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Abstract

The development of accurate machine learning interatomic potentials (MLIPs)1

is limited by the fragmented availability and inconsistent formatting of quantum2

mechanical trajectory datasets derived from Density Functional Theory (DFT).3

These datasets are expensive to generate yet difficult to combine due to variations4

in format, metadata, and accessibility. To address this, we introduce LeMat-Traj, a5

curated dataset comprising over 120 million atomic configurations aggregated from6

large-scale repositories, including the Materials Project, Alexandria, and OQMD.7

LeMat-Traj standardizes data representation, harmonizes results and filters for8

high-quality configurations across widely used DFT functionals (PBE, PBESol,9

SCAN, r2SCAN), significantly lowering the barrier for training transferrable and10

accurate MLIPs. LeMat-Traj spans both relaxed low-energy states and high-energy,11

high-force structures, complementing molecular dynamics and active learning12

datasets. By fine-tuning models pre-trained on high-force data with LeMat-Traj,13

we achieve a significant reduction in force prediction errors on relaxation tasks.14

We also present LeMaterial-Fetcher, a modular and extensible open-source library15

developed for this work, designed to provide a reproducible framework for the com-16

munity to easily incorporate new data sources and ensure the continued evolution17

of large-scale materials datasets. LeMat-Traj and LeMaterial-Fetcher are publicly18

available at https://huggingface.co/datasets/LeMaterial/LeMat-Traj19

and https://github.com/LeMaterial/lematerial-fetcher.20

1 Introduction21

The discovery and design of novel materials are essential for technological advancement, offering22

solutions to pressing global challenges such as sustainable energy and climate change mitigation [31].23

However, traditional lab experiments and computational approaches, particularly those involving24

Density Functional Theory (DFT), are resource-intensive [46]. Machine Learning Interatomic25

Potentials (MLIPs) have emerged as a promising alternative, offering DFT-level accuracy at a26

fraction of the computational cost. This acceleration is crucial for enabling large-scale molecular27

dynamics (MD) simulations over long timescales and rapid exploration of material properties [41, 12],28

potentially fast-tracking the development of materials for applications like carbon capture, improved29

batteries, or more efficient catalysts.30

Graph Neural Networks (GNNs) have emerged as the most effective class of models for learning inter-31

atomic potentials, due to their ability to naturally represent atomic systems and to incorporate physical32

symmetries such as rotational and permutational equivariance [11]. As modern GNN architectures33

like EquiformerV2 [25] exhibit scaling laws behaviors [6], the need for even larger, more diverse,34

and consistently processed datasets becomes predominant. Despite several large-scale initiatives35

generating vast amounts of DFT data [17, 36], these datasets often remain siloed, employ distinct36
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Figure 1: Data curation pipeline of LeMaterial-Fetcher. The library automates the process of fetching,
transforming, validating, and harmonizing data from various sources, ensuring a consistent and
reproducible dataset. The pipeline currently supports the continuous integration of fully relaxed bulk
structures and full relaxation trajectories.

data formats, and use varying DFT parameters (e.g., functionals, parameters, pseudopotentials). This37

fragmentation poses a challenge for researchers aiming to leverage the full spectrum of available38

data, as combining these sources requires considerable preprocessing and harmonization efforts.39

Consequently, many MLIPs are trained on scattered and non-homogeneous datasets, potentially40

restricting their generalizability and predictive power, while introducing chemical bias due to the way41

the datasets are separately being used to train these models [36]. Moreover, large architectures—some42

now comprising over 30 million parameters—stand to benefit from the access to even bigger and43

more diverse datasets, as further scaling require proportionally more data to avoid overfitting and44

fully realize their expressive power [25].45

To overcome these limitations, we introduce LeMat-Traj, a large-scale, aggregated dataset of materials46

trajectories. LeMat-Traj harmonizes data from three prominent sources: Materials Project [17, 18],47

Alexandria [36], and OQMD [34], into a unified format, encompassing calculations performed48

with various DFT functionals (PBE, PBESol, SCAN, and r2SCAN). Furthermore, we introduce49

LeMaterial-Fetcher, an open-source Python library designed for the systematic and reproducible50

curation of materials science datasets.51

Our contributions can be summarised as follows:52

1. We release LeMat-Traj, to our knowledge one of the largest publicly available datasets of53

crystalline materials trajectories (120 million configurations). LeMat-Traj provides dense,54

high-quality coverage of near-equilibrium and low-force states—an underrepresented but55

crucial regime for accurate geometry optimization.56

2. We empirically demonstrate the value of this data philosophy through extensive benchmarks.57

We show that by fine-tuning a MACE model with LeMat-Traj, we can reduce force prediction58

errors on relaxation tasks by over 36% and improve performance on the Matbench Discovery59

stability benchmark by 10%.60

3. We introduce LeMaterial-Fetcher, a modular and extensible open-source library used to61

create LeMat-Traj. It provides a reproducible platform for community-driven curation,62

extension, and combination of large-scale materials datasets, enabling future research in63

multi-dataset and curriculum learning strategies.64

We believe LeMat-Traj and LeMaterial-Fetcher will serve as a versatile foundation for the commu-65

nity, supporting not only the training of MLIPs but also a wide range of downstream tasks with66

crystalline materials, including benchmarking, subsampling strategies, self-supervised pretraining,67

and curriculum learning.68
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2 Related Work69

The development of MLIPs has been closely correlated with the availability of suitable training70

datasets [7, 18, 22]. These datasets typically consist of sequences of atomic configurations, along71

with their corresponding energies and forces, generated from quantum mechanical simulations. Such72

sequences, often referred to as trajectories, can originate from various simulation types, including73

geometry optimizations (tracing paths to energy minima) or molecular dynamics (MD, exploring74

configurations at specific thermodynamic conditions). Large-scale computational materials science75

initiatives like the Materials Project [17, 18], Alexandria [35, 36], and the Open Quantum Materials76

Database (OQMD) [34], along with resources like AFLOW [13], NOMAD [10], and ColabFit [43],77

have provided invaluable data to the community.78

While MLIPs are frequently trained using data derived from these sources such as MPtrj [8] which79

curates relaxation trajectories from the Materials Project and has been used in models like CHGNet80

[8], MACE [4] and subsequent architectures, practitioners frequently encounter challenges [28].81

Data from these diverse sources may employ different DFT parameters (e.g., functionals, k-points,82

pseudopotentials), varying data formats, and inconsistent preprocessing methodologies [33]. This83

fragmentation means that combining data requires considerable, often repetitive, data engineering84

efforts [45], potentially limiting the generalizability and predictive power of the resulting MLIPs, and85

can introduce chemical biases depending on how individual datasets are leveraged [28].86

In parallel, two main philosophies of dataset design for training such MLIPs have emerged. One87

emphasizes broad exploration of the potential energy surface through high-force sampling, as in88

OMat24 [3], MatPES [19] or MP-ALOE [20], and active-learning datasets like ANI-1x [39]. These89

are well suited for pretraining robust models and capturing diverse regions of the configuration90

space [14]. The other focuses on dense, near-equilibrium sampling from DFT geometry optimization91

trajectories, which provide clean, structured data in the low-force regime critical for accurate geometry92

optimization and stability prediction with datasets like Alexandria [36]. Since machine learning force93

fields often display varying accuracy across the potential energy surface, with near-equilibrium and94

high-force regions posing different challenges [42, 26], these two philosophies of dataset design95

reflect complementary but compatible strategies to address that imbalance.96

Recent work has underscored the need for large, harmonized, and extensible datasets that bridge97

these philosophies and mitigate fragmentation [19, 36]. Our contribution follows this direction by98

introducing a systematically curated dataset of DFT trajectories together with an open-source pipeline99

to ensure reproducibility and extensibility. This places our work in line with ongoing efforts toward100

foundational datasets in materials science that can serve pretraining, benchmarking, and fine-tuning101

across a wide range of downstream MLIP applications.102

Our work aims to address the data fragmentation challenge by providing not only a large, aggregated103

dataset but also a transparent, reproducible curation pipeline with LeMaterial-Fetcher. This aligns104

with the increasing need for foundational datasets in materials science [19] that are large-scale,105

internally coherent, and extensible, facilitating pretraining, benchmarking, and fine-tuning across a106

wide range of downstream MLIP applications.107

3 Methodology108

LeMat-Traj is constructed by aggregating and processing data primarily from three major materials109

databases: Materials Project, Alexandria and OQMD (Open Quantum Materials Database). The110

core challenge lies in developing a scalable and reproducible methodology to handle the existing111

heterogeneity of these sources into a single and unified dataset.112

3.1 Unified Generation Pipeline113

To address this, we developed LeMaterial-Fetcher, a highly parallelized Python-based open-source114

library described in Figure 1. It provides a unified and automated framework for:115

• Fetching: Interfacing with open APIs and direct downloads from various data sources.116

• Transformation: Converting diverse input formats and attributes into a consistent schema.117

This includes standardizing atomic structure representations, energy units, and force compo-118
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nents. It also handles the extraction and organization of metadata related to DFT calculations.119

All of this is done by allowing to interface with powerful atomistic modelling tools like120

Pymatgen [30], Matminer [44].121

• Validation: Implement checks to ensure data quality and integrity, such as verifying physical122

plausibility or consistency across reported values.123

• Harmonization: Aligning DFT calculation parameters where possible and creating separate124

splits of data based on key parameters like the DFT functional.125

• Push: Exporting the curated dataset in a user-friendly and efficient format, for direct use with126

libraries like HuggingFace’s Datasets [23]. This allows for easy integration with existing127

ML frameworks and tools, because they can adapt to limited computational resources, but128

also data versioning and metadata tracking as outlined in [10].129

LeMaterial-Fetcher is designed to be modular, extensible but also scalable and fast, allowing for the130

easy integration of new data sources (e.g., future integration of quantum calculations sources) and131

adaptation to more materials science domains such catalysis, experiments, defects. This framework132

ensures the reproducibility of LeMat-Traj and facilitates continuous integration of new DFT calcula-133

tions as they become available from the source databases. Mainly, this eliminates the need to have134

to manually go through every dataset one by one, download it, and then apply the updates before135

releasing new versions. Additional details on the pipeline design are provided in Appendix E.136

3.2 Data Sources and Harmonization137

LeMat-Traj specifically extracts geometry optimization trajectories from DFT calculations. A key138

aspect of our curation is the harmonization of data across different exchange–correlation functionals.139

We categorize trajectories based on the reported functional, primarily focusing on PBE, PBESol,140

SCAN, and r2SCAN, allowing users to train functional-specific models or to explore multi-fidelity141

learning across levels of theory (section 5). Table 1 gives a full summary of the dataset repartition.142

The dataset follows the OPTIMADE specification [2], enabling interoperability with other datasets143

that follow the same standard. We introduce a slight adaptation to accommodate trajectory data:144

each entry in the database corresponds to an individual atomistic configuration, which is part of a145

trajectory and is associated with energy and force information. Full optimization trajectories can146

be reconstructed by grouping entries by a shared trajectory identifier. This design choice facilitates147

seamless integration into machine learning interatomic potential (MLIP) training pipelines, where148

per-frame forces and energies are required.149

To support trajectory-specific use cases, two new fields are introduced into the schema:150

1. Relaxation Step: An integer indicating the step number of the structure within a given151

geometry optimization sequence.152

2. Relaxation Number: An identifier that distinguishes different optimization runs for the153

same initial structure. This is particularly useful in high-throughput settings, where structures154

may undergo coarse relaxations before being re-relaxed with tighter thresholds or more155

accurate methods.156

Table 1: Number of trajectories and atomic configurations per source database and functional.
Functional Database Number of Trajectories Number of configurations

PBE
Materials Project 195,721 3,649,785
Alexandria 3,414,074 110,804,226
OQMD 135,966 264,782

PBESol Materials Project 39,981 309,873
Alexandria 252,791 6,099,623

SCAN Materials Project 7,756 180,528

r2SCAN Materials Project 37,888 516,576
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3.3 Data Filtering157

Our data filtering strategy prioritizes retaining a large volume of diverse configurations while es-158

tablishing essential quality control. To this end, several criteria were applied: First, any atomic159

configuration lacking either energy or atomic force data was discarded. Second, entire trajectories160

were removed if the energy difference between the penultimate and final optimization step exceeded a161

threshold of 2×10−2 eV, a criterion adapted from MPtrj [8] to ensure reasonable convergence. Third,162

trajectories were also excluded if the maximum atomic force norm in the final configuration surpassed163

0.2 eV/Å, i.e. the structure is not fully relaxed. While this force threshold is relatively high, it allows164

the inclusion of structures that, despite not being fully relaxed, still provide valuable information165

about the potential energy surface far from equilibrium, enriching the dataset for training robust force166

fields. Finally, all configurations were validated against the OPTIMADE format specifications, and167

any entry failing these schema checks or other implemented validation tests was removed.168

4 Coverage of Chemical and Configurational Space169

LeMat-Traj comprises approximately 120 million atomic structures derived from geometry optimiza-170

tion trajectories. The dataset is partitioned based on the DFT functional used for the calculations:171

PBE, PBESol, SCAN, and r2SCAN. This partitioning facilitates targeted model training and research172

into multi-fidelity approaches.173

4.1 Chemical and Structural Diversity174

We compare the elemental and structural diversity of LeMat-Traj with other popular datasets such175

as MPtrj [8] and MatPES [19]. LeMat-Traj aims to offer a broader coverage by combining multiple176

sources as illustrated in Figure 2. While MPtrj primarily focuses on Materials Project data, LeMat-177

Traj’s explicit harmonization and inclusion of OQMD and Alexandria data offer a unique combination178

of scale and more balanced distribution.179
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Figure 2: Chemical distribution in number of trajectories for the PBE split of LeMat-Traj using
Pymatviz [32].

While the Alexandria dataset constitutes the majority of the PBE split by volume (approx. 92%), the180

inclusion of data from Materials Project and OQMD is critical for diversity. First, it enriches the181

chemical space; Materials Project contains a higher concentration of oxides and battery materials,182

balancing the bi-metallic bias present in Alexandria. Second, it diversifies the force distribution; the183

average maximum force norm in Materials Project trajectories is significantly higher (593 meV/Å)184
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than in the rest of the dataset (110 meV/Å), providing crucial high-force examples that help prevent185

models from under-estimating forces during relaxation.186

Inclusion of Equilibrium Structures. A notable feature of LeMat-Traj is the inclusion of equilib-187

rium structures from OQMD, which is rarely leveraged by ML practitioners when training machine-188

learned interatomic potentials (MLIPs). These configurations, characterized by near-zero atomic189

forces, serve as valuable reference points for MLIPs, particularly in capturing energy minima ac-190

curately. While relaxation trajectories naturally include low-force structures near convergence, the191

explicit addition of a large and diverse set of OQMD equilibrium configurations enhances the dataset’s192

richness. Although these single-point structures may be underrepresented compared to the total193

number of frames in full trajectories, they can be strategically leveraged by models focused on194

accurately learning stable configurations.195

4.2 Trajectory Analysis196

Trajectory Length. Figure 3 shows the distribution of trajectory lengths in LeMat-Traj. LeMat-Traj197

exhibits a broad distribution, with many trajectories across all length scales. It uniquely features a198

long tail with a significant number of trajectories extending beyond 100 frames, and even exceeding199

1000 frames. In contrast, MPtrj is predominantly characterized by shorter trajectories, with the200

majority having fewer than 50 frames and a pronounced spikiness in its distribution at very short201

lengths. MatPES shows a broader distribution than MPtrj, with more medium-length trajectories202

(up to 100-200 frames), but still lacks the extensive representation of very long trajectories seen in203

LeMat-Traj. These longer trajectories are not indicative of optimization issues but are rather a feature204

of the highly stringent convergence criteria used in the source calculations, representing valid, but205

slow, convergence paths to energy minima.206
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Figure 3: Comparison of trajectory length distributions for LeMat-Traj (PBE split), MPtrj, and
MatPES, on a log-log scale. For every trajectory, the number of configurations associated is computed.
LeMat-Traj exhibits a broader range of trajectory lengths.

Targets spread along trajectories. Figure 4 illustrates the evolution of mean energy variation (∆E207

relative to the final relaxed state) and average maximum atomic forces norm throughout the relaxation208

trajectories of LeMat-Traj, MatPES, and MPtrj. LeMat-Traj uniquely demonstrates comprehensive209

sampling across the entire relaxation pathway. At the initial stages (low fraction of relaxation210

completed), it encompasses a wide distribution of high-energy and high-force configurations, with211

mean ∆E around 0.05 eV/atom (and variance extending >1 eV/atom from structures that are very212

far from their relaxed states iniially) and mean maximum forces around 0.3-0.4 eV/Å (variance213

extending >1 eV/Å). Crucially, as relaxations progress towards completion, LeMat-Traj systematically214

converges to very low ∆E (approaching 10−3 − 10−4 eV/atom) and near-zero maximum forces215

(mean 0.01-0.02 eV/Å, with significant density below 10−3 eV/Å). This shows a robust sampling216

both far-from-equilibrium states and accurately representing near-equilibrium energy minima and217

low-force structures, making LeMat-Traj well-suited for training versatile MLIPs capable of both218

high accuracy for stable configurations and robustness across diverse energy landscapes.219
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Figure 4: Evolution of mean energy variation (∆E = Et − ET , where Et is current step energy
and ET is final relaxed energy) per atom (a) and average maximum atomic force (b) as a function of
the fraction of relaxation completed. Trajectories from LeMat-Traj, MatPES, and MPtrj are binned
by their normalized progress. Solid lines represent the mean values, and shaded areas depict one
standard deviation, both on a logarithmic y-axis. LeMat-Traj demonstrates comprehensive sampling
from high-energy/high-force initial states to well-converged, low-energy/low-force final states.

5 Results220

To empirically validate the utility of LeMat-Traj, we conduct a series of benchmark experiments using221

the MACE architecture [4], a well-established and performant equivariant model. These experiments222

are designed to demonstrate the dataset’s value for improving model accuracy on relaxation-focused223

tasks, both through fine-tuning and in downstream applications. A key hypothesis of our work is that224

LeMat-Traj’s dense sampling of near-equilibrium states is complementary to datasets focused on225

high-force configurations. While high-force data, such as in OMat24, provides strong gradients that226

facilitate stable initial training and learning of the general energy landscape, LeMat-Traj is designed227

to refine model accuracy in the low-force regime critical for geometry optimization.228

5.1 Complementary Value for Fine-Tuning229

To test our hypothesis, we evaluate the performance of a MACE model pre-trained on the general-230

purpose OMat24 dataset and then fine-tune it on LeMat-Traj. As shown in Table 2, while the231

OMat24-trained model serves as a strong baseline, fine-tuning on LeMat-Traj reduces the Forces232

MAE on our held-out test set of relaxation trajectories by over 36%. This result provides direct233

evidence that LeMat-Traj contains critical information for achieving high fidelity in force predictions234

near energy minima, a crucial capability for accurate geometry optimization.

Table 2: Performance of MACE on the LeMat-Traj PBE 10K held-out test set. Fine-tuning a model
pre-trained on OMat24 with LeMat-Traj significantly reduces prediction errors, demonstrating the
complementary nature of the datasets.

MACE Training Dataset Energy MAE (meV) ↓ Forces MAE (meV/Å) ↓ Forces Cos ↑

OMat24 59.5 42.7 0.29
MPtrj 49.8 81.7 0.23
MatPES PBE 316.4 88.7 0.16
LeMat-Traj only 25.3 50.8 0.23
OMat24 + ft LeMat-Traj 18.8 27.2 0.30

235
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5.2 Downstream Performance on Matbench Discovery236

To assess practical utility, we evaluate our models on a subset of the Matbench Discovery benchmark,237

which measures a model’s ability to predict the stability of novel crystalline materials. This task238

relies heavily on accurate structural relaxation. Table 3 shows that the MACE model trained on a239

split of LeMat-Traj with left-out matching protocol from Matbench Discovery following the method240

in Barroso-Luque et al. [3] significantly outperforms the same model architecture trained on OMat24241

or MPtrj alone, achieving a 10% higher F1 score. The best performance is achieved by the model242

pre-trained on OMat24 and fine-tuned on LeMat-Traj, reinforcing the value of combining high-force243

and near-equilibrium data,244

Table 3: Matbench Discovery benchmark results on a 50k uniform subset. Models incorporating
LeMat-Traj data achieve superior performance in predicting material stability.

Model (Training Set) F1 Score ↑ MAE (meV) ↓ RMSE (meV) ↓

MACE (OMat24) 0.575 87.8 172.8
MACE (MPtrj) 0.694 47.2 83.9
MACE (LeMat-Traj Full) 0.768 37.2 69.0
MACE (OMat24 + ft-LeMat-Traj) 0.772 33.4 67.8

5.3 Multi-Fidelity Learning.245

A notable challenge in materials modeling is the transferability of MLIPs trained on data from one246

level of theory (e.g., a specific DFT functional) to another. LeMat-Traj, with standardized formats of247

its different splits for PBE, PBESol, SCAN, and r2SCAN, provides a natural testbed for multi-fidelity248

learning strategies. We conduct experiments to assess how well models trained on one functional (e.g.,249

PBE) can be fine-tuned or adapted for tasks involving another functional (e.g., PBESol and r2SCAN).250

For each of the PBESol and r2SCAN datasets, we use the subset described in Appendix D.1 during251

the experiments.252

1. We train a MACE model from scratch (using the same number of parameters as253

MACE-MPA-0 [5]). The training procedure is done in two stages (similar to how the foun-254

dation model is trained from scratch). During the first stage, the forces’ weight in the loss255

computation is way higher than the other predicted targets, then during the second stage, we256

match the energy weight to that of the forces weight.257

2. We fine-tune that same model separately on the split.258

Evaluation results on the test set are reported in Table 4. LeMat-Traj helps facilitate effective transfer259

learning across functionals, especially when data or computational resources are limited, and can help260

in the development and research of general cross-atomic data source learning methods like Shoghi261

et al. [37], Huang et al. [16]. Results show that using a model pre-trained on one functional helps262

transferring to another functional more easily and in fewer steps.263

Table 4: Performance of pre-trained MACE and ORB Models on Different DFT Functionals split when
fine-tuning on a functional split (referred to with <split>) and after fine-tuning (-<split>-ft).
Energy MAE is reported in meV/atom, Force MAE in meV/Å, Stress MAE in meV/Å3, and Cosine
Similarity is averaged over the forces vectors. All measures are across the test split described in
Appendix D.

Model PBESol r2SCAN

Energy MAE Force MAE Stress MAE Cosine Sim. Energy MAE Force MAE Cosine Sim.

MACE-MPA-0 370.9 101 14.7 0.13 9204.9 111 0.15
MACE-PBESol 51.2 33 2.1 0.04 / / /
MACE-MPA-0-PBESol-ft 18.0 27 1.6 0.19 / / /
MACE-r2SCAN / / / / 141.7 36 0.09
MACE-MPA-0-r2SCAN-ft / / / / 96.3 28 0.22
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5.4 Limitations and Future Work264

While LeMat-Traj and LeMaterial-Fetcher mark substantial advancements, several areas offer op-265

portunities for improvement. The current dataset primarily consists of DFT geometry optimization266

trajectories, and does not include molecular dynamics (MD) trajectories, which could enhance model-267

ing of dynamic properties. Additionally, although the dataset is chemically diverse, the PBE split is268

largely drawn from the Alexandria database, potentially introducing some data source bias. Future269

work should aim to incorporate MD trajectories and correctly identify them to diversify data origins,270

while ensuring compatibility and avoid incorporating noisy data points. This initial release primarily271

focuses on dataset construction and characterization; comprehensive benchmarking of MLIPs trained272

on LeMat-Traj is planned to fully demonstrate its utility (preliminary results in Appendix D). Finally,273

the pipeline in LeMaterial-Fetcher is designed to gather detailed DFT calculation parameters if avail-274

able from the source (e.g., k-point meshes, pseudopotentials). While not fully exploited in the current275

version of LeMat-Traj for all entries, this capability can help introduce future MLIP architectures276

that explicitly embed these parameters as inputs, leading to more versatile multi-fidelity models,277

enabling LeMat-Traj to continually evolve as a richer resource for the community. Aggregating278

data from sources using different underlying DFT parameters (e.g., k-point grids, pseudopotentials)279

without explicit harmonization risks introducing noise. While we ensure pseudopotential compati-280

bility for included elements following the method in Siron et al. [38], a deeper quantitative analysis281

of these potential cross-database biases is an important area for future investigation. We note that282

LeMaterial-Fetcher’s provenance tracking is a first step, enabling researchers to isolate and study283

these effects.284

6 Conclusion285

In this work, we introduced LeMat-Traj, a scalable, high-quality and unified dataset comprising over286

120 million atomic configurations from DFT relaxation trajectories, and LeMaterial-Fetcher, the287

open-source library enabling its creation and continued evolution. By aggregating, standardizing,288

and harmonizing data from prominent repositories across multiple DFT functionals, LeMat-Traj289

lowers the barrier for training robust, transferable, and accurate MLIPs, which are essential technical290

bricks of accelerated materials discovery. Our analysis demonstrates its comprehensive sampling of291

the potential energy surface along relaxation pathways, capturing both high-energy structures and292

near-equilibrium states, making it a valuable resource for researchers to develop next-generation293

interatomic potentials, explore multi-fidelity learning, and advance self-supervised learning techniques294

in materials science.295

While LeMat-Traj currently focuses on geometric optimization trajectories, the modularity of296

LeMaterial-Fetcher enables future expansions. With the incorporation of compatible molecular297

dynamics simulations, diversifying data sources further, and implementing dataset-level sampling298

strategies for more coherent fine-tuning datasets. Integrating LeMaterial-Fetcher with automated299

active learning and DFT calculation workflows can enable the continuous enrichment of LeMat-Traj300

with high-fidelity data. We believe LeMat-Traj and LeMaterial-Fetcher represent a step towards301

democratizing access to high-quality, curated training data, fostering community collaboration, and302

ultimately accelerating the pace of data-driven materials discovery303
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A Data Availability and Licensing483

LeMat-Traj is publicly available at https://huggingface.co/datasets/LeMaterial/484

LeMat-Traj and is distributed under the Creative Commons Attribution 4.0 International (CC-485

BY 4.0) license. LeMaterial-Fetcher library, developed for the curation of LeMat-Traj, is open-486

source and available on GitHub at https://github.com/LeMaterial/lematerial-fetcher.487

LeMaterial-Fetcher is distributed under the Apache License 2.0.488

LeMat-Traj aggregates, filters and standardizes data from the following publicly available repositories:489

• The Materials Project [17, 18]490

• Alexandria [35, 36]491

• The Open Quantum Materials Database (OQMD) [34]492

All data retrieved from these original sources for inclusion in LeMat-Traj are distributed under493

licenses compatible with CC-BY 4.0, primarily their own CC-BY 4.0 licenses. Specifically, for data494

originating from the Materials Project, care was taken to ensure that only structures and calculations495

designated under the CC-BY 4.0 license were included. We gratefully acknowledge the original496

creators and maintainers of these foundational datasets for making their valuable work publicly497

accessible.498

B Distribution Analysis499

Chemical diversity. To highlight the chemical diversity of the dataset, Figure 5 and 2 present500

periodic table heatmaps of the number of trajectories involving each element for the LeMat-Traj501

dataset, separately for the PBE and PBESol splits. The distribution spans nearly the entire periodic502

table, with particularly high representation of elements such as transition metals (e.g., Fe, Ni, Co),503

light elements (e.g., H, C, O, N), and main group elements (e.g., Si, Al, S). Besides oxides dominating504

and actinides being under-represented, the distribution is well-balanced. This ensures that the dataset505

is suitable for training universal machine-learned interatomic potentials that generalize across diverse506

chemistries and bonding environments.507
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Figure 5: Chemical distribution in number of trajectories for the PBESol split.

Max Forces. Figure 6 displays the distribution of maximum atomic force norms, revealing LeMat-508

Traj’s (PBE split) extensive coverage. It contains substantially more configurations spanning a wider509

range of force magnitudes (from approximately 10 to 10³ eV/Å) compared to MPTrj and MatPES,510

indicating comprehensive sampling from near-equilibrium to high-force states.511
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Figure 6: Coverage in log-log scale of the maximum norm of the force vector on every atomic
configurations in LeMat-Traj (PBE split), MPtrj and MatPES.

Space Group diversity. To assess the structural diversity of the dataset, we analyzed the distribution512

of crystallographic space groups for the LeMat-Traj PBE subset. The space groups of the 120M513

structures were computed during the dataset creation using moyo a faster alternative to Spglib [40] in514

LeMaterial-Fetcher. The strict default parameters for space group identification (symprec 10−4)515

were used in the dataset, allowing for a unified space group description across all the structures. As516

shown in Figure 7, the dataset spans the full range of crystal systems, including triclinic, monoclinic,517

orthorhombic, tetragonal, trigonal, hexagonal, and cubic groups. More than 200 unique space groups518

are represented, with a significant number of entries in low-symmetry systems (e.g., triclinic and519

monoclinic), which can be explained by the strict tolerance. This symmetry diversity is essential for520

training machine learning interatomic potentials (MLIPs) that generalize across materials with varying521

spatial constraints and bonding environments. It is also worth noting that 98% of the trajectories are522

assigned the same space group label at the first step of the relaxation and the last one showing the523

symmetry conservation during the geometric optimization calculations.524

Relaxation Steps. Figure 8 illustrates the distribution of the number of geometry optimization525

steps performed across the first, second, and third relaxation stages within LeMat-Traj as described526

in section 3.1. The plots reveal that the first relaxation generally involves a broader and more527

varied distribution of steps, often exceeding 50 or even 100 steps for more complex or strained528

initial structures. In contrast, the second and third relaxations show sharply peaked distributions529

concentrated at lower step counts, reflecting incremental refinements of already partially relaxed530

geometries. This progression highlights the effectiveness of multi-stage relaxation strategies in531

achieving convergence, while also emphasizing that the dataset captures a wide range of relaxation532

behaviors—from flat minima to deep, multi-step optimization paths.533

C Alternative training tasks534

The trajectory data and associated metadata in LeMat-Traj support the exploration of training tasks535

beyond standard force and energy prediction.536

Direct Structure-to-Property Prediction and Amortized Optimization. LeMat-Traj is suitable537

for Initial Structure to Relaxed Structure/Energy (IS2RE/IS2RS) tasks [7], as each trajectory contains538

the initial unrelaxed configuration, the final relaxed state, and its energy. This data structure can be539

used for developing amortized optimization methods for crystal structure relaxation [1]. In contrast540

to MLIPs that provide forces for an external optimizer, amortized methods attempt to learn the direct541

mapping from an initial structure to its relaxed state by utilizing the DFT optimization paths within the542
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Figure 7: Distribution of space groups in LeMat-Traj (PBE subset), categorized by crystal system. The
figure illustrates the number of structures for each space group on a logarithmic scale, highlighting the
dataset’s broad coverage of crystallographic symmetries. All seven crystal systems are represented,
spanning over 200 distinct space groups.
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dataset. Such approaches may be beneficial for applications requiring rapid structure prediction, for543

example, in high-throughput screening or for large systems where conventional relaxation methods544

can be computationally demanding [21]. While not impossible with MPtrj and Alexandria, the raw545

format of these datasets makes this task difficult. In contrast, the relaxation step number associated to546

each trajectory, and the name of the trajectory it belongs can be easily leveraged for this specific task547

on LeMat-Traj.548

Self-Supervised Learning (SSL) for Representation Learning. The scale and diversity of LeMat-549

Traj also make it a relevant dataset for pre-training models using self-supervised learning (SSL)550

techniques [27]. The sequential information in trajectories, the relationships between different551

configurations along a relaxation path, and the large number of atomic configurations can serve as552

signals for SSL. For example, methods based on contrastive learning (e.g. DeNS [24]), masked atom553

or coordinate prediction, or generative pre-training (such as diffusion models, e.g. ORB [29]) could554

be applied. Learning to predict masked information or reconstruct parts of the input structures can555

help models develop general atomic representations. These representations could then be used as a556

starting point for fine-tuning on specific downstream tasks, potentially aiding sample efficiency and557

generalization, analogous to approaches in other domains like natural language processing [9]. The558

consistent formatting of LeMat-Traj facilitates the application of these SSL methods.559

The unified format produced by LeMaterial-Fetcher allows for the distribution of LeMat-Traj via560

platforms like HuggingFace Datasets, providing access to the data for these training approaches.561

D Experiments on LeMat-Traj562

D.1 Subsets of LeMat-Traj.563

In this section, we provide additional details on the way the subsets of LeMat-Traj were created and564

splitted for the small experiments. Due to the dataset’s size, we focus on measuring performances565

on a few selected subsets of the dataset. The splits are available at https://huggingface.co/566

datasets/LeMaterial/LeMat-Traj-subset and can be used on more limited computational567

resources. Each entry represents an atomic configuration within a trajectory. To avoid data leakage,568

subsampling and splitting are performed at the trajectory level, ensuring all configurations from a569

given trajectory appear exclusively in either the training or test set. Splits are stratified based on the570

one-hot encoding of chemical elements present in the trajectory. This ensures no atomic species in the571

test set are unseen during training—essential for model generalizability. To ensure balance between572

the different sources for all subsets, we keep the same 10% MP, 10% OQMD and 80% Alexandria573

balance across all splits and all functionals, as long as the data source provides data for the functional.574

For SCAN and r2SCAN where the only provenance source is Materials Project, we keep all the data575

from the original dataset in these subset because they are small enough for these experiments and576

split the train and test split with a stratified 80-20% separation of the trajectories.577

D.2 Cross-Dataset Generalization578

The benchmarks in Section 5 highlight that combining high-force data (OMat24) with near-579

equilibrium data (LeMat-Traj) yields the best performance. To further explore this, we conducted580

a cross-dataset evaluation, testing models trained on one dataset against the test sets of others. As581

shown in Tables 5, 6, and 7, models consistently perform best on their in-distribution test data.582

For example, the model trained on OMat24 achieves the lowest errors on the OMat24 test set, but583

performs poorly on the LeMat-Traj test set (Table 2), and vice-versa. This reinforces our central584

argument: different data generation strategies (MD/active learning vs. geometry optimization) capture585

distinct but complementary regions of the potential energy surface. A single data source is often586

insufficient for creating a truly general-purpose potential. Our results demonstrate that LeMat-Traj is587

a crucial resource for specializing models in the low-force regime essential for accurate relaxations,588

complementing existing high-force datasets.589

D.3 Model Training.590

We report in Table 8 the hyperparameters used for training MACE. Experiments were all conducted591

on a single A100-40GB GPU.592
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Table 5: Evaluation on the MatPES PBE 10K held-out test set.

Training Dataset Energy MAE (meV) ↓ Forces MAE (meV/Å) ↓ Forces Cos ↑

OMat24 193.8 123.5 0.77
MPtrj 250.2 187.5 0.70
MatPES PBE 56.6 127.1 0.78
LeMat-Traj only 245.8 217.9 0.68
OMat24 + ft LeMat-Traj 249.1 203.9 0.75

Table 6: Evaluation on the OMat24 Validation 10K test set.

Training Dataset Energy MAE (meV) ↓ Forces MAE (meV/Å) ↓ Forces Cos ↑

OMat24 17.9 103.4 0.99
MPtrj 156.4 404.5 0.94
MatPES PBE 312.3 358.8 0.96
LeMat-Traj only 153.6 598.3 0.95
OMat24 + ft LeMat-Traj 218.5 395.8 0.97

E LeMaterial-Fetcher593

As described in section 3.1, the pipeline to download and process the datasets is made to be both594

extremely customizable but also highly parallel and scalable. By default, LeMaterial-Fetcher uses595

PostgreSQL as a backend to dump the raw downloaded datasets but also to process the transformed596

structures before pushing them to HuggingFace. Other backends are supported and easy to integrate597

in the library, with for example MySQL being used for OQMD (the source dataset from their website598

is a full database with scattered tables). One of the main challenges with writing this pipeline599

was allowing for full parallelization to decrease the time from download to pushing the unified600

dataset. Indeed, having multiple connections opened for both fetching data from a table and pushing601

them to the other one with database cursors is prone to high memory usage and leakage. Naive602

implementations of parallelism do not allow to fully take advantage of high compute machines. To603

that end, we designed the library to be very memory-efficient. For LeMat-Traj, it was possible to take604

advantage of 128 cores with 256GB without any issue. The entire pipeline to create LeMat-Traj took605

around 16 hours to create the 120M rows and upload them on HuggingFace running with 12 workers606

on an AMD Ryzen 5600G. This time gets significantly reduced when running on larger machine on607

which we are able to max-out the usage.608

For the dataset curation process, we follow the same procedure as [38] with the exception that we609

pick Ytterbium (Yb) containing samples from Materials Project rather than Alexandria because of610

the non-compatibility between their pseudo-potentials.611

Materials Project. For the Materials Project data transformation process, we look through every612

single task available (around 1.5M at the latest release during the first LeMat-Traj version), and613

then only keep the non-deprecated tasks. To ensure accurate sampling of the PES, we pick all the614

trajectories for a given material as long as they pass the data filtering described in 3.3.615

Alexandria. All samples from Alexandria were used except for the ones containing Yb.616

OQMD. OQMD trajectories are obtained by going through all the entries of the OQMD database,617

gathering their associated calculations from relaxation, coarse relaxation and fine relaxation for every618

relaxation stage. The input structures and output structures are then processed, provided they contain619

the targets expected in the right format.620

F Potential Energy Surfaces621

To visualize the coverage of the potential energy surface (PES) by LeMat-Traj, we projected atomic622

configurations onto a lower-dimensional space derived from Smooth Overlap of Atomic Positions623
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Table 7: Evaluation on the MPtrj 10k held-out test set.

Training Dataset Energy MAE (meV) ↓ Forces MAE (meV/Å) ↓ Forces Cos ↑

OMat24 58.7 68.7 0.54
MatPES PBE 237.6 114.6 0.36
LeMat-Traj only 20.2 63.3 0.52
OMat24 + ft LeMat-Traj 37.3 73.4 0.52

Table 8: Hyperparameters used to train MACE on the subsets of LeMat-Traj.
Hyperparameter Training Stage 1 Training Stage 2 Fine-tuning
Learning Rate 8e-4 8e-4 8e-4
Scheduler Constant Constant Constant
Batch Size 128 128 128
Energy Weight 1 100 1
Force Weight 10 100 100
Stress Weight 1 1 1

(SOAP) descriptors [15]. Figure 9 illustrates this for the systems in the metallic Fe-Cu-Al-Ni624

hull within the PBE functional subset of LeMat-Traj, contrasting it with a similar projection for625

the MatPES dataset. LeMat-Traj projection (9(a)) reveals a broad exploration of the PES, with626

example trajectories (red lines) originating from diverse initial high-energy states (green circles)627

and converging towards distinct low-energy minima (black stars). The gradient energy gradient is628

clearly visible in the line levels far from the very high energy regions. This visualization is also very629

similar with the MatPES projection (9(b)) which, while also covering a significant area, appears630

to have a different structural sampling emphasis, with less granularity around maxima, revealing a631

smaller number of saddle points. Further details on the visualization methodology are provided in632

Appendix F.633
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Figure 9: Projected Potential Energy Surfaces (PES) for the metallic Fe-Cu-Al-Ni systems. Atomic
configurations are featurized using SOAP descriptors [15] and projected onto their first two principal
components. The PCA 1 and PCA 2 axes are qualitative representations of structural similarity and do
not have a direct physical interpretation. Color indicates formation energy (eV/atom). (a) PES derived
from the LeMat-Traj PBE dataset. Green circles and black stars mark initial and final structures of
example trajectories (red lines). The visualization highlights LeMat-Traj’s dense, high-frequency
sampling of the PES, which is crucial for resolving fine details near energy minima. (b) PES derived
from the MatPES dataset, showing a broader but sparser sampling of the overall landscape.

To allow for easier interpretability we limit the analysis to specific coherent subsets of chemical634

elements (metallic or ionic). For every dataset, all the atomic configurations whose chemical formula635

is a subset of the chosen elements are gathered. Then SOAP descriptors are computed for all these636
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configurations with the same hyperparameters (r_cut = 5.0, n_max = 8 and l_max = 6, with outer637

averaging to get a vector for every structure). All of these SOAP vectors are used to fit a PCA and the638

formation energy per atom (eV/atom) is computed. Because the sampling of atomic configurations639

is scattered across the PCA space and not continuous, we use a linear interpolation of the convex640

hull to get this visual description. Figure 10 illustrates the PES of a different chemical subset,641

highlighting the close similarity between LeMat-Traj and MPtrj. Indeed, since MPtrj is contained642

in LeMat-Traj, the PES of the latter describes local minima and transition pathways with a higher643

resolution. Additionally, when only limiting the sampling to two elements systems with Fe-Cu, we644

notice the advantages of having a larger structural configuration sampling to better describe the entire645

PES. Although having a smaller dataset may result in a smoother landscape that might help models646

converge faster and more easily, it is not enough to completely capture the large number of local647

energy minima that exist in the complex DFT force field.648
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Figure 10: Projected Potential Energy Surfaces (PES) for the ionic Na-Cl-O systems for LeMat-Traj
and the MPtrj datasets, similar to Figure 9 in 3D projection.
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Figure 11: Projected Potential Energy Surfaces (PES) for the subset Fe-Cu systems for LeMat-Traj
and the MPtrj datasets, similar to Figure 9.
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