
Published in Transactions on Machine Learning Research (06/2025)

UniTST: Effectively Modeling Inter-Series and Intra-Series
Dependencies for Multivariate Time Series Forecasting

Juncheng Liu1 Chenghao Liu1 Gerald Woo1 Yiwei Wang2

Bryan Hooi3 Caiming Xiong1 Doyen Sahoo1

juncheng.liu@u.nus.edu
Salesforce1 University of California, Merced 2 National University of Singapore3

Reviewed on OpenReview: https://openreview.net/forum?id=p3y5q4cvzV

Abstract

Transformer-based models have emerged as powerful tools for multivariate time series
forecasting (MTSF). However, existing Transformer models often fall short of capturing both
intricate dependencies across variate and temporal dimensions in MTS data. Some recent
models are proposed to separately capture variate and temporal dependencies through either
two sequential or parallel attention mechanisms. However, these methods cannot directly and
explicitly learn the intricate inter-series and intra-series dependencies. In this work, we first
demonstrate that these dependencies are very important as they usually exist in real-world
data. To directly model these dependencies, we propose a transformer-based model UniTST
containing a unified attention mechanism on the flattened patch tokens. Additionally, we
add a dispatcher module which reduces the complexity and makes the model feasible for
a potentially large number of variates. Although our proposed model employs a simple
architecture, it offers compelling performance as shown in our extensive experiments on
several datasets for time series forecasting.

1 Introduction

Inspired by the success of Transformer-based models in various fields such as natural language processing
(Touvron et al., 2023a; Chiang et al., 2023; Almazrouei et al., 2023; MosaicML, 2023; Touvron et al., 2023b;
OpenAI, 2022; Google, 2023; Touvron et al., 2023b) and computer vision (Wu et al., 2020; Liu et al., 2021b;
Jamil et al., 2023), Transformers have also garnered much attention in the community of multivariate time
series forecasting (MTSF) (Nie et al., 2023; Liu et al., 2024; Wu et al., 2021; Zhang & Yan, 2023; Zhou et al.,
2022; Carlini et al., 2023; Han et al., 2024). Pioneering works (Li et al., 2021; Wu et al., 2021; Zhou et al.,
2022) treat multiple variates (aka channels) at each time step as the input unit for transformers, similar to
tokens in the language domain, but its performance was even inferior to linear models (Zeng et al., 2023;
Han et al., 2023). Considering the noisy information from individual time points, Variate-Independent and
Patch-Based (Nie et al., 2023) methods are subsequently proposed and achieve positive results by avoiding
mixing noises from multiple variates and aggregating information from several adjacent time points as input.
Nevertheless, these methods neglect the cross-variate relationships and interfere with the learning of temporal
dynamics across variates.

To tackle this problem, iTransformer (Liu et al., 2024) embeds the entire time series of a variate into a token
and employs “variate-wise attention” to model variate dependencies. However, it lacks the capability to
model intra-variate temporal dependencies. Concurrently, several approaches (Zhang & Yan, 2023; Carlini
et al., 2023; Yu et al., 2024) utilize both variate-wise attention and time(patch)-wise attention to capture
inter-variate and intra-variate dependencies, either sequentially or parallelly. Yet, they may raise the difficulty
of modeling the diverse time and variate dependencies as the errors from one stage can affect the other stage
and eventually the overall performance.

1

Published in Transactions on Machine Learning Research (06/2025)

Attention cross-time cross-variate all at once

Our model with
unified attention

Input multivariate time series

Patch token tensor

Time

Variates

Patching
&Embedding

Variate-wise attention over
variates at the same time step

Time-wise attention over time at
each individual variate

Previous models apply
two attentions either
sequentially or parallelly

Variate-
wise Attn

Time-wise
Attn

Time-wise
Attn

Variate-
wise Attn

Output Output

Figure 1: Comparison between our model and previous models. Previous models apply time-wise attention and
variate-wise attention modules either sequentially or parallelly, which cannot capture cross-time cross-variate
dependencies (i.e., green links) simultaneously like our model.

Additionally, either two parallel or sequential attention mechanisms cannot explicitly model
the direct dependencies across different variates and different times, which we show in Fig-
ure 1. Regardless of how previous works apply time-wise attention and variate-wise atten-
tion parallelly or sequentially, they would still lack the green links to capture cross-time cross-
variate dependencies (aka inter-series intra-series dependencies) simultaneously as in our model.

Figure 2: Explicit correlation between two
sub-series at different periods from two dif-
ferent variates (i.e., strong correlation be-
tween period 1 of variate 1 and period 2 and
variate 2).

To further explain, as we illustrate in Figure 2, the time series
of variate 1 during period 1 shares the same trend with the time
series of variate 2 during period 2. This type of correlations
cannot be directly modeled by previous works as it requires
directly modeling cross-time cross-variate dependencies simul-
taneously. This type of correlation is important as it generally
exists in real-world data as we further demonstrate in Sec 3.

To mitigate the limitations of previous works, in this paper, we
revisit the structure of multivariate time series transformers
and propose a time series transformer with unified attention
(UniTST) as a fundamental backbone for multivariate forecast-
ing. Technically, we flatten all patches from different variates
into a unified sequence and adopt the attention for inter-variate
and intra-variate dependencies simultaneously. To mitigate the
high memory cost associated with the flattening strategy, we
further develop a dispatcher mechanism to reduce complexity
from quadratic to linear. Our contributions are summarized as
follows:

• We point out the limitation of previous transformer models for multivariate time series forecasting: their
lack of ability to simultaneously capture both inter-variate and intra-variate dependencies. With evidence
in real-world data, we demonstrate that these dependencies are important and commonly exist.

2

Published in Transactions on Machine Learning Research (06/2025)

• To mitigate the limitation, we propose UniTST as a simple, general yet effective transformer for modeling
multivariate time series data, which flattens all patches from different variates into a unified sequence to
effectively capture inter-variate and intra-variate dependencies.

• Despite the simple designs used in UniTST, we empirically demonstrate that UniTST achieves state-
of-the-art performance on real-world benchmarks for both long-term and short-term forecasting with
improvements up to 13%. In addition, we provide results of the ablation study and visualization to further
demonstrate the effectiveness of our model.

2 Related Work

Recently, many Transformer-based models have been also proposed for multivariate time series forecasting and
demonstrated great potential (Liu et al., 2021a; Wu et al., 2021; Li et al., 2021; Zhang & Yan, 2023; Zhou et al.,
2022; Li et al., 2019; Luo & Wang, 2024; Zhang et al., 2024; Ilbert et al., 2024). Several approaches (Wu et al.,
2021; Li et al., 2021; Zhou et al., 2022) embed temporal tokens that contain the multivariate representation
of each time step and utilize attention mechanisms to model temporal dependencies. However, due to the
vulnerability to the distribution shift, these models with such channel mixing structure are often outperformed
by simple linear models (Zeng et al., 2023; Han et al., 2023). Subsequently, PatchTST (Nie et al., 2023)
considers channel independence and models temporal dependencies within each channel to make predictions
independently. Nonetheless, it ignores the correlation between variates, which may hinder its performance.
To model variate dependencies, in the past two years, several works have been proposed (Liu et al., 2024;
Zhang & Yan, 2023; Carlini et al., 2023; Han et al., 2024; Yu et al., 2024; Wu et al., 2023). iTransformer (Liu
et al., 2024) models channel dependencies by embedding the whole time series of a variate into a token and
using “variate-wise attention” without explicitly modeling on temporal dependencies. ElasTST (Zhang et al.,
2024) tackles varied-horizon forecasting with a non-autoregressive design and horizon-invariant embeddings
while DeformableTST (Luo & Wang, 2024) reduces Transformers’ reliance on patching by using deformable
attention.

Additionally, several methods proposed different modules to capture both time and variate dependencies.
However, they can either sequentially or parallelly capture time and variate dependencies and are not able to
capture them simultaneously. In the later Section 3, we show the importance of simultaneously capturing
both time and variate dependencies by providing empirical evidence in real-world data. Crossformer (Zhang
& Yan, 2023) uses the encoder-decoder architecture with two-stage attention layers to sequentially model
cross-time dependencies and then cross-variate dependencies. CARD (Carlini et al., 2023) employs the
encoder-only architecture utilizing a similar sequential two-stage attention mechanism for cross-time, cross-
channel dependencies and a token blend module to capture multi-scale information. Leddam (Yu et al.,
2024) designs a learnable decomposition and a dual attention module that parallelly model inter-variate
dependencies with “channel-wise attention” and intra-variate temporal dependencies with “auto-regressive
attention”. In summary, these works generally model intra-variate and inter-variate dependencies separately
(either sequentially or parallelly), and aggregate these two types of information to get the outputs. In contrast,
our model has a general ability to directly capture inter-variate and intra-variate dependencies simultaneously,
which is more effective. We provide more discussion on the comparison in Section 4.2.

Moreover, CATS (Lu et al., 2024) constructs auxiliary series and capture inter-series dependencies from
auxiliary series. In contrast, our method is applied directly on the original series with considering all
multivariate as a unified sequence. CrossGNN (Huang et al., 2023), as a GNN-based method, proposes a
cross interation layer to capture cross-scale interation on the time dimension and cross-variate interaction on
the variate dimension. However, it still relies on a sequential manner to capture cross-time and cross-variate
dependencies. Similar to it, TimeXer (Wang et al., 2024) sequentially capture cross-time and cross-variate
dependencies by ingesting external information from exogenous variables. With the same goal as our work,
LIFT (Zhao & Shen, 2024) also aims to capture cross-time and cross-variate dependencies simultaneously.
However, it requires directly calculations on leading indicators for each pair of variates and applies leading
indicators lagged variates, which may need massive computational costs. In contrast, our proposed method
UniTST can model the cross-time and cross-variate from the time series sequence without explicit calculation
on leading indicators.

3

Published in Transactions on Machine Learning Research (06/2025)

3 Preliminary and Motivation

In multivariate time series forecasting, given historical observations X:,t:t+L ∈ RN×L with L time steps and
N variates, the task is to predict the future S time steps, i.e., X:,t+L+1:t+L+S ∈ RN×S . For convenience, we
denote Xi,: = x(i) as the whole time series of the i-th variate and X:,t as the recorded time points of all
variates at time step t.

To illustrate the diverse cross-time and cross-variate dependencies from real-world data, we use the following
correlation coefficient between x(i)

t:t+L and x(j)
t+L:t+2L to measure it,

Definition 1 (Cross-Time Cross-Variate Correlation Coefficient).

R(i,j)(t, t′, L) =
Cov(x(i)

t:t+L, x(j)
t′:t′+L)

σ(i)σ(j) = 1
L

L∑
k=0

x(i)
t+k − µ(i)

σ(i) ·
x(j)

t′+k − µ(j)

σ(j) , (1)

where µ(·) and σ(·) are the mean and standard deviation of corresponding time series patches.

Figure 3: Correlation between patches
from different variates. x-axis: patch
indices in variate 10, y-axis: patch in-
dices in variate 0.

Utilizing the above correlation coefficient, we can quantify and fur-
ther understand the diverse cross-time cross-variate correlation. We
visualize the correlation coefficient between different time periods
from two different variates in Figure 3. We split the time series into
several patches and each patch denotes a time period containing 16
time steps. In Figure 3, we can see that, first, given a pair of variates,
the inter-variate dependencies are quite different for different patches.
Looking at the column of Patch 20 in variate 10, it is strongly corre-
lated with patch 3, 5, 11, 20, 24 of variate 0, while it is very weakly
correlated with all other patches from variate 0. It suggests that
there is no consistent correlation pattern for different patch pairs
of two variates (i.e., not all the same coefficient at a row/column in
the correlation map) and inter-variate dependencies are actually at
the fine-grained patch level. Therefore, previous transformer-based
models have a deficiency in directly capturing this kind of dependen-
cies. The reason is that they either only capture the dependencies
for the whole time series between two variates without considering
the fine-grained temporal dependencies across different variates (Liu
et al., 2024) or use two separate attention mechanisms (Zhang & Yan, 2023; Carlini et al., 2023; Yu et al.,
2024) which are indirect and unable to explicitly learn these dependencies. In Appendix A, we provide more
examples to demonstrate the ubiquity and the diversity of these cross-time cross-variate correlations.

Motivated by the deficiency of previous models in capturing these important dependencies, in this work, we
aim to propose a model with the ability to explicitly directly capture cross-time cross-variate interactions for
multivariate data.

4 Methodology

In this section, we describe our proposed Transformer-based method (UniTST) for modeling inter-variate
and intra-variate dependencies for multivariate time series forecasting. Then, we discuss and compare our
model with previous Transformer-based models in detail.

4.1 Model Structure Overview

We illustrate our proposed UniTST with a unified attention mechanism in Figure 4.

Embedding the patches from different variates as the tokens Given the time series with N variates
X ∈ RN×T , we divide each univariate time series xi into patches as in Nie et al. (2023); Zhang & Yan (2023).

4

Published in Transactions on Machine Learning Research (06/2025)

Transformer Encoder

Projection

Multivariate Output Norm

Norm

Unified
Attention

+

Feed-forward

+ …

Attention with dispatchers

Self-Attention without dispatchers

Patching

Embedding

Flatten Patches

patches per variate

Embedding Dimension

variates

(a) (b)

(c)

(d) …

…

Figure 4: Framework Overview. We flatten the patches from all variates into a sequence as the input of
the Transformer Encoder and replace the original self-attention with the proposed unified attention with
dispatchers to reduce the memory complexity.

With the patch length l and the stride s, for each variate i, we obtain a patch sequence xi
p ∈ Rp×l where p is

the number of patches. Considering all variates, the tensor containing all patches is denoted as Xp ∈ RN×p×l,
where N is the number of variates. With each patch as a token, the 2D token embeddings are generated
using a linear projection with position embeddings:

H = Embedding(Xp) = XpW + Wpos ∈ RN×p×d, (2)

where W ∈ Rl×d is the learnable projection matrix and Wpos ∈ RN×p×d is the learnable position embeddings.
With 2D token embeddings, we denote H(i,k) is the token embedding of the k-th patches in the i-th variate,
resulting in N × p tokens.

Self attention on the flattened patch sequence Considering any two tokens, there are two relationships:
1) they are from the same variate; 2) they are from two different variates. These represent intra-variate
and cross-variate dependencies, respectively. A desired model should have the ability to capture both
types of dependencies, especially cross-variate dependencies. To capture both intra-variate and cross-variate
dependencies among tokens, we flatten the 2D token embedding matrix H into a 1D sequence with N × p
tokens. We use this 1D sequence X ′ ∈ R(N×p)×d as the input and feed it to a vanilla Transformer encoder.
The multi-head self-attention (MSA) mechanism is directly applied to the 1D sequence:

O = MSA(Q, K, V) = Softmax(QKT

√
dk

)V, (3)

with the query matrix Q = X ′WQ ∈ R(N×p)×dk , the key matrix K = X ′WK ∈ R(N×p)×dk , the value
matrix V = X ′WV ∈ R(N×p)×d, and WQ, WK ∈ Rd×dk , WV ∈ Rd×d. The MSA helps the model to capture
dependencies among all tokens, including both intra-variate and cross-variate dependencies. However, the
MSA results in an attention map with the memory complexity of O(N2p2), which is very costly when we
have a large number of variates N .

Dispatchers In order to mitigate the complexity of possible large N , we further propose a dispatcher
mechanism to aggregate and dispatch the dependencies among tokens. We add k(k << N) learnable
embeddings as dispatchers and use cross attention to distribute the dependencies. The dispatchers aggregate
the information from all tokens by using the dispatcher embeddings D as the query and the token embeddings
as the key and value:

D′ = Attention(DWQ1 , X ′WK1 , X ′WV1) = Softmax(DWQ1(X ′WK1)T

√
dk

)X ′WV1 , (4)

5

Published in Transactions on Machine Learning Research (06/2025)

where the complexity is O(kNp). After that, the dispatchers distribute the dependencies information to all
tokens by setting the token embeddings as the key and the dispatcher embeddings as the key and value:

O′ = Attention(X ′WQ2 , D′WK2 , D′WV2) = Softmax(X ′WQ2(D′WK2)T

√
dk

)D′WV2 , (5)

where the complexity is also O(kNp). Therefore, the overall complexity of our dispatcher mechanism is
O(kNp), instead of O(N2p2) if we directly use self-attention on the flattened patch sequence. With the
dispatcher mechanism, the dependencies between any two patches can be explicitly modeled through attention,
no matter if they are from the same variate or different variates.

In a transformer block, the output of attention O′ is passed to a BatchNorm Layer and a feedforward layer
with residual connections. After stacking several layers, the token representations are generated as ZN×D. In
the end, a linear projection is used to generate the prediction X̂ ∈ RN×S .

Loss function The Mean-Squared Error (MSE) loss is used as the objective function to measure the
difference between the ground truth and the generated predictions: L = 1

NS

∑N
i (X̂

(i)
− Xi,t+L+1:t+S)2

4.2 Discussion and Comparison with Previous Models

Our proposed model is an encoder-only transformer model containing a unified attention mechanism with
dispatchers. The model explicitly learns both intra-variate and inter-variate temporal dependencies among
different patch tokens through attention, which means that it can directly capture the correlation between
two time series at different periods from different variates. In contrast, these dependencies cannot be directly
and explicitly captured by previous works which claim that they model variate dependencies (Liu et al., 2024;
Zhang & Yan, 2023; Carlini et al., 2023; Yu et al., 2024).

For example, iTransformer (Liu et al., 2024) captures variate dependencies using the whole time series of a
variate as a token. It loses the ability to capture the fine-grained temporal dependencies across channels or
within a channel. Crossformer (Zhang & Yan, 2023) and CARD (Carlini et al., 2023) both propose to use a
sequential two-stage attention mechanism to first capture dependencies on time dimensions and then capture
dependencies on variate dimensions. This sequential manner does not directly capture cross-time cross-variate
dependencies simultaneously, which makes them less effective as shown in their empirical performance. In
contrast, our proposed model uses a more unified attention on a flattened patch sequence with all patches
from different channels, allowing direct and explicit modeling cross-time cross-variate dependencies. In
addition, Yu et al. (2024) propose a dual attention module with an iTransformer-like encoder to inter-variate
dependencies and an auto-regressive self-attention on each channel to capture intra-variate dependencies
separately. In this way, it also cannot directly capture cross-variate temporal dependencies between two patch
tokens at different time steps from different variates (e.g., H(i,k), while our model is able to directly capture
these dependencies.

Worth noting that our proposed model is a more general case to directly capture intra-variate and inter-variate
dependencies at a more fine-grained level (i.e., patch level from different variates at different times). Moreover,
our model employs simple architectures that can be easily implemented while the empirical results show the
effectiveness of our model in Section 5.1. Additionally, we provide the analysis of computational complexity
in Appendix B.

5 Experiments

We conduct comprehensive experiments to evaluate our proposed model UniTST and compare it with 11
representative baselines for both short-term and long-term time series forecasting on 13 datasets. Additionally,
we further dive deeper into model analysis to examine the effectiveness of our model from different aspects.

6

Published in Transactions on Machine Learning Research (06/2025)

5.1 Forecasting Results

We conduct extensive experiments to compare our model with several representative time series models for
both short-term and long-term time series forecasting.

Experimental Setting We conduct all the experiments with PyTorch (Paszke et al., 2019) and utilize
a single NVIDIA A100 GPU with 40GB memory. We describe the hyperparameter choices used in our
experiments in the following. For the optimizer, we use ADAM (Kingma & Ba, 2015) with the learning rate
in {10−3, 5 × 10−4, 10−4}. The batch sizes are selected from {16, 32, 64, 128} depending on the dataset sizes.
The maximum number of training epochs is set to 100 as in Nie et al. (2023). Meanwhile, we also use the
early stop strategy to stop the training when the loss does not decrease in 10 epochs. The number of layers
of our Transformer blocks is selected from {2,3,4}. The hidden dimension of D is set from {128, 256, 512}.

For the experimental results of our model, we report the averaged results with 5 runs with different seeds.
For the results of previous models, we reuse the results from iTransformer paper (Liu et al., 2024) as we are
using the same experimental setting.

Baselines We select 11 well-known forecasting models as our baselines, including (1) Transformer-based
models: iTransformer (Liu et al., 2024), Crossformer (Zhang & Yan, 2023), FEDformer (Zhou et al., 2022),
Stationary (Liu et al., 2022b), PatchTST (Nie et al., 2023); (2) Linear-based methods: DLinear (Zeng et al.,
2023), RLinear (Li et al., 2023), TiDE (Das et al., 2023); (3) Temporal Convolutional Network (TCN)-based
methods: TimesNet (Wu et al., 2023), SCINet (Liu et al., 2022a); and (4) MLP-based method: SOFTS (Han
et al., 2024).

Table 1: Multivariate long-term forecasting results with prediction lengths S ∈ {96, 192, 336, 720} and
fixed lookback length T = 96. Results are averaged from all prediction lengths. Full results are listed in
Appendix C.3.1, Table 6.

Models UniTST SOFTS iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2023) (2022a) (2022) (2022b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ECL 0.166 0.262 0.174 0.264 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296

ETTm1 0.379 0.394 0.393 0.403 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456

ETTm2 0.280 0.326 0.287 0.330 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347

ETTh1 0.442 0.435 0.449 0.442 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537

ETTh2 0.363 0.393 0.373 0.400 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516

Exchange 0.351 0.398 — — 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454

Traffic 0.439 0.274 0.409 0.267 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340

Weather 0.242 0.271 0.255 0.278 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314

Solar-Energy 0.225 0.260 0.229 0.256 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381

1st Count 7 6 1 2 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0

Long-term forecasting Following iTransformer (Liu et al., 2024), we use 4 different prediction lengths (i.e.,
{96, 192, 336, 720}) and fix the lookback window length as 96 for the long-term forecasting task. We evaluate
models with MSE (Mean Squared Error) and MAE (Mean Absolute Error) – the lower values indicate better
prediction performance. We summarize the long-term forecasting results in Table 1 with the best in red and
the second underlined. Overall, we can see that UniTST achieves the best results compared with 11 baselines
on 7 out of 9 datasets for MSE and 8 out of 9 datasets for MAE. Particularly, iTransformer, as the previous
state-of-the-art model, performs worse than our model in most cases of ETT datasets and ECL dataset
(which are both from electricity domain). This may indicate that only model multivariate correlation without
considering temporal correlation is not effective for some datasets. Meanwhile, the results of PatchTST are
also deficient, suggesting that only capturing temporal relationships within a channel is not sufficient as well.
In contrast, our proposed model UniTST can better capture temporal relationships both within a variate
and across different variates, which leads to better prediction performance. Besides, although Crossformer is
claimed to capture cross-time and cross-variate dependencies, it still performs much worse compared with our

7

Published in Transactions on Machine Learning Research (06/2025)

approach. The reason is that their sequential design with two attention modules cannot simultaneously and
effectively capture cross-time and cross-variate dependencies, while our approach can explicitly model these
dependencies at the same time.

Table 2: Full results of the PEMS forecasting task. We compare extensive competitive models under different
prediction lengths following the setting of SCINet (2022a). The input length is set to 96 for all baselines. Avg
means the average results from all four prediction lengths.

Models UniTST SOFTS iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary
(Ours) (2024) (2024) (2023) (2023) (2023) (2023) (2023) (2023) (2022a) (2022) (2022b)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

P
E

M
S0

3 12 0.059 0.160 0.064 0.165 0.071 0.174 0.126 0.236 0.099 0.216 0.090 0.203 0.178 0.305 0.085 0.192 0.122 0.243 0.066 0.172 0.126 0.251 0.081 0.188
24 0.074 0.180 0.083 0.188 0.093 0.201 0.246 0.334 0.142 0.259 0.121 0.240 0.257 0.371 0.118 0.223 0.201 0.317 0.085 0.198 0.149 0.275 0.105 0.214
48 0.104 0.213 0.114 0.223 0.125 0.236 0.551 0.529 0.211 0.319 0.202 0.317 0.379 0.463 0.155 0.260 0.333 0.425 0.127 0.238 0.227 0.348 0.154 0.257
96 0.151 0.261 0.156 0.264 0.164 0.275 1.057 0.787 0.269 0.370 0.262 0.367 0.490 0.539 0.228 0.317 0.457 0.515 0.178 0.287 0.348 0.434 0.247 0.336

Avg 0.097 0.204 0.104 0.210 0.113 0.221 0.495 0.472 0.180 0.291 0.169 0.281 0.326 0.419 0.147 0.248 0.278 0.375 0.114 0.224 0.213 0.327 0.147 0.249

P
E

M
S0

4 12 0.070 0.172 0.074 0.176 0.078 0.183 0.138 0.252 0.105 0.224 0.098 0.218 0.219 0.340 0.087 0.195 0.148 0.272 0.073 0.177 0.138 0.262 0.088 0.196
24 0.082 0.189 0.088 0.194 0.095 0.205 0.258 0.348 0.153 0.275 0.131 0.256 0.292 0.398 0.103 0.215 0.224 0.340 0.084 0.193 0.177 0.293 0.104 0.216
48 0.104 0.216 0.110 0.219 0.120 0.233 0.572 0.544 0.229 0.339 0.205 0.326 0.409 0.478 0.136 0.250 0.355 0.437 0.099 0.211 0.270 0.368 0.137 0.251
96 0.137 0.256 0.135 0.244 0.150 0.262 1.137 0.820 0.291 0.389 0.402 0.457 0.492 0.532 0.190 0.303 0.452 0.504 0.114 0.227 0.341 0.427 0.186 0.297

Avg 0.098 0.208 0.102 0.208 0.111 0.221 0.526 0.491 0.195 0.307 0.209 0.314 0.353 0.437 0.129 0.241 0.295 0.388 0.092 0.202 0.231 0.337 0.127 0.240

P
E

M
S0

7 12 0.057 0.153 0.057 0.152 0.067 0.165 0.118 0.235 0.095 0.207 0.094 0.200 0.173 0.304 0.082 0.181 0.115 0.242 0.068 0.171 0.109 0.225 0.083 0.185
24 0.075 0.174 0.073 0.173 0.088 0.190 0.242 0.341 0.150 0.262 0.139 0.247 0.271 0.383 0.101 0.204 0.210 0.329 0.119 0.225 0.125 0.244 0.102 0.207
48 0.107 0.208 0.096 0.195 0.110 0.215 0.562 0.541 0.253 0.340 0.311 0.369 0.446 0.495 0.134 0.238 0.398 0.458 0.149 0.237 0.165 0.288 0.136 0.240
96 0.133 0.228 0.120 0.218 0.139 0.245 1.096 0.795 0.346 0.404 0.396 0.442 0.628 0.577 0.181 0.279 0.594 0.553 0.141 0.234 0.262 0.376 0.187 0.287

Avg 0.093 0.191 0.087 0.184 0.101 0.204 0.504 0.478 0.211 0.303 0.235 0.315 0.380 0.440 0.124 0.225 0.329 0.395 0.119 0.234 0.165 0.283 0.127 0.230

P
E

M
S0

8 12 0.073 0.174 0.074 0.171 0.079 0.182 0.133 0.247 0.168 0.232 0.165 0.214 0.227 0.343 0.112 0.212 0.154 0.276 0.087 0.184 0.173 0.273 0.109 0.207
24 0.096 0.197 0.104 0.201 0.115 0.219 0.249 0.343 0.224 0.281 0.215 0.260 0.318 0.409 0.141 0.238 0.248 0.353 0.122 0.221 0.210 0.301 0.140 0.236
48 0.141 0.239 0.164 0.253 0.186 0.235 0.569 0.544 0.321 0.354 0.315 0.355 0.497 0.510 0.198 0.283 0.440 0.470 0.189 0.270 0.320 0.394 0.211 0.294
96 0.210 0.275 0.211 0.253 0.221 0.267 1.166 0.814 0.408 0.417 0.377 0.397 0.721 0.592 0.320 0.351 0.674 0.565 0.236 0.300 0.442 0.465 0.345 0.367

Avg 0.130 0.221 0.138 0.219 0.150 0.226 0.529 0.487 0.280 0.321 0.268 0.307 0.441 0.464 0.193 0.271 0.379 0.416 0.158 0.244 0.286 0.358 0.201 0.276

1st Count 11 8 4 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0

Short-term forecasting Besides long-term forecasting, we also conduct experiments for short-term
forecasting with 4 prediction lengths (i.e., {12, 24, 48, 96}) on PEMS datasets as in SCINet (Liu et al., 2022a)
and iTransformer (Liu et al., 2024). Full results on 4 PEMS datasets with 4 different prediction lengths
are shown in Table 2. Generally, our model outperforms other baselines on all prediction lengths and all
PEMS datasets, which demonstrates the superiority of capturing cross-channel cross-time relationships for
short-term forecasting. Additionally, we observe that PatchTST usually underperforms iTransformer by a
large margin, suggesting that modeling channel dependencies is necessary for PEMS datasets. The worse
results of iTransformer, compared with our model, indicate that cross-channel temporal relationships are
important and should be captured on these datasets.

5.2 Model Analysis

Ablation study We conduct the ablation study to verify the effectiveness of our dispatcher module by
using the same setting (e.g., the number of layers, hidden dimensions, batch size) for comparing the our model
with and without dispatchers. In Table 3, we can see that adding dispatchers helps to reduce GPU usage. In

Table 3: The effectiveness of our dispatcher module. OOM indicates the “Out of Memory” error on GPUs
(we a single A100 GPU of memory 40GB).

ETTm1 Weather ECL Traffic
MSE Mem MSE Mem MSE Mem MSE Mem

w/o dispatchers 0.385 2.56GB 0.247 9.17GB OOM OOM OOM OOM
w/ dispatchers 0.379 2.33GB 0.242 5.13GB 0.166 13.32GB 0.439 22.87GB

8

Published in Transactions on Machine Learning Research (06/2025)

ECL and Traffic, the version without dispatchers even leads to out-of-memory (OOM) issues. Moreover, we
observe that the memory reduction becomes more significant when the number of variates increases. On
ETTm1 with 7 variates, the memory only reduces from 2.56GB to 2.33GB, while on ECL and Traffic, it
reduces from OOM (more than 40GB) to 13.32GB and 22.87GB, respectively.

The effect of different lookback lengths We also investigate how different lookback lengths would
change the forecasting performance. With increased lookback lengths, we compare the forecasting performance
of our model with that of several representative baselines in Figure 5. The results show that, when using a
relatively short lookback length (i.e., 48), our model generally outperforms other models by a large margin. It
suggests that our model has a more powerful learning ability to capture the dependencies even with a short
lookback length, while other models usually require longer lookback lengths to provide good performance.
Moreover, by increasing the lookback length, the performances of our model and PatchTST usually improve,
whereas the performance of Transformer remains almost the same on ECL dataset.

48 96 192 336 720
Lookback Length

0.15

0.20

0.25

0.30

0.35

0.40

0.45

M
SE

Mean Squared Error vs Lookback Length on Weather
Transformer
PatchTST
iTransformer
Our Model

48 96 192 336 720
Lookback Length

0.14

0.16

0.18

0.20

0.22

0.24

0.26

M
SE

Mean Squared Error vs Lookback Length on ECL

Transformer
PatchTST
iTransformer
Our Model

Figure 5: Performance with different lookback lengths and fixed prediction length S = 96.

The effect of different patch sizes As we use patching in our model, we further examine the effect of
different patch sizes. The patch size and the lookback length together determine the number of tokens for a
variate. In Figure 6, we demonstrate the performance by varying different patch sizes and lookback lengths.
With lookback length of 64, the performance of using patch size 64 is much worse than that of patch size 8 It
indicates that, when the number of tokens of a variate is extremely small (i.e., only 1 token for lookback
length 64), the performance is not satisfactory as no enough fine-grained information. This could also be
the reason why iTransformer may be not ideal in some cases - it use exactly a single token for a variate.
Additionally, we observe that, for different lookback lengths, too small or too large patch size can lead to bad
performance. The reason may be that too many tokens or too less tokens would increase the difficulty of
training.

8 16 32 64
Patch Size

0.150

0.155

0.160

0.165

0.170

M
SE

Weather
Lookback (64), Predict Length (96)
Lookback (96), Predict Length (96)
Lookback (192), Predict Length (96)
Lookback (336), Predict Length (96)

Figure 6: Performance with different patch sizes
and lookback length.

The number of dispatchers In our model, we propose
to use several dispatchers to reduce the memory complex-
ity with the number of dispatchers as a hyper-parameter.
Here, we dive deep into the tradeoff between GPU mem-
ory and MSE by varying the number of dispatchers. In
Table 4, we demonstrate the performance and GPU mem-
ory of different numbers of dispatchers on Weather and
ECL with the prediction length as 96. The results show
that, with only 5 dispatchers, the performance is usually
worse than with more dispatchers. It suggests that we
should avoid using too few dispatchers as it may affect
the model performance. However, with fewer dispatchers,
the GPU memory usage is less as shown in our complex-
ity analysis in Section 4.1. For larger datasets like ECL,
increasing the number of dispatchers leads to more signifi-

9

Published in Transactions on Machine Learning Research (06/2025)

0.094 0.096 0.098 0.100 0.102 0.104 0.106 0.108
Attention Weights

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fr
eq

ue
nc

y

The First Layer

0.0 0.1 0.2 0.3 0.4 0.5
Attention Weights

0

5

10

15

20

25

30

35

40

Fr
eq

ue
nc

y

The Last Layer

Figure 7: The distributions of multiplied attention weights between two patch tokens on Weather.

cant memory increase, compared with the smaller dataset
(i.e., Weather).

Table 4: The performance and GPU memory usage of varying dispatchers on Weather and ECL.

The number of dispatchers 5 10 20 50

Weather MSE 0.1575 0.1552 0.1573 0.1566
GPU Memory (GB) 2.165 2.191 2.233 2.405

ECL MSE 0.1348 0.1347 0.1343 0.1338
GPU Memory (GB) 12.807 13.389 14.335 16.509

Attention Weights With our dispatcher module, we have two attention weights matrices, one from patch
tokens to dispatchers and one from dispatchers to patch tokens, with the size N × k and k × N , respectively.
Multiplying these two attention matrices gives us a new multiplied attention matrix with the size N × N
that directly indicates the importance between two patch tokens. We demonstrate the multiplied attention
weights from the first layer and the last layer in Figure 7. As shown, in the last layer, the distribution is
visibly shifted to the left side, meaning that most of the token pairs have low attention weights, while a few
token pairs have high attention weights. It may suggest that the last layer indeed learns how to distribute
the information to important tokens. In contrast, the first layer has a more even distribution of attention
weights, indicating that it distributes information more evenly to all tokens.

All token pairs Top 5% token pairs Top 1% token pairs Top 0.5% token pairs

87.5

88.0

88.5

89.0

89.5

90.0

Pe
rc

en
ta

ge
 (%

)

87.50

88.31

89.13

89.91
The percentage of patch token pairs from different vars and different times

Figure 8: Patch token pairs with higher top atten-
tion weights are more likely from different variates
and different times.

The importance of cross-variate cross-time depen-
dencies With the multiplied attention weights, we fur-
ther demonstrate the percentages of patch token pairs
from different variables and different times for groups of
patch tokens pairs with varied attention weights in Fig-
ure 8. We observe that the groups of patch token pairs
with higher attention weights have a higher percentage
of pairs from different variates and different times. For
example, for all token pairs, the percentage is 87.50, while
the percentage is 89.91 for top 0.5% token pairs with the
highest attention weights. It suggests that more pairs of
patch tokens with high attention weights come from dif-
ferent variates and times. Therefore, effectively modeling
cross-variate cross-time is crucial for multivariate time
series forecasting.

10

Published in Transactions on Machine Learning Research (06/2025)

6 Case Studies

6.1 Visualization of Multivariate Correlations

To further investigate the ability of capturing multivariate correlations, in Figure 9, we provide two cases
of visualizations on the correlation map of multivariate relationships in the predicted time series from
Solar-Energy. We can find that, the correlation map of UniTST is similar to the correlation map of ground
truth time series, which indicates that the variate dependencies are well-captured by UniTST. In contrast,
compared with ours, the correlation map of iTransformer is less aligned with that of ground truth time series.

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Correlations - Ground Truth

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Correlations - UniTST's predictions

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Correlations - iTransformer's predictions

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Correlations - Ground Truth

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Correlations - UniTST's predictions

0 20 40 60 80 100 120

0

20

40

60

80

100

120

Correlations - iTransformer's predictions

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 9: The correlation maps of multivariate relationship with different models. The x-axis and y-axis both
represent the variate index. The darker color indicates the stronger correlation.

7 Conclusion

In this work, we first point out the limitation of previous works on time series transformers for multivariate
forecasting: their lack of ability to effectively capture inter-series and intra-series dependencies simultaneously.
We further demonstrate that inter-series and intra-series dependencies are crucial for multivariate time series
forecasting as they commonly exist in real-world data. To mitigate this limitation of previous works, we
propose a simple yet effective transformer model UniTST with a dispatcher mechanism to effectively capture
inter-series and intra-series dependencies. The experiments on 13 datasets for time series forecasting show
that our model achieves superior performance compared with many representative baselines.

11

Published in Transactions on Machine Learning Research (06/2025)

Moreover, we conduct the ablation study to verify the effectiveness of our dispatcher mechanism and
demonstrate the importance of inter-series and intra-series dependencies. Lastly, we also provide model
analyses to demonstrate the importance of inter-series and intra-series dependencies, and specifically, a
case study on visualization of multivariate correlations validates the ability of our model to capture variate
(inter-series) dependencies. Our study emphasizes the necessity and effectiveness of simultaneously capturing
inter-variate and intra-variate dependencies in multivariate time series forecasting, and our proposed designs
may represent a step toward this goal.

References
Ebtesam Almazrouei, Hamza Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli, Ruxandra Cojocaru,

Merouane Debbah, Etienne Goffinet, Daniel Heslow, Julien Launay, Quentin Malartic, Badreddine Noune,
Baptiste Pannier, and Guilherme Penedo. Falcon-40B: an open large language model with state-of-the-art
performance. 2023.

Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Anas Awadalla,
Pang Wei Koh, Daphne Ippolito, Katherine Lee, Florian Tramer, et al. Are aligned neural networks
adversarially aligned? arXiv preprint arXiv:2306.15447, 2023.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan Zhuang,
Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source chatbot
impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/2023-03-30-vicuna/.

Abhimanyu Das, Weihao Kong, Andrew Leach, Rajat Sen, and Rose Yu. Long-term forecasting with tide:
Time-series dense encoder. arXiv preprint arXiv:2304.08424, 2023.

Google. An important next step on our ai journey, 2023. URL https://blog.google/technology/ai/bard-google-
ai-search-updates/.

Lu Han, Han-Jia Ye, and De-Chuan Zhan. The capacity and robustness trade-off: Revisiting the channel
independent strategy for multivariate time series forecasting. arXiv preprint arXiv:2304.05206, 2023.

Lu Han, Xu-Yang Chen, Han-Jia Ye, and De-Chuan Zhan. Softs: Efficient multivariate time series forecasting
with series-core fusion. arXiv preprint arXiv:2404.14197, 2024.

Qihe Huang, Lei Shen, Ruixin Zhang, Shouhong Ding, Binwu Wang, Zhengyang Zhou, and Yang Wang. Cross-
GNN: Confronting noisy multivariate time series via cross interaction refinement. In Thirty-seventh Confer-
ence on Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=xOzlW2vUYc.

Romain Ilbert, Ambroise Odonnat, Vasilii Feofanov, Aladin Virmaux, Giuseppe Paolo, Themis Palpanas,
and Ievgen Redko. SAMformer: Unlocking the potential of transformers in time series forecasting with
sharpness-aware minimization and channel-wise attention. In Forty-first International Conference on
Machine Learning, 2024. URL https://openreview.net/forum?id=8kLzL5QBh2.

Sonain Jamil, Md Jalil Piran, and Oh-Jin Kwon. A comprehensive survey of transformers for computer vision.
Drones, 7(5):287, 2023.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. ICLR, 2015.

Guokun Lai, Wei-Cheng Chang, Yiming Yang, and Hanxiao Liu. Modeling long-and short-term temporal
patterns with deep neural networks. SIGIR, 2018.

Jianxin Li, Xiong Hui, and Wancai Zhang. Informer: Beyond efficient transformer for long sequence time-series
forecasting. arXiv: 2012.07436, 2021.

Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang, and Xifeng Yan. Enhancing
the locality and breaking the memory bottleneck of transformer on time series forecasting. NeurIPS, 2019.

Zhe Li, Shiyi Qi, Yiduo Li, and Zenglin Xu. Revisiting long-term time series forecasting: An investigation on
linear mapping. arXiv preprint arXiv:2305.10721, 2023.

12

Published in Transactions on Machine Learning Research (06/2025)

Minhao Liu, Ailing Zeng, Muxi Chen, Zhijian Xu, Qiuxia Lai, Lingna Ma, and Qiang Xu. Scinet: time series
modeling and forecasting with sample convolution and interaction. NeurIPS, 2022a.

Shizhan Liu, Hang Yu, Cong Liao, Jianguo Li, Weiyao Lin, Alex X Liu, and Schahram Dustdar. Pyraformer:
Low-complexity pyramidal attention for long-range time series modeling and forecasting. International
conference on learning representations, 2021a.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Rethinking the
stationarity in time series forecasting. NeurIPS, 2022b.

Yong Liu, Tengge Hu, Haoran Zhang, Haixu Wu, Shiyu Wang, Lintao Ma, and Mingsheng Long. itransformer:
Inverted transformers are effective for time series forecasting. In ICLR, 2024.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pp. 10012–10022, 2021b.

Jiecheng Lu, Xu Han, Yan Sun, and Shihao Yang. CATS: Enhancing multivariate time series forecasting by
constructing auxiliary time series as exogenous variables. In Ruslan Salakhutdinov, Zico Kolter, Katherine
Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, and Felix Berkenkamp (eds.), Proceedings of the 41st
International Conference on Machine Learning, volume 235 of Proceedings of Machine Learning Research,
pp. 32990–33006. PMLR, 21–27 Jul 2024.

Donghao Luo and Xue Wang. DeformableTST: Transformer for time series forecasting without over-reliance
on patching. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024.
URL https://openreview.net/forum?id=B1Iq1EOiVU.

MosaicML. Introducing mpt-7b: A new standard for open-source, commercially usable llms, 2023. URL
www.mosaicml.com/blog/mpt-7b. Accessed: 2023-05-05.

Yuqi Nie, Nam H Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 64 words:
Long-term forecasting with transformers. ICLR, 2023.

OpenAI. OpenAI: Introducing ChatGPT, 2022. URL https://openai.com/blog/chatgpt.

Adam Paszke, S. Gross, Francisco Massa, A. Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Z. Lin,
N. Gimelshein, L. Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch:
An imperative style, high-performance deep learning library. NeurIPS, 2019.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Guo Qin, Haoran Zhang, Yong Liu, Yun-Zhong Qiu, Jianmin
Wang, and Mingsheng Long. Timexer: Empowering transformers for time series forecasting with exogenous
variables. In The Thirty-eighth Annual Conference on Neural Information Processing Systems, 2024. URL
https://openreview.net/forum?id=INAeUQ04lT.

Bichen Wu, Chenfeng Xu, Xiaoliang Dai, Alvin Wan, Peizhao Zhang, Zhicheng Yan, Masayoshi Tomizuka,
Joseph Gonzalez, Kurt Keutzer, and Peter Vajda. Visual transformers: Token-based image representation
and processing for computer vision. arXiv preprint arXiv:2006.03677, 2020.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers with
Auto-Correlation for long-term series forecasting. NeurIPS, 2021.

13

Published in Transactions on Machine Learning Research (06/2025)

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet: Temporal
2d-variation modeling for general time series analysis. ICLR, 2023.

Guoqi Yu, Jing Zou, Xiaowei Hu, Angelica I Aviles-Rivero, Jing Qin, and Shujun Wang. Revitalizing
multivariate time series forecasting: Learnable decomposition with inter-series dependencies and intra-series
variations modeling. arXiv preprint arXiv:2402.12694, 2024.

Ailing Zeng, Muxi Chen, Lei Zhang, and Qiang Xu. Are transformers effective for time series forecasting?
AAAI, 2023.

Jiawen Zhang, Shun Zheng, Xumeng Wen, Xiaofang Zhou, Jiang Bian, and Jia Li. ElasTST: Towards robust
varied-horizon forecasting with elastic time-series transformer. In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?id=ucXUtMPWhv.

Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multi-
variate time series forecasting. ICLR, 2023.

Lifan Zhao and Yanyan Shen. Rethinking channel dependence for multivariate time series forecasting:
Learning from leading indicators. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=JiTVtCUOpS.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. FEDformer: Frequency enhanced
decomposed transformer for long-term series forecasting. ICML, 2022.

A Diverse Cross-Time and Cross-Variate Dependencies

We further illustrate the cross-time cross-variate correlations on Exchange, Weather, ECL datasets in Figure 10.
We can see that correlation patterns for different datasets are quite different. Additionally, even for a specific
dataset with different variate pairs, the correlations of cross-variate patch pairs are also very diverse. For
example, for Exchange, with variate pairs (1,3), the patches at the same time step are usually strongly
correlated. In contrast, with variate pairs (3,4), the patches can sometimes even have zero correlation
coefficient. Moreover, in Figure 10, for a specific dataset with a specific pair of variates (i.e., in a subfigure),
we have similar observations as we discussed in Sec 3 that there is no consistent correlation pattern for
different patch pairs of two variates and inter-variate dependencies are at the fine-grained patch level. These
examples further demonstrate the ubiquity and the diversity of these cross-time cross-variate correlations
in real data. This also justifies the motivation of this paper – propose a better method to explicitly model
cross-time and cross-variate (intra-variate and inter-variate) dependencies.

B Discussion on Computational Complexity

Moreover, we provide the computational complexity analysis of different models. As Feedforward networks in
different models have similar complexities, we mainly analyze the computational complexity of the attention
mechanism. For UniTST, the designed attention mechanism uses cross-attention with dispatchers to reduce
the complexity. It results in the complexity as O(kNp) where k is the number of dispatchers, N is the number
of variates, and p is the number of patches within a variate. For iTransformer, it utilizes self-attention on
the variate dimension, which leads to the complexity as O(N2). Additionally, PatchTST uses self-attention
on the time dimension and treats each variate independently. As a result, the complexity is O(Np2). We
can see that different models have different advantages in different scenarios. For example, when handling
data with a long time series but with fewer variates, iTransformer should be faster than others as it doesn’t
depend on p. Comparing UniTST and PatchTST, when p is relatively small, then the complexity should be
similar (we set k as 10 in our experiments). UniTST may be slower than iTransformer when the length of the
time series and the number of variates are both extremely large. For this extreme scenario, we leave further
investigation for future work.

14

Published in Transactions on Machine Learning Research (06/2025)

0 5 10 15 20
0

5

10

15

20

Exchange - vars (1,3)

0.2

0.4

0.6

0.8

(a)

0 5 10 15 20
0

5

10

15

20

Weather - vars (0,10)

0.2

0.4

0.6

0.8

(b)

0 5 10 15 20
0

5

10

15

20

Electricity - vars (50,100)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(c)
0 5 10 15 20

0

5

10

15

20

Exchange - vars (3,4)

0.0

0.2

0.4

0.6

0.8

(d)

0 5 10 15 20
0

5

10

15

20

Weather - vars (0,20)

0.2

0.4

0.6

0.8

(e)

0 5 10 15 20
0

5

10

15

20

Electricity - vars (50,200)

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

(f)

Figure 10: Diverse cross-time cross-variate dependencies commonly exist in real-world data.

C More on Experiments

C.1 Datasets

Following Liu et al. (2024), we conduct experiments on 13 real-world datasets to evaluate the performance of
our model including (1) a group of datasets – ETT (Li et al., 2021) contains 7 factors of electricity transformer
from July 2016 to July 2018. There are four datasets where ETTm1 and ETTm2 are recorded every 15
minutes, and ETTh1 and ETTh2 are recorded every hour; (2) Exchange (Wu et al., 2021) contains daily
exchange rates from 8 countries from 1990 to 2016. (3) Weather (Wu et al., 2021) collects the every 10-min
data of 21 meteorological factors from the Weather Station of the Max Planck Biogeochemistry Institute in
2020. (4) ECL (Wu et al., 2021) records the electricity consumption data from 321 clients every hour. (5)
Traffic (Wu et al., 2021) collects hourly road occupancy rates measured by 862 sensors of San Francisco Bay
area freeways from January 2015 to December 2016. (6) Solar-Energy (Lai et al., 2018) records the solar
power production of 137 PV plants in 2006, which are sampled every 10 minutes. (7) a group of datasets –
PEMS records the public traffic network data in California and collected by 5-minute windows. We use the
same four public datasets (PEMS03, PEMS04, PEMS07, PEMS08) adopted in SCINet (Liu et al., 2022a)
and iTransformer (Liu et al., 2024). We provide the detailed dataset statistics and descriptions in Table 5.

We also use the same train-validation-test splits as in TimesNet (Wu et al., 2023) and iTransformer (Liu
et al., 2024). For the forecasting setting, following iTansformer (Liu et al., 2024), we use the fixed lookback
length as 96 in all datasets. In terms of the prediction lengths, we use the varied prediction lengths in {96,
192, 336, 720} for ETT, Exchange, Weather, ECL, Traffic, Solar-Energy. For PEMS datasets, we use the
prediction lengths as {12, 24, 48, 96} for short-term forecasting.

15

Published in Transactions on Machine Learning Research (06/2025)

Table 5: Detailed dataset statistics. # variates denotes the variate number of each dataset. Dataset Size
denotes the total number of time points in (Train, Validation, Test) split respectively. Frequency indicates
the sampling interval of data points.

Dataset Name # variates Prediction Length Dataset Size Frequency Information
ETTh1, ETTh2 7 {96, 192, 336, 720} (8545, 2881, 2881) Hourly Electricity

ETTm1, ETTm2 7 {96, 192, 336, 720} (34465, 11521, 11521) 15min Electricity

Exchange 8 {96, 192, 336, 720} (5120, 665, 1422) Daily Economy

Weather 21 {96, 192, 336, 720} (36792, 5271, 10540) 10min Weather

ECL 321 {96, 192, 336, 720} (18317, 2633, 5261) Hourly Electricity

Traffic 862 {96, 192, 336, 720} (12185, 1757, 3509) Hourly Transportation

Solar-Energy 137 {96, 192, 336, 720} (36601, 5161, 10417) 10min Energy

PEMS03 358 {12, 24, 48, 96} (15617, 5135, 5135) 5min Transportation

PEMS04 307 {12, 24, 48, 96} (10172, 3375, 3375) 5min Transportation

PEMS07 883 {12, 24, 48, 96} (16911, 5622, 5622) 5min Transportation

PEMS08 170 {12, 24, 48, 96} (10690, 3548, 3548) 5min Transportation

C.2 Experimental Setting

We conduct all the experiments with PyTorch (Paszke et al., 2019) and utilize a single NVIDIA A100 GPU
with 40GB memory. We describe the hyperparameter choices used in our experiments in the following. For
the optimizer, we use ADAM (Kingma & Ba, 2015) with the learning rate in {10−3, 5 × 10−4, 10−4}. The
batch sizes are selected from {16, 32, 64, 128} depending on the dataset sizes. The maximum number of
training epochs is set to 100 as in Nie et al. (2023). Meanwhile, we also use the early stop strategy to stop
the training when the loss does not decrease in 10 epochs. The number of layers of our Transformer blocks is
selected from {2,3,4}. The hidden dimension of D is set from {128, 256, 512}.

For the experimental results of our model, we report the averaged results with 5 runs with different seeds.
For the results of previous models, we reuse the results from iTransformer paper (Liu et al., 2024) as we are
using the same experimental setting.

C.3 Additional Experimental Results

C.3.1 Full Result of Forecasing

Due to the space limitation, we only display the averaged results over 4 prediction lengths for datasets on
long-term forecasting. Here, we provide the full results of long-term forecasting in Table 6. In summary, our
model achieves the best results on 24 and 26 out of 36 settings with different prediction lengths among other
baselines.

C.3.2 The correlation maps of multivariate relationship on different datasets

In this section, we provide additional visualizations on the correlationship map of multivariate relationship for
ETTm1 dataset in Figure 11. Similar to Figure 9 for Solar-Energy, it also shows that the variate dependencies
are well-captured by UniTST.

16

Published in Transactions on Machine Learning Research (06/2025)

Table 6: Full results of the long-term forecasting task. We compare extensive competitive models under
different prediction lengths following the setting of TimesNet (2023). The input sequence length is set to 96
for all baselines. Avg means the average results from all four prediction lengths.

Models UniTST SOFT iTransformer RLinear PatchTST Crossformer TiDE TimesNet DLinear SCINet FEDformer Stationary Autoformer
(Ours) (2024) (2023) (2023) (2023) (2023) (2023) (2023) (2023) (2022a) (2022) (2022b) (2021)

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T

T
m

1 96 0.313 0.352 0.325 0.361 0.334 0.368 0.355 0.376 0.329 0.367 0.404 0.426 0.364 0.387 0.338 0.375 0.345 0.372 0.418 0.438 0.379 0.419 0.386 0.398 0.505 0.475
192 0.359 0.380 0.375 0.389 0.377 0.391 0.391 0.392 0.367 0.385 0.450 0.451 0.398 0.404 0.374 0.387 0.380 0.389 0.439 0.450 0.426 0.441 0.459 0.444 0.553 0.496
336 0.395 0.404 0.405 0.412 0.426 0.420 0.424 0.415 0.399 0.410 0.532 0.515 0.428 0.425 0.410 0.411 0.413 0.413 0.490 0.485 0.445 0.459 0.495 0.464 0.621 0.537
720 0.449 0.440 0.466 0.447 0.491 0.459 0.487 0.450 0.454 0.439 0.666 0.589 0.487 0.461 0.478 0.450 0.474 0.453 0.595 0.550 0.543 0.490 0.585 0.516 0.671 0.561

Avg 0.379 0.394 0.393 0.403 0.407 0.410 0.414 0.407 0.387 0.400 0.513 0.496 0.419 0.419 0.400 0.406 0.403 0.407 0.485 0.481 0.448 0.452 0.481 0.456 0.588 0.517

E
T

T
m

2 96 0.178 0.262 0.180 0.261 0.180 0.264 0.182 0.265 0.175 0.259 0.287 0.366 0.207 0.305 0.187 0.267 0.193 0.292 0.286 0.377 0.203 0.287 0.192 0.274 0.255 0.339
192 0.243 0.304 0.246 0.306 0.250 0.309 0.246 0.304 0.241 0.302 0.414 0.492 0.290 0.364 0.249 0.309 0.284 0.362 0.399 0.445 0.269 0.328 0.280 0.339 0.281 0.340
336 0.302 0.341 0.319 0.352 0.311 0.348 0.307 0.342 0.305 0.343 0.597 0.542 0.377 0.422 0.321 0.351 0.369 0.427 0.637 0.591 0.325 0.366 0.334 0.361 0.339 0.372
720 0.398 0.395 0.405 0.401 0.412 0.407 0.407 0.398 0.402 0.400 1.730 1.042 0.558 0.524 0.408 0.403 0.554 0.522 0.960 0.735 0.421 0.415 0.417 0.413 0.433 0.432

Avg 0.280 0.326 0.287 0.330 0.288 0.332 0.286 0.327 0.281 0.326 0.757 0.610 0.358 0.404 0.291 0.333 0.350 0.401 0.571 0.537 0.305 0.349 0.306 0.347 0.327 0.371

E
T

T
h1

96 0.383 0.398 0.381 0.399 0.386 0.405 0.386 0.395 0.414 0.419 0.423 0.448 0.479 0.464 0.384 0.402 0.386 0.400 0.654 0.599 0.376 0.419 0.513 0.491 0.449 0.459
192 0.434 0.426 0.435 0.431 0.441 0.436 0.437 0.424 0.460 0.445 0.471 0.474 0.525 0.492 0.436 0.429 0.437 0.432 0.719 0.631 0.420 0.448 0.534 0.504 0.500 0.482
336 0.471 0.445 0.480 0.452 0.487 0.458 0.479 0.446 0.501 0.466 0.570 0.546 0.565 0.515 0.491 0.469 0.481 0.459 0.778 0.659 0.459 0.465 0.588 0.535 0.521 0.496
720 0.479 0.469 0.499 0.488 0.503 0.491 0.481 0.470 0.500 0.488 0.653 0.621 0.594 0.558 0.521 0.500 0.519 0.516 0.836 0.699 0.506 0.507 0.643 0.616 0.514 0.512

Avg 0.442 0.435 0.449 0.442 0.454 0.447 0.446 0.434 0.469 0.454 0.529 0.522 0.541 0.507 0.458 0.450 0.456 0.452 0.747 0.647 0.440 0.460 0.570 0.537 0.496 0.487

E
T

T
h2

96 0.292 0.342 0.297 0.347 0.297 0.349 0.288 0.338 0.302 0.348 0.745 0.584 0.400 0.440 0.340 0.374 0.333 0.387 0.707 0.621 0.358 0.397 0.476 0.458 0.346 0.388
192 0.370 0.390 0.373 0.394 0.380 0.400 0.374 0.390 0.388 0.400 0.877 0.656 0.528 0.509 0.402 0.414 0.477 0.476 0.860 0.689 0.429 0.439 0.512 0.493 0.456 0.452
336 0.382 0.408 0.410 0.426 0.428 0.432 0.415 0.426 0.426 0.433 1.043 0.731 0.643 0.571 0.452 0.452 0.594 0.541 1.000 0.744 0.496 0.487 0.552 0.551 0.482 0.486
720 0.409 0.431 0.411 0.433 0.427 0.445 0.420 0.440 0.431 0.446 1.104 0.763 0.874 0.679 0.462 0.468 0.831 0.657 1.249 0.838 0.463 0.474 0.562 0.560 0.515 0.511

Avg 0.363 0.393 0.373 0.400 0.383 0.407 0.374 0.398 0.387 0.407 0.942 0.684 0.611 0.550 0.414 0.427 0.559 0.515 0.954 0.723 0.437 0.449 0.526 0.516 0.450 0.459

E
C

L

96 0.139 0.235 0.143 0.233 0.148 0.240 0.201 0.281 0.181 0.270 0.219 0.314 0.237 0.329 0.168 0.272 0.197 0.282 0.247 0.345 0.193 0.308 0.169 0.273 0.201 0.317
192 0.155 0.250 0.158 0.248 0.162 0.253 0.201 0.283 0.188 0.274 0.231 0.322 0.236 0.330 0.184 0.289 0.196 0.285 0.257 0.355 0.201 0.315 0.182 0.286 0.222 0.334
336 0.170 0.268 0.178 0.269 0.178 0.269 0.215 0.298 0.204 0.293 0.246 0.337 0.249 0.344 0.198 0.300 0.209 0.301 0.269 0.369 0.214 0.329 0.200 0.304 0.231 0.338
720 0.198 0.293 0.218 0.305 0.225 0.317 0.257 0.331 0.246 0.324 0.280 0.363 0.284 0.373 0.220 0.320 0.245 0.333 0.299 0.390 0.246 0.355 0.222 0.321 0.254 0.361

Avg 0.166 0.262 0.174 0.264 0.178 0.270 0.219 0.298 0.205 0.290 0.244 0.334 0.251 0.344 0.192 0.295 0.212 0.300 0.268 0.365 0.214 0.327 0.193 0.296 0.227 0.338

E
xc

ha
ng

e 96 0.080 0.198 - - 0.086 0.206 0.093 0.217 0.088 0.205 0.256 0.367 0.094 0.218 0.107 0.234 0.088 0.218 0.267 0.396 0.148 0.278 0.111 0.237 0.197 0.323
192 0.173 0.296 - - 0.177 0.299 0.184 0.307 0.176 0.299 0.470 0.509 0.184 0.307 0.226 0.344 0.176 0.315 0.351 0.459 0.271 0.315 0.219 0.335 0.300 0.369
336 0.314 0.406 - - 0.331 0.417 0.351 0.432 0.301 0.397 1.268 0.883 0.349 0.431 0.367 0.448 0.313 0.427 1.324 0.853 0.460 0.427 0.421 0.476 0.509 0.524
720 0.838 0.693 - - 0.847 0.691 0.886 0.714 0.901 0.714 1.767 1.068 0.852 0.698 0.964 0.746 0.839 0.695 1.058 0.797 1.195 0.695 1.092 0.769 1.447 0.941

Avg 0.351 0.398 - - 0.360 0.403 0.378 0.417 0.367 0.404 0.940 0.707 0.370 0.413 0.416 0.443 0.354 0.414 0.750 0.626 0.519 0.429 0.461 0.454 0.613 0.539

Tr
affi

c

96 0.402 0.255 0.376 0.251 0.395 0.268 0.649 0.389 0.462 0.295 0.522 0.290 0.805 0.493 0.593 0.321 0.650 0.396 0.788 0.499 0.587 0.366 0.612 0.338 0.613 0.388
192 0.426 0.268 0.398 0.261 0.417 0.276 0.601 0.366 0.466 0.296 0.530 0.293 0.756 0.474 0.617 0.336 0.598 0.370 0.789 0.505 0.604 0.373 0.613 0.340 0.616 0.382
336 0.449 0.275 0.415 0.269 0.433 0.283 0.609 0.369 0.482 0.304 0.558 0.305 0.762 0.477 0.629 0.336 0.605 0.373 0.797 0.508 0.621 0.383 0.618 0.328 0.622 0.337
720 0.489 0.297 0.447 0.287 0.467 0.302 0.647 0.387 0.514 0.322 0.589 0.328 0.719 0.449 0.640 0.350 0.645 0.394 0.841 0.523 0.626 0.382 0.653 0.355 0.660 0.408

Avg 0.441 0.274 0.409 0.267 0.428 0.282 0.626 0.378 0.481 0.304 0.550 0.304 0.760 0.473 0.620 0.336 0.625 0.383 0.804 0.509 0.610 0.376 0.624 0.340 0.628 0.379

W
ea

th
er

96 0.156 0.202 0.166 0.208 0.174 0.214 0.192 0.232 0.177 0.218 0.158 0.230 0.202 0.261 0.172 0.220 0.196 0.255 0.221 0.306 0.217 0.296 0.173 0.223 0.266 0.336
192 0.207 0.250 0.217 0.253 0.221 0.254 0.240 0.271 0.225 0.259 0.206 0.277 0.242 0.298 0.219 0.261 0.237 0.296 0.261 0.340 0.276 0.336 0.245 0.285 0.307 0.367
336 0.263 0.292 0.282 0.300 0.278 0.296 0.292 0.307 0.278 0.297 0.272 0.335 0.287 0.335 0.280 0.306 0.283 0.335 0.309 0.378 0.339 0.380 0.321 0.338 0.359 0.395
720 0.340 0.341 0.356 0.351 0.358 0.347 0.364 0.353 0.354 0.348 0.398 0.418 0.351 0.386 0.365 0.359 0.345 0.381 0.377 0.427 0.403 0.428 0.414 0.410 0.419 0.428

Avg 0.241 0.271 0.255 0.278 0.258 0.278 0.272 0.291 0.259 0.281 0.259 0.315 0.271 0.320 0.259 0.287 0.265 0.317 0.292 0.363 0.309 0.360 0.288 0.314 0.338 0.382

So
la

r-
E

ne
rg

y 96 0.189 0.228 0.200 0.230 0.203 0.237 0.322 0.339 0.234 0.286 0.310 0.331 0.312 0.399 0.250 0.292 0.290 0.378 0.237 0.344 0.242 0.342 0.215 0.249 0.884 0.711
192 0.222 0.253 0.229 0.253 0.233 0.261 0.359 0.356 0.267 0.310 0.734 0.725 0.339 0.416 0.296 0.318 0.320 0.398 0.280 0.380 0.285 0.380 0.254 0.272 0.834 0.692
336 0.242 0.275 0.243 0.269 0.248 0.273 0.397 0.369 0.290 0.315 0.750 0.735 0.368 0.430 0.319 0.330 0.353 0.415 0.304 0.389 0.282 0.376 0.290 0.296 0.941 0.723
720 0.247 0.282 0.245 0.272 0.249 0.275 0.397 0.356 0.289 0.317 0.769 0.765 0.370 0.425 0.338 0.337 0.356 0.413 0.308 0.388 0.357 0.427 0.285 0.295 0.882 0.717

Avg 0.225 0.260 0.229 0.256 0.233 0.262 0.369 0.356 0.270 0.307 0.641 0.639 0.347 0.417 0.301 0.319 0.330 0.401 0.282 0.375 0.291 0.381 0.261 0.381 0.885 0.711

1st Count 30 27 6 11 2 1 1 5 3 5 1 0 0 0 0 0 0 0 0 0 4 0 0 0

17

Published in Transactions on Machine Learning Research (06/2025)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlations - Ground Truth

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlations - UniTST's predictions

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlations - iTransformer's predictions

0.0

0.2

0.4

0.6

0.8

1.0

(a)

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlations - Ground Truth

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlations - UniTST's predictions

0 1 2 3 4 5 6

0

1

2

3

4

5

6

Correlations - iTransformer's predictions

0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 11: The correlation maps of multivariate relationship with different models on ETTm1. The x-axis
and y-axis both represent the variate index. The darker color indicates the stronger correlation.

18

	Introduction
	Related Work
	Preliminary and Motivation
	Methodology
	Model Structure Overview
	Discussion and Comparison with Previous Models

	Experiments
	Forecasting Results
	Model Analysis

	Case Studies
	Visualization of Multivariate Correlations

	Conclusion
	Diverse Cross-Time and Cross-Variate Dependencies
	Discussion on Computational Complexity
	More on Experiments
	Datasets
	Experimental Setting
	Additional Experimental Results
	Full Result of Forecasing
	The correlation maps of multivariate relationship on different datasets

