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Abstract

The goal of generalized few-shot semantic segmentation (GFSS) is to recognize
novel-class objects through training with a few annotated examples and the base-
class model that learned the knowledge about the base classes. Unlike the classic
few-shot semantic segmentation, GFSS aims to classify pixels into both base and
novel classes, meaning it is a more practical setting. Current GFSS methods rely
on several techniques such as using combinations of customized modules, carefully
designed loss functions, meta-learning, and transductive learning. However, we
found that a simple rule and standard supervised learning substantially improve the
GFSS performance. In this paper, we propose a simple yet effective method for
GFSS that does not use the techniques mentioned above. Also, we theoretically
show that our method perfectly maintains the segmentation performance of the
base-class model over most of the base classes. Through numerical experiments,
we demonstrated the effectiveness of our method. It improved in novel-class
segmentation performance in the 1-shot scenario by 6.1% on the PASCAL-5i
dataset, 4.7% on the PASCAL-10i dataset, and 1.0% on the COCO-20i dataset.

1 Introduction

Semantic segmentation is a vital task in various visual understanding systems, and the goal is to
obtain pixel-level semantic categories [1]. Recent developments in convolutional neural networks [2]
and vision transformers [3] have pushed the limits of semantic segmentation. With a large amount of
annotated images, we can obtain an accurate model that can recognize objects in the training data. In
real-world applications, however, the learned model will encounter novel-class objects that are not
classified in base classes, i.e., classes that are not annotated in the training data.

To solve this problem, few-shot semantic segmentation (FSS) aims to recognize novel-class objects
with a few annotated images while using the learned model, which has knowledge about the base-
class information. Although various FSS methods have been proposed [4–15], FSS only handles
novel-class object recognition, which restricts its applicability since base classes will still appear at
inference in practice.

Generalized FSS (GFSS) aims to recognize both base- and novel-class objects [16] and is regarded as
a more practical setting than FSS. Current GFSS methods rely on several techniques such as using
combinations of customized modules [16–19], carefully designed loss functions [20], meta-learning
[16, 18, 19], and transductive learning [20]. These techniques improved GFSS performance at the
cost of implementation and computation time. For example, such a customized module is not always
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Figure 1: Illustration of base-class min-
ing (BCM) with three novel classes:
“train”, “tv”, and “couch”. Base-class
model first outputs prediction. If pre-
diction is one of chosen base classes,
corresponding model outputs predic-
tion. Otherwise, prediction of base-
class model is used as it is. Simple rule
finds which base class is related to novel
classes. Models for novel classes are
trained by standard supervised learning.

supported in the target framework, methods based on meta-learning require several hours to train
customized modules, and transductive learning optimizes models during inference, which is not
suitable for applications that require quick responses. However, we found that a simple rule and
standard supervised learning improve GFSS performance.

In this paper, we propose a simple yet effective GFSS method that does not use the above techniques.
As illustrated in Fig. 1, our idea is mining base classes closely related to classifying novel classes.
We thus refer to our method as base-class mining (BCM). Surprisingly, BCM perfectly maintains the
segmentation performance of the base-class model over a subset of base classes. Since maintaining
the segmentation performance of the base-class model is critical in GFSS, BCM will be beneficial,
especially when a performance difference from the base-class model confuses users.

Our contributions are summarized as follows.

• We propose a simple yet effective GFSS method based on a simple rule and well-known supervised
learning techniques, which can be regarded as a strong alternate baseline without transductive
learning.

• We theoretically show that the performance of the base-class model for a subset of base classes
is perfectly maintained, which is the first theoretical finding about base-class segmentation
performances in GFSS, to the best of our knowledge.

• We demonstrated the effectiveness of BCM on the PASCAL-5i, PASCAL-10i, and COCO-20i
datasets. BCM substantially improved novel-class segmentation performance in the 1-shot
scenario by 6.1% on PASCAL-5i and 4.7% on PASCAL-10i.

2 Related work

2.1 GFSS setting

In GFSS [16], multiple novel classes need to be classified, i.e., multi-class classification, in addition
to classifying base classes. This differs from the FSS setting of single novel-class classification, i.e.,
binary classification.

We consider the practical GFSS setting [20], in which the available resources are few-shot annotated
images for novel classes and the base-class model trained using standard learning methods. The
existing setting [16] requires annotated base-class samples for training the base-class model and
tuning a GFSS model that can recognize both base and novel classes. For example, the number of
base classes is 60 (excluding the background) on COCO-20i case, meaning that we need to collect
300 annotated images for tuning in the 5-shot scenario, other than training the base-class model. Such
additional samples for base classes are not necessary in the practical GFSS setting, resulting in using
those samples for training the base-class model, which is an advantage of the practical GFSS setting.

2.2 GFSS methods

The major challenges with current GFSS methods are i) attaining better recognition performance for
novel classes and ii) maintaining the segmentation performance of the base-class model. Context-
aware prototype learning (CAPL) [16] enhances prototypes with a few annotated images and employs
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a balancing mechanism of prototypes for base and novel classes. Base and meta (BAM) [14, 18]
designed customized modules to learn knowledge from few-shot data and combined predictions of
both base and novel classes on the basis of thresholds. POP [17] and PCN [19] use similar approaches.
Distilled information maximization (DIaM) [20] does not depend on customized modules, instead,
uses the information maximization principle [21] and designs a loss function on the basis of knowledge
distillation [22] to preserve base-class knowledge. DIaM uses the transductive learning approach
[23], which is not suitable for applications that require quick responses.

Compared with the above methods, BCM does not rely on carefully customized models, various
combinations of loss functions, or transductive learning.

2.3 Continual semantic segmentation

The GFSS setting relates to another emergence problem setting known as continual semantic segmen-
tation (CSS) [24–26] in which the new classes appear in a continual learning manner. The CSS setting
is reduced to the GFSS setting if several novel classes appear with a few annotations in a single step.
Coincidentally, a previous study [26] empirically found a phenomenon similar to our idea that a novel
class is classified as a base class, through qualitative analyses of their method. However, their method
was not designed for the few-shot learning setting, meaning that how to improve GFSS performances
is unclear. In contrast to their findings, BCM explicitly integrates the idea of the relation between
base and novel classes with the architecture. These differences in problem settings and architectures
differentiate CSS-based methods from BCM.

3 Preliminaries

3.1 Problem settings

We consider the following practical GFSS setting [20].

Let X ∈ RH×W×3 denote an RGB image of height H and width W , and Y ∈ YH×W be its
corresponding segmentation map, where Y ⊂ {0, 1, 2, 3, . . . } is a set of object classes. Let [ · ]j
indicate the j-th element of a matrix, where j ∈ {1, . . . ,HW}. If [Y ]j = y, the object y exists at
the j-th pixel.

Let Yb and Yn be the sets of base and novel classes, respectively, such that Yb ∩ Yn = ∅ and
Yall = Yb∪Yn. We use the class ‘0’ for background, which is often the case with implementation. For
the sake of simplicity, we include the background into Yb, e.g., Yb = {0, 1, 2, 3} and Yn = {4, 5}.

We have a learned base-class model ĝb, which is trained with a large amount of annotated images by
using standard semantic-segmentation methods [1]. Given X , ĝb returns a base-class segmentation
map Ŷ b ∈ YH×W

b . Similarly to the practical GFSS setting [20], we do not assume the customized
architecture for ĝb, enabling us to easily use cutting-edge foundation models [27].

A K-shot dataset contains K examples with its ground-truth mask for each novel class y ∈ Yn, e.g.,
if K = 5 and |Yn| = 5, we have 25 annotated images. Note that K examples for base classes are not
necessary, as discussed in Sec. 2.1.

Our goal is to obtain the segmentation map Ŷ BCM ∈ YH×W
all computed using the prediction model

for GFSS, denoted as ĝBCM.

3.2 Evaluation metric

The mean intersection-over-union (mIoU) is widely used in reporting the performance of segmentation
methods [1]. Let us first define the IoU for a class y′ ∈ Y as

IoUy′(Y , Ŷ ) :=

∑HW
j=1 Iy′([Y ]j , [Ŷ ]j)∑HW
j=1 Uy′([Y ]j , [Ŷ ]j)

, (1)

where Iy′(y, ŷ) := I[y = y′] · I[ŷ = y′], Uy′(y, ŷ) := I[y = y′] + I[ŷ = y′]− I[y = y′] · I[ŷ = y′],
and I[cond] is the indicator function taking 1 if cond is true, 0 otherwise. Here, we consider a single
sample for evaluation, but it can be easily extended to multiple samples by adding the summation over
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(a) Counting co-occurrences (b) Co-occurrence count table (c) Base-novel mapping (BNM)

Figure 2: Illustration of BNM creation. For illustration purpose, image of size 3 × 3 is used. (a)
Count co-occurrences, i.e., (base class, novel class) pairs. There are three (0, 4) and one (2, 4)
co-occurrences. (b) Aggregate co-occurrence counts for all samples and create co-occurrence count
table. (c) Create BNM from co-occurrence count table, where top-1 strategy finds base class with
largest co-occurrences (shaded cell in Fig. 2b) for each novel class.

samples to the numerator and denominator in Eq. (1), respectively. Finally, the mIoU is computed by

mIoUY(Y , Ŷ ) :=
1

|Y|
∑
y′∈Y

IoUy′(Y , Ŷ ). (2)

For example, if Y is Yn, it will be the mIoU over novel classes.

4 Proposed method

We now present BCM.

4.1 Training

Training is divided into two steps: 1) finding the relationship between base and novel classes, and 2)
training models for classifying novel classes for each chosen base class.

Step 1. We input X into ĝb and obtain Ŷ b. For each pixel of the annotated object, we compare
Ŷ b and Y and record co-occurrences of base and novel classes. We then count the co-occurrences,
find the top-s co-occurred base class for each novel class, referred to as the top-s strategy, and obtain
chosen base classes denoted as B. Finally, we construct the mapping from a base class to novel
classes, called base-novel mapping (BNM). Figure 2 illustrates the creation of BNM with the top-1
strategy from the 1-shot dataset.

Step 2. For each chosen base class β ∈ B, we train a model gβ with the modified K-shot dataset
where labels are converted into β if they are novel classes irrelevant to β or the background. Taking
the example in Fig. 2c, when β = 1, the irrelevant novel-class labels ‘4’ and ‘5’ and the background
label ‘0’ are replaced with ‘1’. Then, ĝβ=1 returns either ‘1’ or ‘6’ as the prediction.

To obtain the learned model ĝβ , we can use any learning method, such as minimizing the cross-entropy
loss or effective losses used in the previous studies.

4.2 Inference

Inference is analogous to training. For a test image X , we first obtain the base-class prediction Ŷ b.
For each pixel j, if [Ŷ b]j = β, we then obtain the prediction of the corresponding model ĝβ and
overwrite [Ŷ b]j with the output of ĝβ . Figure 3 illustrates how we obtain the segmentation map of
BCM. We summarize the flow of BCM in Fig. 4.

4.3 Preventing catastrophic forgetting

Maintaining the base-class segmentation performance is crucial in GFSS. We theoretically show that
BCM perfectly maintains the segmentation performance of most of the base classes without resorting
to, e.g., knowledge distillation [22] for training models.
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Figure 3: Illustration of inference.
Ŷ b, Ŷ β=0, and Ŷ BCM are predic-
tions of ĝb, ĝβ=0, and BCM, re-
spectively.

Figure 4: Flow of BCM. For each β ∈ B, BCM finds
pixels of Ŷ b = β and overwrites Ŷ b with Ŷβ .

We first formulate the prediction of BCM described in Sec. 4.2. Let ŷb be the prediction of the
base-class model at the j-th pixel and ŷβ be the prediction of ĝβ at the j-th pixel. The prediction of
BCM at the j-th pixel, ŷBCM, is obtained by

ŷBCM =

{
ŷb if ŷb ̸∈ B,
ŷβ=ŷb

otherwise.
(3)

The above prediction mechanism leads to the following proposition:

Proposition 4.1. Let Ŷ b and Ŷ BCM be the predictions of the base-class model and BCM, respectively.
The mIoUs of Ŷ b and Ŷ BCM over Yb \ B are the same:

mIoUYb\B(Y , Ŷ b) = mIoUYb\B(Y , Ŷ BCM). (4)

If |B| is small, the segmentation performance of most of the base classes is perfectly maintained.

Proof. For any y′ ̸∈ B, if [Ŷ b]j = y′, then [Ŷ BCM]j = [Ŷ b]j by definition of the BCM prediction.
Then, for any y′ ∈ Yb \ B,

IoUy′(Y , Ŷ b) = IoUy′(Y , Ŷ BCM). (5)

Taking the average of IoUy′ over Yb \ B, we obtain Eq. (4).

Intuitively, since BCM uses the prediction of the base-class model as it is for a subset of base classes,
the mIoU over those base classes is the same as ĝb. Proposition 4.1 shows that BCM partially prevents
catastrophic forgetting [28, 29]. In our experiments, |B| tended to be small, resulting in the mIoU
over base classes being almost maintained.

4.4 Lightweight implementation

Since the size of training data for novel classes is not large in GFSS, training deep neural networks
for ĝβ is impractical. We thus use the base-class model ĝb as the feature extractor of ĝβ and train
linear models as the last layer of ĝβ with the K-shot data.

To train linear models, we can use off-the-shelf libraries, such as Scikit-learn [30], meaning that
training time will be fast, compared with the end-to-end training on GPU. Since the number of
background pixels is much larger than that of objects of interest, we applied sampling techniques for
imbalanced data [31] to training data, such as under-sampling.

Regarding the top-s strategy, we used s = 1 from the performance and computation time viewpoint.
The effect of s in the top-s strategy is discussed in Sec. 5.6.

4.5 Further performance improvement

Since our implementation is to train simple linear models, we can easily use various techniques
to improve GFSS performance. We explain two effective and easy-to-use techniques used in our
experiments as follows.
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Pre-processing. We can use Tukey’s ladder of powers transformation [32], known as the effective
transformation in few-shot learning [33]. Specifically, let f be the d-dimensional feature vector
extracted by ĝb. Tukey’s ladder of powers transformation is defined as

f̃ =

{
fτ if τ ̸= 0,

log f otherwise,
(6)

where τ is a hyper-parameter, and the power and logarithm operations are element-wise. When τ = 1,
the original feature is used. In a previous study [33], τ = 0.5 was recommended as the default value;
thus, we used it in our experiments.

These pre-processed feature vectors are used for ĝβ only since the change in feature representation
for ĝb without retraining would downgrade performance. Note that to apply similar pre-processing to
the existing methods, it is crucial to take into account the adverse effect on total performance.

Ensemble learning. We can use ensemble learning [34, 35] to improve GFSS performance. Unlike
the existing GFSS methods, the computation time of BCM will be short since training a linear model
for gβ is lighter than tuning deep neural networks in an end-to-end manner.

We introduce shot-wise ensemble learning to few-shot learning when K > 1. This involves first
preparing multiple L-shot datasets (L ≤ K) by drawing samples from the K-shot dataset then
aggregating outputs of models trained with the L-shot datasets. In our experiments, we split the
5-shot dataset into five 1-shot datasets and obtained six models by using five 1-shot and one 5-shot
datasets. In inference, we computed a weighted average of the outputs of the models. The weights
can be determined by, e.g., validation data or pre-defined values. In our experiments, we set one for
the model with the 1-shot dataset and five for the model with the 5-shot dataset for simplicity.

5 Experiments

5.1 Setup

Datasets. We used three FSS datasets: PASCAL-5 i [4, 36, 37], PASCAL-10 i [20, 36, 37], and
COCO-20 i [6, 38]. The PASCAL-10i dataset was introduced to investigate the impact of increasing
the number of novel classes [20].

Methods for comparison. We compared BCM with CAPL [16], BAM [14, 18],1 and DIaM [20].
Note that DIaM was regarded as a simple method since it trains the last linear layer only, similarly to
the simple methods [39, 40] proposed for few-shot object detection.

Evaluation. We report the mIoUs over base and novel classes, referred to as the Base and Novel
scores, respectively, where the background was not included in the Base score, similarly to a previous
study [20]. We also report the average of the Base and Novel scores, called the Mean score. All
reported scores are the average of five independent trials.

Base-class model. We used the publicly available pre-trained model for GFSS,2 pyramid scene
parsing network (PSPNet) [41] with the pre-trained ResNet-50 backbone [2]. It was trained with
labeled data for base classes by using the stochastic gradient descent optimizer with an initial learning
rate of 2.5× 10−4, momentum of 0.9, and weight decay of 10−4. The batch size was 12, and number
of epochs was 20 for COCO-20i and 100 for PASCAL-5i and PASCAL-10i.

Detailed implementation. The implementation of BCM is based on the publicly available DIaM
code. We followed the same data-loading and evaluation procedure and replaced the method part
with BCM. Specifically, to train novel-class models gβ in Sec. 4.1, we used the logistic regression in
Scikit-learn [30],3 which uses the L-BFGS-B [42] method with a line-search strategy as the default
solver. The regularization parameter was determined from the five-fold cross-validation from the ten
candidates {10−5, . . . , 105}. The default values were used for the other hyper-parameters.

1The details of how we can modify BAM to output multiple novel classes are explained in [20].
2DIaM: https://github.com/sinahmr/DIaM
3We used an accelerated version of Scikit-learn: https://github.com/intel/scikit-learn-intelex.
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Table 1: Average mIoU over five trials. Base and Novel represent mIoU scores over base and novel
classes, respectively. Mean shows average of Base and Novel scores. Results of comparison methods
were obtained from [20]. All methods use ResNet-50 as backbone.

PASCAL-5i
1-shot 5-shot

Method Base Novel Mean Base Novel Mean

CAPL [16] CVPR’22 64.80 17.46 41.13 65.43 24.43 44.93
BAM [14] CVPR’22 71.60 27.49 49.55 71.60 28.96 50.28
DIaM [20] CVPR’23 70.89 35.11 53.00 70.85 55.31 63.08
BCM (Ours) 71.15 41.24 56.20 71.23 55.36 63.29

PASCAL-10i

CAPL [16] CVPR’22 53.78 15.01 34.40 57.02 20.40 38.71
BAM [14] CVPR’22 69.02 15.48 42.25 69.18 21.51 45.35
DIaM [20] CVPR’23 70.26 31.29 50.77 70.25 51.89 61.07
BCM (Ours) 70.07 35.94 53.01 70.12 53.49 61.81

COCO-20i

CAPL [16] CVPR’22 43.21 7.21 25.21 43.71 11.00 27.36
BAM [14] CVPR’22 49.84 14.16 32.00 49.85 16.63 33.24
DIaM [20] CVPR’23 48.28 17.22 32.75 48.37 28.73 38.55
BCM (Ours) 49.43 18.28 33.85 49.88 30.60 40.24

5.2 Main results

Table 1 summarizes the average performance over the five trials for each method in the practical GFSS
setting. BCM outperformed the other GFSS methods regarding the Novel and Mean scores. Notably,
the Novel scores in the 1-shot PASCAL-5i and PASCAL-10i settings substantially improved with
BCM. Regarding the Base score, BCM achieved comparable/best performance thanks to it preventing
catastrophic forgetting, as discussed in Sec. 4.3. We discuss these results from the viewpoint of our
theory in Sec. 5.4.

These results indicate that BCM achieved the best performance without resorting to various techniques
used with the other methods, such as meta-learning [43, 44], information maximization principle
[21], and transductive learning [23]. The implementation of BCM was to train the final linear layer
only, as described in Sec. 4.4, but we can use cutting-edge architectures and training techniques in
practice, leading to further performance improvement.

5.3 Ablation study

We investigated the effect of pre-processing (Tukey’s ladder of powers transformation) and ensemble
learning, explained in Sec. 4.5.

Table 2 shows the performance of four variations of BCM, i.e., with and without pre-processing
and ensemble learning. Compared with the results in Tab. 1, BCM without data pre-processing and
ensemble learning outperformed the other methods in the 1-shot setting, showing that the simple
rule and standard supervised learning improved the GFSS performance. The effectiveness of data
pre-processing was much higher when the number of novel classes was small (see the PASCAL-5i
and PASCAL-10i settings). However, the pre-processing decreased this performance slightly in the
1-shot COCO-20i setting.

Our ensemble-learning approach consistently improved GFSS performance, with a roughly 5%
improvement on all datasets. Note that we can use standard ensemble-learning approaches in the
1-shot setting, meaning that further performance improvement is possible in practice.
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Table 2: Effect of pre-processing and ensemble learning. ’P’ and
’E’ denote data pre-processing and ensemble learning, respec-
tively.

PASCAL-5i
1-shot 5-shot

P E Base Novel Mean Base Novel Mean

- - 71.16 38.13 54.65 71.23 49.83 60.53
✓ - 71.15 41.24 56.20 71.23 50.83 61.03
- ✓ - - - 71.23 53.53 62.38
✓ ✓ - - - 71.23 55.36 63.29

PASCAL-10i

- - 70.07 34.56 52.32 70.12 48.80 59.46
✓ - 70.07 35.94 53.01 70.12 49.88 60.00
- ✓ - - - 70.12 52.27 61.19
✓ ✓ - - - 70.12 53.49 61.81

COCO-20i

- - 49.48 18.03 33.76 49.88 26.73 38.30
✓ - 49.43 18.28 33.85 49.86 26.76 38.31
- ✓ - - - 49.90 30.48 40.19
✓ ✓ - - - 49.88 30.60 40.24
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Figure 5: Frequency of |B| over
four splits and five trials. Size of B
tended to decrease with increasing
number of shots.

Table 3: Chosen pairs on
COCO-20i (5-shot)
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5.4 Number of chosen base classes

Figure 5 shows the frequency of |B|, the number of chosen base classes, over 20 runs (four splits
and five trials). Overall, |B| tended to decrease with the increase in K. We hypothesize that noisy
pairs appear relatively smaller than frequent pairs when K = 5, and the top-1 strategy ignored such a
noisy pair. In particular, the median value of the frequency in 5-shot was 1 on PASCAL-5i and 2 on
COCO-20i.

Another observation is that |B| was much smaller than the number of base classes. For example, the
largest |B| was four in the 5-shot COCO-20i setting, meaning that less than 7%(≈ 4/61) of base
classes (including background) were chosen in the BCM training step. These results indicate that we
do not need to prepare gβ for many base classes, and training and inference times do not increase
rapidly to the number of base classes. Moreover, |B| tends to be small in practice, so IoUs on most of
the base classes are perfectly maintained, as shown in Proposition 4.1.

5.5 Which classes were chosen?

We explored which class consists of base- and novel-class pairs in the BNM and recorded pairs in the
5-shot COCO-20i setting. In most cases, the background was chosen, meaning that the base-class
model recognized novel-class objects as the background. Sometimes, the pairs summarized in Tab. 3
were chosen, showing that the related classes were chosen with BCM. The results empirically confirm
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Figure 8: Effect of s in top-s strategy in 5-shot PASCAL-5i setting

our idea that a novel class is classified as the background or a similar base class with the base-class
model.

5.6 Effect of top-s strategy

We varied s in the top-s strategy and investigated how s affects the segmentation performance and size
of B in the 5-shot PASCAL-5i setting. The results in other settings can be found in Appendix A.1.

Figures 8a and 8b respectively illustrate the Base and Novel scores with respect to s ∈ {1, 2, 3, 5, 10},
showing that the median and minimum scores decreased as s increased.

We also show the size of B in Fig. 8c. The number of chosen base-classes increased, but it was
upper-bounded by a certain value. Even though we increased s, the chosen base-classes might be
the same. In addition, the increase in s also led to longer training time. In this sense, smaller s is
preferable from the perspective of computation time.

In summary, a higher s may result in selecting redundant base classes and cause performance
degradation, and larger |B| requires many models for gβ , resulting in longer computation time for
training. We thus recommend s = 1 since it is the best choice based on GFSS performance and
computation time.

5.7 Computation time

The computation time was measured on a machine equipped with an NVIDIA® V100, 16 CPU cores,
and 32GB memory.

Training time. We plot the training time [s] with BCM in Fig. 6. CAPL and DIaM are not shown
since CAPL requires hours of training time due to meta-learning, and DIaM, which is based on
transductive learning, does not optimize models other than the inference phase. In the 1-shot scenario,
training time was less than 1 min. The training time increased as the number of novel classes
increased. Although we used ensemble learning in the 5-shot scenario, the training time in the 5-shot
COCO-20i setting was about 7 min. Note that training was done by CPU computation, meaning that
further acceleration is expected by GPU computation.

Inference time. Figure 7 shows the inference time [ms] of CAPL, DIaM, and BCM. Since DIaM is
based on transductive learning, the inference time was slower than the inductive methods, i.e., CAPL
and BCM. BCM requires computations of the novel-class models in addition to that of the base-class
model, but the total inference time was comparable to that of the end-to-end model, i.e., CAPL.

Note that BCM has |B| final linear layers for novel classes, leading to a subtle slowdown when
switching the layers, unlike the end-to-end computation of CAPL. Our implementation used CPUs for
training the final linear layers, as Scikit-learn is used, unlike CAPL on a GPU. This device difference
might be another reason for the slowdown. In practice, a more sophisticated implementation will
shorten the gap between CAPL and BCM.
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6 Conclusion

Summary. We presented a simple yet effective GFSS method called BCM. BCM is based on a
mapping between base and novel classes and trains novel-class models by simple supervised learning
without resorting to meta-learning and the information maximization principle. Since we can use
standard supervised learning, training can be done efficiently using off-the-shelf software. We can use
the featurizer and base-class model without modifying their weights, enabling us to use cutting-edge
public foundation models with BCM. We theoretically showed that the mIoU over most of the base
classes is perfectly maintained. Through numerical experiments, we demonstrated the superior
performance of BCM method against state-of-the-art GFSS methods.

Limitations. BCM has limitations that need to be resolved. First, although the final performance of
BCM outperformed the other GFSS methods, the performance improvement in the 5-shot scenario
was slight, meaning that there is room for improvement. Second, while BCM perfectly maintains
the segmentation performances of most of base-classes, it does not improve such performance using
novel-class data. A possible direction to resolve these limitations is to investigate the strategy for
creating mapping other than the top-s strategy and use more recent powerful supervised/few-shot
learning methods.
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A Appendix

A.1 Effect of top-s strategy

Figs. 9 and 10 show the effect of s in the top-s strategy in the 1-shot PASCAL-5i and COCO-20i
settings, respectively. We can observe a similar tendency to that discussed in Sec. 5.6.
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Figure 9: Effect of s in top-s strategy in 1-shot PASCAL-5i setting
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Figure 10: Effect of s in top-s strategy in 1-shot COCO-20i setting

A.2 Example when s > 1

We explain obtaining the prediction when s > 1.

Even when s > 1, the inference procedure works as explained in Sec. 4.2 since a single base class is
mapped to multiple novel classes in BNM. We show the case when s = 2 with a tiny example: the
base classes are ‘0’ and ‘1’, and the novel class is ‘2’. Suppose that we have the following BNM
when s = 2 in Tab. 4. This table shows when the base class ‘0’ is mapped to the novel class ‘2’ and
‘1’ is also mapped to ‘2’. In this case, we have the two models: gβ=0 returns ‘0’ or ‘2’, and gβ=1

returns ‘1’ or ‘2’.
Table 4: Example BNM when s = 2

Base class Set of novel classes

0 2
1 2

For each pixel, the base-class model outputs either ‘0’ or ‘1’. We then compute the prediction of
the corresponding model and overwrite it. Since BCM does not need to overwrite the same pixel
multiple times, we can straightforwardly combine predictions of gβ for the final prediction.

A.3 Broader impact

The idea behind BCM will positively affect future studies on few-shot learning. Our future work will
lead to more powerful visual understanding systems. Regarding negative societal impact, we expect
BCM will not have a direct path to harmful applications. However, harmful actors may maliciously
use visual understanding systems. To prevent such a malicious use of technology, we need to pay
attention to events in our society.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We stated the main claims based on the results of the theoretical analysis and
numerical experiments.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made
in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations of our work in Sec. 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be used
reliably to provide closed captions for online lectures because it fails to handle technical
jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and
how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an important
role in developing norms that preserve the integrity of the community. Reviewers will
be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We provided the proof of the theoretical result.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We disclosed the details of settings and learning procedures in our experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of whether
the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct the
dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors
are welcome to describe the particular way they provide for reproducibility. In the
case of closed-source models, it may be that access to the model is limited in some
way (e.g., to registered users), but it should be possible for other researchers to have
some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [No]
Justification: However, we will release the code after we get our organization’s permission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not
be possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We wrote the details. Also, we used the pre-trained models and data loading
procedure provided by the publicly-available repository of existing method.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: Partially yes. We used the box plot to show the deviation of the performance
on some experiments.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the
main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call
to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error of
the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We disclosed the computing resources used in our experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than

the experiments reported in the paper (e.g., preliminary or failed experiments that didn’t
make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consider-

ation due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discussed broader impacts in Appendix A.3.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We will not release data or models.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith
effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We properly cited the assets used in our paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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