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Abstract

The development of accurate machine learning interatomic potentials (MLIPs)
is limited by the fragmented availability and inconsistent formatting of quantum
mechanical trajectory datasets derived from Density Functional Theory (DFT).
These datasets are expensive to generate yet difficult to combine due to variations
in format, metadata, and accessibility. To address this, we introduce LeMat-Traj, a
curated dataset comprising over 120 million atomic configurations aggregated from
large-scale repositories, including the Materials Project, Alexandria, and OQMD.
LeMat-Traj standardizes data representation, harmonizes results and filters for
high-quality configurations across widely used DFT functionals (PBE, PBESol,
SCAN, r2SCAN), significantly lowering the barrier for training transferrable and
accurate MLIPs. LeMat-Traj spans both relaxed low-energy states and high-energy,
high-force structures, complementing molecular dynamics and active learning
datasets. By fine-tuning models pre-trained on high-force data with LeMat-Traj,
we achieve a significant reduction in force prediction errors on relaxation tasks.
We also present LeMaterial-Fetcher, a modular and extensible open-source library
developed for this work, designed to provide a reproducible framework for the com-
munity to easily incorporate new data sources and ensure the continued evolution
of large-scale materials datasets. LeMat-Traj and LeMaterial-Fetcher are publicly
available athttps://huggingface.co/datasets/LeMaterial/LeMat-Traj
and https://github.com/LeMaterial/lematerial-fetcher.

1 Introduction

The discovery and design of novel materials are essential for technological advancement, offering
solutions to pressing global challenges such as sustainable energy and climate change mitigation [31]].
However, traditional lab experiments and computational approaches, particularly those involving
Density Functional Theory (DFT), are resource-intensive [46]. Machine Learning Interatomic
Potentials (MLIPs) have emerged as a promising alternative, offering DFT-level accuracy at a
fraction of the computational cost. This acceleration is crucial for enabling large-scale molecular
dynamics (MD) simulations over long timescales and rapid exploration of material properties [41,12],
potentially fast-tracking the development of materials for applications like carbon capture, improved
batteries, or more efficient catalysts.

Graph Neural Networks (GNNs) have emerged as the most effective class of models for learning inter-
atomic potentials, due to their ability to naturally represent atomic systems and to incorporate physical
symmetries such as rotational and permutational equivariance [11]. As modern GNN architectures
like EquiformerV2 [235]] exhibit scaling laws behaviors [6], the need for even larger, more diverse,
and consistently processed datasets becomes predominant. Despite several large-scale initiatives
generating vast amounts of DFT data [[17, 36], these datasets often remain siloed, employ distinct
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Figure 1: Data curation pipeline of LeMaterial-Fetcher. The library automates the process of fetching,
transforming, validating, and harmonizing data from various sources, ensuring a consistent and
reproducible dataset. The pipeline currently supports the continuous integration of fully relaxed bulk
structures and full relaxation trajectories.

data formats, and use varying DFT parameters (e.g., functionals, parameters, pseudopotentials). This
fragmentation poses a challenge for researchers aiming to leverage the full spectrum of available
data, as combining these sources requires considerable preprocessing and harmonization efforts.
Consequently, many MLIPs are trained on scattered and non-homogeneous datasets, potentially
restricting their generalizability and predictive power, while introducing chemical bias due to the way
the datasets are separately being used to train these models [36]. Moreover, large architectures—some
now comprising over 30 million parameters—stand to benefit from the access to even bigger and
more diverse datasets, as further scaling require proportionally more data to avoid overfitting and
fully realize their expressive power [235].

To overcome these limitations, we introduce LeMat-Traj, a large-scale, aggregated dataset of materials
trajectories. LeMat-Traj harmonizes data from three prominent sources: Materials Project [ 17, [18]],
Alexandria [36], and OQMD [34]], into a unified format, encompassing calculations performed
with various DFT functionals (PBE, PBESol, SCAN, and r2SCAN). Furthermore, we introduce
LeMaterial-Fetcher, an open-source Python library designed for the systematic and reproducible
curation of materials science datasets.

Our contributions can be summarised as follows:

1. We release LeMat-Traj, to our knowledge one of the largest publicly available datasets of
crystalline materials trajectories (120 million configurations). LeMat-Traj provides dense,
high-quality coverage of near-equilibrium and low-force states—an underrepresented but
crucial regime for accurate geometry optimization.

2. We empirically demonstrate the value of this data philosophy through extensive benchmarks.
We show that by fine-tuning a MACE model with LeMat-Traj, we can reduce force prediction
errors on relaxation tasks by over 36% and improve performance on the Matbench Discovery
stability benchmark by 10%.

3. We introduce LeMaterial-Fetcher, a modular and extensible open-source library used to
create LeMat-Traj. It provides a reproducible platform for community-driven curation,
extension, and combination of large-scale materials datasets, enabling future research in
multi-dataset and curriculum learning strategies.

We believe LeMat-Traj and LeMaterial-Fetcher will serve as a versatile foundation for the commu-
nity, supporting not only the training of MLIPs but also a wide range of downstream tasks with
crystalline materials, including benchmarking, subsampling strategies, self-supervised pretraining,
and curriculum learning.
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2 Related Work

The development of MLIPs has been closely correlated with the availability of suitable training
datasets [[7, [18| 22]]. These datasets typically consist of sequences of atomic configurations, along
with their corresponding energies and forces, generated from quantum mechanical simulations. Such
sequences, often referred to as trajectories, can originate from various simulation types, including
geometry optimizations (tracing paths to energy minima) or molecular dynamics (MD, exploring
configurations at specific thermodynamic conditions). Large-scale computational materials science
initiatives like the Materials Project [[17, [18]], Alexandria [35}36], and the Open Quantum Materials
Database (OQMD) [34]], along with resources like AFLOW [13], NOMAD [10], and ColabFit [43],
have provided invaluable data to the community.

While MLIPs are frequently trained using data derived from these sources such as MPtrj [8]] which
curates relaxation trajectories from the Materials Project and has been used in models like CHGNet
[8], MACE [4] and subsequent architectures, practitioners frequently encounter challenges [28]].
Data from these diverse sources may employ different DFT parameters (e.g., functionals, k-points,
pseudopotentials), varying data formats, and inconsistent preprocessing methodologies [33]]. This
fragmentation means that combining data requires considerable, often repetitive, data engineering
efforts [45], potentially limiting the generalizability and predictive power of the resulting MLIPs, and
can introduce chemical biases depending on how individual datasets are leveraged [28]].

In parallel, two main philosophies of dataset design for training such MLIPs have emerged. One
emphasizes broad exploration of the potential energy surface through high-force sampling, as in
OMat24 [3]], MatPES [19] or MP-ALOE [20], and active-learning datasets like ANI-1x [39]. These
are well suited for pretraining robust models and capturing diverse regions of the configuration
space [14]. The other focuses on dense, near-equilibrium sampling from DFT geometry optimization
trajectories, which provide clean, structured data in the low-force regime critical for accurate geometry
optimization and stability prediction with datasets like Alexandria [36]. Since machine learning force
fields often display varying accuracy across the potential energy surface, with near-equilibrium and
high-force regions posing different challenges [42} 26]], these two philosophies of dataset design
reflect complementary but compatible strategies to address that imbalance.

Recent work has underscored the need for large, harmonized, and extensible datasets that bridge
these philosophies and mitigate fragmentation [19}[36]. Our contribution follows this direction by
introducing a systematically curated dataset of DFT trajectories together with an open-source pipeline
to ensure reproducibility and extensibility. This places our work in line with ongoing efforts toward
foundational datasets in materials science that can serve pretraining, benchmarking, and fine-tuning
across a wide range of downstream MLIP applications.

Our work aims to address the data fragmentation challenge by providing not only a large, aggregated
dataset but also a transparent, reproducible curation pipeline with LeMaterial-Fetcher. This aligns
with the increasing need for foundational datasets in materials science [19] that are large-scale,
internally coherent, and extensible, facilitating pretraining, benchmarking, and fine-tuning across a
wide range of downstream MLIP applications.

3 Methodology

LeMat-Traj is constructed by aggregating and processing data primarily from three major materials
databases: Materials Project, Alexandria and OQMD (Open Quantum Materials Database). The
core challenge lies in developing a scalable and reproducible methodology to handle the existing
heterogeneity of these sources into a single and unified dataset.

3.1 Unified Generation Pipeline

To address this, we developed LeMaterial-Fetcher, a highly parallelized Python-based open-source
library described in Figure[I] It provides a unified and automated framework for:
 Fetching: Interfacing with open APIs and direct downloads from various data sources.

* Transformation: Converting diverse input formats and attributes into a consistent schema.
This includes standardizing atomic structure representations, energy units, and force compo-
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nents. It also handles the extraction and organization of metadata related to DFT calculations.
All of this is done by allowing to interface with powerful atomistic modelling tools like
Pymatgen [30], Matminer [44].

* Validation: Implement checks to ensure data quality and integrity, such as verifying physical
plausibility or consistency across reported values.

* Harmonization: Aligning DFT calculation parameters where possible and creating separate
splits of data based on key parameters like the DFT functional.

» Push: Exporting the curated dataset in a user-friendly and efficient format, for direct use with
libraries like HuggingFace’s Datasets [23]]. This allows for easy integration with existing
ML frameworks and tools, because they can adapt to limited computational resources, but
also data versioning and metadata tracking as outlined in [[10].

LeMaterial-Fetcher is designed to be modular, extensible but also scalable and fast, allowing for the
easy integration of new data sources (e.g., future integration of quantum calculations sources) and
adaptation to more materials science domains such catalysis, experiments, defects. This framework
ensures the reproducibility of LeMat-Traj and facilitates continuous integration of new DFT calcula-
tions as they become available from the source databases. Mainly, this eliminates the need to have
to manually go through every dataset one by one, download it, and then apply the updates before
releasing new versions. Additional details on the pipeline design are provided in Appendix

3.2 Data Sources and Harmonization

LeMat-Traj specifically extracts geometry optimization trajectories from DFT calculations. A key
aspect of our curation is the harmonization of data across different exchange—correlation functionals.
We categorize trajectories based on the reported functional, primarily focusing on PBE, PBESol,
SCAN, and r2SCAN, allowing users to train functional-specific models or to explore multi-fidelity
learning across levels of theory (section[5). Table[I] gives a full summary of the dataset repartition.

The dataset follows the OPTIMADE specification [2], enabling interoperability with other datasets
that follow the same standard. We introduce a slight adaptation to accommodate trajectory data:
each entry in the database corresponds to an individual atomistic configuration, which is part of a
trajectory and is associated with energy and force information. Full optimization trajectories can
be reconstructed by grouping entries by a shared trajectory identifier. This design choice facilitates
seamless integration into machine learning interatomic potential (MLIP) training pipelines, where
per-frame forces and energies are required.

To support trajectory-specific use cases, two new fields are introduced into the schema:
1. Relaxation Step: An integer indicating the step number of the structure within a given
geometry optimization sequence.

2. Relaxation Number: An identifier that distinguishes different optimization runs for the
same initial structure. This is particularly useful in high-throughput settings, where structures
may undergo coarse relaxations before being re-relaxed with tighter thresholds or more
accurate methods.

Table 1: Number of trajectories and atomic configurations per source database and functional.

Functional Database Number of Trajectories Number of configurations
Materials Project 195,721 3,649,785

PBE Alexandria 3,414,074 110,804,226
OQMD 135,966 264,782
Materials Project 39,981 309,873

PBESol  \jexandria 252,791 6,099,623

SCAN Materials Project 7,756 180,528

r2SCAN Materials Project 37,888 516,576
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3.3 Data Filtering

Our data filtering strategy prioritizes retaining a large volume of diverse configurations while es-
tablishing essential quality control. To this end, several criteria were applied: First, any atomic
configuration lacking either energy or atomic force data was discarded. Second, entire trajectories
were removed if the energy difference between the penultimate and final optimization step exceeded a
threshold of 2 x 102 eV, a criterion adapted from MPtrj [8] to ensure reasonable convergence. Third,
trajectories were also excluded if the maximum atomic force norm in the final configuration surpassed
0.2eV/A, i.e. the structure is not fully relaxed. While this force threshold is relatively high, it allows
the inclusion of structures that, despite not being fully relaxed, still provide valuable information
about the potential energy surface far from equilibrium, enriching the dataset for training robust force
fields. Finally, all configurations were validated against the OPTIMADE format specifications, and
any entry failing these schema checks or other implemented validation tests was removed.

4 Coverage of Chemical and Configurational Space

LeMat-Traj comprises approximately 120 million atomic structures derived from geometry optimiza-
tion trajectories. The dataset is partitioned based on the DFT functional used for the calculations:
PBE, PBESol, SCAN, and r2SCAN. This partitioning facilitates targeted model training and research
into multi-fidelity approaches.

4.1 Chemical and Structural Diversity

We compare the elemental and structural diversity of LeMat-Traj with other popular datasets such
as MPtrj 8] and MatPES [19]. LeMat-Traj aims to offer a broader coverage by combining multiple
sources as illustrated in Figure 2] While MPtrj primarily focuses on Materials Project data, LeMat-
Traj’s explicit harmonization and inclusion of OQMD and Alexandria data offer a unique combination
of scale and more balanced distribution.
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Figure 2: Chemical distribution in number of trajectories for the PBE split of LeMat-Traj using
Pymatviz [32].

While the Alexandria dataset constitutes the majority of the PBE split by volume (approx. 92%), the
inclusion of data from Materials Project and OQMD is critical for diversity. First, it enriches the
chemical space; Materials Project contains a higher concentration of oxides and battery materials,
balancing the bi-metallic bias present in Alexandria. Second, it diversifies the force distribution; the
average maximum force norm in Materials Project trajectories is significantly higher (593 meV/A)
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than in the rest of the dataset (110 meV/A), providing crucial high-force examples that help prevent
models from under-estimating forces during relaxation.

Inclusion of Equilibrium Structures. A notable feature of LeMat-Traj is the inclusion of equilib-
rium structures from OQMD, which is rarely leveraged by ML practitioners when training machine-
learned interatomic potentials (MLIPs). These configurations, characterized by near-zero atomic
forces, serve as valuable reference points for MLIPs, particularly in capturing energy minima ac-
curately. While relaxation trajectories naturally include low-force structures near convergence, the
explicit addition of a large and diverse set of OQMD equilibrium configurations enhances the dataset’s
richness. Although these single-point structures may be underrepresented compared to the total
number of frames in full trajectories, they can be strategically leveraged by models focused on
accurately learning stable configurations.

4.2 Trajectory Analysis

Trajectory Length. Figure[3|shows the distribution of trajectory lengths in LeMat-Traj. LeMat-Traj
exhibits a broad distribution, with many trajectories across all length scales. It uniquely features a
long tail with a significant number of trajectories extending beyond 100 frames, and even exceeding
1000 frames. In contrast, MPtrj is predominantly characterized by shorter trajectories, with the
majority having fewer than 50 frames and a pronounced spikiness in its distribution at very short
lengths. MatPES shows a broader distribution than MPtrj, with more medium-length trajectories
(up to 100-200 frames), but still lacks the extensive representation of very long trajectories seen in
LeMat-Traj. These longer trajectories are not indicative of optimization issues but are rather a feature
of the highly stringent convergence criteria used in the source calculations, representing valid, but
slow, convergence paths to energy minima.

Trajectory Length Distributions Across Datasets
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MPTrj
10° [ MatPES

Number of Trajectories
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Figure 3: Comparison of trajectory length distributions for LeMat-Traj (PBE split), MPtrj, and
MatPES, on a log-log scale. For every trajectory, the number of configurations associated is computed.
LeMat-Traj exhibits a broader range of trajectory lengths.

Targets spread along trajectories. Figure[d]illustrates the evolution of mean energy variation (AE
relative to the final relaxed state) and average maximum atomic forces norm throughout the relaxation
trajectories of LeMat-Traj, MatPES, and MPtrj. LeMat-Traj uniquely demonstrates comprehensive
sampling across the entire relaxation pathway. At the initial stages (low fraction of relaxation
completed), it encompasses a wide distribution of high-energy and high-force configurations, with
mean AFE around 0.05 eV/atom (and variance extending >1 eV/atom from structures that are very
far from their relaxed states iniially) and mean maximum forces around 0.3-0.4 eV/A (variance
extending >1 eV/A). Crucially, as relaxations progress towards completion, LeMat-Traj systematically
converges to very low AFE (approaching 103 — 10~* eV/atom) and near-zero maximum forces
(mean 0.01-0.02 eV/A, with significant density below 10~3 eV/A). This shows a robust sampling
both far-from-equilibrium states and accurately representing near-equilibrium energy minima and
low-force structures, making LeMat-Traj well-suited for training versatile MLIPs capable of both
high accuracy for stable configurations and robustness across diverse energy landscapes.
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Figure 4: Evolution of mean energy variation (AE = E* — ET, where E' is current step energy
and F'7 is final relaxed energy) per atom (a) and average maximum atomic force (b) as a function of
the fraction of relaxation completed. Trajectories from LeMat-Traj, MatPES, and MPtrj are binned
by their normalized progress. Solid lines represent the mean values, and shaded areas depict one
standard deviation, both on a logarithmic y-axis. LeMat-Traj demonstrates comprehensive sampling
from high-energy/high-force initial states to well-converged, low-energy/low-force final states.

5 Results

To empirically validate the utility of LeMat-Traj, we conduct a series of benchmark experiments using
the MACE architecture [4], a well-established and performant equivariant model. These experiments
are designed to demonstrate the dataset’s value for improving model accuracy on relaxation-focused
tasks, both through fine-tuning and in downstream applications. A key hypothesis of our work is that
LeMat-Traj’s dense sampling of near-equilibrium states is complementary to datasets focused on
high-force configurations. While high-force data, such as in OMat24, provides strong gradients that
facilitate stable initial training and learning of the general energy landscape, LeMat-Traj is designed
to refine model accuracy in the low-force regime critical for geometry optimization.

5.1 Complementary Value for Fine-Tuning

To test our hypothesis, we evaluate the performance of a MACE model pre-trained on the general-
purpose OMat24 dataset and then fine-tune it on LeMat-Traj. As shown in Table [2] while the
OMat24-trained model serves as a strong baseline, fine-tuning on LeMat-Traj reduces the Forces
MAE on our held-out test set of relaxation trajectories by over 36%. This result provides direct
evidence that LeMat-Traj contains critical information for achieving high fidelity in force predictions
near energy minima, a crucial capability for accurate geometry optimization.

Table 2: Performance of MACE on the LeMat-Traj PBE 10K held-out test set. Fine-tuning a model
pre-trained on OMat24 with LeMat-Traj significantly reduces prediction errors, demonstrating the
complementary nature of the datasets.

MACE Training Dataset Energy MAE (meV) | Forces MAE (meV/;&) 1 Forces Cos 1

OMat24 59.5 42.7 0.29
MPtrj 49.8 81.7 0.23
MatPES PBE 316.4 88.7 0.16
LeMat-Traj only 25.3 50.8 0.23
OMat24 + ft LeMat-Traj 18.8 27.2 0.30
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5.2 Downstream Performance on Matbench Discovery

To assess practical utility, we evaluate our models on a subset of the Matbench Discovery benchmark,
which measures a model’s ability to predict the stability of novel crystalline materials. This task
relies heavily on accurate structural relaxation. Table [3|shows that the MACE model trained on a
split of LeMat-Traj with left-out matching protocol from Matbench Discovery following the method
in Barroso-Luque et al. [3] significantly outperforms the same model architecture trained on OMat24
or MPtrj alone, achieving a 10% higher F1 score. The best performance is achieved by the model
pre-trained on OMat24 and fine-tuned on LeMat-Traj, reinforcing the value of combining high-force
and near-equilibrium data,

Table 3: Matbench Discovery benchmark results on a 50k uniform subset. Models incorporating
LeMat-Traj data achieve superior performance in predicting material stability.

Model (Training Set) F1Score MAE (meV)| RMSE (meV) |
MACE (OMat24) 0.575 87.8 172.8
MACE (MPtrj) 0.694 472 83.9
MACE (LeMat-Traj Full) 0.768 37.2 69.0
MACE (OMat24 + ft-LeMat-Traj) 0.772 334 67.8

5.3 Multi-Fidelity Learning.

A notable challenge in materials modeling is the transferability of MLIPs trained on data from one
level of theory (e.g., a specific DFT functional) to another. LeMat-Traj, with standardized formats of
its different splits for PBE, PBESol, SCAN, and r2SCAN, provides a natural testbed for multi-fidelity
learning strategies. We conduct experiments to assess how well models trained on one functional (e.g.,
PBE) can be fine-tuned or adapted for tasks involving another functional (e.g., PBESol and 12SCAN).
For each of the PBESol and r2SCAN datasets, we use the subset described in Appendix [D.1]during
the experiments.

1. We train a MACE model from scratch (using the same number of parameters as
MACE-MPA-O [5]). The training procedure is done in two stages (similar to how the foun-
dation model is trained from scratch). During the first stage, the forces’ weight in the loss
computation is way higher than the other predicted targets, then during the second stage, we
match the energy weight to that of the forces weight.

2. We fine-tune that same model separately on the split.

Evaluation results on the test set are reported in Table[d] LeMat-Traj helps facilitate effective transfer
learning across functionals, especially when data or computational resources are limited, and can help
in the development and research of general cross-atomic data source learning methods like Shoghi
et al. [37], Huang et al. [[16]. Results show that using a model pre-trained on one functional helps
transferring to another functional more easily and in fewer steps.

Table 4: Performance of pre-trained MACE and ORB Models on Different DFT Functionals split when
fine-tuning on a functional split (referred to with <split>) and after fine-tuning (-<split>-ft).
Energy MAE is reported in meV/atom, Force MAE in meV/A, Stress MAE in meV/A3, and Cosine

Similarity is averaged over the forces vectors. All measures are across the test split described in
Appendix [D]

Model PBESol r2SCAN

Energy MAE Force MAE  Stress MAE  Cosine Sim.  Energy MAE  Force MAE  Cosine Sim.
MACE-MPA-0 370.9 101 14.7 0.13 9204.9 111 0.15
MACE-PBESol 51.2 33 2.1 0.04 / / /
MACE-MPA-0-PBESol-ft 18.0 27 1.6 0.19 / / /
MACE-r2SCAN / / / / 141.7 36 0.09
MACE-MPA-0-r2SCAN-ft / / / / 96.3 28 0.22
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5.4 Limitations and Future Work

While LeMat-Traj and LeMaterial-Fetcher mark substantial advancements, several areas offer op-
portunities for improvement. The current dataset primarily consists of DFT geometry optimization
trajectories, and does not include molecular dynamics (MD) trajectories, which could enhance model-
ing of dynamic properties. Additionally, although the dataset is chemically diverse, the PBE split is
largely drawn from the Alexandria database, potentially introducing some data source bias. Future
work should aim to incorporate MD trajectories and correctly identify them to diversify data origins,
while ensuring compatibility and avoid incorporating noisy data points. This initial release primarily
focuses on dataset construction and characterization; comprehensive benchmarking of MLIPs trained
on LeMat-Traj is planned to fully demonstrate its utility (preliminary results in Appendix [D). Finally,
the pipeline in LeMaterial-Fetcher is designed to gather detailed DFT calculation parameters if avail-
able from the source (e.g., k-point meshes, pseudopotentials). While not fully exploited in the current
version of LeMat-Traj for all entries, this capability can help introduce future MLIP architectures
that explicitly embed these parameters as inputs, leading to more versatile multi-fidelity models,
enabling LeMat-Traj to continually evolve as a richer resource for the community. Aggregating
data from sources using different underlying DFT parameters (e.g., k-point grids, pseudopotentials)
without explicit harmonization risks introducing noise. While we ensure pseudopotential compati-
bility for included elements following the method in Siron et al. [38]], a deeper quantitative analysis
of these potential cross-database biases is an important area for future investigation. We note that
LeMaterial-Fetcher’s provenance tracking is a first step, enabling researchers to isolate and study
these effects.

6 Conclusion

In this work, we introduced LeMat-Traj, a scalable, high-quality and unified dataset comprising over
120 million atomic configurations from DFT relaxation trajectories, and LeMaterial-Fetcher, the
open-source library enabling its creation and continued evolution. By aggregating, standardizing,
and harmonizing data from prominent repositories across multiple DFT functionals, LeMat-Traj
lowers the barrier for training robust, transferable, and accurate MLIPs, which are essential technical
bricks of accelerated materials discovery. Our analysis demonstrates its comprehensive sampling of
the potential energy surface along relaxation pathways, capturing both high-energy structures and
near-equilibrium states, making it a valuable resource for researchers to develop next-generation
interatomic potentials, explore multi-fidelity learning, and advance self-supervised learning techniques
in materials science.

While LeMat-Traj currently focuses on geometric optimization trajectories, the modularity of
LeMaterial-Fetcher enables future expansions. With the incorporation of compatible molecular
dynamics simulations, diversifying data sources further, and implementing dataset-level sampling
strategies for more coherent fine-tuning datasets. Integrating LeMaterial-Fetcher with automated
active learning and DFT calculation workflows can enable the continuous enrichment of LeMat-Traj
with high-fidelity data. We believe LeMat-Traj and LeMaterial-Fetcher represent a step towards
democratizing access to high-quality, curated training data, fostering community collaboration, and
ultimately accelerating the pace of data-driven materials discovery
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A Data Availability and Licensing

LeMat-Traj is publicly available at https://huggingface.co/datasets/LeMaterial/
LeMat-Traj| and is distributed under the Creative Commons Attribution 4.0 International (CC-
BY 4.0) license. LeMaterial-Fetcher library, developed for the curation of LeMat-Traj, is open-
source and available on GitHub at https://github.com/LeMaterial/lematerial-fetcher.
LeMaterial-Fetcher is distributed under the Apache License 2.0.

LeMat-Traj aggregates, filters and standardizes data from the following publicly available repositories:

« The Materials Project

* Alexandria [33] 36]
* The Open Quantum Materials Database (OQMD) [34]

All data retrieved from these original sources for inclusion in LeMat-Traj are distributed under
licenses compatible with CC-BY 4.0, primarily their own CC-BY 4.0 licenses. Specifically, for data
originating from the Materials Project, care was taken to ensure that only structures and calculations
designated under the CC-BY 4.0 license were included. We gratefully acknowledge the original
creators and maintainers of these foundational datasets for making their valuable work publicly
accessible.

B Distribution Analysis

Chemical diversity. To highlight the chemical diversity of the dataset, Figure [5] and 2] present
periodic table heatmaps of the number of trajectories involving each element for the LeMat-Traj
dataset, separately for the PBE and PBESol splits. The distribution spans nearly the entire periodic
table, with particularly high representation of elements such as transition metals (e.g., Fe, Ni, Co),
light elements (e.g., H, C, O, N), and main group elements (e.g., Si, Al, S). Besides oxides dominating
and actinides being under-represented, the distribution is well-balanced. This ensures that the dataset
is suitable for training universal machine-learned interatomic potentials that generalize across diverse

chemistries and bonding environments.
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Figure 5: Chemical distribution in number of trajectories for the PBESol split.
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Max Forces. Figure[f]displays the distribution of maximum atomic force norms, revealing LeMat-
Traj’s (PBE split) extensive coverage. It contains substantially more configurations spanning a wider
range of force magnitudes (from approximately 10 to 103 eV/A) compared to MPTrj and MatPES,
indicating comprehensive sampling from near-equilibrium to high-force states.
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Figure 6: Coverage in log-log scale of the maximum norm of the force vector on every atomic
configurations in LeMat-Traj (PBE split), MPtrj and MatPES.

Space Group diversity. To assess the structural diversity of the dataset, we analyzed the distribution
of crystallographic space groups for the LeMat-Traj PBE subset. The space groups of the 120M
structures were computed during the dataset creation using moyo a faster alternative to Spglib [40] in
LeMaterial-Fetcher. The strict default parameters for space group identification (symprec 10~%)
were used in the dataset, allowing for a unified space group description across all the structures. As
shown in Figure[7] the dataset spans the full range of crystal systems, including triclinic, monoclinic,
orthorhombic, tetragonal, trigonal, hexagonal, and cubic groups. More than 200 unique space groups
are represented, with a significant number of entries in low-symmetry systems (e.g., triclinic and
monoclinic), which can be explained by the strict tolerance. This symmetry diversity is essential for
training machine learning interatomic potentials (MLIPs) that generalize across materials with varying
spatial constraints and bonding environments. It is also worth noting that 98% of the trajectories are
assigned the same space group label at the first step of the relaxation and the last one showing the
symmetry conservation during the geometric optimization calculations.

Relaxation Steps. Figure [§]illustrates the distribution of the number of geometry optimization
steps performed across the first, second, and third relaxation stages within LeMat-Traj as described
in section 3.1} The plots reveal that the first relaxation generally involves a broader and more
varied distribution of steps, often exceeding 50 or even 100 steps for more complex or strained
initial structures. In contrast, the second and third relaxations show sharply peaked distributions
concentrated at lower step counts, reflecting incremental refinements of already partially relaxed
geometries. This progression highlights the effectiveness of multi-stage relaxation strategies in
achieving convergence, while also emphasizing that the dataset captures a wide range of relaxation
behaviors—from flat minima to deep, multi-step optimization paths.

C Alternative training tasks

The trajectory data and associated metadata in LeMat-Traj support the exploration of training tasks
beyond standard force and energy prediction.

Direct Structure-to-Property Prediction and Amortized Optimization. LeMat-Traj is suitable
for Initial Structure to Relaxed Structure/Energy (IS2RE/IS2RS) tasks [[7]], as each trajectory contains
the initial unrelaxed configuration, the final relaxed state, and its energy. This data structure can be
used for developing amortized optimization methods for crystal structure relaxation [1]]. In contrast
to MLIPs that provide forces for an external optimizer, amortized methods attempt to learn the direct
mapping from an initial structure to its relaxed state by utilizing the DFT optimization paths within the
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Crystal System
mmm Triclinic

== Monoclinic
mmm Orthorhombic
mmm Tetragonal
mmm Trigonal
-— Hexagonal

107

6

=
o

5

90 100 110 120 130 140 150 160 170 180 190 200 210 220 230
Space Group Number

,_.
=)

-
5
S

Number of Structures

- -
2 g

=
o,

Figure 7: Distribution of space groups in LeMat-Traj (PBE subset), categorized by crystal system. The
figure illustrates the number of structures for each space group on a logarithmic scale, highlighting the
dataset’s broad coverage of crystallographic symmetries. All seven crystal systems are represented,
spanning over 200 distinct space groups.

Relaxation Steps Across Stages
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Figure 8: Number of geometry optimization steps across the first, second, and third relaxation stages
in LeMat-Traj. The density of number of steps for each stage, with the total number of trajectories
(n) labeled above are represented. While the first relaxation often involves more extensive structural
changes, subsequent stages typically require fewer steps, indicating convergence toward optimized
geometries.
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dataset. Such approaches may be beneficial for applications requiring rapid structure prediction, for
example, in high-throughput screening or for large systems where conventional relaxation methods
can be computationally demanding [21]]. While not impossible with MPtrj and Alexandria, the raw
format of these datasets makes this task difficult. In contrast, the relaxation step number associated to
each trajectory, and the name of the trajectory it belongs can be easily leveraged for this specific task
on LeMat-Traj.

Self-Supervised Learning (SSL) for Representation Learning. The scale and diversity of LeMat-
Traj also make it a relevant dataset for pre-training models using self-supervised learning (SSL)
techniques [27]. The sequential information in trajectories, the relationships between different
configurations along a relaxation path, and the large number of atomic configurations can serve as
signals for SSL. For example, methods based on contrastive learning (e.g. DeNS [24]]), masked atom
or coordinate prediction, or generative pre-training (such as diffusion models, e.g. ORB [29]) could
be applied. Learning to predict masked information or reconstruct parts of the input structures can
help models develop general atomic representations. These representations could then be used as a
starting point for fine-tuning on specific downstream tasks, potentially aiding sample efficiency and
generalization, analogous to approaches in other domains like natural language processing [9]. The
consistent formatting of LeMat-Traj facilitates the application of these SSL methods.

The unified format produced by LeMaterial-Fetcher allows for the distribution of LeMat-Traj via
platforms like HuggingFace Datasets, providing access to the data for these training approaches.

D Experiments on LeMat-Traj

D.1 Subsets of LeMat-Traj.

In this section, we provide additional details on the way the subsets of LeMat-Traj were created and
splitted for the small experiments. Due to the dataset’s size, we focus on measuring performances
on a few selected subsets of the dataset. The splits are available at https://huggingface.co/
datasets/LeMaterial/LeMat-Traj-subset and can be used on more limited computational
resources. Each entry represents an atomic configuration within a trajectory. To avoid data leakage,
subsampling and splitting are performed at the trajectory level, ensuring all configurations from a
given trajectory appear exclusively in either the training or test set. Splits are stratified based on the
one-hot encoding of chemical elements present in the trajectory. This ensures no atomic species in the
test set are unseen during training—essential for model generalizability. To ensure balance between
the different sources for all subsets, we keep the same 10% MP, 10% OQMD and 80% Alexandria
balance across all splits and all functionals, as long as the data source provides data for the functional.
For SCAN and r2SCAN where the only provenance source is Materials Project, we keep all the data
from the original dataset in these subset because they are small enough for these experiments and
split the train and test split with a stratified 80-20% separation of the trajectories.

D.2 Cross-Dataset Generalization

The benchmarks in Section [5 highlight that combining high-force data (OMat24) with near-
equilibrium data (LeMat-Traj) yields the best performance. To further explore this, we conducted
a cross-dataset evaluation, testing models trained on one dataset against the test sets of others. As
shown in Tables [5] [6] and [7, models consistently perform best on their in-distribution test data.
For example, the model trained on OMat24 achieves the lowest errors on the OMat24 test set, but
performs poorly on the LeMat-Traj test set (Table [2), and vice-versa. This reinforces our central
argument: different data generation strategies (MD/active learning vs. geometry optimization) capture
distinct but complementary regions of the potential energy surface. A single data source is often
insufficient for creating a truly general-purpose potential. Our results demonstrate that LeMat-Traj is
a crucial resource for specializing models in the low-force regime essential for accurate relaxations,
complementing existing high-force datasets.

D.3 Model Training.

We report in Table 8] the hyperparameters used for training MACE. Experiments were all conducted
on a single A100-40GB GPU.
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Table 5: Evaluation on the MatPES PBE 10K held-out test set.

Training Dataset Energy MAE (meV) | Forces MAE (meV/A) | Forces Cos T
OMat24 193.8 123.5 0.77
MPtrj 250.2 187.5 0.70
MatPES PBE 56.6 127.1 0.78
LeMat-Traj only 245.8 2179 0.68
OMat24 + ft LeMat-Traj 249.1 203.9 0.75

Table 6: Evaluation on the OMat24 Validation 10K test set.

Training Dataset Energy MAE (meV) | Forces MAE (meV/A) |  Forces Cos T
OMat24 17.9 103.4 0.99
MPtrj 156.4 404.5 0.94
MatPES PBE 312.3 358.8 0.96
LeMat-Traj only 153.6 598.3 0.95
OMat24 + ft LeMat-Traj 218.5 395.8 0.97

E LeMaterial-Fetcher

As described in section 3.1 the pipeline to download and process the datasets is made to be both
extremely customizable but also highly parallel and scalable. By default, LeMaterial-Fetcher uses
PostgreSQL as a backend to dump the raw downloaded datasets but also to process the transformed
structures before pushing them to HuggingFace. Other backends are supported and easy to integrate
in the library, with for example MySQL being used for OQMD (the source dataset from their website
is a full database with scattered tables). One of the main challenges with writing this pipeline
was allowing for full parallelization to decrease the time from download to pushing the unified
dataset. Indeed, having multiple connections opened for both fetching data from a table and pushing
them to the other one with database cursors is prone to high memory usage and leakage. Naive
implementations of parallelism do not allow to fully take advantage of high compute machines. To
that end, we designed the library to be very memory-efficient. For LeMat-Traj, it was possible to take
advantage of 128 cores with 256GB without any issue. The entire pipeline to create LeMat-Traj took
around 16 hours to create the 120M rows and upload them on HuggingFace running with 12 workers
on an AMD Ryzen 5600G. This time gets significantly reduced when running on larger machine on
which we are able to max-out the usage.

For the dataset curation process, we follow the same procedure as [38] with the exception that we
pick Ytterbium (Yb) containing samples from Materials Project rather than Alexandria because of
the non-compatibility between their pseudo-potentials.

Materials Project. For the Materials Project data transformation process, we look through every
single task available (around 1.5M at the latest release during the first LeMat-Traj version), and
then only keep the non-deprecated tasks. To ensure accurate sampling of the PES, we pick all the
trajectories for a given material as long as they pass the data filtering described in[3.3]

Alexandria. All samples from Alexandria were used except for the ones containing Yb.

OQMD. OQMD trajectories are obtained by going through all the entries of the OQMD database,
gathering their associated calculations from relaxation, coarse relaxation and fine relaxation for every
relaxation stage. The input structures and output structures are then processed, provided they contain
the targets expected in the right format.

F Potential Energy Surfaces

To visualize the coverage of the potential energy surface (PES) by LeMat-Traj, we projected atomic
configurations onto a lower-dimensional space derived from Smooth Overlap of Atomic Positions
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Table 7: Evaluation on the MPtrj 10k held-out test set.

Training Dataset Energy MAE (meV) | Forces MAE (meV/zox) 1 Forces Cos T
OMat24 58.7 68.7 0.54
MatPES PBE 237.6 114.6 0.36
LeMat-Traj only 20.2 63.3 0.52
OMat24 + ft LeMat-Traj 37.3 73.4 0.52

Table 8: Hyperparameters used to train MACE on the subsets of LeMat-Traj.

Hyperparameter Training Stage1 Training Stage 2  Fine-tuning

Learning Rate 8e-4 8e-4 8e-4
Scheduler Constant Constant Constant
Batch Size 128 128 128
Energy Weight 1 100 1
Force Weight 10 100 100
Stress Weight 1 1 1

(SOAP) descriptors [13]. Figure [J] illustrates this for the systems in the metallic Fe-Cu-Al-Ni
hull within the PBE functional subset of LeMat-Traj, contrasting it with a similar projection for
the MatPES dataset. LeMat-Traj projection reveals a broad exploration of the PES, with
example trajectories (red lines) originating from diverse initial high-energy states (green circles)
and converging towards distinct low-energy minima (black stars). The gradient energy gradient is
clearly visible in the line levels far from the very high energy regions. This visualization is also very
similar with the MatPES projection (9(b)) which, while also covering a significant area, appears
to have a different structural sampling emphasis, with less granularity around maxima, revealing a
smaller number of saddle points. Further details on the visualization methodology are provided in

Appendix [
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Figure 9: Projected Potential Energy Surfaces (PES) for the metallic Fe-Cu-Al-Ni systems. Atomic
configurations are featurized using SOAP descriptors and projected onto their first two principal
components. The PCA 1 and PCA 2 axes are qualitative representations of structural similarity and do
not have a direct physical interpretation. Color indicates formation energy (eV/atom). (a) PES derived
from the LeMat-Traj PBE dataset. Green circles and black stars mark initial and final structures of
example trajectories (red lines). The visualization highlights LeMat-Traj’s dense, high-frequency
sampling of the PES, which is crucial for resolving fine details near energy minima. (b) PES derived
from the MatPES dataset, showing a broader but sparser sampling of the overall landscape.

To allow for easier interpretability we limit the analysis to specific coherent subsets of chemical
elements (metallic or ionic). For every dataset, all the atomic configurations whose chemical formula
is a subset of the chosen elements are gathered. Then SOAP descriptors are computed for all these

19



637
638
639
640
641
642

644
645
646
647
648

configurations with the same hyperparameters (r_cut = 5.0, n_max = 8 and 1_max = 6, with outer
averaging to get a vector for every structure). All of these SOAP vectors are used to fit a PCA and the
formation energy per atom (eV/atom) is computed. Because the sampling of atomic configurations
is scattered across the PCA space and not continuous, we use a linear interpolation of the convex
hull to get this visual description. Figure |10 illustrates the PES of a different chemical subset,
highlighting the close similarity between LeMat-Traj and MPtrj. Indeed, since MPtrj is contained
in LeMat-Traj, the PES of the latter describes local minima and transition pathways with a higher
resolution. Additionally, when only limiting the sampling to two elements systems with Fe-Cu, we
notice the advantages of having a larger structural configuration sampling to better describe the entire
PES. Although having a smaller dataset may result in a smoother landscape that might help models
converge faster and more easily, it is not enough to completely capture the large number of local
energy minima that exist in the complex DFT force field.
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Figure 10: Projected Potential Energy Surfaces (PES) for the ionic Na-CI-O systems for LeMat-Traj
and the MPtrj datasets, similar to FigureElin 3D projection.
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Figure 11: Projected Potential Energy Surfaces (PES) for the subset Fe-Cu systems for LeMat-Traj
and the MPtrj datasets, similar to FigureEl
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