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Abstract

Translating natural language (NL) into a formal
language such as temporal logic (TL) is integral
for human communication with robots and au-
tonomous systems. State-of-the-art approaches
decompose the task into a grounding of atomic
propositions (APs) phase and a translation phase.
However, existing methods struggle with accurate
grounding, the existence of co-references, and
learning from limited data. In this paper, we pro-
pose a framework for NL to TL translation called
Grammar Forced Translation (GraFT). The frame-
work is based on the observation that previous
work solves both the grounding and translation
steps by letting a language model iteratively pre-
dict tokens from its full vocabulary. In contrast,
GraFT reduces the complexity of both tasks by
restricting the set of valid output tokens from the
full vocabulary to only a handful in each step. The
solution space reduction is obtained by exploiting
the unique properties of each problem. We also
provide a theoretical justification for why the solu-
tion space reduction leads to more efficient learn-
ing. We evaluate the effectiveness of GraFT using
the CW, GLTL, and Navi benchmarks. Compared
with state-of-the-art translation approaches, it can
be observed that GraFT improves the end-to-end
translation accuracy by 5.49% and out-of-domain
translation accuracy by 14.06% on average.

1. Introduction
Formal specifications play a crucial role in all systems
that require autonomous reasoning, verification, or plan-
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ning (Tellex et al., 2011; Abdulla et al., 2004). Ensuring that
the behavior of such systems is bound to a set of known rules
is essential to deploy them safely and reliably, especially
when they are expected to operate without constant human
supervision (Raman et al., 2013; Boteanu et al., 2016). Tem-
poral Logics (TL) are a group of powerful formalisms that
constitute the basis of most formal specification languages,
allowing expressive description of the behavior of dynamic
systems over time (Konur, 2013; Madsen et al., 2018). How-
ever, generating these specifications directly from natural
language (NL) is an open problem, and achieving effective
and efficient translation between NL and TL is an increas-
ingly important task in advancing system automation (Chen
et al., 2023; Fuggitti & Chakraborti, 2023; Cosler et al.,
2023).

Early work on NL to TL translation focused on either on
restricted natural language inputs (Raman et al., 2013) or
template matching (Tellex et al., 2020). Although struc-
tured inputs are easy to map into TL, they place an undue
burden on the user who may not have a technical back-
ground (Thistle & Wonham, 1986). On the other hand,
template matching requires a substantial number of domain
specific examples (Bombieri et al., 2023). More recently,
NL to TL translation has been investigated using large lan-
guage models (LLMs) (Cosler et al., 2023; Pan et al., 2023;
Patel, 2019). This has involved approaches where LLMs
are used to perform end-to-end translation. While such
approaches can handle simple translations, the accuracy
have been observed to be limited to 70% for more chal-
lenging test cases (Xu et al., 2024). More recent studies
decompose the translation into a atomic propositions (APs)
grounding phase and a translation phase. The two step ap-
proach is motivated by that domain specific terms will be
extracted during the grounding phase, which facilitates do-
main agnostic translation (Fuggitti & Chakraborti, 2023).
Existing works perform the grounding of APs using casual
language model and few shot learning (Liu et al., 2023). The
translation step is performed by a fine-tuned sequence-to-
sequence model, where one token of the TL is predicted at
the time (Chen et al., 2023). To boost the performance of the
translation, studies have proposed to increase the size of the
training data set using generative data augmentation (Chen
et al., 2023). Unfortunately, it can be observed that ex-
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isting AP grounding techniques struggle with consistently
achieving high accuracy. In particular, for natural language
inputs containing multiple references to the same AP, i.e.,
co-references. Moreover, the accuracy of the translation is
highly dependent on the amount of available training data.

In this paper, we propose a framework for NL to TL trans-
lation called Grammar Forced Translation (GraFT). The
framework is based on the observation that previous work
solves both the grounding and translation steps by letting a
language model iteratively predict the next token from the
full token library. In contrast, GraFT reduces the complexity
of both tasks by restricting the number of valid output token
from the full library to only a handful in each step. The main
contributions of this paper can be summarized, as follows:

1. The GraFT framework grounds the APs in the NL input
using an masked language model (MLM). This both
reduces the task complexity and restricts number of
valid output tokens to the set of integers.

2. A fine-tuned sequence-to-sequence model is used to
translate the grounded NL into TL. GraFT exploits the
known grammar of the TL language, to place restric-
tions of the valid output tokens from the sequence-to-
sequence model to a handful.

3. Mathematical justification are provided to explain why
the restrictions on the output tokens lead to more effi-
cient learning. We provide proofs for lower (or equal)
cross-entropy as well as improved gradient alignment
under grammar-forcing.

4. We evaluate the proposed framework on three natural
language to temporal logic benchmarks- CW, GLTL,
and Navigation. Compared with state-of-the-art ap-
proaches, we improve the accuracy of the end-to-end
translation by 5.49% on average, by 14.06% on average
in out-of-distribution tests.

The remainder of the paper is organized, as follows: Prelim-
inaries are given in Section 2. The methodology is provided
in Section 3 and experimental evaluation in Section 4. The
paper is concluded in Section 5

2. Background
In this section, we review preliminaries on temporal logic,
language modeling, and related work.

2.1. Temporal Logic

Temporal logic is a formal framework used to reason about
propositions qualified in terms of time, allowing for the
expression of statements about the temporal ordering of
events (Konur, 2013). It extends classical propositional

logic by introducing modalities that capture time-related
aspects, such as “always,” “sometimes,” “eventually,” and
“until.” This paper deals with temporal logic but the concepts
can easily be extended to signal temporal logic (Madsen
et al., 2018) or linear temporal logic (Zhu, 2021). Temporal
logic formulas are defined recursively, as follows:

φ ::= πµ|¬φ|φ ∧ ψ|φ ∨ ψ|φ⇒ ψ| ⃝ φ|♢φ|□φ|φ ∪ ψ,

where πµ are the atomic predicates and both φ and ψ are
temporal logic formula. ¬, ∧, ∨, and ⇒ are the logical
operators negation, and, or, and implies, respectively. ⃝, ♢,
□, ∪, are the temporal operators next, eventually, always,
and until respectively.

A sample NL to TL translation problem would involve trans-
lating the natural language sentence “Go to the red room
and push the box into the green room.” into “♢(red room ∧
♢green room)”.

2.2. Language Modeling

In this section, we review popular language modeling ap-
proaches such as masked language modeling, sequence-to-
sequence modeling, and causal language modeling.

Masked Language Modeling (MLM): Masked language
modeling is a training approach used primarily in NLP
where certain words in a sentence are randomly masked
or hidden, and the model is tasked with predicting these
missing words based on the surrounding context (Devlin
et al., 2019). This technique helps the model understand
relationships between words and enhances its ability to gen-
erate coherent and contextually relevant text. MLM is the
foundation for training of models like BERT (Devlin et al.,
2019), DistilBERT (Sanh et al., 2020), and ROBERTA (Liu
et al., 2019). MLMs have demonstrated excellent perfor-
mance of tasks with bidirectional representations.

Sequence-to-Sequence Language Modeling (Seq2Seq):
Sequence to sequence modeling is a framework designed
for tasks where input and output are both sequences, such
as translation or summarization (Raffel et al., 2020). In this
architecture, two neural networks, typically an encoder and
a decoder, work in tandem: the encoder processes the input
sequence and compresses it into a fixed-size context vector,
while the decoder generates the output sequence from this
representation. Seq2Seq has been used to train models such
as T5 (Raffel et al., 2020), Bart (Lewis et al., 2019), and
Pegasus (Zhang et al., 2020). The Seq2Seq approach works
well for tasks that require understanding the entire input
context before generating the output, enabling applications
like machine translation, chat-bots, and text summarization.

Causal Language Modeling (CLM) Causal language mod-
eling, often associated with autoregressive models, focuses
on predicting the next word in a sequence given the previ-
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Approach AP grounding TL Translation
Model Vocab Size Model Decoding Strategy Vocab Size

NL2LTL (Fuggitti & Chakraborti, 2023) ‘-’ - CLM - 100,256
NL2Spec (Cosler et al., 2023) ‘-’ - CLM - 50,257
NL2TL (Chen et al., 2023) CLM 100,256 Seq2Seq - 32,182
GraFT (proposed) MLM 6 Seq2Seq Grammar-Constrained 1 ≤ |V | ≤ 20

Table 1: Contrast between the use of LLMs within the proposed translation and state-of-the-art approaches. A ‘-’ denotes
that the step was not performed. GraFTs MLM vocab size is 6 due to the 6 labels relating to APs (0 for non-AP or 1-5), and
between 1 and 20 for the translation- the minimum and maximum number of valid tokens at any given state.

ous words (Achiam et al., 2024). This method is inherently
directional and processes the input in a left-to-right manner.
Models that are trained using CLM include the prominent
GPT family (Achiam et al., 2024). This approach is effective
for tasks that require coherent prompt-based text generation.

2.3. Related Work

In this section, we provide an overview of recent attempts
at translating natural language into formal language speci-
fications and temporal logic using LLMs. The translation
can be decomposed into two main steps: 1) grounding of
atomic predicates and 2) NL to TL translation.

AP Grounding: Atomic predicates (APs) are state variables
or events that temporal logic reason over. While the logical
statements are the same for different domains, the defini-
tion of the atomic predicates can vary substantial between
different applications. For example, the APs used to de-
scribe the operation of a traffic light are very different from
the APs used to describe the operation of an autonomous
robot. Therefore, it was proposed the atomic predicates
within the NL should be extracted (or grounded) in a pre-
processing step before the translation into TL (Chen et al.,
2023; Liu et al., 2023; Hsiung et al., 2021). The grounded
NL would be more similar across domains and allow cross-
domain adaptation with the use of less training data. This
was performed by replacing each atomic predicate with a
prop x variable in (Chen et al., 2023), descriptive single
words in (Liu et al., 2023), and templates in (Hsiung et al.,
2021). These grounding approaches improve downstream
translations but can introduce errors, including hallucinated
keywords and difficulties handling co-references, where
different words refer to the same AP.

NL to TL Translation: The translation of natural language
(or grounded natural language) using LLMs has been ex-
plored in (Fuggitti & Chakraborti, 2023; Cosler et al., 2023;
Chen et al., 2023). The most straightforward approach
to NL to TL translations is to used an large off-the-shelf
CLM (Chen et al., 2023). The accuracy of the approach can
be enhanced if restrictions are placed on the NL descrip-
tions and by providing examples with few shot prompting.
Breaking down the problem into sentences and translat-

ing each of them independently was proposed in (Cosler
et al., 2023). Several works have investigated fine-tuning
sequence-to-sequence models to perform translation (Pan
et al., 2023; Patel, 2019; Chen et al., 2023). The perfor-
mance improvements achieved through fine-tuning are often
correlated with the amount of available training data. Data
augmentation to generate training data using LLMs was
proposed in (Pan et al., 2023). An alternative to data depen-
dency is deploying the translation model in a reinforcement
learning environment, using rewards for fine-tuning. How-
ever, these methods overlook TL’s structured, context-free
grammar.

Proposed Method: We observe that previous approaches
to grounding and translation use language models without
exploiting the unique properties of the problems to enhance
learning. For both tasks, a language model is used to predict
a token from the models full token library. In the proposed
GraFT framework, we propose to reduce the complexity of
both tasks by placing restrictions on the valid output tokens.
In particular, the grounding is reformulated into a masked
language modeling problem where the output tokens are
restricted to integers. For the translation, the temporal logic
grammar is used to dynamically reduce the number of valid
output tokens to a handful. The main differences compared
with previous work are shown in Table 1.

3. Methodology
In this section, we present the methodology of the GraFT
framework that converts natural language into temporal
logic. The framework consists of two steps: grounding of
atomic predicates (APs) and grounded NL to TL transla-
tion. The first step uses an MLM (BERT (Devlin et al.,
2019) to identify the atomic predicates, which is detailed in
Section 3.1. The second step uses a Seq-2-Seq model (T5
(Raffel et al., 2020)) to translate the lifted natural language
given in the previous step into lifted linear temporal logic, as
outlined in Section 3.2. Finally, the lifted APs from step one
are inserted into the lifted LTL, yielding the final translation
result. An overview of the flow of the framework is shown
in Figure 1.
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Figure 1: An overview of the GraFT framework of end-to-end translation of NL to TL.

3.1. Grounding of Atomic Predicates

In this section, we describe how the GraFT framework ex-
tracts the atomic predicates from the NL input. AP ground-
ing is the process of substituting the atomic predicates (APs)
within the NL input to obtain Grounded NL. Before we
outline our approach, we examine the characteristics of per-
forming the AP grounding using different types of language
modeling.

Failure Analysis of CLMs: We compare performing the
AP grounding using a CLM (GPT-4o) and a MLM (BERT)
in Figure 2. We first focus on performing the AP extraction
using a CLM as in (Chen et al., 2023). Causal language
models are trained to perform next-word prediction rather
than to predict masked tokens in a sequence. While CLMs
are regarded for their reasoning abilities, and are capable
of extracting the APs as shown at the top of the figure, the
sequence returned by the model is not 1-to-1 with the input
sequence. While the CLMs may “understand” that it is sup-
posed to replicate the input sentence with the APs masked,
it is prone to introducing errors by modifying the sentence

to sound more natural. For example, it is not surprising
to observe that the causal model has slightly modified the
input by dropping the word “eventually”, which introduces
an error in the subsequent translation, as it is a key word for
temporal logic. Moreover, the output of the CLM must be
parsed as it is not guaranteed to follow the format shown
in the few shot prompting examples. Conversely, masked
language models (MLMs) are trained to predict labels on the
input tokens, which we hypothesize is much more effective
solution for solving this task. In the bottom of the figure,
it can be observed that our proposed grounding approach
only assigns an indicator variable to each of the tokens in
the input, i.e., the indicator variable determines if a token is
part of an AP or not.

Proposed Grounding using MLM: The AP grounding in
the GraFT framework is performed by fine-tuning a MLM.
Using the fine-tuning process, we teach the MLM to assign
an indicator variable Ii to each token i of the input. The
indicator variables I form a list of integers. In integer AP
grounding, each AP in the input string is assigned an integer
ID, and tokens which are part of a reference to that AP

Figure 2: AP grounding using LLMs trained using different types of language modeling.
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Figure 3: At each training step, prior to performing SoftMax on the output logits in preparation for computing L, we
observe the label at position t in the target sequence L. Given this token and the current state of the TL parsing stack, we can
obtain a set of valid token that may proceed that label. For each output logit Zt, we set the score for all tokens outside of Vt

to -∞.

are labeled with the respective ID. An example of this AP
grounding approach is given in Figure 2.

Ii =

{
0, In is not part of an AP,
n, In is part of the nth AP.

(1)

The objective of the fine-tuning is to predict the indica-
tor variables I . We use standard cross-entropy loss for
the training using an annotated portion of the Navigation
dataset (Wang et al., 2021). Notably, each of the MLMs
trained only on the Navigation dataset demonstrate nearly
perfect performance for other datasets. These results are
presented in Table 3.

3.2. Grounded NL to TL Translation

In this section, we describe how the grounded NL is trans-
lated into TL. The translation is performed using a Seq2Seq
model. The key idea is to impose the grammar of the TL
when decoding the output from the model. In particular, we
introduce two grammar-based augmentations: a grammar-
forcing strategy during training, and grammar-constrained
decoding during inference. The details are provided in Sec-
tion 3.2.1. Lastly, the section is concluded with a theoretical
basis for the improved efficiency in learning. The details of
the theoretical motivation are provided in Section 3.2.2. An
overview of the proposed translation framework is shown in
Figure 3.

3.2.1. GRAMMAR CONSTRAINED DECODING

In order to exploit the grammatical structure of the target
language, we construct a logits processor that ensures the
sequence being decoded obeys the rules. Because of this,
we can guarantee that sequences produced by GraFT are
grammatically correct temporal logic expressions. Our im-
plementation of the grammar-constrained logits processor
is described in Algorithm 1.

Algorithm 1 effectively adjusts the logit scores returned
by sequence-to-sequence models to decode logits during
generation. The first token in the sequence is restricted to
the known list of valid initial tokens, and so for that logit
we apply a mask that erases all tokens that can not follow
from the initial state of the grammar. For all subsequent
tokens, we use the temporal logic grammar to determine
which tokens may proceed the previously decoded token, as
well as which tokens may occur given the current state of the
temporal logic grammar. We now turn to further explanation
of this training procedure.

As previously stated, we apply grammar constrained decod-
ing during training. However, rather than pass the previous
token generated by the model, we pass the previous token
in the target sequence. This technique is reminiscent of
teacher-forcing (Hao et al., 2022), as we use ground truth
labels to inform the model of how it may generate sequences
during training. It is similar to the grammar-constrained de-
coding we use during inference, except we use the tokens of
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the target sequence to update the grammar state and retrieve
valid tokens. We now turn to a theoretical justification for
this technique.

3.2.2. THEORETICAL BASIS FOR GRAMMAR-FORCING

We know intuitively that by zeroing-out known invalid to-
kens from the output logits vector, we can reduce our cross-
entropy loss. The following is a more formal argument for
this claim. Firstly, we introduce our notation and propose
that our approach provides some guaranteed improvements.
We then explain how we reach this conclusion in formal
terms. We provide additional justification in Section A.4 of
the Appendix.

Preliminaries: Let V be the vocabulary of the model p(θ).
At each decoding step t, the model returns a vector of logits
Z = (z1, z2, ..., zn) where zn = (v1, v2, ...v|V|) ∈ R|V|.
The standard softmax distribution over a single logit is

p(v) =
exp(zv)∑

u∈V exp(zu)
, v ∈ V

if the label at step t is y ∈ V , the cross-entropy loss is

L(z, y) = −log
(

exp(zy)∑
u∈V exp(zu)

)
Now suppose that at step t, only a subset Vt ⊆ V contains
grammatically valid tokens. We mask out all invalid tokens
by setting their logits to −∞. Define the transformed logits

z′v =

{
zv, if v ∈ Vt,

−∞, if v /∈ Vt,

and the corresponding distribution

p′(v) =


exp(zv)∑

u∈Vt
exp(zu)

, if v ∈ Vt,

0, if v /∈ Vt,

(2)

The grammar-forced cross-entropy loss becomes

L′(z, y) = − log p′(y) = − log

(
exp(zy)∑

u∈Vt
exp(zu)

)
,

assuming y ∈ Vt.

Masking Invalid Tokens Improves Optimization Let
y ∈ Vt be the target , and let z be the logit vector in that
position at some iteration of training. Then the grammar-
forced cross-entropy L′(z, y) is never larger than the stan-
dard cross-entropy L(z, y). Furthermore, the gradient of
L′ focuses updates only on valid tokens, thereby reducing
the effective search space and often yielding faster or more
stable convergence.

(1) Lower (or Equal) Cross-Entropy.

By construction,

L(z, y) = − log

(
exp(zy)∑
v∈V exp(zv)

)
L′(z, y) = − log

(
exp(zy)∑

u∈Vt
exp(zu)

)
.

Since Vt ⊆ V , we have∑
v∈Vt

exp(zv) ≤
∑
v∈V

exp(zv).

Thus

exp(zy)∑
u∈Vt

exp(zu)
≥ exp(zy)∑

v∈V exp(zv)
,

which implies

− log

(
exp(zy)∑

u∈Vt
exp(zu)

)
≤ − log

(
exp(zy)∑
v∈V exp(zv)

)
.

Hence L′(z, y) ≤ L(z, y). Equality can occur if zv = −∞
for all v /∈ Vt, which is precisely the masking scenario.

(2) More Focused Gradient (Better Alignment).

For standard cross-entropy, the gradient with respect to each
logit zk is:

∂L(z, y)

∂zk
= p(k)− 1[k = y],

where p(k) = exp(zk) /
∑

v∈V exp(zv).

Under grammar-forcing,

∂L′(z, y)

∂zk
= p′(k)− 1[k = y],

We also recall the probability distribution under grammar
forcing 2 and observe that

∂L′(z, y)

∂zk
= 0 , ∀ k /∈ Vt.

Recalling that y ∈ Vt, we observe that no gradient signal is
wasted on tokens that can never be correct, allowing each
update step to invest more effective capacity into discrimi-
nating among valid tokens.
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Approach Data AP Grounding Translation CW GLTL Navi
Quantity Model Model (%) (%) (%)

NL2LTL (Fuggitti & Chakraborti, 2023) - None GPT-4o-mini 69.90 74.40 65.30
NL2Spec (Cosler et al., 2023) - None GPT-4o-mini 78.60 68.40 71.60
Ungrounded Seq2Seq 500 - T5 59.60 46.80 43.40
NL2TL (Chen et al., 2023) 500 GPT-4o-mini T5 93.00 83.80 80.40
NL2TL (Chen et al., 2023) 500 GPT-4 T5 91.50 82.60 83.70
GraFT (proposed) 500 BERT T5 97.70 91.50 85.00
Ungrounded Seq2Seq 2000 - T5 68.10 55.90 56.30
NL2TL (Chen et al., 2023) 2000 GPT-4o-mini T5 98.20 97.40 86.70
NL2TL (Chen et al., 2023) 2000 GPT-4 T5 96.70 96.20 90.00
GraFT (proposed) 2000 BERT T5 99.90 99.80 99.10

Table 2: Performance comparison of different models for end-to-end translation with training data from each dataset. The
BERT model used for AP Grounding is trained on the same data used to train the translation model.

Figure 4: A comparison of training loss for T5 with vs
without grammar-forcing during training.

4. Experimental Evaluation
We conducted our evaluation on a machine with one
NVIDIA RTX 4070 Ti Super GPU, one Intel i9-14900KF 32
Core CPU, and 64GB of RAM. Our evaluation datasets in-
clude Navigation (Wang et al., 2021), GLTL (Gopalan et al.,
2018), and CW (MacGlashan et al., 2015). Some statistics
on these datasets are given in the appendix A.1. We evalu-
ate performing the AP grounding using the MLMs BERT,
RoBERTa, and DistilBERT. Each AP grounding model was
trained for 3 epochs at a learning rate of 1e-5. We also eval-
uate performing the grounded NL to TL translation. Each
translation model was trained for 3 epochs at a learning
rate of 2e-5. We perform our evaluation of the translation
models and end-to-end approaches using 1000 examples
from each dataset. We first perform ablation studies to eval-
uate the impact of each of the different parts of the GraFT

framework in Section 4.1. Next, we provide end-to-end
translation results in Section 4.3.

4.1. Ablation Studies of GraFT

Model Objective CW GLTL Navi
(%) (%) (%)

GPT-4o-mini Causal 97.76 95.84 83.97
GPT-4o Causal 95.02 93.53 86.08.
GPT-4 Causal 96.24 94.68 87.28
DistilBERT Masked 95.80 93.83 99.99
RoBERTa Masked 98.34 96.96 99.99
BERT Masked 98.58 97.35 99.99

Table 3: The table evaluates the models’ accuracy on the AP
Masking task using 1000 examples from the Navi dataset.

The effectiveness of performing AP extraction using an
MLM compared with a CLM is evaluated in Table 3.
For the AP Grounding evaluation, we use top-1 accuracy
(fail/succeed) for each test. We use 1000 unseen examples
from each dataset. We observe that GPT-4o-mini performs
reasonably well on both CW and GLTL, but struggles with
identifying APs from the Navi dataset. The performance of
each of the BERT models is quite impressive across each do-
main. All three models both achieve almost 100% accuracy
on unseen in-domain examples, with BERT and RoBERTa
maintaining high performance on the out-of-domain datasets
as well.

4.2. Grounded Translation Results

In Figure 5, we compare the accuracy of three T5 models
with respect to training data quantity. We use the T5 check-
point provided at the HuggingFace-hosted repository (Raffel
et al., 2020) as the base for each model. We then trained two
versions of this model in accordance with the two frame-
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Figure 5: Accuracy results of three T5-based translation models. The T5 framework is a baseline evaluated with ground-truth
lifted NL specifications as input. GraFT and NL2TL are evaluated using their respective lifting approaches. Each translation
model is trained with LR= 2e-5 for 3 training epochs.

Approach Training CW GLTL Navi
Data (%) (%) (%)

NL2TL (Chen et al., 2023) GLTL+Navi 60.2 44.0 55.3
GraFT (proposed) GLTL+Navi 63.2 48.3 73.0
NL2TL (Chen et al., 2023) CW+Navi 21.2 23.1 51.6
GraFT (proposed) CW+Navi 58.8 41.1 73.1
NL2TL (Chen et al., 2023) CW+GLTL 63.0 45.3 14.6
GraFT (proposed) CW+GLTL 70.0 56.2 21.2

Table 4: Performance comparison of different models for end-to-end translation. Here, fine-tuning is performed with respect
to two of the datasets, and evaluation is performed using all three datasets.

works using their respective grounded natural language and
temporal logic pairs. The NL2TL and T5 both use standard
cross-entropy loss, which we compare against our grammar-
forcing method described in 3.2. The baseline T5 model
uses the ground-truth lifted natural language, contributing to
its high accuracy. Our first observation as that our approach
yields greater accuracy at each training data quantity, most
notably with smaller quantities of training data. Our second
observation is that the GraFT model never suffers a reduc-
tion in accuracy as a result of additional training data, while
the control model suffers heavily, particularly in the CW
evaluation. We believe that less gradient noise during train-
ing allows GraFT to continue learning with the introduction
of unseen training data, while the control model may be-
come confused when exposed to new sequence pairs. We
observe that grammar-forcing improves accuracy by 0.9% -
42.10%.

4.3. End-to-end results
We present the end-to-end results of GraFT and other tempo-
ral logic (TL) translation approaches in Table 2. All methods

are trained on datasets containing examples from each do-
main, and we specify the models used for translating natural
language (NL) to TL and for identifying atomic proposi-
tions (APs) where applicable. GraFT outperforms all com-
pared approaches, achieving an average accuracy of 99.6%
across the datasets. NL2LTL and NL2Spec under-perform
GraFT by at least 12.8% to 21.24% on CW, GLTL, and
Navigation datasets, respectively. These approaches do not
perform AP grounding and rely solely on CLMs for transla-
tion. GraFT demonstrates ∼5% improvement over NL2TL
when the data quantity is 500. This gap closes slightly
when the data quantity is 2000, excepting the Navi dataset,
where GraFT demonstrates an improvement of 12.40%. We
attribute GraFT’s superior performance to its training ap-
proach, which enhances domain transferability over stan-
dard T5 models fine-tuned with cross-entropy loss.

Additionally, NL2TL’s use of GPT for AP grounding under-
performs on the Navi dataset. We evaluate performance on
out-of-distribution data in Table 4. GraFT achieves higher
accuracy on all out-of-distribution tests, demonstrating av-
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erage improvements by 8.33% on GLTL+NAVI, 25.7% on
CW+NAVI, and 8.16% on CW+GLTL. The notable benefit
observed in the CW+NAVI evaluation is NL2TL’s failure to
learn the CW distribution despite its inclusion in the train-
ing set. On the other hand, GraFT was able to learn this
distribution more successfully. This shows the potential for
generalization if a modest pre-training dataset for NL to TL
translation is available in the target domain.

5. Conclusion
In this paper, we present GraFT, a framework for natural
language to temporal logic translation. We demonstrate
that grammar-forced training improves generalization and
reduces domain-specific training data requirements. We
also apply MLMs to more cheaply and accurately perform
AP grounding prior to translation. The combination of a
problem-specific training approach and AP grounding with
BERT results in a more robust and generalized natural lan-
guage to temporal logic translation framework that preserves
NL AP segments from the original input to provide the NL-
AP mapping required to interpret the TL expression. Future
work in this area will include collecting and synthesizing
diverse NL-TL datasets to further evaluate the transferability
of translation models.
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A. Appendix
In this appendix, we provide supplementary results, analysis, and justification for our approach. We first provide quantitative
information about the NL-LTL corpora used in our experiments in Section A.1. In Section A.2, we provide our LTL logits
processing algorithm and discuss its usage during training and inference. In Section A.3 we provide an ablation of lifting
models with various AP quantities. Lastly, in Section A.4, we provide extended theoretical support for our claims made in
Section 3.2.2

A.1. Corpus Statistics

In this section, we present diversity metrics for each corpora used in our experiments. Each corpus is roughly comparable in
terms of linguistic diversity. We also note that the CW corpus contains significantly fewer unique grounded LTL expressions.

Domain # NL # LTL # Vocab

Navi (Wang et al., 2021) 7,079 142 139
GLTL (Gopalan et al., 2018) 11,153 188 203
CW (MacGlashan et al., 2015) 2,130 39 196

Table 5: Statistics of NL-TL corpora used in our training and evaluation. The # NL column gives the number of unique
NL input sentences, the # LTL column gives the number of unique TL expressions, and # Vocab gives the total number of
unique words.

A.2. Algorithm 1: LTL Logits Processor

In this section, we present the algorithm used for our grammar-forced translation approach. During translation, the state
variable tracks the current state of an LTL parser. As the logits are decoded by the model, we zero-out invalid token
predictions, almost identical to our approach used in grammar-forced training, shown in 3. The only difference is that during
training, we use the ground-truth token labels to maintain the state of the translation. During inference, we instead maintain
the state based on the model’s own outputs.

Algorithm 1 Temporal Logic Logits Processor

Input: Input IDs I , Scores S
state = grammar.init state()
for i in range(I) do

if i >0 then
last token = Ii−1

state.update(last token)
end if
legal tokens = grammar.get valid(state)
mask = [1 in range(S)]
mask[legal tokens] = 0
S[i, mask] = −∞

end for
Output: Scores S
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A.3. Lifting Ablations

We evaluate four off the best-performing lifting models on lifting sequences with more than 5 atomic predicates. To obtain
these sequences, we concatenated existing entries that did not share APs and re-labeled the newly conjoined AP dictionaries.
The results demonstrate promising scalability in MLM-based approaches, while the LLMs performance suffers rapid decline
as AP quantities increase.

Model Objective CW (%) GLTL (%) Navi (%)

GPT-4 Causal 81.88 80.41 83.02
DistilBERT Masked 94.20 91.75 99.99
RoBERTa Masked 96.37 95.66 99.99
BERT Masked 97.10 96.52 99.99

Table 6: AP grounding results for 6–10 APs (Range B).

Model Objective CW (%) GLTL (%) Navi (%)

GPT-4 Causal 70.34 69.80 72.24
DistilBERT Masked 92.86 90.63 98.54
RoBERTa Masked 95.13 94.67 99.73
BERT Masked 95.78 96.44 99.91

Table 7: AP grounding results for 11–15 APs (Range C).

A.4. Extended Theoretical Basis for Grammar-constrained Optimization

Here, we outline an argument for our claim that imposing grammar constraints (that are not violated by the distribution of
training data) during training can improve the convergence rate of stochastic gradient descent (SGD). Concretely, Theorem
A.4 shows that there is a variance term M that appears in the rate. We proceed by showing that if applies a mask over token
sequences that necessarily do not appear the distribution, this variance term decreases to M(g) < M , hence reducing the
constant factor in the O( 1√

N
) bound, indicating faster convergence in practice, particularly when N is small. This section

relies heavily on Theorem A.4, and we recommend reviewing section 4.3 of (Bottou et al., 2016) for a detailed proof of
convergence bounds on SGD in the context of a non-convex objective function with non-diminishing stepsize.

Claim A.4 : Let ℓ(θ;x) and ℓ(g)(θ;x) be the cross-entropy loss of an unconstrained and constrained language model,
respectively. Suppose both losses are differentiable in θ and have bounded gradients.

E[||∇ℓ(g)(θn)||2] ≤ E[||∇ℓ(θn)||2]

Theorem: SGD Convergence Bounds (Nonconvex, Diminishing Stepsize) (Bottou et al., 2016) :
N∑

n=1

anE
[
||∇ℓ(θn)||22

]
≤ 2(E[ℓ(θ1)]− ℓinf )

µ
+
LM

µ

N∑
n=1

a2k

≈ O

(
M√
N

)
,

where - L is a smoothness constant, - µ > 0 is a parameter related to descent conditions, - a > 0 is a stepsize parameter, and
- M is a uniform bound on the second moment (or variance) of the stochastic gradients (see Assumption A.4).

Definition 1 (Unconstrained Language Model):

pθ(xt|x<t) = SoftMax(zθ(x<t))[xt], (3)

where zθ(xt) ∈ R|V | is the logit vector for all tokens in the full vocabulary V .

13



Grammar-Forced Translation of Natural Language to Temporal Logic using LLMs

Definition 2 (Grammar-Constrained Language Model):

Mt :=

{
1 if v ∈ Vt,

−∞ otherwise.
(4)

p
(g)
θ (xt|x<t) = SoftMax(zθ(x<t)⊙Mt)[xt], (5)

Definition 3 (Cross-Entropy Loss at Iteration n) Let {x1, x2, . . . , xT } be a sequence drawn from a data distribution D.
At iteration n, the model parameters are θn. Then we define the cross-entropy loss for a single sequence x as

ℓ
(
θn;x

)
= −

T∑
t=1

log pθn
(
xt | x<t

)
.

When averaging over all sequences x in the data distribution D, we obtain the expected cross-entropy loss at iteration n:

L(θn) = Ex∼D

[
ℓ
(
θn;x

)]
= −Ex∼D

[ T∑
t=1

log pθn
(
xt | x<t

)]
.

Assumption 1 (Correct Grammar) If xt occurs in the data for prefix x<t, then xt ∈ Vt ⊆ V . Therefore, grammar-
masking does not affect tokens that actually appear.

Assumption 2 (Bounded Variance of SG Estimation) : There exist constants m,mv ≥ 0 such that

V[g(θ, ε)] ≤ m+mv||∇ℓ(θ)||22,where x ≈ D, (6)

Proof of Claim A.4 : Consider a parameter vector θ and a random sample x ∼ D. For the unconstrained model (3), we
observe

0 < E
[
∂∇ℓ(θ, x)
zθ(x<t)[v]

]
∀ v ∈ V

by contrast, in the grammar-constrained model (4), we can observe

E
[
∂∇ℓ(g)(θ, x)
zθ(x<t)[v]

]
= 0 ∀ v /∈ Vt.

Hence, coordinate-wise, ∣∣∇ℓ(g)(θ;x)[v]∣∣ ≤
∣∣∇ℓ(θ;x)[v]∣∣ ∀ v.

Therefore,
∥∇ℓ(g)(θ;x)∥2 ≤ ∥∇ℓ(θ;x)∥2

Taking expectation over x ∼ D and any internal sampling noise, we obtain

E
[
∥∇ℓ(g)(θ)∥2

]
≤ E

[
∥∇ℓ(θ)∥2

]
.

Defining

M(g) := sup
θ

√
E
[
∥∇ℓ(g)(θ)∥2

]
,

M := sup
θ

√
E
[
∥∇ℓ(θ)∥2

]
,

we see M(g) ≤M . Strict inequality M(g) < M arises whenever there is at least one token v that the grammar forbids but
the unconstrained model might otherwise assign non-negligible probability to. Hence the grammar-constrained model has a
strictly smaller variance constant in the sense used in Theorem A.4. By Theorem A.4, the asymptotic SGD bound in the
nonconvex/diminishing-stepsize scenario is on the order of O

(
M/

√
N
)
. Since M(g) < M , replacing M by M(g) yields

tighter constants in the finite-time and asymptotic terms. Thus, grammar-constrained optimization accelerates convergence
by reducing stochastic gradient variance.
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