Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting

Nan Wang¹, Yuantao Chen¹, Lixing Xiao¹, Weiqing Xiao¹, Bohan Li^{3,4} Zhaoxi Chen¹, Chongjie Ye¹, Shaocong Xu¹, Saining Zhang¹, Ziyang Yan¹ Pierre Merriaux⁶, Lei Lei⁶, Tianfan Xue⁵, Hao Zhao^{1,2‡}

¹BAAI; ²AIR, THU; ³SJTU; ⁴EIT(Ningbo); ⁵CUHK; ⁶LeddarTech

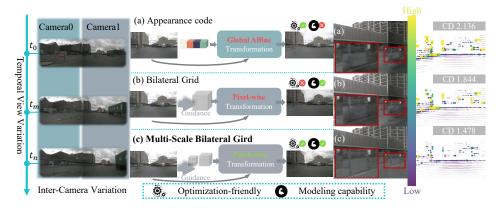


Figure 1: (a) Appearance codes rely on global affine transformations but have limited modeling capability. (b) Bilateral grids perform pixel-wise transformations, improving photometric consistency but are challenging to optimize. (c) The proposed multi-scale bilateral grid unifies appearance codes and bilateral grids, enabling patch-wise transformations.

Abstract

Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely on photometric consistency to produce high-quality reconstructions. However, in real-world driving scenarios, it is challenging to guarantee perfect photometric consistency in acquired images. Appearance codes have been widely used to address this issue, but their modeling capability is limited, as a single code is applied to the entire image. Recently, the bilateral grid was introduced to perform pixel-wise color mapping, but it is difficult to optimize and constrain effectively. In this paper, we propose a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids. We demonstrate that this approach significantly improves geometric accuracy in dynamic, decoupled autonomous driving scene reconstruction, outperforming both appearance codes and bilateral grids. This is crucial for autonomous driving, where accurate geometry is important for obstacle avoidance and control. Our method shows strong results across four datasets: Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the improvement in geometry is driven by the multi-scale bilateral grid, which effectively reduces floaters caused by photometric inconsistency. Our code is open-sourced at https://bigcileng.github.io/bilateral-driving.

[†]bigcileng@gmail.com

[‡]Corresponding author: zhaohao@air.tsinghua.edu.cn

1 Introduction

Neural rendering techniques, such as NeRFs [24, 37, 54, 20, 55] and Gaussian Splatting (GS) [14, 2, 6, 57, 29, 53, 28], have demonstrated significant potential in producing high-quality 3D reconstructions by leveraging photometric consistency. However, ensuring photometric consistency across images in real-world scenarios remains a challenge, as lighting conditions, viewpoints, and camera settings can vary considerably [23, 56, 15, 36, 8]. In autonomous driving applications [46, 41, 35, 5, 17, 13, 34], these challenges are amplified due to the presence of multiple cameras capturing the same scene from different angles over time. As illustrated in the left half of Teaser. 1, we observe that these variations—whether temporal (across different time steps) or inter-camera (across different viewpoints)—can introduce significant discrepancies in image appearance. These inconsistencies pose difficulties in accurately reconstructing dynamic driving environments.

To address this issue, appearance codes [35, 23, 5] have been introduced to encode per-image information and assist in correcting the photometric discrepancies. These codes, while effective, have limitations in modeling capability since they apply a single transformation across the entire image, often neglecting local variations that may occur in complex scenes. For example, in dynamic scenes, such as those encountered in autonomous driving environments, lighting and viewpoints can change across different camera angles and time frames. As shown in the right top of Teaser. 1, a global affine transformation based on a single appearance code may not be sufficient to handle such variations (In Teaser. 1 NuScenes (a), the fence is blurred).

Recent advancements [38, 10] have introduced bilateral grids to perform pixel-wise transformations, enabling improved photometric consistency by allowing more localized adjustments. However, these grids face significant challenges in optimization, as they require complex constraints to avoid instability during training (As shown in Teaser. 1 (b), bilateral grids fail to effectively optimize the reconstruction of large, complex scenes.). In this work, we propose a novel solution—a multiscale bilateral grid—integrating the strengths of appearance codes and bilateral grids. As shown in Teaser. 1, this new approach allows for patch-wise transformations. Interestingly, in extreme cases, the multi-scale bilateral grid naturally converges to either the bilateral grid or appearance code, depending on the scale. At the finest scale, the multi-scale grid behaves like a traditional bilateral grid, performing pixel-wise transformations to adjust for local variations. In contrast, at the coarsest scale, it effectively reverts to a more global transformation, resembling the behavior of appearance codes. This flexible, scale-dependent approach offers the best of both worlds, providing localized fine-tuning where necessary, while maintaining global consistency when appropriate.

We demonstrate that the multi-scale bilateral grid significantly enhances the geometric accuracy of dynamic, decoupled driving scenes, which is essential for autonomous driving applications where precise geometry plays a crucial role in tasks like obstacle avoidance and path planning. This is evidenced by our evaluation on multiple widely used datasets, including Waymo [30], NuScenes [1], Argoverse [40], and PandaSet [42]. The corresponding Chamfer Distance (CD) values, displayed in the Teaser. 1, highlight a marked reduction in error and improvement in reconstruction quality. Additionally, our method reduces photometric inconsistency, mitigating the appearance of floaters and enhancing the overall realism of the scene.

The contributions of this paper are as follows: **First**, we introduce a novel multi-scale bilateral grid that unifies appearance codes and bilateral grids, transitioning to either of the two paradigms in extreme cases, thus enhancing both modeling capability and optimization efficiency. **Second**, we show that by addressing photometric inconsistencies, it improves the geometric accuracy of dynamic, decoupled driving scene reconstructions. **Third**, we provide extensive benchmarking across four widely used datasets—Waymo, NuScenes, Argoverse, and PandaSet—where our method outperforms previous approaches, showcasing notable improvements in both qualitative and quantitative results.

2 Related Works

2.1 Bilateral Grids and Appearance Codes

Recent advancements in bilateral grids and appearance codes have significantly influenced techniques for addressing photometric inconsistencies, which are particularly critical in dynamic environments such as autonomous driving. The bilateral grids, first introduced for real-time edge-aware image processing [4], enable efficient manipulation of spatial and intensity variations, forming the foundation

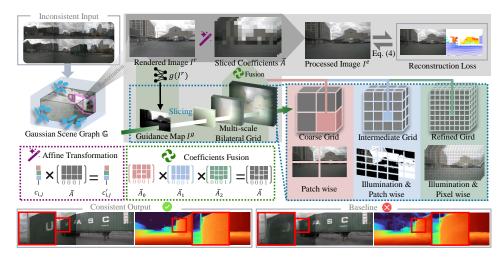


Figure 2: **Overview of our method.** We unify appearance codes with multi-scale bilateral grids. Initially, a coarse rendering is obtained from a Gaussian scene graph. This rendered image is then processed by our multi-scale bilateral grids to perform detailed per-pixel color modeling, guided by a luminance-based map through slice and fusion operations.

for many modern techniques [10, 22, 3, 44, 58]. Extensions like deep bilateral learning [10] further enhance this framework by predicting local affine transformations in bilateral space, achieving real-time image enhancement on resource-constrained devices. Similarly, bilateral-guided upsampling [3] and cost volume refinement [44] have proven effective in tasks ranging from high-dynamic-range imaging to stereo matching, demonstrating the versatility of bilateral representations. In the context of neural rendering, methods such as NeRF [31, 12, 23] and Gaussian Splatting (GS) [56, 15] have achieved groundbreaking results in novel view synthesis but photometric inconsistency caused by varying illumination or transient occluders [23, 56] remains a challenge. Techniques like bilateral guided radiance field processing [38] address these issues by disentangling camera-specific enhancements and reapplying them consistently in 3D space. WildGaussians [15] integrates DINO-based appearance codes into 3D GS to robustly handle occlusions and dynamic lighting in uncontrolled scenes. Cross-Ray NeRF [52] employs cross-ray feature covariance and grid-based transient masking to harmonize appearance variations and suppress occlusions in unconstrained image collections. Despite these strides, existing approaches often struggle to balance global consistency with localized adaptability. For instance, while appearance codes provide global adjustments, they lack the granularity to model fine-grained variations [7]. Conversely, bilateral grids excel at pixel-wise transformations but are challenging to optimize effectively [27]. To address this issue, we introduce a multi-scale bilateral grid which unifies bilateral grids and appearance codes, facilitating high-quality dynamic autonomous driving scene reconstruction with enhanced modeling capability and optimization efficiency.

2.2 Autonomous Driving Simulation

Autonomous driving simulation has emerged as a critical tool for developing perception, planning, and control systems by generating diverse, realistic driving scenarios [41, 26, 45, 19, 33, 17, 47, 9]. Recent advancements focus on photorealistic rendering, dynamic scene modeling, and multi-modal sensor simulation [41, 16, 60, 35, 45, 51, 50, 43]. For instance, MARS [41] employs a modular NeRF-based framework to independently control static and dynamic scene elements, while Street Gaussian [45] achieves real-time urban scene rendering using explicit 3D Gaussian representations. DrivingGaussian [60] enhances dynamic scene reconstruction via composite Gaussian Splatting, ensuring occlusion accuracy and multi-camera consistency. NeuRAD [35] integrates sensor-specific effects (*e.g.*, rolling shutter, LiDAR beam divergence) to improve novel view synthesis. Holistic scene understanding and editing have also seen progress. HUGS [59] combines static and dynamic 3D Gaussians for real-time semantic parsing. ChatSim [39] enables language-driven scene editing with external asset integration. LiDAR data integration has advanced through methods like LiDAR-NeRF [32], which uses structural regularization for low-texture regions. HO-Gaussian [18] merges grid-based volumes with Gaussian Splatting to eliminate Structure-from-Motion dependencies.

Despite progress, gaps persist between simulated and real-world data [19, 33, 49, 48]. AlignMiF [33] addresses LiDAR-camera misalignments via geometry-aligned implicit fields, while RodUS [25] decomposes urban scenes into static and dynamic components using 4D semantics to reduce artifacts. Innovations in large-scale generation include InfiniCube [21], which leverages sparse-voxel representations for unbounded dynamic scenes, and Omnire [5], which reconstructs diverse dynamic objects (*e.g.*, pedestrians) for human-vehicle interaction simulations. Furthermore, recent works like GaussianPro [6] and SplatAD [11] explore to refine 3D GS for real-time rendering of dynamic scenes. GaussianPro [6] introduces progressive propagation for texture-less surfaces, and SplatAD [11] models sensor-specific phenomena (*e.g.*, rolling shutter, LiDAR intensity). In this work, we aim to reconstruct high-quality driving scenes by unifying appearance codes and bilateral grids to enhance photometric consistency and modeling capability.

3 Methodology

3.1 Problem Formulation

We aim to reconstruct a 3D scene representation \mathbb{G} from multi-view images and LiDAR depth maps, commonly available in autonomous driving datasets. Given a set of images $\{I_{c,t}\}$ and corresponding depths $\{D_{c,t}\}$ captured by N cameras over T time steps, we formulate our objective as minimizing the discrepancy between rendered and observed images and depths:

$$\min_{\mathbb{G}} \sum_{c,t} (\|I_{c,t}^r - I_{c,t}\|_2^2 + \lambda_D \|D_{c,t}^r - D_{c,t}\|_2^2) , \qquad (1)$$

where $I_{c,t}^r$ and $D_{c,t}^r$ are the rendered appearance and geometry of the scene $\mathbb G$ from camera c at time t, and λ_D is a weight balancing the depth term.

However, dynamic driving scenes and varying camera properties cause inconsistent appearances, leading to geometric and texture artifacts. To address inconsistency, we decompose each image $I_{c,t}$ into consistent $C_{c,t}$ (e.g., intrinsic scene colors and constant sensor adjustments like normalization exposure), and non-consistent $\mathcal{N}_{c,t}$ (e.g., components-varying lighting conditions, different camera settings and diverse image ISP effects):

$$I_{c,t} = \mathcal{C}_{c,t} + \mathcal{N}_{c,t} \quad , \tag{2}$$

We model $\mathcal{N}_{c,t}$ as a non-linear transformation $\mathcal{F}(\mathcal{C}_{c,t})$. Substituting into Eq. (2):

$$I_{c,t} = \mathcal{C}_{c,t} + \mathcal{F}(\mathcal{C}_{c,t}) , \qquad (3)$$

Let $\mathcal{E}(\mathcal{C}_{c,t}) = \mathcal{C}_{c,t} + \mathcal{F}(\mathcal{C}_{c,t})$, we can reformulate the optimization objective in Eq. (1) as:

$$\min_{\mathbb{G}} \sum_{c,t} (\|\mathcal{E}(\mathcal{C}_{c,t}^r) - I_{c,t}\|_2^2 + \lambda_D \|D_{c,t}^r - D_{c,t}\|_2^2) , \qquad (4)$$

This reformulation links photometric and geometric consistency optimization within a joint objective, guiding $\mathcal{C}^r_{c,t}$ adjustments by geometric constraints $(D^r_{c,t})$. This mitigates texture-geometry ambiguities (e.g., shadows on road surfaces misinterpretable as geometry changes). $\mathcal{F}(\mathcal{C}_{c,t})$ models transient appearance, while $\mathcal{C}^r_{c,t}$ enforces consistent scene properties. Experiments (Sec. 4, Tab. 1) show this joint optimization reduces both photometric error and geometric drift in comparison to baselines.

3.2 Gaussian Splatting for Autonomous Driving Environments

Following prior methodologies [5, 35], we represent autonomous driving environments using a hybrid scene graph, decomposing the scene into sky, background, and dynamic object models. Each dynamic object is represented by a 3D model in canonical space and transformed to the scene with an associated sequence of SE(3) transformations. We derive the transformation matrixes from existing object detection pipelines or ground-truth annotations.

For the sky, we use an environment map to model sky color based on viewing direction, while static background is represented as a set of semi-transparent 3D Gaussians. Each Gaussian is characterized by a learnable opacity parameter $o \in (0,1)$, a mean position $\mu \in \mathbb{R}^3$, and an anisotropic covariance matrix $\Sigma \in \mathbb{R}^{3 \times 3}$ which is parameterized by a scale vector $S \in \mathbb{R}^3$ and a rotation quaternion $q \in \mathbb{R}^4$. Additionally, Spherical harmonics coefficients $c \in \mathbb{R}^F$ are used to model appearance.

For the moving object models, we further distinguish between non-deformable (e.g., vehicles) and deformable objects (e.g., pedestrians). Non-deformable objects $\{\mathbb{G}_i^N|i\in\{1,\ldots,n_n\}\}$ are optimized in their local coordinate space and transformed into the global world space via their pose T:

$$\mathbb{G}_i^N = T \otimes \hat{\mathbb{G}}_i^N , \qquad (5)$$

For deformable objects $\{\mathbb{G}_i^D|i\in\{1,\ldots,n_d\}\}$, we employ a deformation network \mathcal{F}_{Φ} (parameterized by Φ) to adapt the Gaussian representation based on latent variable e and time t:

$$\mathbb{G}_i^D = T \otimes \left(\hat{\mathbb{G}}_i^D \oplus \mathcal{F}_{\Phi}(\hat{\mathbb{G}}_i^D, e, t) \right) . \tag{6}$$

3.3 Multi-Scale Bilateral Grid for Appearance Enhancement

Solving the photometric correction problem formulated in Eq. (4) fundamentally depends on the ability to effectively model the complex and spatially-varying photometric transformations present in real-world driving scenes. The function $\mathcal{E}(\cdot)$ in our formulation represents this crucial photometric enhancement process. To address this, we propose the Multi-Scale Bilateral Grid architecture, detailed in this section, as a novel grounded solution for approximating $\mathcal{E}(\cdot)$ and achieving high-quality, consistent appearance enhancement.

3.3.1 Multi-Scale Bilateral Grid Architecture

To address limitations of existing methods in handling diverse photometric variations in driving scenes, we propose a multi-scale bilateral grid framework. Our framework achieves this unification by employing a hierarchical pyramid of bilateral grids, organized across multiple scales. This multi-scale design is directly inspired by the nature of photometric inconsistencies in real-world environments, which range from global scene-level changes to highly localized variations (*e.g.*, from overall lighting shifts to fine texture-level shadows). By utilizing this grid hierarchy, our framework aims to capture and effectively correct photometric variations at their corresponding scales, thus enabling a more comprehensive and spatially adaptable photometric correction.

The multi-scale bilateral grid transformation can be formulated as $I^e = \bar{A} \odot I^r$, where \bar{A} represents a composite, scale-dependent photometric transformation. Crucially, this composite transformation is constructed hierarchically, combining transformations learned by individual bilateral grids at different scales, progressing from coarse to fine. This staged composition is key to achieving scale-dependent adaptation to photometric inconsistencies and allows us to move beyond the inherent limitations of single-scale methods. Further details are provided in the subsequent sections.

Our framework achieves this hierarchical representation using a three-level bilateral grid pyramid (Fig. 2): (1) Coarse Level ($2 \times 2 \times 1 \times 12$ grid) captures global scene structure and approximate global appearance codes; (2) Intermediate Level ($4 \times 4 \times 2 \times 12$ grid) represents regional features and capture mid-range photometric variations; (3) Fine Level ($8 \times 8 \times 4 \times 12$ grid) encodes local details and approximate pixel-wise bilateral grids within the multi-scale framework.

At each level l, the grid tensor is defined as $\mathcal{A}^{(l)} \in \mathbb{R}^{H^{(l)} \times W^{(l)} \times D^{(l)} \times C^{(l)}}$, where Spatial Dimension $(H^{(l)}, W^{(l)})$ represents spatial resolution (height, width) at level l, Guidance Dimension $D^{(l)}$ specifies the guidance intensity levels at level l and Coefficient Channel C=12 represents a flattened 3×4 affine color transformation matrix.

3.3.2 Guidance Map, Slice Operation, and Multi-Scale Fusion

To achieve adaptive and spatially-varying photometric correction, our multi-scale bilateral grid framework employs a guidance map and a *slicing* operation [4] to retrieve localized transformations, followed by a hierarchical fusion strategy to combine transformations across scales.

We first derive a luminance-based guidance map $I^g(u,v) = \operatorname{GrayScale}(I^r(u,v))$ from the rendered image $I^r(u,v)$, following the approach of [4, 38, 10]. This map encodes spatial brightness variations like shadows and highlights, serving as a spatially-varying query to our multi-scale grid. For each level l and pixel (u,v), the luminance d from I^g is used to perform a slicing operation, querying the grid's intensity dimension $D^{(l)}$ to locate an intensity bin. Affine transformation coefficients $\mathcal{A}_{i,j,k}^{(l)}$ around this bin are then combined via trilinear interpolation for a level-specific transformation

 $\bar{A}^{(l)}(u,v)$. The slicing operation retrieves per-pixel transformations from each grid level, written as:

$$\bar{A}^{(l)}(u,v) = \sum_{i,j,k} w_{i,j,k}(u,v,d) \mathcal{A}^{(l)}(i,j,k) , \qquad (7)$$

To efficiently fuse transformations across scales, we utilize hierarchical function composition. A naive approach of full-resolution *slicing* at each scale is computationally expensive and redundant due to local photometric coherence. To address this, we employ downsampled guidance maps $I^{g(l)}$ for each scale l, performing *slicing* to obtain low-resolution coefficient fields, which are then upsampled. This approach explicitly links scale-aware guidance to patch operations-the reduced-resolution maps enable efficient spatial aggregation of photometric transformations while enhances efficiency (See ablation study in Tab. 5). The level-specific transformations $\mathcal{T}^{(l)}$, decomposed into linear matrices $\bar{M}^{(l)}$ and translations $\bar{T}^{(l)}$, are then sequentially composed from coarse to fine to produce the final composite transformation \bar{A} . The refined image $I^e(u,v)$ is obtained by applying $\bar{A}(u,v)$ to $I^r(u,v)$, with the fusion process expressed as:

$$I^{e} = \mathcal{T}^{(L-1)} \circ \mathcal{T}^{(L-2)} \circ \cdots \circ \mathcal{T}^{(0)}(I^{r}) , \qquad (8)$$

This hierarchical fusion decomposes the photometric transformation into scale-dependent residual refinements. Coarse scales capture global transformations, intermediate scales refine regional variations, and fine scales address local details (Further elaboration in Sec. 4.3). Further details on the interpolation kernel and computational efficiency considerations are provided in Appendix A1.1.

Table 1: Ablation studies and comparisons on four large-scale driving datasets. Our proposed method consistently outperforms OmniRe across all metrics and datasets. w/AC denotes appearance codes; w/BG denotes single bilateral grids (size of $16 \times 16 \times 8$).

D-44	M.d. J	Re	econstruct	ion	Nove	l View Syn	thesis		Geometry	
Waymo NuScenes Argoverse	Method	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	CD ↓	RMSE ↓	Depth ↓
	OmniRe	28.92	0.833	0.295	26.40	0.761	0.311	1.482	2.785	0.540
Warma	OmniRe w/AC	28.95	0.835	0.293	26.44	0.759	0.315	1.378	2.760	0.519
waymo	OmniRe w/BG	28.19	0.831	0.292	21.51	0.743	0.333	1.523	2.798	0.492
	Ours	29.23	0.836	0.289	26.55	0.762	0.310	0.989	2.744	0.477
	OmniRe	26.37	0.837	0.209	23.74	0.733	0.232	1.458	3.420	0.110
NuCaanaa	OmniRe w/AC	26.38	0.840	0.204	23.74	0.732	0.229	1.437	3.415	0.106
Nuscenes	OmniRe w/BG	25.98	0.837	0.209	23.60	0.705	0.262	1.380	3.390	0.097
	Ours	27.69	0.847	0.193	24.64	0.739	0.216	1.161	3.340	0.059
	OmniRe	24.59	0.848	0.202	22.53	0.755	0.220	0.954	4.208	0.050
A manuana	OmniRe w/AC	24.58	0.848	0.201	22.51	0.756	0.219	0.959	4.215	0.051
Argoverse	OmniRe w/BG	23.31	0.842	0.216	21.70	0.725	0.254	0.901	4.218	0.049
	Ours	24.68	0.849	0.200	22.58	0.756	0.217	0.807	4.199	0.040
	OmniRe	30.20	0.903	0.219	27.49	0.835	0.240	0.503	2.874	0.018
Pandaset	OmniRe w/AC	30.20	0.903	0.220	27.51	0.841	0.242	0.496	2.871	0.020
ranuaset	OmniRe w/BG	29.73	0.904	0.220	27.38	0.830	0.246	0.484	2.867	0.013
	Ours	30.75	0.906	0.213	27.89	0.847	0.235	0.453	2.852	0.011

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate on four autonomous driving datasets: Waymo [30], NuScenes [1], Argoverse [40], and PandaSet [42], selected for their diversity in sensor configurations (LiDAR, camera specifications), environmental conditions (lighting, seasons), and geographic locations. Identical model hyperparameters are used across all datasets to test generalization capability. Technical specifications including camera counts and ego-vehicle view cropping details are provided in Appendix A2.

Baseline. Our focus is on modeling appearance variance across viewpoints, we build upon the open-source works *DriveStudio* [5], *ChatSim* [39], *StreetGS* [45] and test three approaches: appearance codes, standalone bilateral grids, and our multi-scale bilateral grids. This allows for direct comparison of how each method handles photometric inconsistencies across viewpoints.

Implementation details. We evaluate our method on many autonomous driving datasets to demonstrate its robustness. For each dataset, We train all the methods on a single NVIDIA L40 GPU and

Table 2: Comparison with different baseline approaches for scene reconstruction. Performance is reported as the average over the nuScenes [1] scenarios.

M-41 J	Re	econstructi	ion	Nove	l View Syn	thesis	Geometry			
Method	PSNR↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	CD ↓	RMSE ↓	Depth ↓	
ChatSim [39]	25.10	0.805	0.252	23.27	0.725	0.270	1.557	3.509	0.106	
ChatSim (Ours)	27.04	0.819	0.231	24.67	0.735	0.249	1.236	3.412	0.053	
StreetGS [45]	25.74	0.822	0.240	23.64	0.736	0.259	1.604	3.544	0.107	
StreetGS (Ours)	27.90	0.836	0.219	25.10	0.747	0.238	1.272	3.458	0.055	

compare the 3D reconstruction and novel view synthesis (NVS) results between camera and LiDAR data. Additionally, we ablate key components of our method and quantify their impact on both appearance and geometry quality.

Training and Dynamic Rendering.

1) **Training.** To optimize our multi-scale Gaussian scene representation, we employ a joint training strategy that minimizes a composite reconstruction loss:

$$\mathcal{L}_{recon} = \lambda_r \mathcal{L}_1 + \lambda_s \mathcal{L}_{SSIM} + \lambda_d \mathcal{L}_d + \lambda_o \mathcal{L}_o , \qquad (9)$$

Furthermore, we introduce two regularization terms to enhance image fidelity: *Adaptive Total Variation Regularization*. This term encourages smoothness and reduces noise while preserving image details, and *Circle Regularization Loss*. This loss applies inverse transformation to the ground-truth images, preventing discrepancies and image quality degradation. As visually demonstrated in Fig. 5, these terms effectively improve image fidelity. Detailed are provided in Appendix A1.

2) Rendering. For dynamic rendering using our multi-scale bilateral grid framework, we employ a specific interpolation strategy when encountering novel test images, especially those simulating dynamic ISP conditions. We first conducts a temporal proximity search to identify the most relevant grids. Following this, we perform scale-specific interpolation using the two nearest grids found.

Table 3: **Evaluation on Challenging Scene Subsets.** Results on systematically selected extreme cases. Our method shows substantially improvements when photometric inconsistencies are severe.

Casas Toma	Method	Re	econstructi	ion	Nove	l View Syn	thesis	Geometry			
Scene Type	Method	PSNR↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	CD ↓	RMSE ↓	Depth ↓	
Challenging Scenes (18 scenes)	OmniRe	26.84	0.847	0.239	24.46	0.758	0.263	0.650	3.176	0.063	
	Ours	28.13	0.856	0.223	25.17	0.763	0.250	0.523	3.120	0.023	
Night Scenes	OmniRe	28.34	0.805	0.338	26.54	0.753	0.360	0.586	2.767	0.041	
(4 scenes)	Ours	29.13	0.812	0.330	27.21	0.762	0.349	0.500	2.731	0.016	
Sun Flare Scenes	OmniRe	26.68	0.866	0.195	24.98	0.796	0.212	0.781	3.073	0.079	
(5 scenes)	Ours	28.65	0.879	0.173	25.84	0.803	0.192	0.593	2.994	0.022	

4.2 Quantitative Evaluation

Reconstruction and Geometric Quality. We present a comprehensive quantitative analysis in Tab. 1, comparing our full model against the OmniRe and its variants with appearance codes (w/AC) and a single bilateral grid (w/BG). Our method consistently sets a new state-of-the-art across all four datasets in both appearance and, most critically, geometric metrics.

In terms of appearance fidelity, our model achieves the highest PSNR and SSIM scores. For example, on NuScenes, our method reaches a PSNR of 27.69, a significant jump from 26.37 (OmniRe) and 26.38 (OmniRe w/AC). This demonstrates the superior ability of the multi-scale grid to model complex photometric variations.

However, the most striking result is the substantial improvement in geometric accuracy. Our method drastically reduces the Chamfer Distance, a key indicator of geometric fidelity. On the Waymo dataset, our model hits a CD of 0.989, outperforming the best baseline (OmniRe w/AC, 1.378) by a remarkable 28.2%. This trend holds across all datasets, with significant reductions in **Chamfer Distance (CD)**, **Root Mean Squared Error (RMSE)**, and **Median Squared Depth Error (Depth)**. This result provides strong evidence for our central hypothesis: by accurately resolving photometric ambiguities, our multi-scale approach effectively eliminates geometric artifacts like "floaters" and

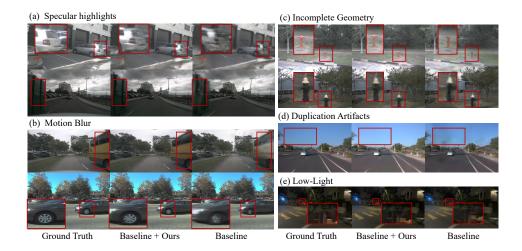


Figure 3: Our Method vs. Baseline Methods on Waymo, NuScenes, Argoverse, and PandaSet.

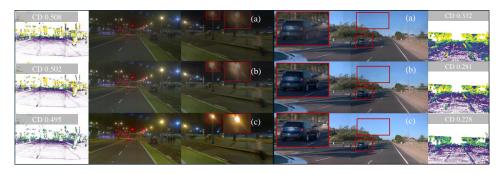


Figure 4: Our proposed framework (c) outperforms appearance codes (a) and single bilateral grids (b) by simultaneously addressing optimization challenges and enhancing geometric modeling. This delivers significant geometric accuracy improvements (lower Chamfer Distance (CD) via multi-scale bilateral grid, reducing error and improving reconstruction) and reduced photometric inconsistency (fewer floaters) in dynamic, decoupled driving scenes. Yellow indicates a high lidar error, while Purple indicates a low lidar error.

produces a much cleaner, more accurate 3D reconstruction. The single bilateral grid (w/BG), despite its high expressiveness, often fails to converge and even degrades performance, highlighting the optimization challenges that our multi-scale, coarse-to-fine framework successfully overcomes.

NVS. As shown in Tab. 1, our model's superior reconstruction quality translates directly to improved NVS. Our method consistently outperforms all baselines in NVS metrics across the four datasets. For instance, on PandaSet, we achieve a PSNR of 27.89, surpassing the next best (OmniRe w/AC at 27.51). This indicates that the cleaner geometry and more consistent appearance learned by our model generalize better to unseen viewpoints, producing higher-fidelity renderings.

Generalization to Other Methods. To demonstrate the broad applicability of our approach, we integrated our multi-scale bilateral grid into two other state-of-the-art methods, ChatSim [39] and StreetGS [45]. The results on NuScenes, presented in Tab. 2, are compelling. Our module brings substantial gains to both frameworks. For StreetGS, incorporating our method boosts the reconstruction PSNR from 25.74 to 27.90 and slashes the Chamfer Distance from 1.604 to 1.272. These significant improvements underscore that our multi-scale grid is not just a bespoke enhancement for one architecture but a generalizable and powerful module for improving photometric and geometric consistency in Gaussian Splatting-based scene reconstruction.

Performance on Challenging Scenarios. To validate robustness, we curated a subset of 18 challenging scenarios with extreme photometric inconsistencies. As shown in Table 3, our method's advantages are substantially more pronounced here than on the standard datasets. Across this entire

subset, our model achieves a +1.29 dB PSNR gain. This improvement is even more significant in specific difficult sub-categories; for instance, in "Sun Flare Scenes," the gain reaches +1.97 dB. This demonstrates our model's strong effectiveness in resolving severe, real-world edge cases.

4.3 Qualitative Evaluation

Rendering Results. Fig. 3 and Fig. 4 present visualization results of our method on scenes from Waymo [30], NuScenes [1], Argoverse [40], and PandaSet [42], demonstrating its capability to handle diverse conditions that might otherwise lead to inconsistencies.

Figure 5: Visualizations of ablations on Circle Regularization loss and Adaptive TV loss.

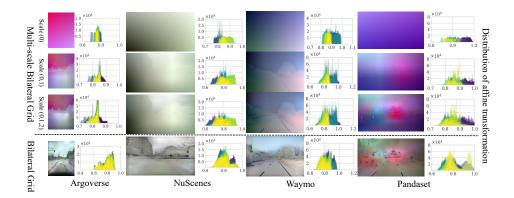


Figure 6: **Visualization of Affine Transformations and Distributions.** The first three rows display the affine transformation and corresponding distributions when applying the first level, the first two levels, and all three levels of our multi-scale approach. The final row compares these to results from a single bilateral grid, demonstrating that the multi-scale bilateral grid achieves a coarse-to-fine, smooth image enhancement with more diverse processing capabilities.

Analysis of Learned Affine Transformations. To gain deeper insight into how our model functions, we analyze the distribution of the learned affine transformations in Fig. 6. The histograms for the original single-scale bilateral grid (BG) exhibit a distinct bi-modal, peaky

Configuration	Grid Params (M)	Training Time (h)	Testing time (FPS)
OmniRe w/AC	0.072	1.93	53
OmniRe w/BG	27.843	2.85	54 / 38†
Ours	3.969	2.10	54 / 42†

Table 4: **Computational Efficiency Analysis.** † denotes rendering with bilateral grid processing active.

distribution for each viewpoint. This suggests that the single grid learns a limited set of dominant photometric corrections for each view, struggling to capture the full spectrum of variations. In stark contrast, the aggregated histogram from our multi-scale grid (across all levels and viewpoints) is significantly flatter and more dispersed. This is a direct visualization of our framework's core strength. The coarse-level grid first establishes a view-dependent baseline appearance, capturing the dominant global photometric shift (interestingly, its own histogram is also peaky, but varies across views). Then, the medium and fine grids learn residual transformations in a coarse-to-fine manner,

correcting the errors from the preceding levels. This hierarchical, residual refinement process allows the model to represent a much broader and more diverse range of photometric transformations. The flatter histogram is empirical evidence of this enhanced representational power, which is crucial for achieving consistent, high-quality renderings across the diverse and challenging views encountered in autonomous driving.

4.4 Ablation Studies

As shown in Tab. 4, Tab. 5 and Fig. 5, we systematically evaluate component contributions through:

Guidance Map Resolution. We test different downsampling factors for the guidance map at each grid level. The results in Tab. 5(a) show that a moderate downsampling of (2,2,1) from coarse to fine yields the best balance, achieving the highest NVS PSNR (24.64). Using the full resolution (1,1,1) slightly degrades performance, likely due to overfitting to noise, validating our patch-based aggregation strategy.

Grid Size Combinations. The combination of grid sizes is crucial. As shown in Tab. 5(b), removing the coarsest grid level (e.g., using only (4,4,2)+(8,8,4)) leads to a dramatic increase in CD, highlighting the importance of the coarse grid for establishing global geometric consistency. Crucially, a baseline with only a single fine-resolution grid (8,8,4) performs poorly, confirming that finer grids fail to converge without the stable, coarse-level initialization our method provides.

Settings	Recon.↑	NVS.↑	CD ↓
Full model	27.69	24.64	1.161
(a) Guidance Map Resolution			
(1,1,1)	27.62	24.34	1.271
(2,2,1)	27.68	24.64	1.170
(8,8,4)	27.52	24.53	1.187
(16,16,8)	27.50	24.54	1.202
(b) Grid Size Combinations			
Single Grid (8,8,4)	26.56	23.90	1.376
(4,4,2)+(8,8,4)	27.49	24.56	1.963
(2,2,1)+(8,8,4)	27.57	24.57	1.940
(2,2,1)+(4,4,2)	27.33	24.42	1.213
(c) Loss Functions			
w/o circle regularization loss	27.47	24.52	1.164
w/o adaptive total variance loss	27.64	24.61	1.169

Table 5: **Ablations.** Numbers in *Guidance Map Resolution* indicate downsample factors from coarse to fine level, and numbers in *Grid Size Combinations* indicate grid size.

Loss Functions. Ablating our proposed regularization losses in Tab. 5(c) shows their contribution. Removing the circle regularization loss slightly degrades both reconstruction and NVS performance. The effect of the adaptive total variance loss is more subtle in metrics but visibly improves rendering quality by reducing noise, as shown in Fig. 5.

Efficiency. As detailed in Tab. 4, our method strikes an effective balance between performance and computational cost. The single large bilateral grid (w/BG) leads to a massive parameter count (27.8M) and the longest training time (2.85h). In contrast, our multi-scale approach requires only 3.9M parameters and a modest 9% increase in training time (2.10h vs. 1.93h) compared to the appearance code baseline, while delivering substantially better results. During inference, our method maintains high frame rates, demonstrating its practicality.

5 Conclusion

We introduced a novel multi-scale bilateral grid that unifies global appearance codes and pixel-wise bilateral grids into a single, hierarchical framework. Our extensive experiments demonstrate that this approach not only effectively models and corrects complex photometric inconsistencies in autonomous driving scenes but, more importantly, leads to a significant and crucial improvement in the geometric accuracy of the final reconstruction. By establishing this strong link between advanced appearance modeling and geometric fidelity, our work paves the way for more robust and reliable neural rendering systems in safety-critical, real-world applications.

Limitations. While our method shows significant improvements, some limitations remain. (1) The computational overhead, though much lower than a single large bilateral grid, is still higher than simple appearance codes, which could be a consideration for resource-constrained scenarios. (2) Modeling extremely fast-moving or highly non-rigid objects where LiDAR and camera data misalign remains an open challenge.

References

- [1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 11621–11631, 2020.
- [2] Danpeng Chen, Hai Li, Weicai Ye, Yifan Wang, Weijian Xie, Shangjin Zhai, Nan Wang, Haomin Liu, Hujun Bao, and Guofeng Zhang. Pgsr: Planar-based gaussian splatting for efficient and high-fidelity surface reconstruction. *IEEE Transactions on Visualization and Computer Graphics*, 2024.
- [3] Jiawen Chen, Andrew Adams, Neal Wadhwa, and Samuel W Hasinoff. Bilateral guided upsampling. *ACM Transactions on Graphics (TOG)*, 35(6):1–8, 2016.
- [4] Jiawen Chen, Sylvain Paris, and Frédo Durand. Real-time edge-aware image processing with the bilateral grid. *ACM Transactions on Graphics (TOG)*, 26(3):103–es, 2007.
- [5] Ziyu Chen, Jiawei Yang, Jiahui Huang, Riccardo de Lutio, Janick Martinez Esturo, Boris Ivanovic, Or Litany, Zan Gojcic, Sanja Fidler, Marco Pavone, et al. Omnire: Omni urban scene reconstruction. arXiv preprint arXiv:2408.16760, 2024.
- [6] Kai Cheng, Xiaoxiao Long, Kaizhi Yang, Yao Yao, Wei Yin, Yuexin Ma, Wenping Wang, and Xuejin Chen. Gaussianpro: 3d gaussian splatting with progressive propagation. In Forty-first International Conference on Machine Learning, 2024.
- [7] Frédo Durand and Julie Dorsey. Fast bilateral filtering for the display of high-dynamic-range images. In *Proceedings of the 29th annual conference on Computer graphics and interactive techniques*, pages 257–266, 2002.
- [8] Jian Gao, Chun Gu, Youtian Lin, Zhihao Li, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable 3d gaussians: Realistic point cloud relighting with brdf decomposition and ray tracing. In *European Conference on Computer Vision*, pages 73–89. Springer, 2024.
- [9] Ruiyuan Gao, Kai Chen, Enze Xie, Lanqing Hong, Zhenguo Li, Dit-Yan Yeung, and Qiang Xu. Magicdrive: Street view generation with diverse 3d geometry control. *arXiv preprint arXiv:2310.02601*, 2023.
- [10] Michaël Gharbi, Jiawen Chen, Jonathan T Barron, Samuel W Hasinoff, and Frédo Durand. Deep bilateral learning for real-time image enhancement. *ACM Transactions on Graphics (TOG)*, 36(4):1–12, 2017.
- [11] Georg Hess, Carl Lindström, Maryam Fatemi, Christoffer Petersson, and Lennart Svensson. Splatad: Real-time lidar and camera rendering with 3d gaussian splatting for autonomous driving. *arXiv* preprint *arXiv*:2411.16816, 2024.
- [12] Wonbong Jang and Lourdes Agapito. Codenerf: Disentangled neural radiance fields for object categories. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 12949–12958, 2021.
- [13] Bu Jin, Yupeng Zheng, Pengfei Li, Weize Li, Yuhang Zheng, Sujie Hu, Xinyu Liu, Jinwei Zhu, Zhijie Yan, Haiyang Sun, et al. Tod3cap: Towards 3d dense captioning in outdoor scenes. In *European Conference on Computer Vision*, pages 367–384. Springer, 2024.
- [14] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. ACM Trans. Graph., 42(4):139–1, 2023.
- [15] Jonas Kulhanek, Songyou Peng, Zuzana Kukelova, Marc Pollefeys, and Torsten Sattler. Wildgaussians: 3d gaussian splatting in the wild. arXiv preprint arXiv:2407.08447, 2024.
- [16] Bohan Li, Jiajun Deng, Wenyao Zhang, Zhujin Liang, Dalong Du, Xin Jin, and Wenjun Zeng. Hierarchical temporal context learning for camera-based semantic scene completion. In *European Conference on Computer Vision*, pages 131–148. Springer, 2024.
- [17] Bohan Li, Jiazhe Guo, Hongsi Liu, Yingshuang Zou, Yikang Ding, Xiwu Chen, Hu Zhu, Feiyang Tan, Chi Zhang, Tiancai Wang, et al. Uniscene: Unified occupancy-centric driving scene generation. arXiv preprint arXiv:2412.05435, 2024.
- [18] Zhuopeng Li, Yilin Zhang, Chenming Wu, Jianke Zhu, and Liangjun Zhang. Ho-gaussian: Hybrid optimization of 3d gaussian splatting for urban scenes. In *European Conference on Computer Vision*, pages 19–36. Springer, 2024.

- [19] Carl Lindström, Georg Hess, Adam Lilja, Maryam Fatemi, Lars Hammarstrand, Christoffer Petersson, and Lennart Svensson. Are nerfs ready for autonomous driving? towards closing the real-to-simulation gap. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4461–4471, 2024.
- [20] Junchen Liu, Wenbo Hu, Zhuo Yang, Jianteng Chen, Guoliang Wang, Xiaoxue Chen, Yantong Cai, Huanang Gao, and Hao Zhao. Rip-nerf: Anti-aliasing radiance fields with ripmap-encoded platonic solids. In ACM SIGGRAPH 2024 Conference Papers, pages 1–11, 2024.
- [21] Yifan Lu, Xuanchi Ren, Jiawei Yang, Tianchang Shen, Zhangjie Wu, Jun Gao, Yue Wang, Siheng Chen, Mike Chen, Sanja Fidler, et al. Infinicube: Unbounded and controllable dynamic 3d driving scene generation with world-guided video models. arXiv preprint arXiv:2412.03934, 2024.
- [22] Nicolas Märki, Federico Perazzi, Oliver Wang, and Alexander Sorkine-Hornung. Bilateral space video segmentation. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pages 743–751, 2016.
- [23] Ricardo Martin-Brualla, Noha Radwan, Mehdi SM Sajjadi, Jonathan T Barron, Alexey Dosovitskiy, and Daniel Duckworth. Nerf in the wild: Neural radiance fields for unconstrained photo collections. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pages 7210–7219, 2021.
- [24] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.
- [25] Thang-Anh-Quan Nguyen, Luis Roldão, Nathan Piasco, Moussab Bennehar, and Dzmitry Tsishkou. Rodus: Robust decomposition of static and dynamic elements in urban scenes. In *European Conference on Computer Vision*, pages 112–130. Springer, 2024.
- [26] James Okae, Bohan Li, Juan Du, and Yueming Hu. Robust scale-aware stereo matching network. *IEEE Transactions on Artificial Intelligence*, 3(2):244–253, 2021.
- [27] Sylvain Paris and Frédo Durand. A fast approximation of the bilateral filter using a signal processing approach. In *Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7-13, 2006, Proceedings, Part IV 9*, pages 568–580. Springer, 2006.
- [28] Yinghao Shuai, Ran Yu, Yuantao Chen, Zijian Jiang, Xiaowei Song, Nan Wang, Jv Zheng, Jianzhu Ma, Meng Yang, Zhicheng Wang, et al. Pugs: Zero-shot physical understanding with gaussian splatting. arXiv preprint arXiv:2502.12231, 2025.
- [29] Xiaowei Song, Jv Zheng, Shiran Yuan, Huan-ang Gao, Jingwei Zhao, Xiang He, Weihao Gu, and Hao Zhao. Sa-gs: Scale-adaptive gaussian splatting for training-free anti-aliasing. arXiv preprint arXiv:2403.19615, 2024
- [30] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 2446–2454, 2020.
- [31] Matthew Tancik, Vincent Casser, Xinchen Yan, Sabeek Pradhan, Ben Mildenhall, Pratul P Srinivasan, Jonathan T Barron, and Henrik Kretzschmar. Block-nerf: Scalable large scene neural view synthesis. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8248–8258, 2022.
- [32] Tang Tao, Longfei Gao, Guangrun Wang, Yixing Lao, Peng Chen, Hengshuang Zhao, Dayang Hao, Xiaodan Liang, Mathieu Salzmann, and Kaicheng Yu. Lidar-nerf: Novel lidar view synthesis via neural radiance fields. In *Proceedings of the 32nd ACM International Conference on Multimedia*, pages 390–398, 2024.
- [33] Tang Tao, Guangrun Wang, Yixing Lao, Peng Chen, Jie Liu, Liang Lin, Kaicheng Yu, and Xiaodan Liang. Alignmif: Geometry-aligned multimodal implicit field for lidar-camera joint synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 21230–21240, 2024.
- [34] Beiwen Tian, Mingdao Liu, Huan-ang Gao, Pengfei Li, Hao Zhao, and Guyue Zhou. Unsupervised road anomaly detection with language anchors. In 2023 IEEE international conference on robotics and automation (ICRA), pages 7778–7785. IEEE, 2023.

- [35] Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart Svensson, and Christoffer Petersson. Neural: Neural rendering for autonomous driving. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 14895–14904, 2024.
- [36] Nan Wang, Xiaohan Yan, Xiaowei Song, and Zhicheng Wang. Semantic-guided gaussian splatting with deferred rendering. In ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 1–5. IEEE, 2025.
- [37] Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus: Learning neural implicit surfaces by volume rendering for multi-view reconstruction. *arXiv preprint arXiv:2106.10689*, 2021.
- [38] Yuehao Wang, Chaoyi Wang, Bingchen Gong, and Tianfan Xue. Bilateral guided radiance field processing. *ACM Transactions on Graphics (TOG)*, 43(4):1–13, 2024.
- [39] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao, Siheng Chen, and Yanfeng Wang. Editable scene simulation for autonomous driving via collaborative llm-agents. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 15077–15087, 2024.
- [40] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Argoverse 2: Next generation datasets for self-driving perception and forecasting. *arXiv* preprint arXiv:2301.00493, 2023.
- [41] Zirui Wu, Tianyu Liu, Liyi Luo, Zhide Zhong, Jianteng Chen, Hongmin Xiao, Chao Hou, Haozhe Lou, Yuantao Chen, Runyi Yang, et al. Mars: An instance-aware, modular and realistic simulator for autonomous driving. In CAAI International Conference on Artificial Intelligence, pages 3–15. Springer, 2023.
- [42] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang, Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun Jiang, et al. Pandaset: Advanced sensor suite dataset for autonomous driving. In 2021 IEEE international intelligent transportation systems conference (ITSC), pages 3095–3101. IEEE, 2021.
- [43] Weiqing Xiao, Hao Huang, Chonghao Zhong, Yujie Lin, Nan Wang, Xiaoxue Chen, Zhaoxi Chen, Saining Zhang, Shuocheng Yang, Pierre Merriaux, et al. Simulate any radar: Attribute-controllable radar simulation via waveform parameter embedding. arXiv preprint arXiv:2506.03134, 2025.
- [44] Bin Xu, Yuhua Xu, Xiaoli Yang, Wei Jia, and Yulan Guo. Bilateral grid learning for stereo matching networks. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 12497–12506, 2021.
- [45] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou, and Sida Peng. Street gaussians: Modeling dynamic urban scenes with gaussian splatting. In *European Conference on Computer Vision*, pages 156–173. Springer, 2024.
- [46] Ziyang Yan, Wenzhen Dong, Yihua Shao, Yuhang Lu, Liu Haiyang, Jingwen Liu, Haozhe Wang, Zhe Wang, Yan Wang, Fabio Remondino, et al. Renderworld: World model with self-supervised 3d label. arXiv preprint arXiv:2409.11356, 2024.
- [47] Jiawei Yang, Jiahui Huang, Yuxiao Chen, Yan Wang, Boyi Li, Yurong You, Apoorva Sharma, Maximilian Igl, Peter Karkus, Danfei Xu, et al. Storm: Spatio-temporal reconstruction model for large-scale outdoor scenes. arXiv preprint arXiv:2501.00602, 2024.
- [48] Xiuyu Yang, Bohan Li, Shaocong Xu, Nan Wang, Chongjie Ye, Zhaoxi Chen, Minghan Qin, Yikang Ding, Xin Jin, Hang Zhao, et al. Orv: 4d occupancy-centric robot video generation. arXiv preprint arXiv:2506.03079, 2025.
- [49] Xiuyu Yang, Yunze Man, Jun-Kun Chen, and Yu-Xiong Wang. Scenecraft: Layout-guided 3d scene generation. In *Advances in Neural Information Processing Systems*, 2024.
- [50] Xiuyu Yang, Shuhan Tan, and Philipp Krähenbühl. Long-term traffic simulation with interleaved autoregressive motion and scenario generation. arXiv preprint arXiv:2506.17213, 2025.
- [51] Xiuyu Yang, Zhuangyan Zhang, Haikuo Du, Sui Yang, Fengping Sun, Yanbo Liu, Ling Pei, Wenchao Xu, Weiqi Sun, and Zhengyu Li. Rmmdet: Road-side multitype and multigroup sensor detection system for autonomous driving. arXiv preprint arXiv:2303.05203, 2023.
- [52] Yifan Yang, Shuhai Zhang, Zixiong Huang, Yubing Zhang, and Mingkui Tan. Cross-ray neural radiance fields for novel-view synthesis from unconstrained image collections. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 15901–15911, 2023.

- [53] Baijun Ye, Minghui Qin, Saining Zhang, Moonjun Gong, Shaoting Zhu, Zebang Shen, Luan Zhang, Lu Zhang, Hao Zhao, and Hang Zhao. Gs-occ3d: Scaling vision-only occupancy reconstruction for autonomous driving with gaussian splatting. arXiv preprint arXiv:2507.19451, 2025.
- [54] Zehao Yu, Songyou Peng, Michael Niemeyer, Torsten Sattler, and Andreas Geiger. Monosdf: Exploring monocular geometric cues for neural implicit surface reconstruction. Advances in neural information processing systems, 35:25018–25032, 2022.
- [55] Shiran Yuan and Hao Zhao. Slimmerf: Slimmable radiance fields. In 2024 International Conference on 3D Vision (3DV), pages 64–74. IEEE, 2024.
- [56] Dongbin Zhang, Chuming Wang, Weitao Wang, Peihao Li, Minghan Qin, and Haoqian Wang. Gaussian in the wild: 3d gaussian splatting for unconstrained image collections. In *European Conference on Computer Vision*, pages 341–359. Springer, 2024.
- [57] Saining Zhang, Baijun Ye, Xiaoxue Chen, Yuantao Chen, Zongzheng Zhang, Cheng Peng, Yongliang Shi, and Hao Zhao. Drone-assisted road gaussian splatting with cross-view uncertainty. arXiv preprint arXiv:2408.15242, 2024.
- [58] Zhuoran Zheng, Wenqi Ren, Xiaochun Cao, Xiaobin Hu, Tao Wang, Fenglong Song, and Xiuyi Jia. Ultra-high-definition image dehazing via multi-guided bilateral learning. In 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 16180–16189. IEEE, 2021.
- [59] Hongyu Zhou, Jiahao Shao, Lu Xu, Dongfeng Bai, Weichao Qiu, Bingbing Liu, Yue Wang, Andreas Geiger, and Yiyi Liao. Hugs: Holistic urban 3d scene understanding via gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21336–21345, 2024.
- [60] Xiaoyu Zhou, Zhiwei Lin, Xiaojun Shan, Yongtao Wang, Deqing Sun, and Ming-Hsuan Yang. Drivinggaussian: Composite gaussian splatting for surrounding dynamic autonomous driving scenes. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 21634–21643, 2024.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract clearly state the claims.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: They are discussed in the conclusion.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [Yes]

Justification: the proofs are in the methodology part.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and crossreferenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: All the information are included in the experimental setup part in section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions to provide some reasonable avenue for reproducibility, which may depend on the nature of the contribution. For example
- (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
- (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
- (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The code is avaliable in the anonymous GitHub repository in last line of abstract.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/ public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https: //nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: All the information are included in the experimental setup part in section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are accompanied by statistical significance tests.

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).

- It should be clear whether the error bar is the standard deviation or the standard error
 of the mean.
- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: They are described in the implementation details part in Section 4.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both positive and negative impacts.

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.

- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.
- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: We identify our paper as having no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with
 necessary safeguards to allow for controlled use of the model, for example by requiring
 that users adhere to usage guidelines or restrictions to access the model or implementing
 safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do
 not require this, but we encourage authors to take this into account and make a best
 faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: We have given the creators or original owners of assets used in the paper proper credits.

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: We have not released new assets at the submission time. We will carefully document our data and model when we release the code and data.

Guidelines:

- The answer NA means that the paper does not release new assets.
- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects. Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The paper does not involve LLM.

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.

Appendix: Unifying Appearance Codes and Bilateral Grids for Driving Scene Gaussian Splatting

A Additional Implementation Details

A.1 Loss Functions and Optimization

We jointly optimize our multi-scale Gaussian scene representation by minimizing a composite loss function \mathcal{L}_{total} :

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{\text{recon}} + \lambda_{\text{TV}} \mathcal{L}_{\text{TV}} + \lambda_{\text{circle}} \mathcal{L}_{\text{circle}}$$
(A1)

where \mathcal{L}_{recon} is the primary reconstruction loss, and \mathcal{L}_{TV} and \mathcal{L}_{circle} are regularization terms.

A.1.1 Reconstruction Loss

The core reconstruction loss, \mathcal{L}_{recon} , drives the accurate reproduction of both RGB and depth information:

$$\mathcal{L}_{\text{recon}} = \lambda_r \mathcal{L}_1 + (1 - \lambda_r) \mathcal{L}_{\text{SSIM}} + \lambda_d \mathcal{L}_d + \lambda_o \mathcal{L}_o \tag{A2}$$

Here, \mathcal{L}_1 and $\mathcal{L}_{\text{SSIM}}$ measure the image-space difference. \mathcal{L}_d represents the loss between the rendered depth and the ground truth LiDAR depth. \mathcal{L}_o is an opacity regularization term that encourages alignment with a non-sky mask.

A.1.2 Adaptive Total Variation (TV) Regularization

To encourage smoothness and reduce noise in the optimized grid representations, we incorporate a TV regularization term, \mathcal{L}_{TV} , at each level l of the multi-scale representation:

$$\mathcal{L}_{\text{TV}} = \sum_{l} k^{(l)} \cdot \frac{1}{|\mathcal{A}^{(l)}|} \sum_{i,j,k} \sum_{\mathbb{D} \in \{x,y,z\}} \left\| \Delta_{\mathbb{D}} \mathcal{A}^{(l)}(i,j,k) \right\|_{2}^{2}$$
(A3)

The adaptive weight $k^{(l)}$ for each level l is proportional to the grid size, applying stronger smoothing to finer, higher-resolution grids and lighter regularization to coarser grids.

$$k^{(l)} = a\sqrt{H^{(l)} \cdot W^{(l)} \cdot D^{(l)}} + b \tag{A4}$$

A.1.3 Circle Regularization for Photometric Consistency

To constrain the noise introduced by photometric corrections and prevent overly aggressive alterations, we introduce a circle regularization loss, \mathcal{L}_{circle} :

$$\mathcal{L}_{\text{circle}} = \sum_{(u,v) \in \mathcal{S}} \| I^r(u,v) - \bar{A}^{-1}(I^{gt}(u,v)) \|_2^2$$
(A5)

where S denotes the set of pixel coordinates. This loss encourages the rendered image I^r to be reconstructible from the ground truth image I^{gt} via an inverse appearance transformation \bar{A}^{-1} .

A.1.4 Coarse-to-Fine Optimization Strategy

We employ a coarse-to-fine optimization strategy by utilizing level-dependent learning rates (e.g., 1×10^{-5} , 3×10^{-5} , 1×10^{-4} from coarse to fine). Coarser grids, assigned higher learning rates, rapidly learn the global scene illumination, while finer grids, with lower learning rates, hierarchically refine high-frequency photometric details. This staged optimization enhances stability.

A.2 Dynamic Rendering for Real-World ISP Adaptation

To bridge the domain gap between the fixed ISP used during training and dynamic real-world ISP pipelines encountered during inference, we employ an interpolation strategy. For a novel test image with timestamp t_{novel} , we proceed as follows:

1. **Temporal Proximity Search:** We identify the two training timestamps from the same camera, t_1 and t_2 , that are temporally closest to t_{novel} (such that $t_1 \leq t_{\text{novel}} \leq t_2$).

2. **Scale-Specific Grid Interpolation:** We perform linear interpolation specifically on the **coarse** and **medium-scale** bilateral grids $(A^{(0)}, A^{(1)})$ derived from these two timestamps.

The interpolated grid $\hat{\mathcal{A}}^{(l)}$ for $l \in \{0,1\}$ is formulated as:

$$\hat{\mathcal{A}}^{(l)} = \omega \mathcal{A}_{t_1}^{(l)} + (1 - \omega) \mathcal{A}_{t_2}^{(l)}$$
(A6)

The temporal interpolation weight, ω , is determined by proximity:

$$\omega = \frac{t_2 - t_{novel}}{t_2 - t_1} \tag{A7}$$

The fine-scale grid (l=2) is not used during interpolation, as it is primarily intended to capture scene-intrinsic details rather than global ISP variations.

B Dataset Details

This section provides dataset-specific details regarding our evaluation protocol, including sequence IDs for reproducibility.

B.1 Waymo Open Dataset [2]

We use all five cameras and all LiDAR sensors. We conduct our experiments on the following 6 sequences, selected according to [3, 4]:

- segment-10017090168044687777
- segment-10061305430875486848
- segment-10584247114982259878
- segment-15090871771939393635
- segment-4458730539804900192
- segment-5835049423600303130

B.2 NuScenes [1]

We utilize all six available cameras and all LiDAR sensors. We select the following 8 sequences: 152, 164, 171, 200, 209, 359, 529, 916, which is an extension of the dataset used by [3]. To address ego-vehicle visibility, we crop the bottom 80 pixels from the back camera images.

B.3 PandaSet [6]

We utilize six cameras and one LiDAR unit. We specifically evaluate on the following 10 challenging nighttime sequences: 063, 066, 070, 073, 074, 077, 078, 079, 088, 149. To mitigate ego-vehicle artifacts, we apply a bottom crop of 260 pixels to the back camera images.

B.4 Argoverse2 [5]

We leverage the seven ring cameras and both LiDAR sensors available in the dataset. We conduct our experiments on the following 9 sequences, in line with [3]:

- 05fa5048-f355-3274-b565-c0ddc547b315
- 0b86f508-5df9-4a46-bc59-5b9536dbde9f
- 185d3943-dd15-397a-8b2e-69cd86628fb7
- 25e5c600-36fe-3245-9cc0-40ef91620c22
- 27be7d34-ecb4-377b-8477-ccfd7cf4d0bc
- 280269f9-6111-311d-b351-ce9f63f88c81
- 2f2321d2-7912-3567-a789-25e46a145bda
- 44adf4c4-6064-362f-94d3-323ed42cfda9
- 5589de60-1727-3e3f-9423-33437fc5da4b

To minimize ego-vehicle interference, we apply a bottom crop of 250 pixels to the front center, rear left, and rear right camera views.

C Additional Quantitative Results

This section presents a comprehensive breakdown of our model's performance, including per-scene metrics, integration results with SOTA methods, and robustness checks on challenging subsets.

C.1 Per-Scene Geometry and Appearance Evaluation

We provide detailed metrics for geometry (Tab. A1 - A4) and appearance (Tab. A5 - A8).

Ground Truth

Baseline+AP

Baseline+BG

Baseline+Ours

Figure A1: Qualitative Comparison of Photometric Correction with Baseline Methods. These figures visualize the output of our method ('Baseline+Ours') against the ground truth, a baseline with appearance codes ('Baseline+AP'), and a baseline with a single bilateral grid ('Baseline+BG'). The accompanying error maps (blue indicating lower error, red higher) and highlighted red boxes demonstrate our method's superior ability to handle complex illumination and reduce artifacts compared to traditional approaches.

C.2 Integration Evaluation with SOTA Methods

Tab. A9 and A10 provide comparisons with SOTA methods like ChatSim [4] and StreetGS [7] on the NuScenes dataset.

Ground Truth

Baseline+AP



Baseline+BG

Baseline+Ours

Figure A2: Qualitative Comparison of Photometric Correction with Baseline Methods.

Scene	Geo	metry Eval	uation
	CD↓	RMSE↓	Depth↓
152	1.227	3.463	0.042
164	0.889	2.469	0.103
171	1.042	2.813	0.075
200	1.300	3.617	0.020
209	1.294	3.524	0.065
359	1.238	3.542	0.036
529	0.678	2.675	0.021
916	1.623	4.617	0.109
Average	1.161	3.340	0.059

Table A1: Detailed Scene-by-Scene Geometry Evaluation on the NuScenes [1]. This table presents key geometry metrics—Chamfer Distance (CD), Root Mean Square Error (RMSE), and Depth error—for individual scenes and averaged across the evaluated sequences from the NuScenes dataset.

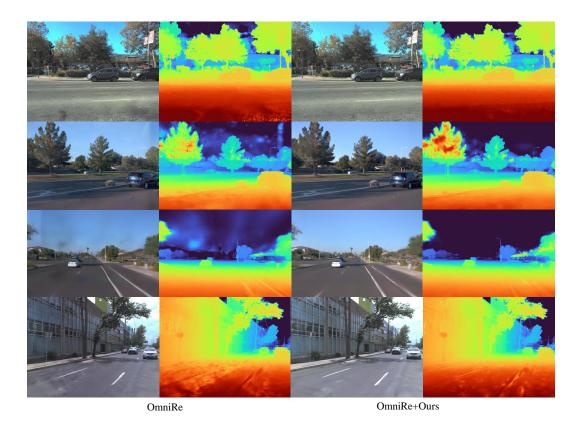


Figure A3: **Qualitative Comparison with the OmniRe.** This figure showcases a side-by-side visual comparison of renderings and depth maps produced by the original OmniRe framework versus OmniRe integrated with our proposed method ('OmniRe+Ours'). The results highlight the enhancements in image fidelity and depth map coherence achieved by our approach.

Scene	Geo	metry Eval	uation
Beene	CD↓	RMSE↓	Depth↓
0	1.638	3.217	1.733
3	1.427	2.905	0.350
31	0.278	1.636	0.026
233	1.149	3.465	0.594
551	1.339	3.362	0.095
621	0.103	1.879	0.007
Average	0.989	2.744	0.467

Table A2: Detailed Scene-by-Scene Geometry Evaluation on the Waymo Open Dataset [2]. This table showcases the Chamfer Distance (CD), Root Mean Square Error (RMSE), and Depth error for specific scenes and their average, evaluating the geometric reconstruction accuracy on the Waymo Open Dataset.

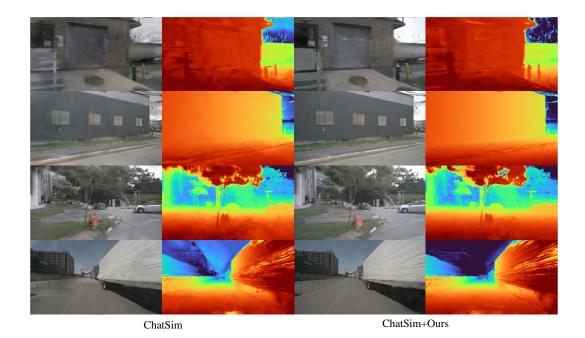


Figure A4: **Qualitative Comparison with the ChatSim.** Visual results comparing the ChatSim framework with ChatSim augmented by our method ('ChatSim+Ours'). The rendered images and corresponding depth maps illustrate the improvements in visual quality and geometric detail provided by our multi-scale bilateral grid framework.

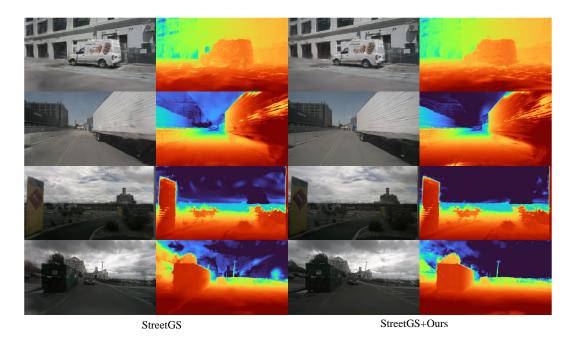


Figure A5: **Qualitative Comparison with the StreetGS.** This figure presents a visual comparison between the StreetGS framework and StreetGS enhanced with our method ('StreetGS+Ours'). The displayed images and depth maps demonstrate the capability of our approach to improve rendering realism and depth accuracy in challenging driving scenarios.

Scene	Geo	metry Eval	uation
	CD↓	RMSE↓	Depth↓
63	0.760	3.812	0.015
66	0.517	2.657	0.008
70	0.310	2.244	0.027
73	0.280	2.012	0.007
74	0.680	3.240	0.009
77	0.190	2.926	0.004
78	0.403	2.819	0.008
79	0.198	2.081	0.004
88	0.968	4.674	0.039
149	0.228	2.052	0.007
Average	0.453	2.852	0.013

Table A3: Detailed Scene-by-Scene Geometry Evaluation on the PandaSet [6]. This table provides a per-scene breakdown and average of Chamfer Distance (CD), Root Mean Square Error (RMSE), and Depth error, assessing geometric reconstruction performance on challenging nighttime scenarios from PandaSet.

Scene	Geo	metry Eval	uation
Beene	CD↓	RMSE↓	Depth↓
0	0.522	3.001	0.023
1	2.071	5.845	0.085
2	0.461	3.226	0.011
3	0.348	3.677	0.014
4	1.198	4.485	0.059
5	0.694	5.069	0.040
6	0.967	6.193	0.075
8	0.743	4.436	0.045
9	0.257	1.952	0.005
Average	0.807	4.209	0.040

Table A4: Detailed Scene-by-Scene Geometry Evaluation on the Argoverse Dataset [5]. This table displays Chamfer Distance (CD), Root Mean Square Error (RMSE), and Depth error for individual sequences and their average, evaluating geometric accuracy on the Argoverse 2dataset.

		Scene Reconstruction						Novel View Synthesis						
Scene	Full Image			human		vehicle		Full Image			human		vehicle	
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑
152	27.39	0.839	0.204	29.33	0.873	27.76	0.862	23.57	0.695	0.234	25.04	0.655	22.07	0.579
164	26.52	0.829	0.232	24.75	0.789	25.60	0.793	23.16	0.711	0.262	19.86	0.464	21.74	0.595
171	26.97	0.833	0.249	24.05	0.652	26.22	0.812	24.39	0.748	0.273	22.28	0.568	22.51	0.639
200	27.80	0.835	0.193	N/A	N/A	28.08	0.832	25.28	0.745	0.211	N/A	N/A	24.11	0.643
209	29.07	0.866	0.185	28.20	0.802	28.84	0.836	26.18	0.785	0.204	25.42	0.694	25.07	0.683
359	27.95	0.859	0.168	26.98	0.795	27.25	0.839	24.43	0.723	0.190	24.06	0.629	22.72	0.647
529	29.90	0.893	0.133	24.25	0.736	27.80	0.856	27.40	0.826	0.146	24.18	0.712	24.84	0.745
916	25.88	0.819	0.181	28.16	0.792	26.95	0.839	22.73	0.678	0.208	25.44	0.637	22.75	0.634
Average	27.69	0.847	0.193	26.53	0.777	27.31	0.834	24.64	0.739	0.216	23.75	0.623	23.23	0.646

Table A5: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on the NuScenes Dataset [1]. This table presents PSNR, SSIM, and LPIPS metrics for the full image, as well as for 'human' and 'vehicle' classes, for both scene reconstruction and novel view synthesis tasks on various NuScenes sequences.

			Scene	Reconstru	action			Novel View Synthesis							
Scene	Full Image		e	human		vehicle		Full Image			human		vehicle		
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑	
0	29.26	0.840	0.311	N/A	N/A	23.33	0.640	25.94	0.770	0.341	N/A	N/A	22.29	0.531	
3	27.94	0.841	0.241	21.82	0.632	N/A	N/A	24.30	0.737	0.269	20.45	0.505	N/A	N/A	
31	27.65	0.849	0.224	32.93	0.784	22.54	0.683	23.98	0.723	0.250	30.48	0.657	19.05	0.421	
233	33.71	0.801	0.482	N/A	N/A	23.55	0.686	32.81	0.777	0.488	N/A	N/A	22.37	0.645	
551	24.89	0.748	0.409	20.77	0.470	21.66	0.683	22.54	0.670	0.437	19.99	0.407	18.76	0.471	
621	31.91	0.939	0.067	26.68	0.846	26.40	0.845	29.73	0.895	0.078	24.94	0.789	24.35	0.765	
Average	29.23	0.836	0.289	25.55	0.683	23.50	0.707	26.55	0.762	0.310	23.97	0.590	21.36	0.567	

Table A6: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on the Waymo Open Dataset [2]. This table details PSNR, SSIM, and LPIPS metrics for full images and specific object classes ('human', 'vehicle') during scene reconstruction and novel view synthesis on selected Waymo sequences.

			Scene	Reconstru	ıction			Novel View Synthesis						
Scene		Full Image	е	hur	nan	veh	icle		Full Imag	e	hur	nan	veh	icle
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑
63	29.95	0.905	0.226	29.44	0.783	22.32	0.726	27.32	0.854	0.258	26.93	0.613	18.49	0.447
66	31.73	0.931	0.198	29.94	0.845	20.78	0.681	28.92	0.890	0.215	26.84	0.738	19.55	0.591
70	31.09	0.909	0.260	N/A	N/A	21.35	0.740	28.35	0.862	0.287	N/A	N/A	21.20	0.674
73	32.13	0.931	0.198	31.26	0.868	23.33	0.806	29.16	0.889	0.214	N/A	N/A	21.84	0.706
74	29.85	0.914	0.207	30.99	0.874	24.44	0.849	27.13	0.862	0.228	27.82	0.740	22.23	0.740
77	32.60	0.937	0.165	32.28	0.852	25.42	0.855	29.77	0.895	0.178	29.02	0.730	22.12	0.721
78	31.30	0.922	0.181	33.54	0.896	25.27	0.812	28.39	0.869	0.197	30.74	0.809	22.86	0.683
79	31.42	0.902	0.228	31.91	0.850	26.06	0.843	28.14	0.832	0.251	28.98	0.726	23.08	0.702
88	25.09	0.787	0.269	22.10	0.670	21.90	0.738	21.95	0.623	0.305	20.19	0.362	18.46	0.444
149	32.31	0.926	0.202	N/A	N/A	24.04	0.791	29.73	0.891	0.215	N/A	N/A	23.37	0.728
Average	30.75	0.906	0.213	30.18	0.830	23.49	0.784	27.89	0.847	0.235	27.22	0.674	21.32	0.644

Table A7: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on PandaSet [6]. This table outlines PSNR, SSIM, and LPIPS metrics for full image and object-specific ('human', 'vehicle') evaluations in both scene reconstruction and novel view synthesis tasks using PandaSet nighttime sequences.

	Scene Reconstruction						Novel View Synthesis							
Scene		Full Image	e	hun	nan	veh	icle		Full Imag	e	hun	nan	veh	icle
	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑	PSNR↑	SSIM↑	LPIPS↓	PSNR↑	SSIM↑	PSNR↑	SSIM↑
0	25.72	0.871	0.181	25.54	0.822	26.58	0.825	22.83	0.765	0.199	23.73	0.734	23.31	0.682
1	22.18	0.769	0.302	21.76	0.681	22.87	0.798	20.20	0.655	0.323	18.22	0.472	18.48	0.478
2	27.36	0.888	0.166	25.33	0.785	28.93	0.884	24.83	0.803	0.183	22.32	0.620	23.63	0.669
3	26.55	0.893	0.123	23.24	0.811	25.58	0.875	24.69	0.826	0.141	21.99	0.756	23.10	0.769
4	22.65	0.804	0.272	22.73	0.720	23.76	0.812	20.55	0.685	0.290	19.95	0.518	19.58	0.493
5	24.19	0.848	0.207	23.69	0.760	23.75	0.790	22.07	0.738	0.226	21.12	0.598	20.32	0.580
6	23.56	0.795	0.275	19.80	0.588	21.05	0.757	21.86	0.703	0.292	18.15	0.446	17.76	0.498
8	23.47	0.850	0.183	25.63	0.787	23.66	0.851	21.25	0.756	0.199	20.57	0.531	19.58	0.628
9	26.48	0.925	0.091	22.44	0.700	24.42	0.853	24.91	0.875	0.100	21.04	0.614	21.96	0.732
Average	24.68	0.849	0.200	23.35	0.739	24.51	0.827	22.58	0.756	0.217	20.79	0.588	20.86	0.615

Table A8: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on the Argoverse2 Dataset [5]. This table shows PSNR, SSIM, and LPIPS for full image and object-focused ('human', 'vehicle') assessments across scene reconstruction and novel view synthesis on the Argoverse2 dataset.

Scene	Method	Reconstruction			Novel	View Syn	thesis	Geometry		
Secile	1.1011104	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM ↑	LPIPS ↓	CD↓	RMSE ↓	Depth ↓
152	ChatSim	25.37	0.811	0.251	1.592	3.637	0.085	22.72	0.694	0.276
132	Ours	27.09	0.825	0.231	1.309	3.540	0.040	23.80	0.703	0.256
164	ChatSim	24.08	0.788	0.299	1.198	2.615	0.186	22.07	0.708	0.321
104	Ours	26.16	0.802	0.273	0.972	2.523	0.101	23.79	0.718	0.293
171	ChatSim	25.00	0.801	0.310	1.420	2.981	0.105	23.31	0.736	0.326
1/1	Ours	26.95	0.813	0.289	1.114	2.895	0.057	24.77	0.744	0.307
200	ChatSim	24.85	0.799	0.230	1.690	3.740	0.035	23.47	0.732	0.246
200	Ours	27.54	0.816	0.220	1.289	3.619	0.017	25.43	0.745	0.235
209	ChatSim	25.77	0.818	0.268	1.841	3.805	0.118	24.30	0.763	0.281
209	Ours	27.93	0.833	0.243	1.445	3.691	0.061	25.93	0.776	0.255
359	ChatSim	25.76	0.823	0.220	1.498	3.701	0.073	23.46	0.714	0.238
339	Ours	27.17	0.834	0.208	1.317	3.647	0.036	24.31	0.719	0.227
529	ChatSim	27.19	0.864	0.191	1.071	2.853	0.077	25.70	0.812	0.201
329	Ours	29.60	0.878	0.159	0.692	2.749	0.018	27.35	0.822	0.169
916	ChatSim	22.81	0.742	0.249	2.145	4.745	0.173	21.19	0.641	0.271
910	Ours	23.95	0.759	0.232	1.750	4.635	0.102	21.96	0.655	0.253

Table A9: Comparative Performance Analysis against ChatSim on the NuScenes Dataset. This table provides a scene-by-scene comparison of our method ('Ours') with the ChatSim baseline across scene reconstruction (PSNR, SSIM, LPIPS), novel view synthesis (PSNR, SSIM, LPIPS), and geometry (CD, RMSE, Depth) metrics.

Scene	Method	Reconstruction			Novel	View Syn	thesis	Geometry		
~	11201104	PSNR ↑	SSIM ↑	LPIPS ↓	PSNR ↑	SSIM↑	LPIPS ↓	CD↓	RMSE ↓	Depth ↓
152	StreetGS	25.49	0.813	0.254	1.611	3.648	0.089	22.73	0.695	0.280
132	Ours	27.34	0.828	0.231	1.343	3.560	0.038	23.90	0.706	0.256
164	StreetGS	25.04	0.813	0.273	1.187	2.605	0.179	22.55	0.724	0.296
104	Ours	27.41	0.827	0.248	0.956	2.523	0.096	24.29	0.734	0.269
171	StreetGS	25.62	0.811	0.305	1.355	2.958	0.115	23.63	0.743	0.323
1/1	Ours	27.79	0.822	0.281	1.184	2.910	0.067	25.21	0.751	0.300
200	StreetGS	25.32	0.811	0.230	1.878	3.925	0.041	23.75	0.739	0.247
200	Ours	28.12	0.829	0.219	1.418	3.817	0.020	25.67	0.752	0.235
209	StreetGS	26.53	0.840	0.243	1.932	3.813	0.125	24.77	0.779	0.258
209	Ours	29.05	0.854	0.217	1.481	3.697	0.061	26.53	0.791	0.231
359	StreetGS	26.08	0.831	0.211	1.539	3.710	0.075	23.53	0.716	0.230
339	Ours	27.63	0.843	0.199	1.299	3.659	0.039	24.45	0.723	0.218
520	StreetGS	27.50	0.871	0.186	1.065	2.883	0.063	25.96	0.819	0.197
529	Ours	30.09	0.884	0.158	0.718	2.795	0.020	27.69	0.827	0.169
016	StreetGS	24.34	0.787	0.223	2.268	4.813	0.175	22.21	0.680	0.245
916	Ours	25.80	0.804	0.204	1.781	4.709	0.106	23.11	0.692	0.226

Table A10: Comparative Performance Analysis against StreetGS on the NuScenes Dataset. This table presents a detailed per-scene comparison of our approach ('Ours') with the StreetGS baseline, evaluating scene reconstruction (PSNR, SSIM, LPIPS), novel view synthesis (PSNR, SSIM, LPIPS), and geometry (CD, RMSE, Depth) metrics.

Table A11: Detailed comparison on **Challenging Argoverse Scenarios** (6 scenes).

Mathad		Re	Novel View Synthesis				
Method	PSNR ↑	SSIM ↑	$\text{CD}\downarrow$	$RMSE \downarrow$	Depth \downarrow	PSNR ↑	SSIM ↑
OmniRe (Baseline)	23.95	0.850	0.964	3.647	0.098	22.10	0.761
OmniRe w/ AC	23.97	0.848	0.923	3.642	0.097	22.09	0.759
OmniRe w/ BG	24.29	0.855	0.807	3.586	0.047	22.32	0.768
Ours	25.29	0.863	0.726	3.564	0.027	22.96	0.773

Table A12: Detailed comparison on **Challenging Waymo Scenarios** (6 scenes).

Method		Re	Novel View Synthesis				
Method	PSNR ↑	SSIM ↑	$\text{CD}\downarrow$	$RMSE \downarrow$	Depth \downarrow	PSNR ↑	SSIM ↑
OmniRe (Baseline)	29.28	0.833	0.352	1.917	0.061	27.37	0.791
OmniRe w/ AC	29.31	0.833	0.343	1.915	0.053	27.30	0.789
OmniRe w/ BG	29.61	0.836	0.333	1.893	0.042	27.56	0.792
Ours	31.23	0.841	0.272	1.846	0.021	28.34	0.793

Table A13: Detailed comparison on **Challenging Pandaset Scenarios** (6 scenes).

Method		Re	Novel View Synthesis				
Method	PSNR ↑	SSIM ↑	$CD \downarrow$	$RMSE \downarrow$	Depth ↓	PSNR ↑	SSIM ↑
OmniRe (Baseline)	27.28	0.859	0.634	3.963	0.029	23.91	0.721
Ours	27.88	0.863	0.572	3.951	0.022	24.22	0.724

Table A14: Comparison results of **vehicle-specific metrics**, averaged across 20 scenes from all four datasets.

Method	PSNR ↑	SSIM ↑	CD↓
OmniRe (Baseline) Ours	24.24	0.784	8.675
	24.80	0.791	7.400

C.3 Performance on Challenging Scenarios

To validate robustness, we curated subsets of challenging scenarios with extreme photometric inconsistencies (e.g., night scenes, sun glare, rain, and complex reflections). As shown in Tables A11, A12, and A13, our method's performance gap widens significantly compared to all baselines (OmniRe, w/ AC, w/ BG) in these difficult conditions, demonstrating the superior robustness of our multi-scale design.

- Challenging Argoverse (6 scenes): 49e970c4 (Extreme Lighting, Overexposure, Lens Flare), 8184872e (Complex Shadows, Direct Sunlight), 91923e20 (Extreme Lighting, Camera Artifacts), a8a2fbc2 (Low-Angle Sun), b403f8a3 (Overpass Structure, Extreme Lighting Transitions), eaaf5ad3 (Multiple Artificial Lights, Wet Surfaces, Rainy Conditions).
- Challenging Waymo (6 scenes): segment-10 (Night Scene, Artificial Lighting, Lens Flare), segment-30 (Night Scene, Rainy Conditions, Specular Reflections), segment-539 (High Dynamic Range, Low-Angle Sun, Sun Glare), segment-550 (High Dynamic Range, Storefront Reflections, Hard Shadows), segment-561 (Low-Angle Sun, Lens Flare, Overexposure), segment-570 (Rainy Conditions, Low Light, Motion Blur).
- Challenging Pandaset (6 scenes): 19, 21, 29, 48, 52 (all Low-Angle Sun with Hard/Deep Shadows or High Dynamic Range), 63 (Night Scene, Multiple Light Sources, Glare).

C.4 Vehicle-Specific Metrics

To specifically evaluate performance on challenging, highly reflective surfaces such as car windows, we used semantic masks to isolate vehicles. Table A14 shows that our method improves not only appearance (PSNR) but also, crucially, geometry (CD) for these specific objects. This supports our claim that our method mitigates the negative geometric impact of such severe view-dependent effects.

D Quantitative Analysis of Photometric Inconsistency

To rigorously validate the learned affine transformations discussed in the main paper, we compute the Kullback-Leibler (KL) Divergence between our model's learned distribution and a ground-truth (GT) distribution of real-world photometric inconsistency.

Experimental Setup: We construct the GT distribution $P(\Delta L)$ by sampling corresponding pixels representing the same 3D world points across different camera views in the nuScenes dataset, using ground-truth LiDAR points and camera parameters. The luminance difference ΔL for all corresponding pairs forms the GT histogram. We then measure the KL Divergence between this $P(\Delta L)$ and the distributions learned by our model and the baseline.

Results: As shown in Table A15, the distribution learned by our multi-scale method achieves a significantly lower KL Divergence (0.79) compared to the single-scale baseline (1.25). This quantitatively confirms that our model learns a distribution that more accurately reflects real-world photometric inconsistencies.

Table A15: Comparison of KL Divergence against the ground-truth (GT) photometric inconsistency distribution from the nuScenes dataset. Lower is better, indicating a more realistic learned distribution.

Method	KL Divergence (vs. Dataset GT) ↓
Single Bilateral Grids' Affine Transformation	1.25
Multi-scale Bilateral Grids' Affine Transformation (Ours)	0.79

References

[1] Holger Caesar, Varun Bankiti, Alex H Lang, Sourabh Vora, Venice Erin Liong, Qiang Xu, Anush Krishnan, Yu Pan, Giancarlo Baldan, and Oscar Beijbom. nuscenes: A multimodal dataset for autonomous driving. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 11621–11631, 2020.

- [2] Pei Sun, Henrik Kretzschmar, Xerxes Dotiwalla, Aurelien Chouard, Vijaysai Patnaik, Paul Tsui, James Guo, Yin Zhou, Yuning Chai, Benjamin Caine, et al. Scalability in perception for autonomous driving: Waymo open dataset. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 2446–2454, 2020.
- [3] Adam Tonderski, Carl Lindström, Georg Hess, William Ljungbergh, Lennart Svensson, and Christoffer Petersson. Neurad: Neural rendering for autonomous driving. In *Proceedings of the IEEE/CVF Conference* on Computer Vision and Pattern Recognition, pages 14895–14904, 2024.
- [4] Yuxi Wei, Zi Wang, Yifan Lu, Chenxin Xu, Changxing Liu, Hao Zhao, Siheng Chen, and Yanfeng Wang. Editable scene simulation for autonomous driving via collaborative llm-agents. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 15077–15087, 2024.
- [5] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes, et al. Argoverse 2: Next generation datasets for self-driving perception and forecasting. *arXiv* preprint arXiv:2301.00493, 2023.
- [6] Pengchuan Xiao, Zhenlei Shao, Steven Hao, Zishuo Zhang, Xiaolin Chai, Judy Jiao, Zesong Li, Jian Wu, Kai Sun, Kun Jiang, et al. Pandaset: Advanced sensor suite dataset for autonomous driving. In 2021 IEEE international intelligent transportation systems conference (ITSC), pages 3095–3101. IEEE, 2021.
- [7] Yunzhi Yan, Haotong Lin, Chenxu Zhou, Weijie Wang, Haiyang Sun, Kun Zhan, Xianpeng Lang, Xiaowei Zhou, and Sida Peng. Street gaussians: Modeling dynamic urban scenes with gaussian splatting. In *European Conference on Computer Vision*, pages 156–173. Springer, 2024.