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Figure 1: (a) Appearance codes rely on global affine transformations but have limited modeling
capability. (b) Bilateral grids perform pixel-wise transformations, improving photometric consistency
but are challenging to optimize. (c) The proposed multi-scale bilateral grid unifies appearance codes
and bilateral grids, enabling patch-wise transformations.

Abstract

Neural rendering techniques, including NeRF and Gaussian Splatting (GS), rely
on photometric consistency to produce high-quality reconstructions. However, in
real-world driving scenarios, it is challenging to guarantee perfect photometric
consistency in acquired images. Appearance codes have been widely used to
address this issue, but their modeling capability is limited, as a single code is
applied to the entire image. Recently, the bilateral grid was introduced to perform
pixel-wise color mapping, but it is difficult to optimize and constrain effectively.
In this paper, we propose a novel multi-scale bilateral grid that unifies appear-
ance codes and bilateral grids. We demonstrate that this approach significantly
improves geometric accuracy in dynamic, decoupled autonomous driving scene
reconstruction, outperforming both appearance codes and bilateral grids. This is
crucial for autonomous driving, where accurate geometry is important for obstacle
avoidance and control. Our method shows strong results across four datasets:
Waymo, NuScenes, Argoverse, and PandaSet. We further demonstrate that the im-
provement in geometry is driven by the multi-scale bilateral grid, which effectively
reduces floaters caused by photometric inconsistency. Our code is open-sourced at
https://bigcileng.github.io/bilateral-driving.
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1 Introduction

Neural rendering techniques, such as NeRFs [24, 37, 54, 20, 55] and Gaussian Splatting (GS) [14, 2, 6,
57, 29, 53, 28], have demonstrated significant potential in producing high-quality 3D reconstructions
by leveraging photometric consistency. However, ensuring photometric consistency across images
in real-world scenarios remains a challenge, as lighting conditions, viewpoints, and camera settings
can vary considerably [23, 56, 15, 36, 8]. In autonomous driving applications [46, 41, 35, 5, 17,
13, 34], these challenges are amplified due to the presence of multiple cameras capturing the same
scene from different angles over time. As illustrated in the left half of Teaser. 1, we observe that
these variations—whether temporal (across different time steps) or inter-camera (across different
viewpoints)—can introduce significant discrepancies in image appearance. These inconsistencies
pose difficulties in accurately reconstructing dynamic driving environments.

To address this issue, appearance codes [35, 23, 5] have been introduced to encode per-image
information and assist in correcting the photometric discrepancies. These codes, while effective, have
limitations in modeling capability since they apply a single transformation across the entire image,
often neglecting local variations that may occur in complex scenes. For example, in dynamic scenes,
such as those encountered in autonomous driving environments, lighting and viewpoints can change
across different camera angles and time frames. As shown in the right top of Teaser. 1, a global affine
transformation based on a single appearance code may not be sufficient to handle such variations (In
Teaser. 1 NuScenes (a), the fence is blurred).

Recent advancements [38, 10] have introduced bilateral grids to perform pixel-wise transformations,
enabling improved photometric consistency by allowing more localized adjustments. However,
these grids face significant challenges in optimization, as they require complex constraints to avoid
instability during training (As shown in Teaser. 1 (b), bilateral grids fail to effectively optimize
the reconstruction of large, complex scenes.). In this work, we propose a novel solution—a multi-
scale bilateral grid—integrating the strengths of appearance codes and bilateral grids. As shown
in Teaser. 1, this new approach allows for patch-wise transformations. Interestingly, in extreme
cases, the multi-scale bilateral grid naturally converges to either the bilateral grid or appearance code,
depending on the scale. At the finest scale, the multi-scale grid behaves like a traditional bilateral
grid, performing pixel-wise transformations to adjust for local variations. In contrast, at the coarsest
scale, it effectively reverts to a more global transformation, resembling the behavior of appearance
codes. This flexible, scale-dependent approach offers the best of both worlds, providing localized
fine-tuning where necessary, while maintaining global consistency when appropriate.

We demonstrate that the multi-scale bilateral grid significantly enhances the geometric accuracy of
dynamic, decoupled driving scenes, which is essential for autonomous driving applications where
precise geometry plays a crucial role in tasks like obstacle avoidance and path planning. This is
evidenced by our evaluation on multiple widely used datasets, including Waymo [30], NuScenes [1],
Argoverse [40], and PandaSet [42]. The corresponding Chamfer Distance (CD) values, displayed
in the Teaser. 1, highlight a marked reduction in error and improvement in reconstruction quality.
Additionally, our method reduces photometric inconsistency, mitigating the appearance of floaters
and enhancing the overall realism of the scene.

The contributions of this paper are as follows: First, we introduce a novel multi-scale bilateral grid
that unifies appearance codes and bilateral grids, transitioning to either of the two paradigms in
extreme cases, thus enhancing both modeling capability and optimization efficiency. Second, we
show that by addressing photometric inconsistencies, it improves the geometric accuracy of dynamic,
decoupled driving scene reconstructions. Third, we provide extensive benchmarking across four
widely used datasets—Waymo, NuScenes, Argoverse, and PandaSet—where our method outperforms
previous approaches, showcasing notable improvements in both qualitative and quantitative results.

2 Related Works

2.1 Bilateral Grids and Appearance Codes

Recent advancements in bilateral grids and appearance codes have significantly influenced techniques
for addressing photometric inconsistencies, which are particularly critical in dynamic environments
such as autonomous driving. The bilateral grids, first introduced for real-time edge-aware image pro-
cessing [4], enable efficient manipulation of spatial and intensity variations, forming the foundation
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Figure 2: Overview of our method. We unify appearance codes with multi-scale bilateral grids.
Initially, a coarse rendering is obtained from a Gaussian scene graph. This rendered image is then
processed by our multi-scale bilateral grids to perform detailed per-pixel color modeling, guided by a
luminance-based map through slice and fusion operations.

for many modern techniques [10, 22, 3, 44, 58]. Extensions like deep bilateral learning [10] further en-
hance this framework by predicting local affine transformations in bilateral space, achieving real-time
image enhancement on resource-constrained devices. Similarly, bilateral-guided upsampling [3] and
cost volume refinement [44] have proven effective in tasks ranging from high-dynamic-range imaging
to stereo matching, demonstrating the versatility of bilateral representations. In the context of neural
rendering, methods such as NeRF [31, 12, 23] and Gaussian Splatting (GS) [56, 15] have achieved
groundbreaking results in novel view synthesis but photometric inconsistency caused by varying
illumination or transient occluders [23, 56] remains a challenge. Techniques like bilateral guided
radiance field processing [38] address these issues by disentangling camera-specific enhancements
and reapplying them consistently in 3D space. WildGaussians [15] integrates DINO-based appearance
codes into 3D GS to robustly handle occlusions and dynamic lighting in uncontrolled scenes. Cross-
Ray NeRF [52] employs cross-ray feature covariance and grid-based transient masking to harmonize
appearance variations and suppress occlusions in unconstrained image collections. Despite these
strides, existing approaches often struggle to balance global consistency with localized adaptability.
For instance, while appearance codes provide global adjustments, they lack the granularity to model
fine-grained variations [7]. Conversely, bilateral grids excel at pixel-wise transformations but are
challenging to optimize effectively [27]. To address this issue, we introduce a multi-scale bilateral
grid which unifies bilateral grids and appearance codes, facilitating high-quality dynamic autonomous
driving scene reconstruction with enhanced modeling capability and optimization efficiency.

2.2 Autonomous Driving Simulation

Autonomous driving simulation has emerged as a critical tool for developing perception, planning,
and control systems by generating diverse, realistic driving scenarios [41, 26, 45, 19, 33, 17, 47, 9].
Recent advancements focus on photorealistic rendering, dynamic scene modeling, and multi-modal
sensor simulation [41, 16, 60, 35, 45, 51, 50, 43]. For instance, MARS [41] employs a modular
NeRF-based framework to independently control static and dynamic scene elements, while Street
Gaussian [45] achieves real-time urban scene rendering using explicit 3D Gaussian representations.
DrivingGaussian [60] enhances dynamic scene reconstruction via composite Gaussian Splatting,
ensuring occlusion accuracy and multi-camera consistency. NeuRAD [35] integrates sensor-specific
effects (e.g., rolling shutter, LiDAR beam divergence) to improve novel view synthesis. Holistic
scene understanding and editing have also seen progress. HUGS [59] combines static and dynamic
3D Gaussians for real-time semantic parsing. ChatSim [39] enables language-driven scene editing
with external asset integration. LiDAR data integration has advanced through methods like LiDAR-
NeRF [32], which uses structural regularization for low-texture regions. HO-Gaussian [18] merges
grid-based volumes with Gaussian Splatting to eliminate Structure-from-Motion dependencies.
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Despite progress, gaps persist between simulated and real-world data [19, 33, 49, 48]. AlignMiF [33]
addresses LiDAR-camera misalignments via geometry-aligned implicit fields, while RodUS [25]
decomposes urban scenes into static and dynamic components using 4D semantics to reduce arti-
facts. Innovations in large-scale generation include InfiniCube [21], which leverages sparse-voxel
representations for unbounded dynamic scenes, and Omnire [5], which reconstructs diverse dynamic
objects (e.g., pedestrians) for human-vehicle interaction simulations. Furthermore, recent works like
GaussianPro [6] and SplatAD [11] explore to refine 3D GS for real-time rendering of dynamic scenes.
GaussianPro [6] introduces progressive propagation for texture-less surfaces, and SplatAD [11]
models sensor-specific phenomena (e.g., rolling shutter, LiDAR intensity). In this work, we aim to
reconstruct high-quality driving scenes by unifying appearance codes and bilateral grids to enhance
photometric consistency and modeling capability.

3 Methodology

3.1 Problem Formulation

We aim to reconstruct a 3D scene representation G from multi-view images and LiDAR depth maps,
commonly available in autonomous driving datasets. Given a set of images {Ic,t} and corresponding
depths {Dc,t} captured by N cameras over T time steps, we formulate our objective as minimizing
the discrepancy between rendered and observed images and depths:

min
G

∑
c,t

(
∥∥Irc,t − Ic,t

∥∥2
2
+ λD

∥∥Dr
c,t −Dc,t

∥∥2
2
) , (1)

where Irc,t and Dr
c,t are the rendered appearance and geometry of the scene G from camera c at time

t, and λD is a weight balancing the depth term.

However, dynamic driving scenes and varying camera properties cause inconsistent appearances,
leading to geometric and texture artifacts. To address inconsistency, we decompose each image Ic,t
into consistent Cc,t (e.g., intrinsic scene colors and constant sensor adjustments like normalization
exposure), and non-consistent Nc,t (e.g., components-varying lighting conditions, different camera
settings and diverse image ISP effects):

Ic,t = Cc,t +Nc,t , (2)

We model Nc,t as a non-linear transformation F(Cc,t). Substituting into Eq. (2):

Ic,t = Cc,t + F(Cc,t) , (3)

Let E(Cc,t) = Cc,t + F(Cc,t), we can reformulate the optimization objective in Eq. (1) as:

min
G

∑
c,t

(
∥∥E(Cr

c,t)− Ic,t
∥∥2
2
+ λD

∥∥Dr
c,t −Dc,t

∥∥2
2
) , (4)

This reformulation links photometric and geometric consistency optimization within a joint objective,
guiding Cr

c,t adjustments by geometric constraints (Dr
c,t). This mitigates texture-geometry ambiguities

(e.g., shadows on road surfaces misinterpretable as geometry changes). F(Cc,t) models transient
appearance, while Cr

c,t enforces consistent scene properties. Experiments (Sec. 4, Tab. 1) show this
joint optimization reduces both photometric error and geometric drift in comparison to baselines.

3.2 Gaussian Splatting for Autonomous Driving Environments

Following prior methodologies [5, 35], we represent autonomous driving environments using a
hybrid scene graph, decomposing the scene into sky, background, and dynamic object models. Each
dynamic object is represented by a 3D model in canonical space and transformed to the scene with an
associated sequence of SE(3) transformations. We derive the transformation matrixes from existing
object detection pipelines or ground-truth annotations.

For the sky, we use an environment map to model sky color based on viewing direction, while static
background is represented as a set of semi-transparent 3D Gaussians. Each Gaussian is characterized
by a learnable opacity parameter o ∈ (0, 1), a mean position µ ∈ R3, and an anisotropic covariance
matrix Σ ∈ R3×3 which is parameterized by a scale vector S ∈ R3 and a rotation quaternion q ∈ R4.
Additionally, Spherical harmonics coefficients c ∈ RF are used to model appearance.
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For the moving object models, we further distinguish between non-deformable (e.g., vehicles) and
deformable objects (e.g., pedestrians). Non-deformable objects {GN

i |i ∈ {1, . . . , nn}} are optimized
in their local coordinate space and transformed into the global world space via their pose T :

GN
i = T ⊗ ĜN

i , (5)

For deformable objects {GD
i |i ∈ {1, . . . , nd}}, we employ a deformation network FΦ (parameterized

by Φ) to adapt the Gaussian representation based on latent variable e and time t:

GD
i = T ⊗

(
ĜD

i ⊕FΦ(ĜD
i , e, t)

)
. (6)

3.3 Multi-Scale Bilateral Grid for Appearance Enhancement

Solving the photometric correction problem formulated in Eq. (4) fundamentally depends on the
ability to effectively model the complex and spatially-varying photometric transformations present in
real-world driving scenes. The function E(·) in our formulation represents this crucial photometric
enhancement process. To address this, we propose the Multi-Scale Bilateral Grid architecture,
detailed in this section, as a novel grounded solution for approximating E(·) and achieving high-
quality, consistent appearance enhancement.

3.3.1 Multi-Scale Bilateral Grid Architecture

To address limitations of existing methods in handling diverse photometric variations in driving
scenes, we propose a multi-scale bilateral grid framework. Our framework achieves this unification by
employing a hierarchical pyramid of bilateral grids, organized across multiple scales. This multi-scale
design is directly inspired by the nature of photometric inconsistencies in real-world environments,
which range from global scene-level changes to highly localized variations (e.g., from overall lighting
shifts to fine texture-level shadows). By utilizing this grid hierarchy, our framework aims to capture
and effectively correct photometric variations at their corresponding scales, thus enabling a more
comprehensive and spatially adaptable photometric correction.

The multi-scale bilateral grid transformation can be formulated as Ie = Ā⊙ Ir, where Ā represents
a composite, scale-dependent photometric transformation. Crucially, this composite transformation is
constructed hierarchically, combining transformations learned by individual bilateral grids at different
scales, progressing from coarse to fine. This staged composition is key to achieving scale-dependent
adaptation to photometric inconsistencies and allows us to move beyond the inherent limitations of
single-scale methods. Further details are provided in the subsequent sections.

Our framework achieves this hierarchical representation using a three-level bilateral grid pyramid
(Fig. 2): (1) Coarse Level (2× 2× 1× 12 grid) captures global scene structure and approximate
global appearance codes; (2) Intermediate Level (4× 4× 2× 12 grid) represents regional features
and capture mid-range photometric variations; (3) Fine Level (8× 8× 4× 12 grid) encodes local
details and approximate pixel-wise bilateral grids within the multi-scale framework.

At each level l, the grid tensor is defined as A(l) ∈ RH(l)×W (l)×D(l)×C(l)

, where Spatial Dimension
(H(l),W (l)) represents spatial resolution (height, width) at level l, Guidance Dimension D(l) specifies
the guidance intensity levels at level l and Coefficient Channel C = 12 represents a flattened 3× 4
affine color transformation matrix.

3.3.2 Guidance Map, Slice Operation, and Multi-Scale Fusion

To achieve adaptive and spatially-varying photometric correction, our multi-scale bilateral grid
framework employs a guidance map and a slicing operation [4] to retrieve localized transformations,
followed by a hierarchical fusion strategy to combine transformations across scales.

We first derive a luminance-based guidance map Ig(u, v) = GrayScale(Ir(u, v)) from the rendered
image Ir(u, v), following the approach of [4, 38, 10]. This map encodes spatial brightness variations
like shadows and highlights, serving as a spatially-varying query to our multi-scale grid. For each
level l and pixel (u, v), the luminance d from Ig is used to perform a slicing operation, querying
the grid’s intensity dimension D(l) to locate an intensity bin. Affine transformation coefficients
A(l)

i,j,k around this bin are then combined via trilinear interpolation for a level-specific transformation
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Ā(l)(u, v). The slicing operation retrieves per-pixel transformations from each grid level, written as:

Ā(l)(u, v) =
∑
i,j,k

wi,j,k(u, v, d)A(l)(i, j, k) , (7)

To efficiently fuse transformations across scales, we utilize hierarchical function composition. A
naive approach of full-resolution slicing at each scale is computationally expensive and redundant due
to local photometric coherence. To address this, we employ downsampled guidance maps Ig(l) for
each scale l, performing slicing to obtain low-resolution coefficient fields, which are then upsampled.
This approach explicitly links scale-aware guidance to patch operations-the reduced-resolution maps
enable efficient spatial aggregation of photometric transformations while enhances efficiency (See
ablation study in Tab. 5). The level-specific transformations T (l), decomposed into linear matrices
M̄ (l) and translations T̄ (l), are then sequentially composed from coarse to fine to produce the final
composite transformation Ā. The refined image Ie(u, v) is obtained by applying Ā(u, v) to Ir(u, v),
with the fusion process expressed as:

Ie = T (L−1) ◦ T (L−2) ◦ · · · ◦ T (0)(Ir) , (8)

This hierarchical fusion decomposes the photometric transformation into scale-dependent residual
refinements. Coarse scales capture global transformations, intermediate scales refine regional varia-
tions, and fine scales address local details (Further elaboration in Sec. 4.3). Further details on the
interpolation kernel and computational efficiency considerations are provided in Appendix A1.1.

Table 1: Ablation studies and comparisons on four large-scale driving datasets. Our proposed method
consistently outperforms OmniRe across all metrics and datasets. w/AC denotes appearance codes;
w/BG denotes single bilateral grids (size of 16× 16× 8).

Dataset Method
Reconstruction Novel View Synthesis Geometry

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ RMSE ↓ Depth ↓

Waymo

OmniRe 28.92 0.833 0.295 26.40 0.761 0.311 1.482 2.785 0.540
OmniRe w/AC 28.95 0.835 0.293 26.44 0.759 0.315 1.378 2.760 0.519
OmniRe w/BG 28.19 0.831 0.292 21.51 0.743 0.333 1.523 2.798 0.492
Ours 29.23 0.836 0.289 26.55 0.762 0.310 0.989 2.744 0.477

NuScenes

OmniRe 26.37 0.837 0.209 23.74 0.733 0.232 1.458 3.420 0.110
OmniRe w/AC 26.38 0.840 0.204 23.74 0.732 0.229 1.437 3.415 0.106
OmniRe w/BG 25.98 0.837 0.209 23.60 0.705 0.262 1.380 3.390 0.097
Ours 27.69 0.847 0.193 24.64 0.739 0.216 1.161 3.340 0.059

Argoverse

OmniRe 24.59 0.848 0.202 22.53 0.755 0.220 0.954 4.208 0.050
OmniRe w/AC 24.58 0.848 0.201 22.51 0.756 0.219 0.959 4.215 0.051
OmniRe w/BG 23.31 0.842 0.216 21.70 0.725 0.254 0.901 4.218 0.049
Ours 24.68 0.849 0.200 22.58 0.756 0.217 0.807 4.199 0.040

Pandaset

OmniRe 30.20 0.903 0.219 27.49 0.835 0.240 0.503 2.874 0.018
OmniRe w/AC 30.20 0.903 0.220 27.51 0.841 0.242 0.496 2.871 0.020
OmniRe w/BG 29.73 0.904 0.220 27.38 0.830 0.246 0.484 2.867 0.013
Ours 30.75 0.906 0.213 27.89 0.847 0.235 0.453 2.852 0.011

4 Experiments

4.1 Experimental Setup

Datasets. We evaluate on four autonomous driving datasets: Waymo [30], NuScenes [1], Argov-
erse [40], and PandaSet [42], selected for their diversity in sensor configurations (LiDAR, camera
specifications), environmental conditions (lighting, seasons), and geographic locations. Identical
model hyperparameters are used across all datasets to test generalization capability. Technical specifi-
cations including camera counts and ego-vehicle view cropping details are provided in Appendix A2.

Baseline. Our focus is on modeling appearance variance across viewpoints, we build upon the open-
source works DriveStudio [5], ChatSim [39], StreetGS [45] and test three approaches: appearance
codes, standalone bilateral grids, and our multi-scale bilateral grids. This allows for direct comparison
of how each method handles photometric inconsistencies across viewpoints.

Implementation details. We evaluate our method on many autonomous driving datasets to demon-
strate its robustness. For each dataset, We train all the methods on a single NVIDIA L40 GPU and
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Table 2: Comparison with different baseline approaches for scene reconstruction. Performance
is reported as the average over the nuScenes [1] scenarios.

Method
Reconstruction Novel View Synthesis Geometry

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ RMSE ↓ Depth ↓
ChatSim [39] 25.10 0.805 0.252 23.27 0.725 0.270 1.557 3.509 0.106
ChatSim (Ours) 27.04 0.819 0.231 24.67 0.735 0.249 1.236 3.412 0.053
StreetGS [45] 25.74 0.822 0.240 23.64 0.736 0.259 1.604 3.544 0.107
StreetGS (Ours) 27.90 0.836 0.219 25.10 0.747 0.238 1.272 3.458 0.055

compare the 3D reconstruction and novel view synthesis (NVS) results between camera and LiDAR
data. Additionally, we ablate key components of our method and quantify their impact on both
appearance and geometry quality.

Training and Dynamic Rendering.

1) Training. To optimize our multi-scale Gaussian scene representation, we employ a joint training
strategy that minimizes a composite reconstruction loss :

Lrecon = λrL1 + λsLSSIM + λdLd + λoLo , (9)

Furthermore, we introduce two regularization terms to enhance image fidelity: Adaptive Total
Variation Regularization. This term encourages smoothness and reduces noise while preserving
image details, and Circle Regularization Loss. This loss applies inverse transformation to the ground-
truth images, preventing discrepancies and image quality degradation. As visually demonstrated in
Fig. 5, these terms effectively improve image fidelity. Detailed are provided in Appendix A1.

2) Rendering. For dynamic rendering using our multi-scale bilateral grid framework, we employ
a specific interpolation strategy when encountering novel test images, especially those simulating
dynamic ISP conditions. We first conducts a temporal proximity search to identify the most relevant
grids. Following this, we perform scale-specific interpolation using the two nearest grids found.

Table 3: Evaluation on Challenging Scene Subsets. Results on systematically selected extreme
cases. Our method shows substantially improvements when photometric inconsistencies are severe.

Scene Type Method
Reconstruction Novel View Synthesis Geometry

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ RMSE ↓ Depth ↓
Challenging Scenes
(18 scenes)

OmniRe 26.84 0.847 0.239 24.46 0.758 0.263 0.650 3.176 0.063
Ours 28.13 0.856 0.223 25.17 0.763 0.250 0.523 3.120 0.023

Night Scenes
(4 scenes)

OmniRe 28.34 0.805 0.338 26.54 0.753 0.360 0.586 2.767 0.041
Ours 29.13 0.812 0.330 27.21 0.762 0.349 0.500 2.731 0.016

Sun Flare Scenes
(5 scenes)

OmniRe 26.68 0.866 0.195 24.98 0.796 0.212 0.781 3.073 0.079
Ours 28.65 0.879 0.173 25.84 0.803 0.192 0.593 2.994 0.022

4.2 Quantitative Evaluation

Reconstruction and Geometric Quality. We present a comprehensive quantitative analysis in Tab. 1,
comparing our full model against the OmniRe and its variants with appearance codes (w/AC) and
a single bilateral grid (w/BG). Our method consistently sets a new state-of-the-art across all four
datasets in both appearance and, most critically, geometric metrics.

In terms of appearance fidelity, our model achieves the highest PSNR and SSIM scores. For example,
on NuScenes, our method reaches a PSNR of 27.69, a significant jump from 26.37 (OmniRe) and
26.38 (OmniRe w/AC). This demonstrates the superior ability of the multi-scale grid to model
complex photometric variations.

However, the most striking result is the substantial improvement in geometric accuracy. Our method
drastically reduces the Chamfer Distance, a key indicator of geometric fidelity. On the Waymo
dataset, our model hits a CD of 0.989, outperforming the best baseline (OmniRe w/AC, 1.378) by
a remarkable 28.2%. This trend holds across all datasets, with significant reductions in Chamfer
Distance (CD), Root Mean Squared Error (RMSE), and Median Squared Depth Error (Depth).
This result provides strong evidence for our central hypothesis: by accurately resolving photometric
ambiguities, our multi-scale approach effectively eliminates geometric artifacts like "floaters" and
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Figure 3: Our Method vs. Baseline Methods on Waymo, NuScenes, Argoverse, and PandaSet.
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Figure 4: Our proposed framework (c) outperforms appearance codes (a) and single bilateral grids (b)
by simultaneously addressing optimization challenges and enhancing geometric modeling. This
delivers significant geometric accuracy improvements (lower Chamfer Distance (CD) via multi-scale
bilateral grid, reducing error and improving reconstruction) and reduced photometric inconsistency
(fewer floaters) in dynamic, decoupled driving scenes. Yellow indicates a high lidar error, while
Purple indicates a low lidar error.

produces a much cleaner, more accurate 3D reconstruction. The single bilateral grid (w/BG), despite
its high expressiveness, often fails to converge and even degrades performance, highlighting the
optimization challenges that our multi-scale, coarse-to-fine framework successfully overcomes.

NVS. As shown in Tab. 1, our model’s superior reconstruction quality translates directly to improved
NVS. Our method consistently outperforms all baselines in NVS metrics across the four datasets.
For instance, on PandaSet, we achieve a PSNR of 27.89, surpassing the next best (OmniRe w/AC
at 27.51). This indicates that the cleaner geometry and more consistent appearance learned by our
model generalize better to unseen viewpoints, producing higher-fidelity renderings.

Generalization to Other Methods. To demonstrate the broad applicability of our approach, we
integrated our multi-scale bilateral grid into two other state-of-the-art methods, ChatSim [39] and
StreetGS [45]. The results on NuScenes, presented in Tab. 2, are compelling. Our module brings
substantial gains to both frameworks. For StreetGS, incorporating our method boosts the recon-
struction PSNR from 25.74 to 27.90 and slashes the Chamfer Distance from 1.604 to 1.272. These
significant improvements underscore that our multi-scale grid is not just a bespoke enhancement for
one architecture but a generalizable and powerful module for improving photometric and geometric
consistency in Gaussian Splatting-based scene reconstruction.

Performance on Challenging Scenarios. To validate robustness, we curated a subset of 18 chal-
lenging scenarios with extreme photometric inconsistencies. As shown in Table 3, our method’s
advantages are substantially more pronounced here than on the standard datasets. Across this entire
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subset, our model achieves a +1.29 dB PSNR gain. This improvement is even more significant in
specific difficult sub-categories; for instance, in "Sun Flare Scenes," the gain reaches +1.97 dB. This
demonstrates our model’s strong effectiveness in resolving severe, real-world edge cases.

4.3 Qualitative Evaluation

Rendering Results. Fig. 3 and Fig. 4 present visualization results of our method on scenes from
Waymo [30], NuScenes [1], Argoverse [40], and PandaSet [42], demonstrating its capability to handle
diverse conditions that might otherwise lead to inconsistencies.

w/ Circle Regularization Loss w/o Circle Regularization Loss

w/ Adaptive TV Loss w/o Adaptive TV Loss

Figure 5: Visualizations of ablations on Circle Regularization loss and Adaptive TV loss.
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Figure 6: Visualization of Affine Transformations and Distributions. The first three rows display
the affine transformation and corresponding distributions when applying the first level, the first two
levels, and all three levels of our multi-scale approach. The final row compares these to results from
a single bilateral grid, demonstrating that the multi-scale bilateral grid achieves a coarse-to-fine,
smooth image enhancement with more diverse processing capabilities.

Configuration Grid Params (M) Training Time (h) Testing time (FPS)
OmniRe w/AC 0.072 1.93 53
OmniRe w/BG 27.843 2.85 54 / 38†
Ours 3.969 2.10 54 / 42†

Table 4: Computational Efficiency Analysis. † denotes render-
ing with bilateral grid processing active.

Analysis of Learned Affine
Transformations. To gain
deeper insight into how our
model functions, we analyze
the distribution of the learned
affine transformations in Fig. 6.
The histograms for the original
single-scale bilateral grid (BG)
exhibit a distinct bi-modal, peaky
distribution for each viewpoint. This suggests that the single grid learns a limited set of dominant
photometric corrections for each view, struggling to capture the full spectrum of variations. In
stark contrast, the aggregated histogram from our multi-scale grid (across all levels and viewpoints)
is significantly flatter and more dispersed. This is a direct visualization of our framework’s core
strength. The coarse-level grid first establishes a view-dependent baseline appearance, capturing the
dominant global photometric shift (interestingly, its own histogram is also peaky, but varies across
views). Then, the medium and fine grids learn residual transformations in a coarse-to-fine manner,
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correcting the errors from the preceding levels. This hierarchical, residual refinement process allows
the model to represent a much broader and more diverse range of photometric transformations. The
flatter histogram is empirical evidence of this enhanced representational power, which is crucial for
achieving consistent, high-quality renderings across the diverse and challenging views encountered
in autonomous driving.

4.4 Ablation Studies

As shown in Tab. 4, Tab. 5 and Fig. 5, we systematically evaluate component contributions through:

Settings Recon.↑ NVS.↑ CD ↓
Full model 27.69 24.64 1.161

(a) Guidance Map Resolution
(1,1,1) 27.62 24.34 1.271
(2,2,1) 27.68 24.64 1.170
(8,8,4) 27.52 24.53 1.187
(16,16,8) 27.50 24.54 1.202

(b) Grid Size Combinations
Single Grid (8,8,4) 26.56 23.90 1.376
(4,4,2)+(8,8,4) 27.49 24.56 1.963
(2,2,1)+(8,8,4) 27.57 24.57 1.940
(2,2,1)+(4,4,2) 27.33 24.42 1.213

(c) Loss Functions
w/o circle regularization loss 27.47 24.52 1.164
w/o adaptive total variance loss 27.64 24.61 1.169

Table 5: Ablations. Numbers in Guidance Map Reso-
lution indicate downsample factors from coarse to fine
level, and numbers in Grid Size Combinations indicate
grid size.

Guidance Map Resolution. We test dif-
ferent downsampling factors for the guid-
ance map at each grid level. The results in
Tab. 5(a) show that a moderate downsam-
pling of (2,2,1) from coarse to fine yields
the best balance, achieving the highest
NVS PSNR (24.64). Using the full resolu-
tion (1,1,1) slightly degrades performance,
likely due to overfitting to noise, validating
our patch-based aggregation strategy.

Grid Size Combinations. The combina-
tion of grid sizes is crucial. As shown
in Tab. 5(b), removing the coarsest grid
level (e.g., using only (4,4,2)+(8,8,4)) leads
to a dramatic increase in CD, highlight-
ing the importance of the coarse grid for
establishing global geometric consistency.
Crucially, a baseline with only a single
fine-resolution grid (8,8,4) performs poorly,
confirming that finer grids fail to converge
without the stable, coarse-level initializa-
tion our method provides.

Loss Functions. Ablating our proposed regularization losses in Tab. 5(c) shows their contribution.
Removing the circle regularization loss slightly degrades both reconstruction and NVS performance.
The effect of the adaptive total variance loss is more subtle in metrics but visibly improves rendering
quality by reducing noise, as shown in Fig. 5.

Efficiency. As detailed in Tab. 4, our method strikes an effective balance between performance
and computational cost. The single large bilateral grid (w/BG) leads to a massive parameter count
(27.8M) and the longest training time (2.85h). In contrast, our multi-scale approach requires only
3.9M parameters and a modest 9% increase in training time (2.10h vs. 1.93h) compared to the
appearance code baseline, while delivering substantially better results. During inference, our method
maintains high frame rates, demonstrating its practicality.

5 Conclusion

We introduced a novel multi-scale bilateral grid that unifies global appearance codes and pixel-wise
bilateral grids into a single, hierarchical framework. Our extensive experiments demonstrate that
this approach not only effectively models and corrects complex photometric inconsistencies in
autonomous driving scenes but, more importantly, leads to a significant and crucial improvement in
the geometric accuracy of the final reconstruction. By establishing this strong link between advanced
appearance modeling and geometric fidelity, our work paves the way for more robust and reliable
neural rendering systems in safety-critical, real-world applications.

Limitations. While our method shows significant improvements, some limitations remain. (1) The
computational overhead, though much lower than a single large bilateral grid, is still higher than
simple appearance codes, which could be a consideration for resource-constrained scenarios. (2)
Modeling extremely fast-moving or highly non-rigid objects where LiDAR and camera data misalign
remains an open challenge.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The abstract clearly state the claims.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: They are discussed in the conclusion.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: the proofs are in the methodology part.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: All the information are included in the experimental setup part in section 4.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The code is avaliable in the anonymous GitHub repository in last line of
abstract.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: All the information are included in the experimental setup part in section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All results are accompanied by statistical significance tests.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: They are described in the implementation details part in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: [NA]

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We have discussed both positive and negative impacts.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We identify our paper as having no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have given the creators or original owners of assets used in the paper proper
credits.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We have not released new assets at the submission time. We will carefully
document our data and model when we release the code and data.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The paper does not involve LLM.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix: Unifying Appearance Codes and Bilateral Grids for
Driving Scene Gaussian Splatting

A Additional Implementation Details

A.1 Loss Functions and Optimization

We jointly optimize our multi-scale Gaussian scene representation by minimizing a composite loss
function Ltotal:

Ltotal = Lrecon + λTVLTV + λcircleLcircle (A1)
where Lrecon is the primary reconstruction loss, and LTV and Lcircle are regularization terms.

A.1.1 Reconstruction Loss

The core reconstruction loss, Lrecon, drives the accurate reproduction of both RGB and depth informa-
tion:

Lrecon = λrL1 + (1− λr)LSSIM + λdLd + λoLo (A2)
Here, L1 and LSSIM measure the image-space difference. Ld represents the loss between the rendered
depth and the ground truth LiDAR depth. Lo is an opacity regularization term that encourages
alignment with a non-sky mask.

A.1.2 Adaptive Total Variation (TV) Regularization

To encourage smoothness and reduce noise in the optimized grid representations, we incorporate a
TV regularization term, LTV, at each level l of the multi-scale representation:

LTV =
∑
l

k(l) · 1

|A(l)|
∑
i,j,k

∑
D∈{x,y,z}

∥∥∥∆DA(l)(i, j, k)
∥∥∥2
2

(A3)

The adaptive weight k(l) for each level l is proportional to the grid size, applying stronger smoothing
to finer, higher-resolution grids and lighter regularization to coarser grids.

k(l) = a
√

H(l) ·W (l) ·D(l) + b (A4)

A.1.3 Circle Regularization for Photometric Consistency

To constrain the noise introduced by photometric corrections and prevent overly aggressive alterations,
we introduce a circle regularization loss, Lcircle:

Lcircle =
∑

(u,v)∈S

∥∥Ir(u, v)− Ā−1(Igt(u, v))
∥∥2
2

(A5)

where S denotes the set of pixel coordinates. This loss encourages the rendered image Ir to be
reconstructible from the ground truth image Igt via an inverse appearance transformation Ā−1.

A.1.4 Coarse-to-Fine Optimization Strategy

We employ a coarse-to-fine optimization strategy by utilizing level-dependent learning rates (e.g.,
1 × 10−5, 3 × 10−5, 1 × 10−4 from coarse to fine). Coarser grids, assigned higher learning rates,
rapidly learn the global scene illumination, while finer grids, with lower learning rates, hierarchically
refine high-frequency photometric details. This staged optimization enhances stability.

A.2 Dynamic Rendering for Real-World ISP Adaptation

To bridge the domain gap between the fixed ISP used during training and dynamic real-world ISP
pipelines encountered during inference, we employ an interpolation strategy. For a novel test image
with timestamp tnovel, we proceed as follows:

1. Temporal Proximity Search: We identify the two training timestamps from the same
camera, t1 and t2, that are temporally closest to tnovel (such that t1 ≤ tnovel ≤ t2).
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2. Scale-Specific Grid Interpolation: We perform linear interpolation specifically on the
coarse and medium-scale bilateral grids (A(0), A(1)) derived from these two timestamps.

The interpolated grid Â(l) for l ∈ {0, 1} is formulated as:

Â(l) = ωA(l)
t1 + (1− ω)A(l)

t2 (A6)
The temporal interpolation weight, ω, is determined by proximity:

ω =
t2 − tnovel
t2 − t1

(A7)

The fine-scale grid (l = 2) is not used during interpolation, as it is primarily intended to capture
scene-intrinsic details rather than global ISP variations.

B Dataset Details

This section provides dataset-specific details regarding our evaluation protocol, including sequence
IDs for reproducibility.

B.1 Waymo Open Dataset [2]

We use all five cameras and all LiDAR sensors. We conduct our experiments on the following 6
sequences, selected according to [3, 4]:

• segment-10017090168044687777
• segment-10061305430875486848
• segment-10584247114982259878
• segment-15090871771939393635
• segment-4458730539804900192
• segment-5835049423600303130

B.2 NuScenes [1]

We utilize all six available cameras and all LiDAR sensors. We select the following 8 sequences:
152, 164, 171, 200, 209, 359, 529, 916, which is an extension of the dataset used by [3].
To address ego-vehicle visibility, we crop the bottom 80 pixels from the back camera images.

B.3 PandaSet [6]

We utilize six cameras and one LiDAR unit. We specifically evaluate on the following 10 challenging
nighttime sequences: 063, 066, 070, 073, 074, 077, 078, 079, 088, 149. To mitigate
ego-vehicle artifacts, we apply a bottom crop of 260 pixels to the back camera images.

B.4 Argoverse2 [5]

We leverage the seven ring cameras and both LiDAR sensors available in the dataset. We conduct our
experiments on the following 9 sequences, in line with [3]:

• 05fa5048-f355-3274-b565-c0ddc547b315
• 0b86f508-5df9-4a46-bc59-5b9536dbde9f
• 185d3943-dd15-397a-8b2e-69cd86628fb7
• 25e5c600-36fe-3245-9cc0-40ef91620c22
• 27be7d34-ecb4-377b-8477-ccfd7cf4d0bc
• 280269f9-6111-311d-b351-ce9f63f88c81
• 2f2321d2-7912-3567-a789-25e46a145bda
• 44adf4c4-6064-362f-94d3-323ed42cfda9
• 5589de60-1727-3e3f-9423-33437fc5da4b

To minimize ego-vehicle interference, we apply a bottom crop of 250 pixels to the front center, rear
left, and rear right camera views.
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C Additional Quantitative Results

This section presents a comprehensive breakdown of our model’s performance, including per-scene
metrics, integration results with SOTA methods, and robustness checks on challenging subsets.

C.1 Per-Scene Geometry and Appearance Evaluation

We provide detailed metrics for geometry (Tab. A1 - A4) and appearance (Tab. A5 - A8).

Ground Truth

Baseline+AP

Baseline+BG

Baseline+Ours

Figure A1: Qualitative Comparison of Photometric Correction with Baseline Methods. These
figures visualize the output of our method (’Baseline+Ours’) against the ground truth, a baseline
with appearance codes (’Baseline+AP’), and a baseline with a single bilateral grid (’Baseline+BG’).
The accompanying error maps (blue indicating lower error, red higher) and highlighted red boxes
demonstrate our method’s superior ability to handle complex illumination and reduce artifacts
compared to traditional approaches.

C.2 Integration Evaluation with SOTA Methods

Tab. A9 and A10 provide comparisons with SOTA methods like ChatSim [4] and StreetGS [7] on the
NuScenes dataset.
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Ground Truth

Baseline+AP

Baseline+BG

Baseline+Ours

Figure A2: Qualitative Comparison of Photometric Correction with Baseline Methods.

Scene Geometry Evaluation

CD↓ RMSE↓ Depth↓
152 1.227 3.463 0.042
164 0.889 2.469 0.103
171 1.042 2.813 0.075
200 1.300 3.617 0.020
209 1.294 3.524 0.065
359 1.238 3.542 0.036
529 0.678 2.675 0.021
916 1.623 4.617 0.109

Average 1.161 3.340 0.059

Table A1: Detailed Scene-by-Scene Geometry Evaluation on the NuScenes [1]. This table presents
key geometry metrics—Chamfer Distance (CD), Root Mean Square Error (RMSE), and Depth
error—for individual scenes and averaged across the evaluated sequences from the NuScenes dataset.
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OmniRe OmniRe+Ours

Figure A3: Qualitative Comparison with the OmniRe. This figure showcases a side-by-side
visual comparison of renderings and depth maps produced by the original OmniRe framework
versus OmniRe integrated with our proposed method (’OmniRe+Ours’). The results highlight the
enhancements in image fidelity and depth map coherence achieved by our approach.

Scene Geometry Evaluation

CD↓ RMSE↓ Depth↓
0 1.638 3.217 1.733
3 1.427 2.905 0.350
31 0.278 1.636 0.026

233 1.149 3.465 0.594
551 1.339 3.362 0.095
621 0.103 1.879 0.007

Average 0.989 2.744 0.467

Table A2: Detailed Scene-by-Scene Geometry Evaluation on the Waymo Open Dataset [2]. This
table showcases the Chamfer Distance (CD), Root Mean Square Error (RMSE), and Depth error for
specific scenes and their average, evaluating the geometric reconstruction accuracy on the Waymo
Open Dataset.
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ChatSim ChatSim+Ours

Figure A4: Qualitative Comparison with the ChatSim. Visual results comparing the ChatSim
framework with ChatSim augmented by our method (’ChatSim+Ours’). The rendered images and
corresponding depth maps illustrate the improvements in visual quality and geometric detail provided
by our multi-scale bilateral grid framework.

StreetGS StreetGS+Ours

Figure A5: Qualitative Comparison with the StreetGS. This figure presents a visual comparison
between the StreetGS framework and StreetGS enhanced with our method (’StreetGS+Ours’). The
displayed images and depth maps demonstrate the capability of our approach to improve rendering
realism and depth accuracy in challenging driving scenarios.
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Scene Geometry Evaluation

CD↓ RMSE↓ Depth↓
63 0.760 3.812 0.015
66 0.517 2.657 0.008
70 0.310 2.244 0.027
73 0.280 2.012 0.007
74 0.680 3.240 0.009
77 0.190 2.926 0.004
78 0.403 2.819 0.008
79 0.198 2.081 0.004
88 0.968 4.674 0.039

149 0.228 2.052 0.007
Average 0.453 2.852 0.013

Table A3: Detailed Scene-by-Scene Geometry Evaluation on the PandaSet [6]. This table provides
a per-scene breakdown and average of Chamfer Distance (CD), Root Mean Square Error (RMSE),
and Depth error, assessing geometric reconstruction performance on challenging nighttime scenarios
from PandaSet.

Scene Geometry Evaluation

CD↓ RMSE↓ Depth↓
0 0.522 3.001 0.023
1 2.071 5.845 0.085
2 0.461 3.226 0.011
3 0.348 3.677 0.014
4 1.198 4.485 0.059
5 0.694 5.069 0.040
6 0.967 6.193 0.075
8 0.743 4.436 0.045
9 0.257 1.952 0.005

Average 0.807 4.209 0.040

Table A4: Detailed Scene-by-Scene Geometry Evaluation on the Argoverse2 Dataset [5]. This table
displays Chamfer Distance (CD), Root Mean Square Error (RMSE), and Depth error for individual
sequences and their average, evaluating geometric accuracy on the Argoverse2 dataset.

Scene
Scene Reconstruction Novel View Synthesis

Full Image human vehicle Full Image human vehicle

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑
152 27.39 0.839 0.204 29.33 0.873 27.76 0.862 23.57 0.695 0.234 25.04 0.655 22.07 0.579
164 26.52 0.829 0.232 24.75 0.789 25.60 0.793 23.16 0.711 0.262 19.86 0.464 21.74 0.595
171 26.97 0.833 0.249 24.05 0.652 26.22 0.812 24.39 0.748 0.273 22.28 0.568 22.51 0.639
200 27.80 0.835 0.193 N/A N/A 28.08 0.832 25.28 0.745 0.211 N/A N/A 24.11 0.643
209 29.07 0.866 0.185 28.20 0.802 28.84 0.836 26.18 0.785 0.204 25.42 0.694 25.07 0.683
359 27.95 0.859 0.168 26.98 0.795 27.25 0.839 24.43 0.723 0.190 24.06 0.629 22.72 0.647
529 29.90 0.893 0.133 24.25 0.736 27.80 0.856 27.40 0.826 0.146 24.18 0.712 24.84 0.745
916 25.88 0.819 0.181 28.16 0.792 26.95 0.839 22.73 0.678 0.208 25.44 0.637 22.75 0.634

Average 27.69 0.847 0.193 26.53 0.777 27.31 0.834 24.64 0.739 0.216 23.75 0.623 23.23 0.646

Table A5: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on
the NuScenes Dataset [1]. This table presents PSNR, SSIM, and LPIPS metrics for the full image,
as well as for ’human’ and ’vehicle’ classes, for both scene reconstruction and novel view synthesis
tasks on various NuScenes sequences.

Scene
Scene Reconstruction Novel View Synthesis

Full Image human vehicle Full Image human vehicle

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑
0 29.26 0.840 0.311 N/A N/A 23.33 0.640 25.94 0.770 0.341 N/A N/A 22.29 0.531
3 27.94 0.841 0.241 21.82 0.632 N/A N/A 24.30 0.737 0.269 20.45 0.505 N/A N/A

31 27.65 0.849 0.224 32.93 0.784 22.54 0.683 23.98 0.723 0.250 30.48 0.657 19.05 0.421
233 33.71 0.801 0.482 N/A N/A 23.55 0.686 32.81 0.777 0.488 N/A N/A 22.37 0.645
551 24.89 0.748 0.409 20.77 0.470 21.66 0.683 22.54 0.670 0.437 19.99 0.407 18.76 0.471
621 31.91 0.939 0.067 26.68 0.846 26.40 0.845 29.73 0.895 0.078 24.94 0.789 24.35 0.765

Average 29.23 0.836 0.289 25.55 0.683 23.50 0.707 26.55 0.762 0.310 23.97 0.590 21.36 0.567

Table A6: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on
the Waymo Open Dataset [2]. This table details PSNR, SSIM, and LPIPS metrics for full images and
specific object classes (’human’, ’vehicle’) during scene reconstruction and novel view synthesis on
selected Waymo sequences.
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Scene
Scene Reconstruction Novel View Synthesis

Full Image human vehicle Full Image human vehicle

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑
63 29.95 0.905 0.226 29.44 0.783 22.32 0.726 27.32 0.854 0.258 26.93 0.613 18.49 0.447
66 31.73 0.931 0.198 29.94 0.845 20.78 0.681 28.92 0.890 0.215 26.84 0.738 19.55 0.591
70 31.09 0.909 0.260 N/A N/A 21.35 0.740 28.35 0.862 0.287 N/A N/A 21.20 0.674
73 32.13 0.931 0.198 31.26 0.868 23.33 0.806 29.16 0.889 0.214 N/A N/A 21.84 0.706
74 29.85 0.914 0.207 30.99 0.874 24.44 0.849 27.13 0.862 0.228 27.82 0.740 22.23 0.740
77 32.60 0.937 0.165 32.28 0.852 25.42 0.855 29.77 0.895 0.178 29.02 0.730 22.12 0.721
78 31.30 0.922 0.181 33.54 0.896 25.27 0.812 28.39 0.869 0.197 30.74 0.809 22.86 0.683
79 31.42 0.902 0.228 31.91 0.850 26.06 0.843 28.14 0.832 0.251 28.98 0.726 23.08 0.702
88 25.09 0.787 0.269 22.10 0.670 21.90 0.738 21.95 0.623 0.305 20.19 0.362 18.46 0.444
149 32.31 0.926 0.202 N/A N/A 24.04 0.791 29.73 0.891 0.215 N/A N/A 23.37 0.728

Average 30.75 0.906 0.213 30.18 0.830 23.49 0.784 27.89 0.847 0.235 27.22 0.674 21.32 0.644

Table A7: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on
PandaSet [6]. This table outlines PSNR, SSIM, and LPIPS metrics for full image and object-specific
(’human’, ’vehicle’) evaluations in both scene reconstruction and novel view synthesis tasks using
PandaSet nighttime sequences.

Scene
Scene Reconstruction Novel View Synthesis

Full Image human vehicle Full Image human vehicle

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ PSNR↑ SSIM↑
0 25.72 0.871 0.181 25.54 0.822 26.58 0.825 22.83 0.765 0.199 23.73 0.734 23.31 0.682
1 22.18 0.769 0.302 21.76 0.681 22.87 0.798 20.20 0.655 0.323 18.22 0.472 18.48 0.478
2 27.36 0.888 0.166 25.33 0.785 28.93 0.884 24.83 0.803 0.183 22.32 0.620 23.63 0.669
3 26.55 0.893 0.123 23.24 0.811 25.58 0.875 24.69 0.826 0.141 21.99 0.756 23.10 0.769
4 22.65 0.804 0.272 22.73 0.720 23.76 0.812 20.55 0.685 0.290 19.95 0.518 19.58 0.493
5 24.19 0.848 0.207 23.69 0.760 23.75 0.790 22.07 0.738 0.226 21.12 0.598 20.32 0.580
6 23.56 0.795 0.275 19.80 0.588 21.05 0.757 21.86 0.703 0.292 18.15 0.446 17.76 0.498
8 23.47 0.850 0.183 25.63 0.787 23.66 0.851 21.25 0.756 0.199 20.57 0.531 19.58 0.628
9 26.48 0.925 0.091 22.44 0.700 24.42 0.853 24.91 0.875 0.100 21.04 0.614 21.96 0.732

Average 24.68 0.849 0.200 23.35 0.739 24.51 0.827 22.58 0.756 0.217 20.79 0.588 20.86 0.615

Table A8: Detailed Appearance Evaluation for Scene Reconstruction and Novel View Synthesis on
the Argoverse2 Dataset [5]. This table shows PSNR, SSIM, and LPIPS for full image and object-
focused (’human’, ’vehicle’) assessments across scene reconstruction and novel view synthesis on the
Argoverse2 dataset.

Scene Method Reconstruction Novel View Synthesis Geometry
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ RMSE ↓ Depth ↓

ChatSim 25.37 0.811 0.251 1.592 3.637 0.085 22.72 0.694 0.276152 Ours 27.09 0.825 0.231 1.309 3.540 0.040 23.80 0.703 0.256
ChatSim 24.08 0.788 0.299 1.198 2.615 0.186 22.07 0.708 0.321164 Ours 26.16 0.802 0.273 0.972 2.523 0.101 23.79 0.718 0.293
ChatSim 25.00 0.801 0.310 1.420 2.981 0.105 23.31 0.736 0.326171 Ours 26.95 0.813 0.289 1.114 2.895 0.057 24.77 0.744 0.307
ChatSim 24.85 0.799 0.230 1.690 3.740 0.035 23.47 0.732 0.246200 Ours 27.54 0.816 0.220 1.289 3.619 0.017 25.43 0.745 0.235
ChatSim 25.77 0.818 0.268 1.841 3.805 0.118 24.30 0.763 0.281209 Ours 27.93 0.833 0.243 1.445 3.691 0.061 25.93 0.776 0.255
ChatSim 25.76 0.823 0.220 1.498 3.701 0.073 23.46 0.714 0.238359 Ours 27.17 0.834 0.208 1.317 3.647 0.036 24.31 0.719 0.227
ChatSim 27.19 0.864 0.191 1.071 2.853 0.077 25.70 0.812 0.201529 Ours 29.60 0.878 0.159 0.692 2.749 0.018 27.35 0.822 0.169
ChatSim 22.81 0.742 0.249 2.145 4.745 0.173 21.19 0.641 0.271916 Ours 23.95 0.759 0.232 1.750 4.635 0.102 21.96 0.655 0.253

Table A9: Comparative Performance Analysis against ChatSim on the NuScenes Dataset. This table
provides a scene-by-scene comparison of our method (’Ours’) with the ChatSim baseline across scene
reconstruction (PSNR, SSIM, LPIPS), novel view synthesis (PSNR, SSIM, LPIPS), and geometry
(CD, RMSE, Depth) metrics.
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Scene Method Reconstruction Novel View Synthesis Geometry
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ CD ↓ RMSE ↓ Depth ↓

StreetGS 25.49 0.813 0.254 1.611 3.648 0.089 22.73 0.695 0.280152 Ours 27.34 0.828 0.231 1.343 3.560 0.038 23.90 0.706 0.256
StreetGS 25.04 0.813 0.273 1.187 2.605 0.179 22.55 0.724 0.296164 Ours 27.41 0.827 0.248 0.956 2.523 0.096 24.29 0.734 0.269
StreetGS 25.62 0.811 0.305 1.355 2.958 0.115 23.63 0.743 0.323171 Ours 27.79 0.822 0.281 1.184 2.910 0.067 25.21 0.751 0.300
StreetGS 25.32 0.811 0.230 1.878 3.925 0.041 23.75 0.739 0.247200 Ours 28.12 0.829 0.219 1.418 3.817 0.020 25.67 0.752 0.235
StreetGS 26.53 0.840 0.243 1.932 3.813 0.125 24.77 0.779 0.258209 Ours 29.05 0.854 0.217 1.481 3.697 0.061 26.53 0.791 0.231
StreetGS 26.08 0.831 0.211 1.539 3.710 0.075 23.53 0.716 0.230359 Ours 27.63 0.843 0.199 1.299 3.659 0.039 24.45 0.723 0.218
StreetGS 27.50 0.871 0.186 1.065 2.883 0.063 25.96 0.819 0.197529 Ours 30.09 0.884 0.158 0.718 2.795 0.020 27.69 0.827 0.169
StreetGS 24.34 0.787 0.223 2.268 4.813 0.175 22.21 0.680 0.245916 Ours 25.80 0.804 0.204 1.781 4.709 0.106 23.11 0.692 0.226

Table A10: Comparative Performance Analysis against StreetGS on the NuScenes Dataset. This
table presents a detailed per-scene comparison of our approach (’Ours’) with the StreetGS baseline,
evaluating scene reconstruction (PSNR, SSIM, LPIPS), novel view synthesis (PSNR, SSIM, LPIPS),
and geometry (CD, RMSE, Depth) metrics.

Table A11: Detailed comparison on Challenging Argoverse Scenarios (6 scenes).

Method Reconstruction Novel View Synthesis
PSNR ↑ SSIM ↑ CD ↓ RMSE ↓ Depth ↓ PSNR ↑ SSIM ↑

OmniRe (Baseline) 23.95 0.850 0.964 3.647 0.098 22.10 0.761
OmniRe w/ AC 23.97 0.848 0.923 3.642 0.097 22.09 0.759
OmniRe w/ BG 24.29 0.855 0.807 3.586 0.047 22.32 0.768
Ours 25.29 0.863 0.726 3.564 0.027 22.96 0.773

Table A12: Detailed comparison on Challenging Waymo Scenarios (6 scenes).

Method Reconstruction Novel View Synthesis
PSNR ↑ SSIM ↑ CD ↓ RMSE ↓ Depth ↓ PSNR ↑ SSIM ↑

OmniRe (Baseline) 29.28 0.833 0.352 1.917 0.061 27.37 0.791
OmniRe w/ AC 29.31 0.833 0.343 1.915 0.053 27.30 0.789
OmniRe w/ BG 29.61 0.836 0.333 1.893 0.042 27.56 0.792
Ours 31.23 0.841 0.272 1.846 0.021 28.34 0.793

Table A13: Detailed comparison on Challenging Pandaset Scenarios (6 scenes).

Method Reconstruction Novel View Synthesis
PSNR ↑ SSIM ↑ CD ↓ RMSE ↓ Depth ↓ PSNR ↑ SSIM ↑

OmniRe (Baseline) 27.28 0.859 0.634 3.963 0.029 23.91 0.721
Ours 27.88 0.863 0.572 3.951 0.022 24.22 0.724

Table A14: Comparison results of vehicle-specific metrics, averaged across 20 scenes from all four
datasets.

Method PSNR ↑ SSIM ↑ CD ↓
OmniRe (Baseline) 24.24 0.784 8.675
Ours 24.80 0.791 7.400
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C.3 Performance on Challenging Scenarios

To validate robustness, we curated subsets of challenging scenarios with extreme photometric
inconsistencies (e.g., night scenes, sun glare, rain, and complex reflections). As shown in Tables
A11, A12, and A13, our method’s performance gap widens significantly compared to all baselines
(OmniRe, w/ AC, w/ BG) in these difficult conditions, demonstrating the superior robustness of our
multi-scale design.

• Challenging Argoverse (6 scenes): 49e970c4 (Extreme Lighting, Overexposure, Lens
Flare), 8184872e (Complex Shadows, Direct Sunlight), 91923e20 (Extreme Lighting,
Camera Artifacts), a8a2fbc2 (Low-Angle Sun), b403f8a3 (Overpass Structure, Extreme
Lighting Transitions), eaaf5ad3 (Multiple Artificial Lights, Wet Surfaces, Rainy Condi-
tions).

• Challenging Waymo (6 scenes): segment-10 (Night Scene, Artificial Lighting, Lens
Flare), segment-30 (Night Scene, Rainy Conditions, Specular Reflections), segment-539
(High Dynamic Range, Low-Angle Sun, Sun Glare), segment-550 (High Dynamic Range,
Storefront Reflections, Hard Shadows), segment-561 (Low-Angle Sun, Lens Flare, Over-
exposure), segment-570 (Rainy Conditions, Low Light, Motion Blur).

• Challenging Pandaset (6 scenes): 19, 21, 29, 48, 52 (all Low-Angle Sun with Hard/Deep
Shadows or High Dynamic Range), 63 (Night Scene, Multiple Light Sources, Glare).

C.4 Vehicle-Specific Metrics

To specifically evaluate performance on challenging, highly reflective surfaces such as car windows,
we used semantic masks to isolate vehicles. Table A14 shows that our method improves not only
appearance (PSNR) but also, crucially, geometry (CD) for these specific objects. This supports our
claim that our method mitigates the negative geometric impact of such severe view-dependent effects.

D Quantitative Analysis of Photometric Inconsistency

To rigorously validate the learned affine transformations discussed in the main paper, we compute the
Kullback-Leibler (KL) Divergence between our model’s learned distribution and a ground-truth (GT)
distribution of real-world photometric inconsistency.

Experimental Setup: We construct the GT distribution P (∆L) by sampling corresponding pixels
representing the same 3D world points across different camera views in the nuScenes dataset,
using ground-truth LiDAR points and camera parameters. The luminance difference ∆L for all
corresponding pairs forms the GT histogram. We then measure the KL Divergence between this
P (∆L) and the distributions learned by our model and the baseline.

Results: As shown in Table A15, the distribution learned by our multi-scale method achieves
a significantly lower KL Divergence (0.79) compared to the single-scale baseline (1.25). This
quantitatively confirms that our model learns a distribution that more accurately reflects real-world
photometric inconsistencies.

Table A15: Comparison of KL Divergence against the ground-truth (GT) photometric inconsistency
distribution from the nuScenes dataset. Lower is better, indicating a more realistic learned distribution.

Method KL Divergence (vs. Dataset GT) ↓
Single Bilateral Grids’ Affine Transformation 1.25
Multi-scale Bilateral Grids’ Affine Transformation (Ours) 0.79
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