R(θt), A2
t/Bt is maximized when ∥x∥ is a constant in the data distribution.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

There are two different ways to interpret Theorem 2:

• With the optimal choice of the learning rate η, the distance decrement R(θt)−E[R(θt+1)|θt]
is maximized when ∥x∥ are all equal. This is because maxη{2ηAt − η2Bt} = A2

t/B
2
t .

• Under a fixed first-order term ηAt, the second-order term η2Bt is minimized when ∥x∥ are
all equal. This is because the second-order term η2Bt is equal to F 2Bt/A

2
t where F = ηAt

is the first-order term. Similarly, under a fixed second-order term, the first-order term is
maximized when ∥x∥ are all equal.

The first interpretation indicates that feature normalization (i.e., making ∥x∥ all equal) can achieve the
most decrement in distance to θ⋆, while the second interpretation indicates that feature normalization
always achieves the best possible trade-off between the two terms, under any learning rate.

For the other measurement L(θ), we can also prove a similar property, under an additional assumption
that ∥x∥ (scale) and x

∥x∥ (direction) are independent under the data distribution. Similarly, the
following loss decrement equality holds for SGD:

E[L(θt+1)|θt] = L(θt)− 2ηCt + η2Dt,

for some Ct, Dt > 0 that depends on µ and θt, and we have

Theorem 3. Assume that ∥x∥ and x
∥x∥ are independent under µ. Then under fixed L(θt), C2

t /Dt is
maximized when ∥x∥ is a constant in the data distribution.

We have the similar two ways to interpret Theorem 3 as in Theorem 2.

Extending Theorem 2 and Theorem 3 to temporal-difference learning requires several additional
assumptions, which would make the analysis diverge further from practice. We therefore leave it as
future work to seek a better perspective for understanding normalization in TD from the viewpoint
of optimization theory. While linear regression is not the same as TD, it more closely resembles
deep Q-learning with a target network, where the regression target changes slowly or remains fixed
except for periodic updates. Our theory suggests that with a target network, normalization accelerates
convergence in the regression problem defined by the target. Consequently, it could tolerate faster
target network updates than the version without a target network. In the extreme, updating the target
network at every step reduces to temporal-difference learning.

4 LIMITATIONS AND FUTURE DIRECTIONS

One path for future theoretical work is to extend the linear regression theory to linear temporal
difference learning, with the goal of proving the connection between gradient interference metrics
and convergence speed. Another path is to connect our theory with Gallici et al. (2025). Maybe the
most important empirical directions are to experiment with a wider variety of environments, including
image-based observations and continuous action spaces. Finally, both theoretically and empirically,
an important direction is to consider the effects of model scaling.

REFERENCES

Sanjeev Arora, Zhiyuan Li, and Kaifeng Lyu. Theoretical Analysis of Auto Rate-Tuning by Batch
Normalization. arXiv, December 2018. doi: 10.48550/arXiv.1812.03981.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Philip J Ball, Laura Smith, Ilya Kostrikov, and Sergey Levine. Efficient online reinforcement learning
with offline data. In International Conference on Machine Learning, pp. 1577–1594. PMLR, 2023.

Aditya Bhatt, Daniel Palenicek, Boris Belousov, Max Argus, Artemij Amiranashvili, Thomas Brox,
and Jan Peters. Crossq: Batch normalization in deep reinforcement learning for greater sample
efficiency and simplicity. In The Twelfth International Conference on Learning Representations,
2024.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and
Wojciech Zaremba. Openai gym. arXiv preprint arXiv:1606.01540, 2016.

William Dabney and Andrew Barto. Adaptive step-size for online temporal difference learning. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 26, pp. 872–878, 2012.

Hadi Daneshmand, Amir Joudaki, and Francis Bach. Batch normalization orthogonalizes repre-
sentations in deep random networks. Advances in Neural Information Processing Systems, 34:
4896–4906, 2021.

Mohamed Elsayed, Gautham Vasan, and A Rupam Mahmood. Streaming deep reinforcement learning
finally works. arXiv preprint arXiv:2410.14606, 2024.

Scott Fujimoto, David Meger, Doina Precup, Ofir Nachum, and Shixiang Shane Gu. Why should
i trust you, bellman? the bellman error is a poor replacement for value error. arXiv preprint
arXiv:2201.12417, 2022.

Matteo Gallici, Mattie Fellows, Benjamin Ellis, Bartomeu Pou, Ivan Masmitja, Jakob Nicolaus
Foerster, and Mario Martin. Simplifying deep temporal difference learning. In The Thirteenth
International Conference on Learning Representations, 2025.

Florin Gogianu, Tudor Berariu, Mihaela C Rosca, Claudia Clopath, Lucian Busoniu, and Razvan
Pascanu. Spectral normalisation for deep reinforcement learning: an optimisation perspective. In
International Conference on Machine Learning, pp. 3734–3744. PMLR, 2021.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learning for
robotic manipulation with asynchronous off-policy updates. In 2017 IEEE international conference
on robotics and automation (ICRA), pp. 3389–3396. IEEE, 2017.

Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and Yoshimasa Tsuruoka.
Dropout q-functions for doubly efficient reinforcement learning. International Conference on
Learning Representations, 2022.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. In International conference on machine learning, pp. 448–456.
pmlr, 2015.

Khurram Javed, Arsalan Sharifnassab, and Richard S. Sutton. SwiftTD: A fast and robust algorithm
for temporal difference learning. Reinforcement Learning Journal, 2:840–863, 2025.

Amir Joudaki, Hadi Daneshmand, and Francis Bach. On the impact of activation and normalization
in obtaining isometric embeddings at initialization. Advances in Neural Information Processing
Systems, 36:39855–39875, 2023.

Alexandra K Kearney. Letting the Agent Take the Wheel: Principles for Constructive and Predictive
Knowledge. PhD thesis, University of Alberta, 2023.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Jonas Kohler, Hadi Daneshmand, Aurelien Lucchi, Thomas Hofmann, Ming Zhou, and Klaus
Neymeyr. Exponential convergence rates for batch normalization: The power of length-direction
decoupling in non-convex optimization. In The 22nd International Conference on Artificial
Intelligence and Statistics, pp. 806–815. PMLR, 2019.

Hojoon Lee, Hanseul Cho, Hyunseung Kim, Daehoon Gwak, Joonkee Kim, Jaegul Choo, Se-
Young Yun, and Chulhee Yun. Plastic: Improving input and label plasticity for sample efficient
reinforcement learning. Advances in Neural Information Processing Systems, 36:62270–62295,
2023.

Hojoon Lee, Dongyoon Hwang, Donghu Kim, Hyunseung Kim, Jun Jet Tai, Kaushik Subramanian,
Peter R Wurman, Jaegul Choo, Peter Stone, and Takuma Seno. Simba: Simplicity bias for
scaling up parameters in deep reinforcement learning. International Conference on Learning
Representations, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Long-Ji Lin. Reinforcement learning for robots using neural networks. Carnegie Mellon University,
1992.

Ziyan Luo, Tianwei Ni, Pierre-Luc Bacon, Doina Precup, and Xujie Si. Understanding behavioral
metric learning: A large-scale study on distracting reinforcement learning environments. In
Reinforcement Learning Conference, 2024.

Clare Lyle, Zeyu Zheng, Evgenii Nikishin, Bernardo Avila Pires, Razvan Pascanu, and Will Dabney.
Understanding plasticity in neural networks. In International Conference on Machine Learning,
pp. 23190–23211. PMLR, 2023.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, James Martens, Hado P van Hasselt, Razvan Pascanu,
and Will Dabney. Normalization and effective learning rates in reinforcement learning. Advances
in Neural Information Processing Systems, 37:106440–106473, 2024.

Clare Lyle, Zeyu Zheng, Khimya Khetarpal, Hado van Hasselt, Razvan Pascanu, James Martens, and
Will Dabney. Disentangling the Causes of Plasticity Loss in Neural Networks. In Conference on
Lifelong Learning Agents, pp. 750–783. PMLR, February 2025. URL https://proceedings.
mlr.press/v274/lyle25a.html.

Ashique Mahmood. Automatic step-size adaptation in incremental supervised learning. Master’s
thesis, University of Alberta, 2010.

Ashique Rupam Mahmood, Richard S Sutton, Thomas Degris, and Patrick M Pilarski. Tuning-free
step-size adaptation. In 2012 IEEE international conference on acoustics, speech and signal
processing (ICASSP), pp. 2121–2124. IEEE, 2012.

Matthew McLeod, Chunlok Lo, Matthew Schlegel, Andrew Jacobsen, Raksha Kumaraswamy, Martha
White, and Adam White. Continual auxiliary task learning. Advances in neural information
processing systems, 34:12549–12562, 2021.

Alexandru Meterez, Amir Joudaki, Francesco Orabona, Alexander Immer, Gunnar Ratsch, and
Hadi Daneshmand. Towards training without depth limits: Batch normalization without gradient
explosion. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=xhCZD9hiiA.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. In International Conference on Learning Representations, 2018.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan
Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen,
Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra,
Shane Legg, and Demis Hassabis. Human-level control through deep reinforcement learning.
Nature, 518:529–533, February 2015. ISSN 1476-4687. doi: 10.1038/nature14236.

Daniel Palenicek, Florian Vogt, Joe Watson, and Jan Peters. Scaling off-policy reinforcement learning
with batch and weight normalization. arXiv preprint arXiv:2502.07523, 2025.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural reinforcement
learning method. In European conference on machine learning, pp. 317–328. Springer, 2005.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. Advances in neural information processing systems, 29, 2016.

Ahmad EL Sallab, Mohammed Abdou, Etienne Perot, and Senthil Yogamani. Deep reinforcement
learning framework for autonomous driving. arXiv preprint arXiv:1704.02532, 2017.

Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Prioritized experience replay. arXiv
preprint arXiv:1511.05952, 2015.

11

https://proceedings.mlr.press/v274/lyle25a.html
https://proceedings.mlr.press/v274/lyle25a.html
https://openreview.net/forum?id=xhCZD9hiiA

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Sheng Shen, Zhewei Yao, Amir Gholami, Michael Mahoney, and Kurt Keutzer. Powernorm: Re-
thinking batch normalization in transformers. In International conference on machine learning, pp.
8741–8751. PMLR, 2020.

Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction, volume 1. MIT
press Cambridge, 1998.

Hado Van Hasselt. Double q-learning. Advances in neural information processing systems, 23, 2010.

Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30, 2016.

Christopher John Cornish Hellaby Watkins et al. Learning from delayed rewards. 1989.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference on
computer vision (ECCV), pp. 3–19, 2018.

Chenjun Xiao, Bo Dai, Jincheng Mei, Oscar A Ramirez, Ramki Gummadi, Chris Harris, and Dale
Schuurmans. Understanding and leveraging overparameterization in recursive value estimation. In
International Conference on Learning Representations, 2021.

Greg Yang, Jeffrey Pennington, Vinay Rao, Jascha Sohl-Dickstein, and Samuel S Schoenholz. A
mean field theory of batch normalization. arXiv preprint arXiv:1902.08129, 2019.

Chao Yu, Jiming Liu, Shamim Nemati, and Guosheng Yin. Reinforcement learning in healthcare: A
survey. ACM Comput. Surv., 55(1), November 2021. ISSN 0360-0300. doi: 10.1145/3477600.
URL https://doi.org/10.1145/3477600.

A RELATED WORK

A broad family of normalization techniques has played an important role in stabilizing the training of
neural network, including LN (Ba et al., 2016), batch normalization (Ioffe & Szegedy, 2015), weight
normalization (Salimans & Kingma, 2016), spectral normalization (Miyato et al., 2018), and group
normalization (Wu & He, 2018). The significant practical success of these methods has motivated
a growing body of theoretical work aimed at understanding their mechanisms, providing various
insights on the mechanism of different normalization modules. In this work, we are specifically
interested in understanding whether and how these mechanisms carry to the RL setting.

Adaptive learning rate. Arora et al. (2018) argue that normalization effectively adapts the learning
rate during training. This property is common across normalization methods, as they impose
invariance of training loss to weight scalings. Such invariance induces a monotonic growth in the
weight norms during training and has been central to the development of the weight normalization
method (Salimans & Kingma, 2016). Lyle et al. (2024) study the similar phenomenon in reinforcement
learning, but focus on its side effect in the multi-task setting caused by the vanishing learning rate.
Our experiments, focusing on the single-task setting, show that the automatic adjustment of the
learning rate is an important property in DQN which could improve performance. However, this
alone cannot fully explain why other normalization layers, such as weight normalization, are less
effective in DQN.

Faster regression. Kohler et al. (2019) prove batch normalization can accelerate linear regression
when the input data is Gaussian. In this simplified setting, they provide quantitative convergence
bounds for linear regression with batch normalization, demonstrating that gradient descent converges
more rapidly with normalization. The acceleration arises from decoupling the optimization of weight
magnitudes from their directions. However, their analysis relies heavily on the Gaussian assumption.
In our work, we extend this proof to hold under substantially weaker assumptions on the data
distribution.

12

https://doi.org/10.1145/3477600

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Isometry. Joudaki et al. (2023) introduce the notion of isometry, which quantifies the degree of
orthogonality among samples or features. Their study shows that normalization layers induce an
implicit bias toward orthogonalizing data representations in deep random neural networks. This
contrasts with networks without normalization, where data samples become increasingly aligned
as network depth grows (Daneshmand et al., 2021). While deep neural networks are widely used
in supervised learning, DQN primarily relies on relatively shallow networks. Therefore, it remains
unclear whether isometry can fully explain the mechanisms underlying DQN.

Gradient explosion with batch normalization. Despite its advantages, batch normalization can
also introduce significant drawbacks that may limit its applicability. Yang et al. (2019) prove that
batch normalization leads to gradient explosion as network depth increases, a phenomenon initially
thought to be unavoidable. However, Meterez et al. (2024) demonstrate that gradient explosion can in
fact be mitigated through careful choices of hyperparameters and initialization.

Normalization in reinforcement learning. An important open question is whether explanations
for supervised learning extend to reinforcement learning settings. Addressing this is crucial, as some
normalization modules do not transfer effectively across different learning paradigms. For example,
batch normalization not only enhances the training of transformers but can also destabilize it (Shen
et al., 2020). Interestingly, a similar pattern is observed in DQN, where only LN has consistently
been shown to be effective. For example, Hiraoka et al. (2022); Lee et al. (2023); Ball et al. (2023);
Elsayed et al. (2024); Gallici et al. (2025); Lee et al. (2025) all proposed combinations of techniques
to enhance deep RL algorithms, and all include LN as an important component. Among them, Ball
et al. (2023) argue that LN improves the landscape of Q-function, preventing catastrophic value
extrapolation, and Lee et al. (2023) argues that LN makes the loss landscape smoother, avoiding the
loss of plasticity.

Besides LN, attempts to use other normalization schemes have been made. Bhatt et al. (2024) propose
an adaptation of batch normalization to DQN (called CrossQ) that addresses the issue of distribution
shift of naive application of BatchNorm to DQN. Palenicek et al. (2025) further enhance CrossQ
by combining it with weight normalization. On the other hand, Gogianu et al. (2021) argue that
spectral normalization provides automatic learning rate adaptation that benefits the training dynamics.
Overall, however, other normalization schemes in DQN are rarer than LN.

B POSTPONED PROOFS

Standing assumptions for this section. Throughout this section, expectations are conditional on
θt (equivalently on et = θt − θ⋆) and taken over fresh i.i.d. samples. We assume: (i) finite moments
and nondegeneracy, E∥x∥4 < ∞ and E∥x∥2 > 0; (ii) the magnitude–direction model x = az with
a = ∥x∥ ≥ 0 and z = x/∥x∥ when a > 0, with a independent of z (and z defined arbitrarily on
{a = 0}); (iii) when (x, x̂) appear together they are independent i.i.d. draws, each factorizable as az
with the same independence structure.

Proof of Theorem ??. Under Assumption 1, let et ≜ θt − θ⋆. One SGD step gives et+1 = et −
η xtx

⊤
t et, hence

E
[
∥et+1∥2 | θt

]
= ∥et∥2 − 2ηAt + η2Bt,

with

At ≜ e⊤t E[xx⊤]et, Bt ≜ e⊤t E[xx⊤xx⊤]et.

Write x = az with a = ∥x∥ and z = x/∥x∥. Then

At = E[a2v2], Bt = E[a4v2], where v ≜ z⊤et.

By Cauchy–Schwarz applied to the measure with density v2 (i.e., with Y = a2 and W = v2 so that
(E[YW])2/E[Y 2W] ≤ E[W]),

A2
t

Bt
=

(
E[a2v2]

)2
E[a4v2]

≤ E[v2] = e⊤t E[zz⊤]et,

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

with equality if and only if a2 is almost surely constant on {v ̸= 0} (it may vary on {v = 0} without
effect). Therefore, for fixed R(θt) = ∥et∥2, the ratio A2

t/Bt is maximized when ∥x∥ is constant
under µ.

Proof of Theorem 3. Let E(x,y) denote E(x,y)∼µ and define εt(x, y) ≜ x⊤θt − y. Expanding one
SGD step yields

L(θt+1) = E(x,y)

[(
εt(x, y)− η x⊤xt εt(xt, yt)

)2]
= L(θt)− 2η E(x,y)

[
εt(x, y) εt(xt, yt)x

⊤xt

]
+ η2 E(x,y)

[
εt(xt, yt)

2 (x⊤xt)
2
]
.

Taking expectation over (xt, yt) ∼ µ, we obtain

E[L(θt+1) | θt] = L(θt)− 2η Ct + η2Dt,

where

Ct ≜ E(x,y)E(x̂,ŷ)

[
εt(x, y) εt(x̂, ŷ)x

⊤x̂
]
,

Dt ≜ E(x,y)E(x̂,ŷ)

[
εt(x̂, ŷ)

2 (x⊤x̂)2
]
.

Thus, for any η, the loss decrement has the quadratic form above, and the ratio governing the optimal
decrement is C2

t /Dt.

Under Assumption 1, write εt(x, y) = x⊤et with et ≜ θt − θ⋆. Decompose x = az and x̂ = â ẑ
with a = ∥x∥, z = x/∥x∥. Using independence between magnitude and direction and i.i.d. sampling
across the two draws, define

Ut := Ez,ẑ

[
(z⊤et)(ẑ

⊤et)(z
⊤ẑ)

]
,

Wt := Ez,ẑ

[
(ẑ⊤et)

2(z⊤ẑ)2
]
.

Then

Ct = E
[
(a z⊤et)(â ẑ

⊤et)(aâ z
⊤ẑ)

]
= E[a2]2 Ut,

Dt = E
[
(â ẑ⊤et)

2(aâ z⊤ẑ)2
]
= E[a2] E[a4] Wt.

Consequently,

C 2
t

Dt
=

E[a2]4

E[a2]E[a4]
· U

2
t

Wt
.

For fixed L(θt) = E[εt(x, y)2] = E[a2]E[(z⊤et)2], the directional term E[(z⊤et)2] is fixed, hence
E[a2] is pinned. Thus maximizing C2

t /Dt over the magnitude distribution reduces to minimizing
E[a4], which is achieved when a2 is almost surely constant (by Jensen). Hence C2

t /Dt is maximized
when ∥x∥ is constant under µ.

Degenerate edge cases. If et = 0 or z⊤et = 0 almost surely, then At = Ct = 0 and the one-step
maximization statements are vacuous. If P(a = 0) > 0, values of z on {a = 0} are irrelevant since
all weighted terms place zero mass there.

C ISOMETRY

Theoretical hypothesis. Let X = {x1, x2 . . . , xn} ⊂ Rd. The Gram matrix G(X) is defined as
G(X)ij = ⟨xi, xj⟩, ∀i, j ∈ [n]. Following Joudaki et al. (2023), the isometry of X is defined as

ISO (X) = det(G(X))
1

|X|
/(

1
|X| Tr(G(X)

)
,

where |X| = n is the cardinality of X . ISO(X) is at most 1 and captures the degree of isotropy:
det(G(X)) is equal to the squared volume of the parallelotope spanned by x1, . . . , xn, and
Tr(G(X)) =

∑n
i=1 ∥xi∥2 is sum of their squared norms. The closer this ratio is to 1, the more

isotropic X is.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

To extend this notion to distributions, we define the order-k isometry of a distribution µ as

ISOk (µ) = EX={x1,...,xk}∼µk [ISO(X)] ,

where X consists of k independent samples from µ. This quantity measures the expected isometry of
size-k datasets. Note that det(G(X)) = 0 whenever the vectors in X are linearly dependent, so k
should not be chosen larger the dimension of the subspace spanned by the support of µ.

Let z ∼ µ be the distribution generated by first drawing x ∼ µ and setting z = x/∥x∥. It is
straightforward to show that for any k, ISOk(µ) ≤ ISOk(µ), given Joudaki et al. (2023)’s theorem:
Theorem 4 (Theorem 1 of Joudaki et al. (2023)). Let X = {x1, . . . , xn} and be an arbitrary dataset
and let Z = {x1/∥x1∥, . . . , xn/∥xn∥}. Then ISO(X) ≤ ISO(Z).

Theorem 4 implies that for any size-k datasets X and its normalized version Z, ISO(X) ≤ ISO(Z).
The inequality ISOk(µ) ≤ ISOk(µ) follows by taking expectation over the data distribution µ.

Joudaki et al. (2023) provide empirical evidence that, in supervised learning, LN results in increased
ISO of the network’s intermediate features throughout training. They also empirically find that ISO
positively correlates with the convergence rate. We hypothesize that LN will similarly increase ISOk,
even after training, in deep Q-learning. We likewise hypothesize that ISOk will correlate with returns.

Empirical evidence. Beyond the fact that k should not be chosen larger than the rank of the
Gram matrix, it is unclear what k should be set to. There are several potential options: setting k
as the dimensionality of the observation space of the environment, or the total dimensionality of
the inputs (either the observation dimensionality plus the action dimensionality, or the observation
dimensionality times the action dimensionality), or a small, fixed constant such as 3. We find that
all such k values (not shown) give results aligning fairly well with our hypotheses. We show ISOp,
which sets k to the observation plus action dimensionality, in Fig. 4. We show results for Adam and
for all other k values in Appendix E.

−6 −5 −4 −3 −2 −1

−450
−400
−350
−300
−250
−200
−150
−100

re
tu
rn

Acrobot

−6 −5 −4 −3 −2 −1
−1,600
−1,400
−1,200
−1,000
−800
−600
−400

Pendulum

−6 −5 −4 −3 −2 −1

50
100
150
200
250

CartPole

−6 −5 −4 −3 −2 −1

−180

−160

−140

−120

MountainCar

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.02
0.04
0.06
0.08
0.10
0.12

𝖨𝖲
𝖮

ₚ

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.05

0.10

0.15

0.20

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.01
0.02
0.03
0.04
0.05
0.06
0.07

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.002
0.004
0.006
0.008
0.010
0.012

Figure 4: ISOp correlates well with return. These correlations tend to hold at any given learning
rate (LR), and also sometimes across learning rates. SGD results only. Results with Adam and other
values of k (for ISOk) are in Appendix E.

Future work. Theoretically connecting the isometry metric to the convergence rate (even in
supervised learning) is perhaps the most important open question here.

D IMPLICIT LEARNING RATE DECAY

Theoretical hypothesis. In this subsection, we focus on the effective learning rate for the first layer
of our neural network, i.e., the W parameter in Eq. (3). Notice that the output value will not change
if we replace the W in Eq. (3) with αW for any α > 0 as the function LN is invariant to the scale of
W .

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Now, we review general properties of this type of functions. Assume f(αw) = f(w) for any α > 0.
Since f(w) is invariant to the scale of w, a meaningful update on f(w) must make an update in the
unit vector ŵ = w

∥w∥ that represents the direction. The following theorem by Arora et al. (2018) shows
(i) that the effective learning rate in the space of ŵ is roughly η

∥w∥2 , and (ii) that ∥w∥ monotonically
increases over time. Jointly, they imply that the effective learning rate decreases over time.
Lemma 5 (Theorem 2.5 of Arora et al. (2018)). Let f(w) be invariant to the scale of w. Denote
ŵ ≜ w

∥w∥ . For the gradient update w+ = w−η∇wf(w), we have ŵ+ = ŵ− η
∥w∥2∇ŵf(ŵ)+O(η2)

and ∥w+∥2 = ∥w∥2 + η2

∥w∥2 ∥∇ŵf(ŵ)∥2.

Such a learning rate decay argument not only applies to LN, but also to other forms of normalization
such as batch normalization and weight normalization. Lyle et al. (2024) observe that such an implicit
learning rate decay could be harmful to continual reinforcement learning, as the learner becomes
slower and slower in learning new tasks. To address this, they periodically project W back to a ball
of fixed radius.

Empirical evidence. In preliminary experiments (not shown), following Lyle et al. (2024), we
tested removing LN’s implicit learning rate decay by projecting the weights to back to their initial
norm after every gradient step. We also tested explicitly adding LN’s implicit learning rate decay
(i.e., setting the learning rate based on the norm of the weights) to a network without normalization.
In both cases, aligning with (Lyle et al., 2024), our results suggested that implicit learning rate decay
might sometimes increase returns, but did not fully account for LN’s increase.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

E ALL ISOk PLOTS

−6 −5 −4 −3 −2 −1

−450
−400
−350
−300
−250
−200

re
tu
rn

Acrobot

−6 −5 −4 −3 −2 −1

−1,400
−1,200
−1,000
−800
−600

Pendulum

−6 −5 −4 −3 −2 −1

50
100
150
200
250
300
350

CartPole

−6 −5 −4 −3 −2 −1

−180

−160

−140

−120

−100
MountainCar

−6 −5 −4 −3 −2 −1

0.02
0.04
0.06
0.08
0.10

𝖨𝖲
𝖮

ₚ

−6 −5 −4 −3 −2 −1

0.05

0.10

0.15

0.20

−6 −5 −4 −3 −2 −1

0.02
0.03
0.04
0.05
0.06
0.07

−6 −5 −4 −3 −2 −1

0.01

0.02

0.03

0.04

−6 −5 −4 −3 −2 −1

0.002
0.004
0.006
0.008
0.010
0.012
0.014

𝖨𝖲
𝖮

ₜ

−6 −5 −4 −3 −2 −1

0.02

0.04

0.06

0.08

−6 −5 −4 −3 −2 −1

0.010
0.015
0.020
0.025
0.030
0.035

0.005
−6 −5 −4 −3 −2 −1

0.005
0.010
0.015
0.020
0.025
0.030

−6 −5 −4 −3 −2 −1

0.1

0.2

0.3

0.4

0.5

𝖨𝖲
𝖮

₃

−6 −5 −4 −3 −2 −1
0.1

0.2

0.3

0.4

0.5

−6 −5 −4 −3 −2 −1

0.14
0.16
0.18
0.20
0.22
0.24
0.26
0.28

−6 −5 −4 −3 −2 −1

0.02
0.04
0.06
0.08
0.10
0.12
0.14

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.05

0.10

0.15

0.20

𝖨𝖲
𝖮
ₒ

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.1

0.2

0.3

0.4

0.5

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.06
0.08
0.10
0.12
0.14
0.16

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.05

0.10

0.15

0.20

0.25

Figure 5: The same as Fig. 4, but using Adam instead of SGD, and including all of the k values
mentioned in the main text for ISOk. The results are mostly similar at all values of k. ISOt sets k to
the dimensionality of the observation space times the dimensionality of the action space. ISO3 sets k
to 3. ISOo sets k to the dimensionality of the observation space alone.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

−6 −5 −4 −3 −2 −1

−450
−400
−350
−300
−250
−200
−150
−100

re
tu
rn

Acrobot

−6 −5 −4 −3 −2 −1
−1,600
−1,400
−1,200
−1,000
−800
−600
−400

Pendulum

−6 −5 −4 −3 −2 −1

50
100
150
200
250

CartPole

−6 −5 −4 −3 −2 −1

−180

−160

−140

−120

MountainCar

−6 −5 −4 −3 −2 −1

0.02
0.04
0.06
0.08
0.10
0.12

𝖨𝖲
𝖮

ₚ

−6 −5 −4 −3 −2 −1

0.05

0.10

0.15

0.20

−6 −5 −4 −3 −2 −1

0.01
0.02
0.03
0.04
0.05
0.06
0.07

−6 −5 −4 −3 −2 −1

0.002
0.004
0.006
0.008
0.010
0.012

−6 −5 −4 −3 −2 −1

0.002
0.004
0.006
0.008
0.010
0.012
0.014
0.016
0.018

𝖨𝖲
𝖮

ₜ

−6 −5 −4 −3 −2 −1

0.02

0.04

0.06

0.08

−6 −5 −4 −3 −2 −1

0.005
0.010
0.015
0.020
0.025
0.030

−6 −5 −4 −3 −2 −1

0.001
0.002
0.003
0.004
0.005
0.006

−6 −5 −4 −3 −2 −1

0.1
0.2
0.3
0.4
0.5

𝖨𝖲
𝖮

₃

−6 −5 −4 −3 −2 −1

0.1
0.2
0.3
0.4
0.5

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25

−6 −5 −4 −3 −2 −1

0.01
0.02
0.03
0.04
0.05
0.06
0.07

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.05

0.10

0.15

0.20

0.25

𝖨𝖲
𝖮
ₒ

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.1
0.2
0.3
0.4
0.5

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

−6 −5 −4 −3 −2 −1
log₁₀(LR)

0.05
0.10
0.15
0.20
0.25

Figure 6: The same as Fig. 5, but using SGD. The various values of k again give mostly similar
results.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F ALL PER-LEARNING RATE GRADIENT INTERFERENCE PLOTS

−6 −5 −4 −3 −2 −1

−450
−400
−350
−300
−250
−200
−150
−100

re
tu
rn

Acrobot

−6 −5 −4 −3 −2 −1
−1,600
−1,400
−1,200
−1,000
−800
−600
−400

Pendulum

−6 −5 −4 −3 −2 −1

50
100
150
200
250

CartPole

−6 −5 −4 −3 −2 −1

−180

−160

−140

−120

MountainCar

−6 −5 −4 −3 −2 −1
0.20

0.25

0.30

0.35

0.40

𝖰
𝖦
𝖨₊

−6 −5 −4 −3 −2 −1

0.20

0.25

0.30

0.35

0.40

−6 −5 −4 −3 −2 −1

0.30

0.35

0.40

0.45

0.50

−6 −5 −4 −3 −2 −1

0.35
0.40
0.45
0.50
0.55
0.60

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30

𝖲
𝖦
𝖨

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30

−6 −5 −4 −3 −2 −1
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30

−6 −5 −4 −3 −2 −1
0.00
0.05
0.10
0.15
0.20
0.25
0.30
0.35

𝖬
𝖦
𝖨

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30
0.35

−6 −5 −4 −3 −2 −1
0.00
0.05
0.10
0.15
0.20
0.25

−6 −5 −4 −3 −2 −1

0.05
0.10
0.15
0.20
0.25
0.30
0.35

−6 −5 −4 −3 −2 −1
−1e-2
1e-2
1e+6
1e+14
1e+22
1e+30
1e+38

𝖣
𝖦
𝖨

−6 −5 −4 −3 −2 −1
1e+2
1e+8
1e+14
1e+20
1e+26
1e+32
1e+38
1e+44

−6 −5 −4 −3 −2 −1
−1e+0
1e-6
1e+2
1e+10
1e+18
1e+26
1e+34

−6 −5 −4 −3 −2 −1
−1e-2
−1e-6
1e-2
1e+2
1e+6
1e+10
1e+14

−6 −5 −4 −3 −2 −1
−1e+56
−1e+48
−1e+40
−1e+32
−1e+24
−1e+16
−1e+8
−1e+0
1e-4

𝖦
𝖨₂

−6 −5 −4 −3 −2 −1
−1e+58
−1e+50
−1e+42
−1e+34
−1e+26
−1e+18
−1e+10
−1e+2
−1e-6

−6 −5 −4 −3 −2 −1
−1e+54
−1e+46
−1e+38
−1e+30
−1e+22
−1e+14
−1e+6
−1e-2

−6 −5 −4 −3 −2 −1
−1e+14
−1e+10
−1e+6
−1e+2
−1e-2
0e+0
1e-2
1e+2
1e+6

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+0
1e+4
1e+8
1e+12
1e+16
1e+20
1e+24
1e+28

tr
ai
ni
ng

 lo
ss

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+2
1e+6
1e+10
1e+14
1e+18
1e+22
1e+26

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+2
1e+6
1e+10
1e+14
1e+18
1e+22
1e+26

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+0
1e+2
1e+4
1e+6
1e+8
1e+10
1e+12

Figure 7: All of the gradient interference metrics when training with SGD. The return, training loss,
QGI+, and SGI are the same as plots as in Fig. 2. MGI is the mixed-gradient interference, i.e. the
cosine similarity of each pair of semi-gradients and full-gradients of the TD error. As mentioned
in Section 3.1.2, there are theoretical arguments for focusing on MGI instead of SGI, though in
our experiments it still counterintuitively correlates with return. DGI is the dot-product gradient
interference, the dot product version of MGI. That is, DGI is the dot product, rather than the cosine
similarity, of each semi-gradient and full-gradient. As mentioned in the main text, DGI still positively
correlates with the loss. GI2 is again the same as the plots in Fig. 2.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

−6 −5 −4 −3 −2 −1

−450
−400
−350
−300
−250
−200

re
tu
rn

Acrobot

−6 −5 −4 −3 −2 −1

−1,400
−1,200
−1,000
−800
−600

Pendulum

−6 −5 −4 −3 −2 −1

50
100
150
200
250
300
350

CartPole

−6 −5 −4 −3 −2 −1

−180

−160

−140

−120

−100
MountainCar

−6 −5 −4 −3 −2 −1

0.22
0.24
0.26
0.28
0.30
0.32
0.34

𝖰
𝖦
𝖨₊

−6 −5 −4 −3 −2 −1

0.20
0.25
0.30
0.35
0.40

−6 −5 −4 −3 −2 −1
0.32
0.34
0.36
0.38
0.40
0.42
0.44
0.46
0.48

−6 −5 −4 −3 −2 −1

0.35

0.40

0.45

0.50

0.55

−6 −5 −4 −3 −2 −1

0.05

0.10

0.15

0.20

𝖲
𝖦
𝖨

−6 −5 −4 −3 −2 −1
0.02
0.04
0.06
0.08
0.10
0.12
0.14

−6 −5 −4 −3 −2 −1
0.05
0.10
0.15
0.20
0.25
0.30
0.35

−6 −5 −4 −3 −2 −1
0.05
0.10
0.15
0.20
0.25
0.30

−6 −5 −4 −3 −2 −1

0.000
0.005
0.010
0.015
0.020
0.025

𝖬
𝖦
𝖨

−6 −5 −4 −3 −2 −1
−0.002
0.000
0.002
0.004
0.006
0.008
0.010
0.012
0.014

−6 −5 −4 −3 −2 −1

−0.02

−0.01

0.00

0.01

0.02

−6 −5 −4 −3 −2 −1
0.02
0.04
0.06
0.08
0.10
0.12
0.14
0.16

−6 −5 −4 −3 −2 −1
−1e-2
−1e-6
1e-2
1e+2
1e+6
1e+10
1e+14

𝖣
𝖦
𝖨

−6 −5 −4 −3 −2 −1
−1e+28
−1e+22
−1e+16
−1e+10
−1e+4
−1e-2
1e-4
1e+2

−6 −5 −4 −3 −2 −1
−1e+0
−1e-4
1e-4
1e+0
1e+4
1e+8
1e+12
1e+16
1e+20

−6 −5 −4 −3 −2 −1
−1e+0
−1e-2
−1e-4
0e+0
1e-4
1e-2
1e+0
1e+2

−6 −5 −4 −3 −2 −1
−1e+24
−1e+20
−1e+16
−1e+12
−1e+8
−1e+4
−1e+0
−1e-4
1e-4

𝖦
𝖨₂

−6 −5 −4 −3 −2 −1
−1e+38
−1e+32
−1e+26
−1e+20
−1e+14
−1e+8
−1e+2
−1e-4

−6 −5 −4 −3 −2 −1
−1e+30
−1e+24
−1e+18
−1e+12
−1e+6
−1e+0
−1e-6

−6 −5 −4 −3 −2 −1
−1e+6
−1e+4
−1e+2
−1e+0
−1e-2
−1e-4
−1e-6
1e-4

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+0
1e+2
1e+4
1e+6
1e+8
1e+10

tr
ai
ni
ng

 lo
ss

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+2

1e+6

1e+10

1e+14

1e+18

−6 −5 −4 −3 −2 −1
log₁₀(LR)

1e+2
1e+4
1e+6
1e+8
1e+10
1e+12
1e+14

−6 −5 −4 −3 −2 −1
log₁₀(LR)

2e-1

1e+0
3e+0
1e+1
3e+1
1e+2
3e+2

Figure 8: The same as Fig. 7, but using Adam. The results are similar to the SGD case.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

G EXPERIMENTAL DETAILS

Everywhere that we use SGD in this work, we use zero momentum. For Adam (Kingma & Ba, 2014),
we use its default hyperparameters.

For Table 1, the 9 learning rates are {10−1, 10−1.5, . . . , 10−5}. BN is batch normalization, WN is
weight normalization. The "Random" column uses the Q-values of the randomly initialized network
without any normalization layers. We additionally tested CrossQ (Bhatt et al., 2024) — in our
preliminary experiments (not shown), CrossQ achieved around the same returns as LN, though
CrossQ requires an additional hyperparameter, the BN momentum. An interesting direction for future
work is to study how CrossQ and other normalizations affect the metrics we study.

For all experiments, we use a batch size of 128, a hidden layer width of 128, a discount factor of 0.99,
and 200,000 training steps (gradient steps). Environments are: Pendulum-v1 with a uniformly
random initial state-action distribution (Xiao et al., 2021), and an action-discretization from the
default continuous space [−2, 2] to instead {−2, 0, 2}; MountainCar-v0with a uniformly random
initial state-action distribution; Acrobot-v1; and CartPole-v1. For any hyperparameters not
explicitly specified, we use the PyTorch default. For example, for LN, we use the PyTorch default
ε = 10−5.

To compute gradient interference metrics and isometry metrics, we again use a batch of size 128,
randomly drawn for each measurement.

For all experiments, to avoid NaN metric values, we clamp the neural network weights after every
gradient step to be equal to or under an absolute value of one million. Empirically, this clamping only
occurs when using SGD, never when using Adam.

H LLM USAGE

Following the ICLR author guide, this section describes our LLM usage. We used LLMs to aid
and polish our writing. For example, we asked for more concise phrasing, for renaming variables,
alternative metric names, and for debugging and improving our LATEX. We also used LLMs for
retrieval and discovery (e.g., finding related work). For instance, we asked LLMs whether our
mixed-gradient interference metric appeared in any prior works (in addition to our own, manual
searching). We additionally used LLMs to a limited extent for research ideation, such as asking about
alternatives to our ISOk idea (though ultimately we did not use them). We further used LLMs to help
with writing and improving our code.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

I ALL GRADIENT INTERFERENCE SCATTER PLOTS

0.05 0.15 0.25
𝖲𝖦𝖨

1e+0

1e+10

1e+20

1e+5

1e+15

1e+25

tr
ai
ni
ng

 lo
ss

Acrobot

0.05 0.15 0.25
𝖲𝖦𝖨

1e+10

1e+20

1e+5

1e+15

1e+25

Pendulum

0.05 0.15 0.25 0.35
𝖲𝖦𝖨

1e+5
1e+10
1e+15
1e+20
1e+25

CartPole

0.05 0.15 0.25
𝖲𝖦𝖨

1e+0
1e+2
1e+4
1e+6
1e+8
1e+10
1e+12

MountainCar

−1e+50 −1e+30 −1e+10
𝖦𝖨₂

1e+0
1e+5
1e+10
1e+15
1e+20
1e+25

tr
ai
ni
ng

 lo
ss

−1e+50 −1e+30 −1e+10
𝖦𝖨₂

1e+5
1e+10
1e+15
1e+20
1e+25

−1e+50 −1e+30 −1e+10
𝖦𝖨₂

1e+5
1e+10
1e+15
1e+20
1e+25

−1e+10 0e+0
𝖦𝖨₂

1e+0
1e+2
1e+4
1e+6
1e+8
1e+10
1e+12

0.050.10 0.15 0.200.250.30
𝖲𝖦𝖨

−400

−300

−200

−100

−450

−350

−250

−150

re
tu
rn

0.050.10 0.15 0.200.250.30
𝖲𝖦𝖨

−1,000

−1,600
−1,400
−1,200

−800
−600
−400

re
tu
rn

0.05 0.15 0.25 0.35
𝖲𝖦𝖨

50

100

150

200

250

0.05 0.10 0.15 0.200.250.30
𝖲𝖦𝖨

−190
−180
−170
−160
−150
−140
−130

−1e+50 −1e+30 −1e+10 0e+0
𝖦𝖨₂

−400

−300

−200

−100

−450

−350

−250

−150

re
tu
rn

−1e+50 −1e+30 −1e+10 0e+0
𝖦𝖨₂

−1,600
−1,400
−1,200
−1,000
−800
−600
−400

−1e+50 −1e+30 −1e+10
𝖦𝖨₂

2e+1
3e+1
4e+15e+16e+1
1e+2

2e+2

−1e+10 0e+0
𝖦𝖨₂

−190
−180
−170
−160
−150
−140
−130

Figure 9: The same as Fig. 1, but with additional plots showing the correlation with return, not only
with training loss. On CartPole, SGI correlates negatively with the return, even though it correlates
negatively with the loss as well. For Adam (not shown), the correlation between SGI and loss reverses,
but the correlation between SGI and return remains negative.

22

	Introduction
	Problem Setting
	How Does Layer Normalization Improve Deep Q-learning?
	Gradient Interference
	Motivation from Tabular Q-learning
	Mixed-Gradient Interference for Temporal Difference Learning

	A Refined Analysis
	How Robustly Does LN Improve GI2?
	Provable Benefits of Normalization

	Limitations and Future Directions
	Related Work
	Postponed Proofs
	Isometry
	Implicit Learning Rate Decay
	All ISOk Plots
	All Per-Learning Rate Gradient Interference Plots
	Experimental Details
	LLM Usage
	All Gradient Interference Scatter Plots

