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ABSTRACT

Fair machine learning methods seek to train models that balance model perfor-
mance across demographic subgroups defined over sensitive attributes like race
and gender. Although sensitive attributes are typically assumed to be known dur-
ing training, they may not be available in practice due to privacy and other logis-
tical concerns. Recent work has sought to train fair models without sensitive at-
tributes on training data. However, these methods need extensive hyper-parameter
tuning to achieve good results, and hence assume that sensitive attributes are
known on validation data. However, this assumption too might not be practical.
Here, we propose Antigone, a framework to train fair classifiers without access
to sensitive attributes on either training or validation data. Instead, we generate
pseudo sensitive attributes on the validation data by training a ERM model and
using the classifier’s incorrectly (correctly) classified examples as proxies for dis-
advantaged (advantaged) groups. Since fairness metrics like demographic parity,
equal opportunity and subgroup accuracy can be estimated to within a proportion-
ality constant even with noisy sensitive attribute information, we show theoret-
ically and empirically that these proxy labels can be used to maximize fairness
under average accuracy constraints. Key to our results is a principled approach to
select the hyper-parameters of the ERM model in a completely unsupervised fash-
ion (meaning without access to ground truth sensitive attributes) that minimizes
the gap between fairness estimated using noisy versus ground-truth sensitive la-
bels. We demonstrate that Antigone outperforms existing methods on CelebA,
Waterbirds, and UCI datasets.

1 INTRODUCTION

Despite their success on a range of real-world tasks, prior work (Hovy & Søgaard, 2015; Oren et al.,
2019; Hashimoto et al., 2018a) has found that state-of-the-art deep neural networks exhibit unin-
tended biases towards specific subgroups, for instance towards disadvantaged subgroups or because
of tendency to learn spurious correlations and simplicity bias, especially harming disadvantaged
groups. Seminal work by Buolamwini & Gebru (2018) demonstrated, for instance, that commercial
face recognition systems had lower accuracy on darker-skinned women than other groups. A body of
work has sought to design fair machine learning algorithms that account for a model’s performance
on a per-group basis (Prost et al., 2019; Liu et al., 2021; Sohoni et al., 2020).

Prior work typically assumes that attributes, e.g. gender and race, on which we seek to train fair
models are available on training and validation data (Sagawa* et al., 2020; Prost et al., 2019). We
will refer to these as sensitive attributes (SA). However, recent work (Veale & Binns, 2017; Holstein
et al., 2019) has highlighted many real-world settings in which SA may not be available. For exam-
ple, data subjects may abstain from providing sensitive information for privacy reasons or to evade
future discrimination (Markos et al., 2017). Attributes on which the model discriminates might not
be known or available during training and only identified post-deployment (Citron & Pasquale, 2014;
Pasquale, 2015). For instance, recent work shows that fair NLP models trained on western datasets
discriminate based on last names when re-contextualized to geo-cultural settings like India (Bhatt
et al., 2022). Similarly, reports suggest that Nikon’s face detection models repeatedly identify Asian
faces as blinking, a bias that was only identified retrospectively (Leslie, 2020). Unfortunately, by
this point, at least some harm is already incurred.

Recent work has therefore sought to train fair classifiers without SA on the training set (Liu et al.,
2021; Creager et al., 2021; Nam et al., 2020; Hashimoto et al., 2018a). At their core, these meth-
ods first identify advantaged and disadvantaged groups within the training dataset; i.e., subgroups
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Figure 1: Antigone on CelebA dataset with hair color as target label and gender as (unknown)
sensitive attribute. Blond men are discriminated against. Correspondingly, the mean image of the
Blond class incorrect set (row 4) has more male features than that of its correct set (row 1), reflecting
this bias. Similarly, a bias against non-blond women is also reflected. PSA = 0 corresponds to
disadvantaged groups, and PSA = 1 corresponds to advantaged groups.

with high and low accuracy, respectively. Then, they deploy various training strategies to boost
performance on disadvantaged groups. However, these methods are highly sensitive to the choice
of hyperparameters, and can actually hurt fairness compared to baseline empirical risk minimiza-
tion (ERM) without proper hyperparameter tuning (Liu et al., 2021). Hence, with the exception of
GEORGE (Sohoni et al., 2020) and ARL (Lahoti et al., 2020), prior work has assumed access to SA
on the validation data. However, in practical settings, SA may not be available for the same reasons
they are unavailable on training data.

In this paper, we propose Antigone, a principled approach that enables hyperparameter tuning for
fairness without access to SA on training and validation data. Antigone enables effective hyperpa-
rameter tuning of methods like JTT (that currently assume ground-truth SAs on validation data) and
improves fairness when GEORGE’s and ARL’s own hyperparameter tuning methods are replaced
with Antigone. Antigone works for fairness metrics including demographic parity, equal opportunity
and worst sub-group accuracy.

Antigone starts with a baseline ERM model trained to predict target labels (note these target la-
bels are known and different from SAs). Subgroups advantaged by the baseline ERM model will
be over-represented in the set of correctly classified inputs; similarly, disadvantaged subgroups are
over-represented in the set of incorrectly classified inputs. Hence, Antigone uses the ERM model’s
correctly and incorrectly classified validation data as proxies for advantaged and disadvantaged sub-
groups, respectively. We refer to these as pseudo-sensitive attributes (PSA). Note that PSA labels
are noisy; some inputs from the advantaged subgroups will be incorrectly classified, and vice-versa.
Can they still be used for hyperparameter tuning? Prior work shows that under certain theoretical
assumptions on label noise, called the mutually corrupted (MC) noise model, fairness measured on
PSA is proportional to ground-truth fairness (Lamy et al., 2019). Thus, PSA labels on validation
data can still be used to compare different models for fairness, and consequently for hyperparameter
tuning.

However, this sets up a new problem: how do we tune the hyperparameters of the ERM model
itself to maximize the accuracy (or minimize the noise) of our PSA? We cannot directly measure
PSA accuracy or noise since we do not have any ground-truth SA labels. Here, we show formally
that under the MC noise model, minimizing noise is equivalent to maximizing the Euclidean distance
between the mean (EDM) images in the correct and incorrect classes. Since the EDM can be directly
measured, we train a family of ERM models with different hyper-parameters and pick the model with
the largest EDM on the validation dataset. The PSAs obtained are then used to tune hyperparameters
for fairness schemes like JTT, GEORGE and ARL.

For more intuition, consider the example in Figure 1 on the CelebA dataset. The target label is hair
color, and the (unknown) SA is gender. The baseline ERM model discriminates against blond men.
The correct set for the ground-truth blond class has only 4% blond men while the incorrect set has
65% blond men. This is also reflected in the mean images for these two classes: the correct set for
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the ground-truth blond individuals has more female features while the incorrect set has more male
features. As noted above, Antigone picks an ERM model with the largest distance between these
mean images so as to maximize PSA label accuracy.

We evaluate Antigone in conjunction with three state-of-art methods, JTT (Liu et al., 2021),
GEORGE (Sohoni et al., 2020) and ARL (Lahoti et al., 2020), on binary SA using demographic
parity, equal opportunity, and worst subgroup accuracy as fairness metrics across the CelebA, Wa-
terbirds and Adult datasets. Empirically, we find that: (1) Antigone produces more accurate PSA
labels on validation data compared to GEORGE’s unsupervised clustering approach (Table 1); (2)
used with JTT, Antigone comes close to matching the fairness of JTT tuned with ground-truth SA
(Table 2); and (3) improves the fairness of both GEORGE and ARL when Antigone’s PSA labels are
used instead of their own hyperparameter tuning methods (Table 3, Table 4). Specifically, the worst-
group accuracy increases by 4.2% and 8.6% on the CelebA and Waterbirds datasets for GEORGE,
respectively, and by up to 11.6% on the Adult dataset for ARL. Ablation and sensitivity studies
demonstrate the effectiveness of Antigone’s EDM metric versus alternatives (Table 1) and shed light
on discrepancies between the ideal MC assumptions and its use in practice (Appendix Table 9).
Overall, our key contributions are:

• We propose Antigone (subsection 2.2), a new method for the often overlooked problem
of hyperparameter tuning for fair classification in setting where sensitive attributes are un-
available on both training and validation data. Antigone generates PSA labels on validation
data using the correctly and incorrectly classified examples of an ERM model as proxies
for advantaged and disadvantaged subgroups.

• We propose an unsupervised approach to tune Antigone’s own hyperparameters (specifi-
cally, those of its ERM model) by maximizing the Euclidean distance between the mean
(EDM) images of the correctly and incorrectly classified sets. We theoretically justify this
choice under the MC noise model, proving that maximizing EDM minimizes PSA label
noise in an idealized setting (subsection 2.3). Empirically, we show that gap between our
practical implementation and the idealized MC noise model is small.

• Experimentally, we find that Antigone based hyperparameter tuning boosts fairness for
three state-of-art methods, JTT, GEORGE and ARL (section 3), even surpassing their own
hyperparameter tuning techniques. Antigone also generates more accurate PSA labels com-
pared to GEORGE’s unsupervised clustering approach (section 4).

2 PROPOSED METHODOLOGY

We now describe Antigone, starting with the problem formulation (Section 2.1) followed by a de-
scription of the Antigone algorithm (Section 2.2).

2.1 PROBLEM SETUP

Consider a data distribution over set D = X × A × Y , the product of input data (X ), sensitive
attributes (A) and target labels (Y) triplets. We are given a training set Dtr = {xtr

i , atri , ytri }Ntr

i=1

with N tr training samples, and a validation set Dval = {xval
i , avali , yvali }Nval

i=1 with Nval validation
samples. We will assume binary sensitive attributes (A ∈ {0, 1}) and target labels (Y ∈ {0, 1}).

We seek to train a machine learning model, say a deep neural network (DNN), which can be repre-
sented as a parameterized function fθ : X → Y ∈ {0, 1}, where θ ∈ Θ are the trainable parameters,
e.g., DNN weights and biases. Standard fairness unaware empirical risk minimization (ERM) opti-
mizes over trainable parameters θ to minimize average binary cross-entropy loss on Dtr. Optimized
model parameters θ∗ are obtained by invoking a training algorithm, for instance stochastic gradient
descent (SGD), on the training dataset and model, i.e., θ∗,γ = MERM (Dtr, fθ, γ), where γ ∈ Γ
are hyper-parameters of the training algorithm including learning rate, training epochs etc. Hyper-
parameters are tuned by evaluating models fθ∗,γ for all γ ∈ Γ on Dval and picking the best model.
More sophisticated algorithms like Bayesian optimization can also be used. Next, we review three
commonly used fairness metrics that we account for in this paper.

Demographic parity (DP): DP requires the model’s outcomes to be independent of sensitive
attribute. In practice, we seek to minimize the demographic parity gap:

∆DP
θ = P[fθ(X) = 1|A = 1]− P[fθ(X) = 1|A = 0] (1)
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Equal opportunity (EO): EO aims to equalize only the model’s true positive rates across sensitive
attributes. In practice, we seek to minimize

∆EO
θ = P[fθ(X) = 1|A = 1, Y = 1]− P[fθ(X) = 1|A = 0, Y = 1] (2)

Worst-group accuracy (WGA): WGA seeks to maximize the minimum accuracy over all sub-
groups (over sensitive attributes and target labels). That is, we seek to maximize:

WGAθ = min
a∈{0,1},y∈{0,1}

P[f(x) = y|A = a, Y = y] (3)

In all three settings, we seek to train models that optimize fairness under a constraint on average
target label accuracy, i.e., accuracy in predicting the target label. For example, for equal opportunity,
we seek θ∗ = argminθ∈Θ ∆EO

θ such that P[fθ(x) = Y ] ∈ [Accthrlower, Accthrupper), where Accthrlower

and Accthrupper are user-specified lower and upper bounds on target label accuracies, respectively.
2.2 ANTIGONE ALGORITHM

We now describe the Antigone algorithm which consists of three main steps. In step 1, we train
multiple ERM models that each provide pseudo sensitive attribute (PSA) labels on validation data.
In step 2, we use the proposed EDM metric to pick a single ERM model from step 1 with the most
accurate PSA labels. Finally, in step 3, we use the PSA labelled validation set from step 2 to tune the
hyper-parameters of methods like JTT that train fair classifiers without SA labels on training data.
Step 1: Generating PSA labels on validation set. In step 1, we use the training dataset and
standard ERM training to obtain a set of classifiers, θ∗,γ = MERM (Dtr, fθ, γ), each corresponding
to a different value of training hyper-parameters γ ∈ Γ. As we discuss in Section 2.1, these include
learning rate, weight decay and number of training epochs. Each classifier, which predicts the target
label for a given input, generates a validation set with PSA labels as follows:

Dval,γ
PSA = {xval

i , aval,γi , yvali }N
val

i=1 ∀γ ∈ Γ,where (4)

aval,γi =

{
1, if fθ∗,γ (xval

i ) = yvali

0, otherwise.
(5)

where aval,γi now refers to PSA labels. In the next step, we search over the set Γ to find hyperpa-
rameters γ ∈ Γ that maximize PSA accuracy.

Step 2: Picking the most accurate PSA labeller. From Step 1, let the correct set be Xval,γ
A=1,PSA =

{xval
i : aval,γi = 1} and the incorrect set be Xval,γ

A=0,PSA = {xval
i : aval,γi = 0}. We define Euclidean

distance between the means (EDM) of these sets as:

EDMγ = ∥µ(Xval,γ
A=1,PSA)− µ(Xval,γ

A=0,PSA)∥2, (6)

where µ(.) represents the empirical mean of a dataset. Antigone picks γ∗ that maximizes EDM, i.e.,
γ∗ = argmaxγ∈Γ EDMγ . We justify this choice in two ways. Intuitively, PSA labels on validation
data distinguish between advantaged and disadvantaged classes, e.g., placing blond men and blond
women in different groups as in Figure 1, resulting in larger differences in the mean images of
the two groups. Formally, we show the optimality of this strategy under the MC noise model in
Subsection 2.3.
Step 3: Training a fair model. Step 2 yields Dval,γ∗

PSA , a validation dataset with (estimated) pseudo
sensitive attribute labels. We can provide Dval,γ∗

PSA as an input to any method that trains fair models
without access to SA on training data, but requires a validation set with SA labels to tune its own
hyper-parameters. In our experimental results, we use Dval,γ∗

PSA to tune the hyper-parameters of
JTT (Liu et al., 2021), GEORGE (Sohoni et al., 2020) and ARL (Lahoti et al., 2020).
2.3 ANALYZING ANTIGONE UNDER IDEAL MC NOISE

Prior theoretical work (Lamy et al., 2019) has studied the impact of noisy sensitive attribute labels
on fairness under the “mutually contaminated” (MC) noise model (Scott et al., 2013). Here, it is
assumed that we have access to PSA labels, XA=0,PSA ∈ X and XA=1,PSA ∈ X , corresponding to
disadvantaged (PSA = 0) and advantaged (PSA = 1) groups, respectively, that are contaminated
(or, noisy) versions of their corresponding ground-truth SA labels, XA=0 ∈ X and XA=1 ∈ X :

XA=1,PSA = (1− α)XA=1 + αXA=0 and XA=0,PSA = βXA=1 + (1− β)XA=0 (7)
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where α and β are noise parameters. With some abuse of terminology for conciseness, Equation 7
says that fraction α of the pseudo advantaged group, XA=1,PSA, is contaminated with data from the
disadvantaged group, and fraction β of the pseudo disadvantaged group, XA=0,PSA, is contaminated
with data from the advantaged group. We construct DA=0,PSA by appending input instances in
XA=0,PSA with their corresponding PSA labels (i.e., ai = 0) and target labels, respectively. We do
the same for DA=1,PSA. The noise can also be target dependent, in which case we use αi and βi as
noise parameters for label i. Under this model, Lamy et al. (2019) show the following result:
Proposition 2.1. (Lamy et al., 2019) Under the ideal MC noise model in Equation 7, DP and EO
gaps measured on the noisy datasets are proportional to the true DP and EO gaps. Mathematically:

∆DP (DA=0,PSA ∪DA=1,PSA) = (1− α− β)∆DP (DA=0 ∪DA=1), and (8)

∆EO(DA=0,PSA ∪DA=1,PSA) = (1− α1 − β1)∆
EO(DA=0 ∪DA=1). (9)

Equation 8 and Equation 9 show that under the ideal MC noise model, the DP and EO gaps can be
minimized using PSA labels instead of ground-truth SA labels, although asymptotically with infinite
validation data samples. In practice, we seek to minimize the total noise α + β, or equivalently
maximize the proportionality constant 1− α− β to obtain the most reliable fairness estimates. We
show that this can be done by maximizing EDM.
Lemma 2.2. Assume XA=0,PSA and XA=1,PSA correspond to the input data of noisy datasets
in the ideal MC model. Then, maximizing the EDM between XA=0,PSA and XA=1,PSA, i.e.,
∥µ(XA=0,PSA)− µ(XA=1,PSA)∥2 maximizes 1− α− β.

Proof. From Equation 7, we can see that ∥µ(XA=0,PSA) − µ(XA=1,PSA)∥2 = (1 − α −
β)2∥µ(XA=0)−µ(XA=1)∥2. Here ∥µ(XA=0)−µ(XA=1)∥2 is the EDM between the ground truth
advantaged and disadvantaged data and is therefore a constant. Hence, maximizing EDM between
XA=0,PSA and XA=1,PSA maximizes 1− α− β.

Remark 2.3. The MC noise model assumes independent label noise. However, when using ERM
classifiers to generate PSAs, this noise can be instance dependent. Although we use the simplified
MC noise model to inform our practical implementation, we do not claim that Antigone inherits
the MC model’s theoretical guarantees. In Table 9, we do show empirically that the gap between
fairness achieved with Antigone and under ideal MC noise is small.

3 EXPERIMENTAL SETUP

3.1 BASELINE METHODS

We evaluate Antigone with state-of-the-art fairness methods that work without SA on training data:
JTT (Liu et al., 2021), GEORGE Sohoni et al. (2020) and ARL Lahoti et al. (2020). GEORGE and
ARL additionally do not require SA on validation data. Below, we describe these baselines.

Figure 2: Euclidean Distance between
Means (EDM) and noise parameters
(α1, β1 and 1 − α1 − β1) for the pos-
itive target class of Waterbirds dataset.
Blue dot indicates the model picked by
Antigone, while black star indicates the
model that maximizes 1− α1 − β1.

JTT: JTT operates in two stages. In the first stage, a
biased model is trained using T epochs of standard ERM
training to identify the incorrectly classified training ex-
amples. In the second stage, the misclassified examples
are upsampled λ times, and the model is trained again to
completion with standard ERM. The hyperparameters of
stage 1 and stage 2 classifiers, including early stopping
epoch T , learning rate and weight decay for stage 1 and
upsampling factor λ for stage 2, are jointly tuned using a
validation dataset with ground-truth SA labels. We refer
to this as the Ground-Truth + JTT baseline.

GEORGE: GEORGE is a competing approach to
Antigone in that it does not assume access to SA on ei-
ther training or validation data. GEORGE operates in two
stages: In stage 1, an ERM model is trained until com-
pletion on the ground-truth target labels. The activation
in the penultimate layer of the ERM model are clustered
into k clusters to generate PSA labels on both the training
and validation datasets. In Stage 2, these PSA are used to
train a Group DRO model Sagawa* et al. (2020) and tune
its early stopping hyper-parameter.
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ARL: Adversarially Reweighted Learning (ARL) seeks to improve the worst-group performance
without access to SA on either training or validation datasets. ARL framework considers a mini-max
game between a learner and adversary. The goal of the learner is to output fair predictions by min-
imizing the weighted cross entropy classification loss function. Whereas, the adversary maximizes
the weighted cross entropy loss so as to identify high loss training data points and upweight them
during the training of the learner. Since ARL does not assume access to SA on validation set, it tries
to maximize the target label accuracy by performing a grid search over the joint hyper-parameter
space of both learner and adversary.

3.2 ANTIGONE + BASELINE

Antigone+JTT: Here, we replace the ground-truth SA in the validation dataset with PSA obtained
from Antigone and use it to tune JTT’s hyper-parameters.

Antigone+GEORGE: For a fair comparison with GEORGE, we replace its stage 1 with Antigone,
and use the resulting validation PSA labels to tune the hyper-parameters of GEORGE’s stage 2.

Antigone+ARL: Instead of tuning the target label accuracy on the validation set, we use
Antigone’s validation PSA labels to tune the hyper-parameters of ARL. We also tune the hyper-
parameters of ARL with ground-truth SA labels and refer to it as Ground-Truth+ARL.

3.3 DATASETS AND PARAMETER SETTINGS

Table 1: F1 scores and pseudo label accuracies (Ps. Acc.)
We mark the best performance in bold. BM (blond men),
BW (blond women), NBW (non-blond women) and NBM
(non-blond men) for CelebA; WL (waterbirds landbkgd),
WW (waterbirds waterbkgd), LW (landbirds waterbkgd)
and LL (landbirds landbkgd) for Waterbirds.

Antigone GEORGE GEORGE Antigone
(w/o EDM) (k = 2) (w/ EDM)

CelebA (F1 Scores)

BM 0.28± 0.01 0.13± 0.02 0.12 ± 0.01 0.35± 0.04

BW 0.95± 0.01 0.43± 0.04 0.51± 0.02 0.96± 0.00

NBW 0.22± 0.02 0.42± 0.01 0.6± 0.01 0.22± 0.01

NBM 0.67± 0.01 0.4± 0.02 0.31± 0.01 0.68± 0.01

Ps. Acc. 0.59± 0.01 0.33± 0.01 0.48± 0.00 0.60± 0.00

Waterbirds (F1 Scores)

WL 0.41± 0.02 0.43± 0.02 0.52± 0.01 0.76± 0.03

WW 0.72± 0.00 0.36± 0.02 0.43± 0.02 0.83± 0.01

LW 0.58± 0.02 0.44± 0.03 0.55± 0.03 0.78± 0.04

LL 0.76± 0.01 0.34± 0.02 0.55± 0.03 0.84± 0.02

Ps. Acc. 0.68± 0.01 0.30± 0.02 0.53± 0.03 0.81± 0.02

We empirically evaluate Antigone on
the CelebA and Waterbirds datasets,
which allow for a direct comparison
with related work (Liu et al., 2021;
Sohoni et al., 2020). We also evalu-
ate Antigone on UCI Adult Dataset, a
tabular dataset commonly used in the
fairness literature to directly compare
with ARL Lahoti et al. (2020) (see Ap-
pendix A) for more details.

CelebA Dataset: CelebA (Liu et al.,
2015) is an image dataset, consist-
ing of 202,599 celebrity face images
annotated with 40 attributes includ-
ing gender, hair colour, age, smil-
ing, etc. The task is to predict hair
color, which is either blond Y =
1 or non-blond Y = 0 and the
sensitive attribute is gender A =
{Men,Women}. In all our experiments
using CelebA dataset, we fine-tune a
pre-trained ResNet50 architecture for
a total of 50 epochs using SGD optimizer and a batch size of 128. We tune JTT over
the same hyper-parameters as in their paper: three pairs of learning rates and weight decays,
(1e− 04, 1e− 04), (1e− 04, 1e− 02), (1e− 05, 1e− 01) for both stages, and over ten early stop-
ping points up to T = 50 and λ ∈ {20, 50, 100} for stage 2. For Antigone, we explore over the same
learning rate and weight decay values, as well as early stopping at any of the 50 training epochs. We
report results for DP, EO and WGA fairness metrics. In each case, we seek to optimize fairness while
constraining average target label accuracy to ranges {[90, 91), [91, 92), [92, 93), [93, 94), [94, 95)}.

Waterbirds Dataset: Waterbirds is a synthetically generated dataset, containing 11,788 images
of water and land birds overlaid on top of either water or land backgrounds (Sagawa* et al.,
2020). The task is to predict the bird type, which is either a waterbird Y = 1 or a landbird
Y = 0 and the sensitive attribute is the background A = {Water background,Land background}.
In all our experiments using Waterbirds dataset, we fine-trained ResNet50 architecture for a
total of 300 epoch using the SGD optimizer and a batch size of 64. We tune JTT over
the same hyper-parameters as in their paper: three pairs of learning rates and weight decays,
(1e− 03, 1e− 04), (1e− 04, 1e− 01), (1e− 05, 1.0) for both stages, and over 14 early stopping
points up to T = 300 and λ ∈ {20, 50, 100} for stage 2. For Antigone, we explore over the same
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Table 2: (Avg. target label accuracy, Fairness) on test data for different validation accuracy thresh-
olds on the CelebA dataset. Lower DP and EO gaps are better. Higher WGA is better.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[94, 95) Antigone + JTT (94.6, 15.0)± (0.2, 0.7) (94.7, 30.1)± (0.2, 3.2) (94.4, 59)± (0.2, 4.7)

Ground-Truth + JTT (94.7, 14.9)± (0.2, 0.6) (94.5, 30.4)± (0.2, 2.3) (94.3, 62.1)± (0.3, 3.2)

[93, 94) Antigone + JTT (93.7, 13.1)± (0.2, 0.7) (93.6, 26.4)± (0.4, 5.0) (93.4, 62.6)± (0.2, 7.0)

Ground-Truth + JTT (93.6, 13.1)± (0.1, 0.6) (93.6, 22.7)± (0.3, 2.7) (93.4, 67.9)± (0.1, 1.9)

[92, 93) Antigone + JTT (92.7, 11.1)± (0.2, 0.5) (92.3, 20.2)± (0.2, 3.4) (92.7, 68.1)± (0.4, 3.7)

Ground-Truth + JTT (92.7, 11.2)± (0.3, 0.5) (92.7, 16.9)± (0.4, 2.9) (92.7, 72.5)± (0.2, 1.3)

[91, 92) Antigone + JTT (91.7, 9.6)± (0.1, 0.5) (91.5, 16.3)± (0.3, 3.4) (91.3, 63.2)± (0.3, 2.6)

Ground-Truth + JTT (91.8, 9.7)± (0.2, 0.5) (91.8, 10.1)± (0.3, 4.1) (91.8, 77.3)± (0.1, 2.4)

[90, 91) Antigone + JTT (91.0, 8.3)± (0.2, 0.4) (90.9, 13.1)± (0.1, 3.6) (90.9, 63.1)± (0.5, 4.4)

Ground-Truth + JTT (91.0, 8.4)± (0.2, 0.4) (90.7, 6.8)± (0.4, 3.7) (91.4, 78.6)± (0.2, 2.0)

ERM (95.8, 18.6)± (0.0, 0.3) (95.8, 46.4)± (0.0, 2.2) (95.8, 38.7)± (0.0, 2.8)

learning rate and weight decay values, as well as early stopping points at any of the 300 training
epochs. In each case, we seek to optimize fairness while constraining average accuracy to ranges
{[94, 94.5), [94.5, 95), [95, 95.5), [95.5, 96), [96, 96.5)}.

In case of GEORGE, for both CelebA and Waterbirds datasets, we use the same architecture and
early stopping stage 2 hyper-parameters (T = 50 for CelebA and T = 300 for Waterbirds) reported
in their paper. For Antigone+GEORGE, we replace GEORGE’s stage 1 with the Antigone model,
which is identified by searching over the same hyperparameter space as in Antigone+JTT.

4 EXPERIMENTAL RESULTS

Accuracy of Antigone’s PSA labels: Antigone seeks to generate accurate PSA labels on validation
data, referred to as pseudo label accuracy, based on the EDM criterion (Lemma 2.2). In Figure 2,
we empirically validate Lemma 2.2 by plotting EDM and noise parameters α1 (contamination in
advantaged group), β1 (contamination in disadvantaged group) and 1 − α1 − β1 (proportionality
constant between true and estimated fairness) on Waterbirds dataset (similar plot for CelebA dataset
is in Appendix Figure 3(b)). From the figure, we observe that in both cases the EDM metric indeed
captures the trend in 1−α1−β1, enabling early stopping at an epoch that minimizes contamination.
The best early stopping points based on EDM and oracular knowledge of 1− α1 − β1 are shown in
a blue dot and star, respectively, and are very close.

In Table 1 we compare Antigone’s PSA labels’ F1 Score to GEORGE with the baseline k = 5
and with k = 2 clusters on CelebA and Waterbirds. We find that Antigone outperforms GEORGE
on all but one sub-group in CelebA, and all Waterbirds. Table 1 also reports results on a version
of Antigone that uses standard ERM training instead of EDM (Antigone (w/o EDM)). We find that
Antigone provides higher pseudo-label accuracy compared to this baseline. Appendix Table 5 shows
precision and recall of Antigone’s PSA labels and reaches the same conclusion. We also study the
impact of varying the fraction of disadvantaged group individuals from 5%, 20%, 35%, 50% in the
CelebA dataset (see Appendix Table 6). As the dataset gets more balanced, the models themselves
are more fairer, and PSA label accuracy reduces (as expected). Nonetheless, disadvantaged group
individuals are over-represented in incorrect sets for up to 35% imbalance.

Antigone+JTT: In Table 2, we compare the test target label accuracy and fairness achieved by
Antigone with JTT (Antigone+JTT) vs. JTT using ground-truth SA (Ground-Truth+JTT). On DP
and EO, Antigone+JTT is very close to Ground-Truth+JTT in terms of both target label accuracy and
fairness, and substantially improves on standard ERM. Antigone+JTT improves WGA from 38.7%
for standard ERM to 68.1% at the expense of 3% target label accuracy drop. Ground-Truth+JTT
improves WGA further up to 78.6% but with a 4.4% target label accuracy drop. Waterbirds (Ap-
pendix Table 7) and UCI Adult (Appendix Table 8) have the same trends.

Comparison with GEORGE: As already noted in Table 1, Antigone’s PSA labels are more accu-
rate and have higher F1 scores than GEORGE’s. In Table 3, Antigone+GEORGE shows marked
improvements over GEORGE in both WGA (8.6% higher) and target label accuracy on Waterbirds.
For CelebA, Antigone+GEORGE has a 4.2 % higher WGA but with a small drop of 0.4% in target
label accuracy. Fairness improvement are statistically significant under paired t-tests; over 10 runs,
Antigone+GEORGE always equals or betters GEORGE in terms of WGA (Appendix Figure 4).
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Table 3: Performance of GEORGE using Antigone’s val-
idation PSA compared with GEORGE by itself. We ob-
serve that on CelebA and Waterbirds dataset, Antigone +
GEORGE out-performs GEORGE, even if GEORGE as-
sumes knowledge of number of clusters (k = 2) in its clus-
tering step. ∗ (∗∗) indicates p− value < 0.01(0.001).

CelebA Waterbirds

Method Avg Acc WGA Avg Acc WGA

ERM 95.75 35.14 95.91 29.70

GEORGE 93.61 60.44 95.39 49.15
Antigone + GEORGE 93.56 62.45∗ 95.99∗∗ 57.73∗∗

GEORGE (k=2) 94.62 60.75 94.61 42.98
Antigone + 94.18 64.94∗∗ 95.56∗∗ 52.80∗

GEORGE (k=2)

Comparison with ARL: In Ta-
ble 4 (full table in Appendix Ta-
ble 10), we compare the target
label accuracies and fairness of
Antigone+ARL vs. just ARL for dif-
ferent validation accuracy thresholds
on the Adult UCI. Antigone+ARL
has 4.5%-11.6% higher WGA than
ARL alone, but with a small (<
0.6%) drop in target label accuracy.
Similar observations hold on DP Gap
and EO Gap.
Ablation Studies: We perform two
ablation experiments to understand
the benefits of Antigone’s proposed
EDM metric. We already noted in Ta-
ble 1 that Antigone with the proposed EDM metric produces higher quality PSA labels compared to
a version of Antigone that picks hyper-parameters using standard ERM. We evaluated these two ap-
proaches using JTT’s training algorithm and find that Antigone with EDM results in a 5.7% increase
in WGA and a small 0.06% increase in average target label accuracy. Second, in Appendix Table 9,
we also compare Antigone+JTT against a synthetically labeled validation dataset that exactly fol-
lows the ideal MC noise model in Section 2.3. We find that on DP Gap and EO Gap fairness metrics,
Antigone ’s results are comparable (in fact sometimes slightly better) with those derived from the
ideal MC model. On WGA, the most challenging fairness metric to optimize for, we find that the
ideal MC model has a best-case WGA of 73.9% compared to Antigone’s 69.4%. This reflects the
loss in fairness due to the gap between the assumptions of the idealized model versus Antigone’s
implementation; however, the reduction in fairness is marginal when compared to the ERM baseline
which has only a 38% WGA.

5 LIMITATIONS
Antigone has some notable limitations that we discuss here, along with potential avenues to miti-
gate these concerns. First, in its current form, Antigone only explicitly deals with binary sensitive
attributes. In practice, multiple subgroups could in fact be over-represented in the incorrect set,
and as such accounted for during hyperparameter tuning but not explicitly. We note that down-
stream robustness methods, like JTT, that we demonstrate Antigone in conjunction with and others
like Creager et al. (2021) have the same limitation. Antigone+JTT can improve fairness for these
sub-groups as a whole but cannot, for example, have different up-weighting factors for each sub-
group. However, this limitation is not fundamental and can be addressed by further sub-dividing the
incorrect set, or via multiple rounds of Antigone+JTT where in each round we address any remain-
ing fairness gaps. We note also that although GEORGE addresses multiple (k) subgroups, tuning k
is challenging and results for larger k are sometimes worse than k = 2.

A second concern is whether the assumptions of the MC noise model, independent label noise in
particular, hold strictly. While they do not, we are not claiming the theoretical fairness guarantees
of Lamy et al. (2019). Antigone is a practical solution to improve fairness like other works we
evaluate against. In Appendix Table 9, we do compare Antigone+JTT against a synthetically labeled
validation dataset that exactly follows the MC noise model and find that Antigone’s reduction in
fairness is marginal. In Figure 2, we also empirically validate that the proportionality constant
1− α− β minimizes the gap between the true and estimated fairness values.

6 RELATED WORK
Methods that seek to achieve fairness are of three types: pre-processing, in-processing and post-
processing algorithms. Pre-processing (Quadrianto et al., 2019; Ryu et al., 2018) methods focus
on curating the dataset that includes removal of sensitive information or balancing the datasets. In-
processing methods (Hashimoto et al., 2018b; Agarwal et al., 2018; Zafar et al., 2019; Lahoti et al.,
2020; Prost et al., 2019; Liu et al., 2021; Sohoni et al., 2020) alter the training mechanism by adding
fairness constrains to the loss function or by training an adversarial framework to make predictions
independent of sensitive attributes (Zhang et al., 2018). Post-processing methods (Hardt et al., 2016;
Wang et al., 2020b; Savani et al., 2020) alter the outputs, for e.g. use different threshold for different
sensitive attributes. In this work, we focus on in-processing algorithms.
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Table 4: Comparison of (Avg. target label accuracy, Fairness) between ARL using Antigone’s noisy
validation data, ARL alone, and ground-truth validation data on the UCI Adult dataset. Lower DP
and EO gaps indicate better fairness, while higher WGA is better. Antigone + ARL consistently
outperforms ARL across various validation accuracy thresholds and fairness metrics. The p-values
are marked with ∗ accordingly: ∗ for p < 0.1, ∗∗ for p < 0.05, and ∗∗∗ for p < 0.01.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[84.5, 85)
Antigone + ARL (84.51, 16.84)∗∗ ± (0.13, 1.08) (84.1, 5.64)∗∗∗ ± (0.08, 1.43) (84.14, 59.68)∗∗∗ ± (0.13, 1.27)

ARL (84.53, 19.01) ± (0.13, 0.97) (84.53, 9.35) ± (0.13, 0.88) (84.53, 55.08) ± (0.13, 3.03)

Ground-Truth + ARL (84.5, 15.86) ± (0.24, 1.02) (84.43, 4.97) ± (0.17, 1.23) (84.08, 62.66) ± (0.32, 0.71)

[84, 84.5)
Antigone + ARL (84.12, 15.55)∗∗∗ ± (0.21, 1.14) (83.7, 6.65)∗∗ ± (0.22, 1.61) (83.47, 60.9)∗∗ ± (0.22, 2.1)

ARL (84.02, 18.35) ± (0.17, 1.04) (84.02, 8.04) ± (0.17, 1.21) (84.02, 55.69) ± (0.17, 2.93)

Ground-Truth + ARL (84.23, 15.26) ± (0.12, 0.9) (83.81, 5.57) ± (0.12, 1.58) (83.62, 64.74) ± (0.14, 0.65)

[83.5, 84)
Antigone + ARL (83.29, 15.13)∗∗∗ ± (0.21, 1.17) (83.07, 5.36)∗∗ ± (0.22, 2.86) (82.93, 62.17)∗∗∗ ± (0.13, 1.63)

ARL (83.54, 19.43) ± (0.12, 1.17) (83.54, 10.52) ± (0.12, 2.16) (83.54, 53.72) ± (0.12, 2.66)

Ground-Truth + ARL (83.53, 14.7) ± (0.19, 0.87) (83.17, 4.34) ± (0.17, 0.69) (83.31, 66.61) ± (0.24, 1.6)

[83, 83.5)
Antigone + ARL (82.98, 15.05)∗∗∗ ± (0.18, 1.45) (82.69, 5.4)∗ ± (0.16, 3.15) (82.55, 65.85)∗∗∗ ± (0.31, 0.58)

ARL (83.2, 18.24) ± (0.13, 2.45) (83.2, 8.69) ± (0.13, 3.68) (83.2, 54.21) ± (0.13, 4.99)

Ground-Truth + ARL (82.86, 14.84) ± (0.13, 1.26) (83.04, 6.03) ± (0.13, 1.56) (82.47, 66.75) ± (0.16, 1.56)

ERM (84.69, 18.27) ± (0.08, 0.5) (84.69, 9.39) ± (0.08, 1.11) (84.69, 53.36) ± (0.08, 1.97)

Prior in-processing algorithms, including the ones referenced above, assume access to sensitive
attributes on the training data and validation dataset. Recent work sought to train fair models without
training data annotations (Liu et al., 2021; Nam et al., 2020; Hashimoto et al., 2018a; Creager et al.,
2021; Levy et al., 2020; Duchi & Namkoong, 2018; Nam et al., 2022; Zhang et al., 2022; LaBonte
et al., 2023) but require sensitive attributes on validation dataset to tune the hyperparameters. With
Antigone, we seek to remove this restriction. Since JTT already compared against Nam et al. (2020)
and Levy et al. (2020), a scalable version of (Duchi & Namkoong, 2018), we compare against JTT
only, although we believe Antigone can be used with these methods also.

GEORGE (Sohoni et al., 2020) and and ARL (Lahoti et al., 2020) are two methods that like Antigone
do not require PSAs on validation data. Qualitative and empirical comparisons in section 4 show
that Antigone outperforms both. ARL is demonstrated to be effective only on smaller datasets and
on simple structured network architectures. Prior works (Sohoni et al., 2020; Wang, 2022) have also
noted ARL does not scale well to complex network architectures (e.g.: ResNet18) and large vision
datasets. On the other hand, both methods can account for multiple subgroups, although as we noted
before, Antigone still helps improve fairness for both. There are also some post-processing methods
to improve fairness without access to sensitive attributes but assuming a small set of labelled data
for auditing Kim et al. (2019). One could use Antigone to create this auditing dataset, albeit with
noise. Evaluating Antigone with these post-processing methods is an avenue for future work.

Finally, a parallel body of work has looked at fairness with noisy sensitive attributes and incomplete
information from a theoretical perspective using simplified but representative mathematical mod-
els (Lamy et al., 2019; Wang et al., 2020a; Awasthi et al., 2021; Celis et al., 2021), and sometimes
with restrictions on the classifier types, etc. Yet these methods have largely not been translated to
practical implementations on large datasets and state-of-art deep networks, which is Antigone’s end
goal. Antigone is one of the first methods to bring insights from this line of work to bear on practical
implementations. As a side note, we observe that Lemma 2.2 adds an extra result that might be of
interest to this stream of research.

7 CONCLUSION

We propose Antigone, a method to enable hyper-parameter tuning for fair ML models without ac-
cess to sensitive attributes on training or validation sets. Antigone generates high-quality PSA labels
by training a family of ERM models and using correctly (incorrectly) classified examples as prox-
ies for majority (minority) group membership. We propose a hyperparameter free approach to pick
the ERM models that obtains the most accurate PSA labels, and provide theoretical justification
for this choice using the ideal MC noise model. Antigone produces more accurate sensitive at-
tributes estimates compared to the state-of-art, and can be used to effectively tune hyperparameters
of state-of-art fairness methods. Future work will also seek to address the variance in fairness met-
rics (Mozannar et al., 2020) introduced by finite sample size under the ideal MC noise model and
extend Antigone to non-binary sensitive attributes.
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Appendix

AVAILABILITY

Code with README.txt file is available at: https://anonymous.4open.science/r/
fairness_without_demographics-3BD0/README.md

A EXPERIMENTAL SETUP

A.1 COMPUTE

We trained all the models employing the JTT approach using Quadro RTX8000 (48 GB) NVIDIA
GPU cards, whereas, for both GEORGE and ARL approaches, we used GeForce RTX3090 (24 GB)
NVIDIA GPU cards.

A.2 CELEBA DATASET

Dataset details: CelebA (Liu et al., 2015) is an image dataset, consisting of 202,599 celebrity face
images annotated with 40 attributes including gender, hair colour, age, smiling, etc. The task is to
predict hair color, which is either blond Y = 1 or non-blond Y = 0 and the sensitive attribute is
gender A = {Men,Women}. The dataset is split into training, validation and test sets with 162770,
19867 and 19962 images, respectively. Only 15% of individuals in the dataset are blond, and only
6% of blond individuals are men. Consequently, the baseline ERM model under-performs on the
blond men.

Hyper-parameter settings: In all our experiments using CelebA dataset, we fine-tune a pre-
trained ResNet50 architecture for a total of 50 epochs using SGD optimizer and a batch size of
128. We tune JTT over the same hyper-parameters as in their paper: three pairs of learning rates
and weight decays, (1e− 04, 1e− 04), (1e− 04, 1e− 02), (1e− 05, 1e− 01) for both stages, and
over ten early stopping points up to T = 50 and λ ∈ {20, 50, 100} for stage 2. For Antigone,
we explore over the same learning rate and weight decay values, as well as early stopping at
any of the 50 training epochs. We report results for DP, EO and WGA fairness metrics. In
each case, we seek to optimize fairness while constraining average target label accuracy to ranges
{[90, 91), [91, 92), [92, 93), [93, 94), [94, 95)}.

A.3 WATERBIRDS DATASET

Dataset details: Waterbirds is a synthetically generated dataset, containing 11,788 images of water
and land birds overlaid on top of either water or land backgrounds (Sagawa* et al., 2020). The
task is to predict the bird type, which is either a waterbird Y = 1 or a landbird Y = 0 and the
sensitive attribute is the background A = {Water background,Land background}. The dataset is
split into training, validation and test sets with 4795, 1199 and 5794 images, respectively. While the
validation and test sets are balanced within each target class, the training set contains a majority of
waterbirds (landbirds) in water (land) backgrounds and a minority of waterbirds (landbirds) on land
(water) backgrounds. Thus, the baseline ERM model under-performs on the minority group.

Hyper-parameter settings: In all our experiments using Waterbirds dataset, we fine-trained
ResNet50 architecture for a total of 300 epoch using the SGD optimizer and a batch size of 64.
We tune JTT over the same hyper-parameters as in their paper: three pairs of learning rates and
weight decays, (1e− 03, 1e− 04), (1e− 04, 1e− 01), (1e− 05, 1.0) for both stages, and over 14
early stopping points up to T = 300 and λ ∈ {20, 50, 100} for stage 2. For Antigone, we explore
over the same learning rate and weight decay values, as well as early stopping points at any of the
300 training epochs. In each case, we seek to optimize fairness while constraining average accuracy
to ranges {[94, 94.5), [94.5, 95), [95, 95.5), [95.5, 96), [96, 96.5)}.

In case of GEORGE, for both CelebA and Waterbirds datasets, we use the same architecture and
early stopping stage 2 hyper-parameters (T = 50 for CelebA and T = 300 for Waterbirds) reported
in their paper. For Antigone+GEORGE, we replace GEORGE’s stage 1 with the Antigone model,
which is identified by searching over the same hyper-parameter space as in Antigone+JTT. To es-
tablish statistical significance and determine if Antigone+GEORGE’s performance is significantly
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greater than GEORGE by itself, we conducted a paired statistical t-test. The null hypothesis (H0)
states that the mean of Antigone+GEORGE is less than or equal to the mean of GEORGE, while
the alternative hypothesis (H1) states that the mean of Antigone+GEORGE is greater than that of
GEORGE.

A.4 UCI ADULT DATASET

Dataset details: Adult dataset (Dua & Graff, 2017) is used to predict if an individual’s annual
income is ≤ 50K (Y = 0) or > 50K (Y = 1) based on several continuous and categorical attributes
like the individual’s education level, age, gender, occupation, etc. The sensitive attribute is gender
A = {Men,Women} Zemel et al. (2013). The dataset consists of 45,000 instances and is split into
training, validation and test sets with 21112, 9049 and 15060 instances, respectively. The dataset has
twice as many men as women, and only 15% of high income individuals are women. Consequently,
the baseline ERM model under-performs on the minority group.

Hyper-parameter settings: In all our experiments using Adult dataset, we train a multi-layer
neural network with one hidden layer consisting of 64 neurons. We train for a total of 100
epochs using the SGD optimizer and a batch size of 256. We tune Antigone and JTT by per-
forming grid search over learning rates ∈ {1e − 03, 1e − 04, 1e − 05} and weight decays
∈ {1e−01, 1e−03}. For JTT, we explore over T ∈ {1, 2, 5, 10, 15, 20, 30, 35, 40, 45, 50, 65, 80, 95}
and λ ∈ {5, 10, 20}. In each case, we seek to optimize fairness while constraining average accuracy
to ranges {[82, 82.5), [81.5, 82), [81, 81.5), [80.5, 81), [80, 80.5)}.

For ARL, we train for a total of 100 epochs. We choose the best learning rate and batch size by
exploring all possible hyper-parameters for the learner and adversary in the hyper-parameter search
space given by batch size ∈ {32, 64, 128, 256, 512} and learning rate ∈ {0.001, 0.01, 0.1, 1, 2, 5},
as in their paper. The learner is a fully connected two layer feed-forward network with 64 and
32 hidden units in the hidden layers, with ReLU activation function. The adversary is a fully
connected one layer feed-forward network with 32 hidden units in the single hidden layer, with
ReLU activation function. For Antigone+ARL, we use Antigone’s pseudo sensitive attribute la-
bels, for hyper-parameter tuning, identified by searching over the same hyper-parameter space
as in Antigone+JTT. We seek to optimize fairness while constraining average accuracy to ranges
{[84.5, 85), [84, 84.5), [83.5, 84), [83, 83.5), [82.5, 83), [82, 82.5)}. A paired statistical t-test is used
to establish statistical significance and determine if the fairness of Antigone+ARL is signifi-
cantly greater than that of ARL alone. The null hypothesis (H0) states that the mean fairness of
Antigone+ARL is less than or equal to that of ARL, while the alternative hypothesis (H1) states that
the mean fairness of Antigone+ARL is greater.

B QUALITY OF ANTIGONE’S SENSITIVE ATTRIBUTE LABELS
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(a) Dataset Details (b) EDM and noise parameters on Celeba

Figure 3: Figure (a) illustrates CelebA and Waterbirds datasets along with fraction of each sub-group
examples in their respective training dataset. Figure (b) shows Euclidean Distance between Means
(EDM) and noise parameters α1, β1 and and 1 − α1 − β1 for the positive target class of CelebA
dataset. The noise parameters are unknown in practice. Blue dot indicates the model that we pick to
generate pseudo sensitive attributes, while black star indicates the model that maximizes 1−α1−β1.

Table 5: We tabulate the precision, recall, F1-score of the noisy validation groups generated from
ERM model, GEORGE, GEORGE with number of clusters = 2 and Antigone. We observe that
Antigone has higher precision and F1 scores across different noisy groups on CelebA and Water-
birds, respectively.

Antigone GEORGE GEORGE Antigone
(w/o EDM) (k = 2) (w/ EDM)

CelebA (Precision, Recall, F1 Scores)

Blond Men 0.26, 0.31, 0.28 0.09, 0.32, 0.13 0.06, 0.70, 0.12 0.36, 0.34, 0.35
(0.02, 0.03, 0.01) (0.01, 0.09, 0.02) (0.01, 0.05, 0.01) (0.05, 0.04, 0.04)

Blond Women 0.95, 0.94, 0.95 0.94, 0.28, 0.43 0.95, 0.35, 0.51 0.96, 0.96, 0.96
(0.01, 0.01, 0.01) (0.01, 0.04, 0.04) (0.00, 0.02, 0.02) (0.0, 0.0, 0.0)

Non-blond Women 0.82, 0.13, 0.22 0.51, 0.36, 0.42 0.5, 0.76, 0.6 0.86, 0.13, 0.22
(0.01, 0.01, 0.02) (0.00, 0.01, 0.01) (0.00, 0.01, 0.01) (0.01, 0.01, 0.01)

Non-blond Men 0.52, 0.97, 0.67 0.53, 0.33, 0.40 0.47, 0.23, 0.31 0.52, 0.98, 0.68
(0.00, 0.00, 0.01) (0.01, 0.02, 0.02) (0.01, 0.01, 0.01) (0.0, 0.0, 0.0)

CelebA Accuracy 0.59 ± 0.01 0.33 ± 0.01 0.48 ± 0.00 0.60 ± 0.00

Waterbirds (Precision, Recall, F1 Scores)

Waterbirds Landbkgd 0.94, 0.26, 0.41 0.56, 0.34, 0.43 0.48, 0.57, 0.52 0.96, 0.63, 0.76
(0.01, 0.02, 0.02) (0.03, 0.02, 0.02) (0.01, 0.01, 0.01) (0.01, 0.04, 0.03)

Waterbirds Waterbkgd 0.57, 0.98, 0.72 0.55, 0.27, 0.36 0.48, 0.39, 0.43 0.73, 0.97, 0.83
(0.01, 0.00, 0.00) (0.07, 0.03, 0.02) (0.02, 0.02, 0.02) (0.02, 0.01, 0.01)

Landbirds Waterbkgd 0.96, 0.42, 0.58 0.57, 0.36, 0.44 0.55, 0.55, 0.55 0.97, 0.65, 0.78
(0.00, 0.03, 0.02) (0.04, 0.03, 0.03) (0.03, 0.03, 0.03) (0.00, 0.05, 0.04)

Landbirds Landbkgd 0.63, 0.98, 0.76 0.55, 0.24, 0.34 0.55, 0.56, 0.55 0.74, 0.98, 0.84
(0.01, 0.00, 0.01) (0.04, 0.04, 0.02) (0.03, 0.04, 0.03) (0.03, 0.00, 0.02)

Waterbirds Accuracy 0.68 ± 0.01 0.30 ± 0.02 0.53 ± 0.03 0.81 ± 0.02
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Table 6: We tabulate the precision, recall, F1-score, pseudo label accuracy of the noisy validation
groups generated by varying the fraction of minority group examples in each class of CelebA dataset.
We observe that Antigone has higher precision, recall, F1 score and pseudo label accuracy if the
imbalance is more in the training dataset.

Fraction Minority 5% 20% 35% 50%
Precision, Recall, F1 Score

Blond Men (Minority) 0.57, 0.40, 0.47 0.81, 0.17, 0.29 0.67, 0.15, 0.24 0.75, 0.14, 0.24
Blond Women (Majority) 0.97, 0.98, 0.98 0.83, 0.99, 0.90 0.68, 0.96, 0.79 0.53, 0.95, 0.68

1− α1 − β1 0.54 0.64 0.35 0.28
Blond Ps. Acc 0.95 0.83 0.68 0.55

Non-blond Women (Minority) 0.45, 0.26, 0.33 0.59, 0.17, 0.26 0.63, 0.18, 0.28 0.63, 0.16, 0.26
Non-blond Men (Majority) 0.96, 0.98, 0.97 0.82, 0.97, 0.89 0.68, 0.94, 0.79 0.52, 0.91, 0.66

1− α0 − β0 0.41 0.41 0.31 0.15
Non-blond Ps. Acc. 0.94 0.81 0.67 0.54

Overall Ps. Acc. 0.95 0.81 0.67 0.54
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C ANTIGONE + JTT

Appendix Table 7 and Appendix Table 8 show the performance of Antigone in conjunction with
JTT on Waterbirds and UCI Adult datasets, respectively. While we observed on the validation set
that Ground-Truth+JTT consistently exhibits higher (or equal) fairness compared to Antigone+JTT,
it is important to note that fairness measurements may differ on test sets due to potential distribution
shifts Xu & Goodacre (2018).

To show that Antigone is effective on multiple binary sensitive attributes, we evaluate the trained
Antigone+JTT models with age as the sensitive attribute on the CelebA dataset. The baseline
ERM model achieves target label accuracy of 95.83% and worst-group accuracy (WGA) of 78.14%.
Antigone improves WGA to 86.23% with a target label accuracy of 95.25%; and improves WGA
further to 91.22% with target label accuracy of 93.53%. Antigone similarly improves demographic
parity gap (2.21% to 1.81%) and equal opportunity gap (4.88% to 2.59%) with target label accuracy
>95%.

Table 7: We report the (Test average target label accuracy, Test fairness metric) for different val-
idation accuracy thresholds on Waterbirds dataset. We observe that Antigone + JTT (our noisy
sensitive attributes) improves fairness over baseline ERM model and closes the gap with Ground-
Truth + JTT (ground-truth sensitive attributes).

Val. Thresh. Method DP Gap EO Gap Worst-group

[96, 96.5) Antigone + JTT (95.8, 3.9) ± (0.4, 0.4) (96.2, 10.7) ± (0.3, 7.1) (96.3, 83.0) ± (0.4, 1.3)
Ground-Truth + JTT (95.8, 3.9) ± (0.4, 0.4) (96.0, 7.1) ± (0.3, 1.4) (96.3, 83.0) ± (0.4, 1.3)

[95.5, 96) Antigone + JTT (95.4, 2.8) ± (0.1, 0.1) (96.0, 7.5) ± (0.2, 1.5) (96.3, 83.2) ± (0.3, 0.6)
Ground-Truth + JTT (95.4, 2.9) ± (0.4, 1.1) (95.6, 6.0) ± (0.3, 2.1) (96.1, 83.5) ± (0.5, 0.8)

[95, 95.5) Antigone + JTT (94.5, 1.5) ± (0.6, 0.6) (94.7, 4.2) ± (0.9, 3.1) (94.7, 85.9) ± (0.9, 1.4)
Ground-Truth + JTT (94.4, 1.7) ± (0.7, 0.7) (94.3, 1.1) ± (0.5, 0.6) (95.1, 86.8) ± (0.6, 1.1)

[94.5, 95) Antigone + JTT (94.2, 0.4) ± (0.4, 0.4) (93.8, 2.0) ± (0.5, 1.4) (94.2, 86.7) ± (0.8, 1.8)
Ground-Truth + JTT (93.6, 0.6) ± (0.5, 0.5) (93.8, 2.0) ± (0.5, 1.4) (94.1, 88.2) ± (0.6, 0.7)

[94.0, 94.5) Antigone + JTT (93.0, 1.5) ± (0.6, 0.3) (93.6, 4.8) ± (1.2, 3.0) (93.7, 87.9) ± (0.5, 1.4)
Ground-Truth + JTT (93.1, 1.5) ± (0.3, 0.4) (93.2, 4.0) ± (1.0, 2.1) (93.8, 88.1) ± (0.7, 1.1)

ERM (97.3, 21.3) ± (0.2, 1.1) (97.3, 35.0) ± (0.2, 3.4) (97.3, 59.1) ± (0.2, 3.8)

Table 8: (Avg. target label accuracy, Fairness) on test data for different validation accuracy thresh-
olds on the UCI Adult dataset. Lower DP and EO gaps are better. Higher WGA is better.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

>=82 and <82.5 Antigone + JTT (81.85, 11.76) ± (0.11, 3.53) (81.46, 2.68) ± (0.24, 5.67) (81.65, 54.58) ± (0.20, 0.87)
Ground-Truth + JTT (81.83, 11.92) ± (0.18, 3.62) (81.49, 3.14) ± (0.17, 4.97) (81.65, 54.58) ± (0.16, 0.76)

>=81.5 and <82 Antigone + JTT (81.74, 11.72) ± (0.15, 3.48) (81.65, 6.39) ± (0.18, 1.14) (81.56, 56.32) ± (0.4, 1.22)
Ground-Truth + JTT (81.57, 10.97) ± (0.24, 3.87) (81.75, 6.1) ± (0.37, 1.85) (81.52, 57.24) ± (0.34, 1.32)

>=81 and <81.5 Antigone + JTT (81.01, 9.11) ± (0.19, 3.67) (81.14, 1.43) ± (0.24, 1.25) (81.19, 54.46) ± (0.25, 1.64)
Ground-Truth + JTT (81.05, 8.92) ± (0.25, 3.34) (81.11, 2.63) ± (0.22, 1.50) (81.07, 55.04) ± (0.34, 1.07)

>=80.5 and <81 Antigone + JTT (80.71, 8.36) ± (0.31, 2.54) (80.57, 2.28) ± (0.35, 1.31) (80.63, 56.3) ± (0.29, 1.81)
Ground-Truth + JTT (80.41, 7.04) ± (0.4, 2.97) (80.87, 5.93) ± (0.28, 1.52) (80.53, 56.23) ± (0.23, 0.98)

>=80 and <80.5 Antigone + JTT (80.09, 7.54) ± (0.26, 2.18) (80.19, 2.54) ± (0.32, 1.39) (80.18, 57.67) ± (0.22, 1.73)
Ground-Truth + JTT (80.09, 5.63) ± (0.39, 2.59) (80.23, 6.84) ± (0.15, 1.85) (79.88, 57.50) ± (0.44, 1.75)

ERM (84.82, 53.83) ± (0.09, 0.20) (84.82, 9.70) ± (0.09, 0.75) (84.82, 53.14) ± (0.09, 0.58)

D COMPARISON WITH GEORGE

Appendix Figure 4 and Appendix Figure 5 shows the performance of both Antigone+GEORGE and
GEORGE experiments across multiple runs on CelebA and Waterbirds datasets, respectively.

E COMPARISON WITH ARL

Appendix Table 10 shows the performance of Antigone+ARL on UCI Adult dataset.
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Table 9: Antigone + JTT vs Ideal MC Model + JTT (Avg. target label accuracy, Fairness) compar-
ison on test data for different validation accuracy thresholds on the CelebA dataset. Lower DP and
EO gaps are better. Higher WGA is better.

DP Gap EO Gap WGA

[94, 95) Antigone + JTT (94.9, 14.7) (94.6, 33.7) (94.5, 61.7)
Ideal MC + JTT (94.9, 14.7) (94.4, 34.1) (94.4, 58.3)

[93, 94) Antigone + JTT (93.7, 12.2) (93.9, 30.3) (93.3, 60.0)
Ideal MC + JTT (93.7, 12.2) (93.5, 26.3) (93.7, 65.0)

[92, 93) Antigone + JTT (93.1, 12.1) (92.4, 22.9) (92.9, 65.6)
Ideal MC + JTT (93.1, 12.1) (93.0, 22.7) (93.2, 69.4)

[91, 92) Antigone + JTT (91.9, 9.3) (91.1, 13.9) (91.1, 66.7)
Ideal MC + JTT (91.9, 9.3) (92.2, 19.1) (91.8, 73.9)

[90, 91) Antigone + JTT (91.1, 7.9) (91.1, 13.9) (91.1, 66.7)
Ideal MC + JTT (90.9, 8) (90.4, 18.9) (91.4, 72.2)

Table 10: Comparison of (Avg. target label accuracy, Fairness) between ARL using Antigone’s
noisy validation data, ARL alone, and ground-truth validation data on the UCI Adult dataset. Lower
DP and EO gaps indicate better fairness, while higher WGA is better. Antigone + ARL consistently
outperforms ARL across various validation accuracy thresholds and fairness metrics (as shown in
bold). The p-values are marked with ∗ accordingly: ∗ for p < 0.1, ∗∗ for p < 0.05, ∗∗∗ for p < 0.01,
and ∗∗∗∗ for p < 0.001.

Val. Thresh. Method DP Gap EO Gap Worst-group Acc.

[84.5, 85)
Antigone + ARL (84.51, 16.84)∗∗ ± (0.13, 1.08) (84.1, 5.64)∗∗∗ ± (0.08, 1.43) (84.14, 59.68)∗∗∗ ± (0.13, 1.27)

ARL (84.53, 19.01) ± (0.13, 0.97) (84.53, 9.35) ± (0.13, 0.88) (84.53, 55.08) ± (0.13, 3.03)

Ground-Truth + ARL (84.5, 15.86) ± (0.24, 1.02) (84.43, 4.97) ± (0.17, 1.23) (84.08, 62.66) ± (0.32, 0.71)

[84, 84.5)
Antigone + ARL (84.12, 15.55)∗∗∗ ± (0.21, 1.14) (83.7, 6.65)∗∗ ± (0.22, 1.61) (83.47, 60.9)∗∗ ± (0.22, 2.1)

ARL (84.02, 18.35) ± (0.17, 1.04) (84.02, 8.04) ± (0.17, 1.21) (84.02, 55.69) ± (0.17, 2.93)

Ground-Truth + ARL (84.23, 15.26) ± (0.12, 0.9) (83.81, 5.57) ± (0.12, 1.58) (83.62, 64.74) ± (0.14, 0.65)

[83.5, 84)
Antigone + ARL (83.29, 15.13)∗∗∗ ± (0.21, 1.17) (83.07, 5.36)∗∗ ± (0.22, 2.86) (82.93, 62.17)∗∗∗ ± (0.13, 1.63)

ARL (83.54, 19.43) ± (0.12, 1.17) (83.54, 10.52) ± (0.12, 2.16) (83.54, 53.72) ± (0.12, 2.66)

Ground-Truth + ARL (83.53, 14.7) ± (0.19, 0.87) (83.17, 4.34) ± (0.17, 0.69) (83.31, 66.61) ± (0.24, 1.6)

[83, 83.5)
Antigone + ARL (82.98, 15.05)∗∗∗ ± (0.18, 1.45) (82.69, 5.4)∗ ± (0.16, 3.15) (82.55, 65.85)∗∗∗ ± (0.31, 0.58)

ARL (83.2, 18.24) ± (0.13, 2.45) (83.2, 8.69) ± (0.13, 3.68) (83.2, 54.21) ± (0.13, 4.99)

Ground-Truth + ARL (82.86, 14.84) ± (0.13, 1.26) (83.04, 6.03) ± (0.13, 1.56) (82.47, 66.75) ± (0.16, 1.56)

[82.5, 83)
Antigone + ARL (82.69, 14.16)∗∗∗∗ ± (0.17, 1.42) (82.32, 8.23)∗∗ ± (0.14, 2.84) (82.12, 66.93)∗∗∗∗ ± (0.16, 1.46)

ARL (82.71, 20.27) ± (0.37, 0.62) (82.71, 10.32) ± (0.37, 2.17) (82.71, 54.4) ± (0.37, 3.28)

Ground-Truth + ARL (82.63, 13.79) ± (0.18, 1.52) (82.21, 4.31) ± (0.28, 3.04) (81.91, 69.08) ± (0.21, 1.52)

[82, 82.5)
Antigone + ARL (82.3, 13.63)∗∗∗∗ ± (0.18, 0.69) (81.88, 8.76)∗∗ ± (0.16, 1.46) (81.39, 66.61)∗∗∗ ± (0.29, 1.97)

ARL (82.16, 21.63) ± (0.33, 1.69) (82.16, 13.55) ± (0.33, 2.98) (82.16, 52.82) ± (0.33, 5.58)

Ground-Truth + ARL (82.34, 13.21) ± (0.25, 1.07) (81.97, 3.39) ± (0.38, 2.71) (81.35, 69.98) ± (0.23, 1.38)

ERM (84.69, 18.27) ± (0.08, 0.5) (84.69, 9.39) ± (0.08, 1.11) (84.69, 53.36) ± (0.08, 1.97)
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Figure 4: Figure illustrates the performance of Antigone+GEORGE and GEORGE in terms of target
label accuracy and WGA across multiple trials for both k = 5 and k = 2 on the CelebA dataset.

Figure 5: Figure illustrates the performance of Antigone+GEORGE and GEORGE in terms of target
label accuracy and WGA across multiple trials for both k = 5 and k = 2 on the Waterbirds dataset.
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