
Learning to Solve Quadratic Unconstrained Binary
Optimization in a Classification Way

Ming Chen1∗, Jie Chun 1∗, Shang Xiang 2, Luona Wei3, Yonghao Du1, Qian Wan4,
Yuning Chen1†, Yingwu Chen1

1College of Systems Engineering, National University of Defense Technology
2School of Public Administration, Xiangtan University

3College of Electronics and Information Engineering, South-Central Minzu University
4National Engineering Research Center of Educational Big Data,

Central China Normal University
{cmself, chunjie0720, xiangshang165, wlnelysion, duyonghao15,

wanq8228}@163.com, cynnudt@hotmail.com, cywnudt@163.com

Abstract

The quadratic unconstrained binary optimization (QUBO) is a well-known NP-hard
problem that takes an n× n matrix Q as input and decides an n-dimensional 0-1
vector x, to optimize a quadratic function. Existing learning-based models that
always formulate the solution process as sequential decisions suffer from high
computational overload. To overcome this issue, we propose a neural solver called
the Value Classification Model (VCM) that formulates the solution process from a
classification perspective. It applies a Depth Value Network (DVN) based on graph
convolution that exploits the symmetry property in Q to auto-grasp value features.
These features are then fed into a Value Classification Network (VCN) which
directly generates classification solutions. Trained by a highly efficient model-
tailored Greedy-guided Self Trainer (GST) which does not require any priori
optimal labels, VCM significantly outperforms competitors in both computational
efficiency and solution quality with a remarkable generalization ability. It can
achieve near-optimal solutions in milliseconds with an average optimality gap of
just 0.362% on benchmarks with up to 2500 variables. Notably, a VCM trained
at a specific DVN depth can steadily find better solutions by simply extending the
testing depth, which narrows the gap to 0.034% on benchmarks. To our knowledge,
this is the first learning-based model to reach such a performance.

1 Introduction

Nonlinear integer programming is a highly challenging subject in mathematical programming and
operations research, where the Quadratic Unconstrained Binary Optimization (QUBO) problem is
one of the most well-known cases. Due to its extensive applicability and computational intricacies,
the QUBO continues to receive widespread attention[1]. The purpose of the QUBO problem is to
optimize an unconstrained quadratic function:

max /minOFV = f(x) = x>Qx =

n∑
i=1

n∑
j=1

qijxixj (1)

where Q is a symmetric matrix with n × n coefficients, while x is a binary (0-1) n-dimensional
column vector, i.e., xi ∈ {0, 1}, i = 1, ..., n. OFV is short for objective function value.
∗These authors contributed equally.
†Correspondence

38th Conference on Neural Information Processing Systems (NeurIPS 2024).

This simple formulation is able to represent a remarkable spectrum of applications in Combinatorial
Optimization (CO), including those from quantum computing [1], asset exchange problem [2],
financial analysis [3], transaction settlement [4], set packing problem [5], linear ordering problem [6],
etc. A large number of classic graph problems and constrained quadratic problems can be re-casted
into QUBO through simple transformations [7, 8, 9, 10], for which QUBO solving methods can be
easily applied. From a computational perspective, the QUBO problem belongs to the NP-hard family.
Typical solving methods for the QUBO include exact methods and heuristic methods. Due to its
NP-hardness, the QUBO is not expected to be solved by any exact method in polynomial time. For
this reason, intensive research has been devoted to developing heuristic methods.

In recent years, the research on learning-based Neural CO (NCO) methods for solving CO problems
has become a hot topic in this field [11, 12]. This type of data-driven method has strong scalability
and high efficiency for problems of different types and scales, as opposed to traditional search-
based metaheuristics which often require substantial computational effort when problem size is
large. These works typically model the solution of CO problems as a Markov Decision Process
(MDP) [13], and then use deep reinforcement learning (DRL) to train an advanced policy network,
Pointer Network (PN) [14] and Graph Neural Network (GNN)-based [15] models for instance, to
support dynamic decision-making at each MDP step. Despite the remarkable performance of these
models in addressing certain classical CO problems such as the Vehicle Routing Problem (VRP) [16],
their applications to QUBO encounter significant limitations:

1) PN-based DRL models. PN-based models require problem data represented by a n× C matrix
to satisfy its fixed C embedding channels, where n is the number of tasks and C is a fixed number
of features per task. For instance, the Travelling Salesman Problem (TSP) can be represented by n
nodes and their coordinates (each node described by an (x, y) pair), forming an n× 2 matrix. Due to
such a requirement, PN-based models encounter difficulties in processing n× n-dimensional input
matrix of the QUBO directly since it is not able to handle problem data where both dimensions are
variable, resulting in weak scalability of the model for problems of different scales.

2) GNN-based DRL models. Conversely, GNN-based models [15] excel at encoding n× n graph
data by graph embeddings. Despite this advantage, GNNs incur significant computational and storage
costs due to the repeated updating of node and edge hidden states at each MDP step, particularly
for large problem sizes. For instance, the GNN in [15] requires an n× n× h-dimensional hidden
matrices to store edge encodings, which is n times the storage of the PN needed at the same hidden
size h. Our preliminary tests revealed that the machine we used for this work could not handle the
storage demands of GNNs for large-scale instances (see the results of P7000 in Table 1). Additionally,
[17] reported that GNNs are not able to compete with greedy heuristics in certain graph combinatorial
optimization problems, aligning with our QUBO experimental results.

The limitations encountered by these networks in solving QUBO are closely related to the MDP-
solving paradigm attached to them. When addressing QUBO via an MDP, each step involves
flipping the assigned value of a selected binary variable (see the top of Figure 1). According to
[18], it is critical to evaluate the impact of each flip on the OFV to ensure the high quality of the
resulting solution. However, the repeated OFV evaluation throughout the MDP leads to significant
computational overhead, which may be unacceptable for large-scale instances.

Contributions. Given the above limitations, a radical improvement would require revolutionizing the
solution paradigm to compensate for the limitations of DRL models by not using MDP and avoiding
repeated OFV computations. Considering the binary nature of QUBO variables, a novel solution
paradigm based on classification is proposed, which can provide the binary values of all variables
directly at once, rather than following sequential decision-making to determine values one by one.

To operationalize the concept of this innovative QUBO classification solution paradigm, we propose a
Value Classification Model (VCM)3, which is a neural solver comprised of three key components: an
Extractor, the Depth Value Network (DVN), for feature extraction; a Classifier, the Value Classification
Network (VCN), for solution determination; and a Trainer, the Greedy-guided Self Trainer (GST),
for solver training. Based on graph convolutional, DVN exploits the symmetry property of input
data of QUBO to efficiently extract the value features, with performance steadily improving as
depth increases. These resulting value features of each variable enable VCN to directly generate the
solutions in a classification way. For effective model training, we propose the GST, which does not

3The code is available at https://github.com/cmself100/VCM-QUBO.

2

https://github.com/cmself100/VCM-QUBO

need any prior optimal labels. Extensive experiments demonstrate the effectiveness of the proposed
VCM and GST. A well-trained VCM can directly generate near-optimal solutions for QUBO within
milliseconds and exhibit remarkable generalization capabilities across both instance sizes and data
distributions. For example, a VCM trained on instances of size 10 can produce near-optimal results
for instances of size 7,000 in milliseconds. Furthermore, simply by increasing the testing DVN depth,
a VCM trained at a specific depth can attain even better solutions. To our knowledge, this represents
the first learning-based classification model for solving QUBO with such a performance.

2 Related Works

The literature on QUBO dates back to [19], which introduced pseudo-boolean functions and binary
quadratic optimization. Due to the combinatorial complexity, QUBO has been proven NP-hard in
1979 [20]. Over the decades, a large number of methods for solving QUBO have emerged in the
literature. The research on exact methods primarily employed branch-and-bound [21, 22, 23, 24, 25]
or branch-and-cut [23]. Since the exact methods are prohibitively expensive when applied to large-
size instances, various heuristic methods have extensively emerged, which are designed for high-
quality solution discovery within acceptable timeframes. Noteworthy ones include Tabu Search
(TS) [26, 27, 28], Simulated Annealing (SA) [29], Local Search (LS) [30], Ant Colony Optimization
(ACO) [31], Memetic Algorithm (MA) [32] and hybrid algorithms [33].

Recently, learning-based neural CO methods have exhibited significant promise in addressing CO
challenges. Successful applications include 3-D Bin Packing Problem [34], Maximum Cut [15, 35],
Routing Problems [14, 36, 37, 38, 39, 16, 40, 41], etc. Unlike traditional search-based methods, these
approaches aim to autonomously acquire solution policies from a significant amount of problem data.
Nevertheless, the integration of these learning-based heuristics into QUBO-specific applications is
still in its infancy, with only a handful of studies exploring this direction and they all adopted the
solving paradigm based on MDP. Based on PN, [18] designed hand-crafted features, such as row
sum, diagonal elements, and OFV values. These feature values can only reflect a small number
of characteristics of the problem data, making it difficult to characterize the overall picture of the
problem, leading to unsatisfactory results. In addition, since this method models the problem solution
process as an MDP, it requires repeated calculation ofOFV values, resulting in low solving efficiency.

3 The Neural Solver VCM

General scheme. The general scheme of our proposed Value Classification Model (VCM) is outlined
in Figure 1 at the bottom, with the detailed neural architecture provided in Appendix A. The neural
solver VCM comprises three key components: an Extractor, the Depth Value Network (DVN), for
feature extraction; a Classifier, the Value Classification Network (VCN), for solution determination;
and a Trainer, the Greedy-guided Self Trainer (GST), for solver training.

The Extractor DVN. The Extractor is responsible for automatically grasping variables and their
correlation features from Q matrix to support the Classifier. The efficacy of the Extractor essentially
determines the performance of the VCM. We notice that the Q matrix is graph-like data. It is known
that the Graph Convolutional Network (GCN) [42] is a robust technique for graph representation,
which learns hidden layer representations that encode both local graph structure and features of nodes.
The extraction of the l-th layer is summarized as H(l+1) = σ(D̃−1/2(A + IN)D̃−1/2H(l)W (l)).
Here, A, IN , and D̃ are the adjacency matrix, identity matrix, and the degree matrix of the undirected
graph G. W (l) is a layer-specific trainable weight matrix, and H(l) is the matrix of activations in
the l-th layer. The core operation in graph convolution is AH . In QUBO, the A is instantiated as Q,
while H is the set of extracted features of the variable vector x.

However, directly using GCN as the Extractor for QUBO poses several insurmountable challenges.
First, transforming QUBO into a graph typically results in a fully connected Q matrix, leading to n2
real-valued edges, with each edge qij directly affecting the OFV of the problem. It is essential to
manage the extraction of large-scale edges and discern their distinctions. As stated in [43], the graph
convolution in GCNs is a special form of Laplacian smoothing, a key factor for their effectiveness.
This smoothing could diminish the influence of high-weight edges, which is not required in QUBO
since their original weight differences are essential for the model to accurately identify their impact
on the objective function. Also, GCN performance significantly degrades when its depth exceeds

3

-35 42 -68 38

36 -68 92

-89 38 92 24

49 -35 36 -89

-30

Q Instance Q Graph Value Features

0 0

11

Solution

Classifier

VCN

Extractor

DVN

Trainer

GST

Our Neural Solver VCM

PN/GNN-based Neural Policy

1 0

00

1 0

01

1 0

11

0 0

11

Flip

0 0

00

Flip Flip Flip

Decision

RL SolutionMDP-based DRL policy models
Update

DecisionDecision Decision Decision

Feature Embeddings

Validated

in OFV

Components of

DRL policy models

Components of

Our neural solver

Invalidated

and in OFV

Validated and

in OFV

Invalidated

in OFV

Value Features

of

Variable Node

of

UpdateUpdate

Figure 1: The processes of DRL-based policy models and our QUBO solver. Both PN and GNN-
based DRL policy models construct solutions sequentially by capturing environmental embeddings at
each step to support decision-making. In contrast, our neural solver VCM outputs solutions directly
in a classification way, without any additional decision steps.

two layers [42], even when employing residual connections. This is because when a GCN contains
numerous convolutional layers, the resulting output features may become excessively smoothed,
making it difficult to differentiate vertices from various clusters. To address these issues and based on
the principles of graph convolution, we propose a QUBO-tailored Depth Value Network (DVN).

In QUBO, each variable xj directly affects the elements of the corresponding j-th row and column
in Q. Given that Q is symmetric, i.e., Q = QT , the features associated with each row should be
unified with those of the corresponding column. We first define the features of each variable xj to be
extracted as a value feature, accompanied by a value feature vector vj ∈ Rh, where h denotes the
hidden size. Let vj be the value features of the j-th column of Q (denoted as vcol

j). Each element
in row j can then be expressed as qijvcol

j . Consequently, the value features for the i-th row can be
computed as vrow

i =
∑n

j=1(qijv
col
j). To ensure unified row and column features, the value of each

column, vcol
i , should match the value of its corresponding row, vrow

i . This requirement translates
to unifying V and QV , where the computation of QV mirrors the core operation of GCN. This
alignment may be an additional reason why GCN exhibits effective performance.

In DVN, we take the QV and current V as inputs and employ a learning function FE to iterate the
value feature. The iteration at depth d is updated as follows:

V (d+1) = FE(V
(d), QV (d)) (2)

Here, V = {vi}Ni=1 is the value feature matrix for all variables x (i.e., the nodes in the graph). Each
vi ∈ Rh×1 is the value feature vector for xi with all initial values set to 1. FE consists of specific
neural networks and activation functions tailored for pattern recognition and features processing.
Specifically, it obtains the new value features V (d),D based on the current and QV convolution value
features as follows:

V (d),D = M3[V
(d); tanh(M2(ReLU(M1QV (d))))] (3)

Where M1,M2 ∈ Rh×h are learnable memory units that capture specific feature interactions. ReLU
and tanh are the activation functions used to filter the extracted features and compress the value
features within a limited threshold, respectively. [;] is the horizontal concatenation operator and
M3 ∈ Rh×2h is a learnable memory unit that connects the current and convolution value features.
Finally, V (d+1) is then obtained as follows.

V (d+1) = tanh(V (d),D) (4)

The output value of tanh, within a symmetric range of [−1, 1], can effectively represent the features
of distinct variables. An ablation study on activation functions and memory units demonstrates the

4

effectiveness of our neural architecture design (see Appendix E). These filtering and compression
processes allow DVN to iteratively extract features from Q at any depth, which effectively avoids the
problem of decreased performance caused by the convolutional layer increase of GCN. Additionally,
during data initialization, we scale the data by λQ to enhance the efficiency of value compression
(see Appendix A), where λ represents the scaling factor with a specific value. Experimental results
verify that the performance of our solver steadily improves when the iteration depth of the DVN
increases. Notably, without incurring additional training costs, our solver can find better solutions
simply by extending the iteration depth (see Section 4.3).

The Classifier VCN. Based on the obtained value features V (d),D, we propose a Value Classification
Network (VCN) which serves as the classifier to generate the solution x for the QUBO.

x = FC(V
(d),D) (5)

Where FC is a learning function that maps the value feature of each variable into a binary value. To
this end, we calculate the state of each xi and use the activation function tanh to obtain the state of
each xi. The classification result is then determined based on the state of xi.

{statei}ni=1 = tanh(utanh(M4V
(d),D)) (6)

xi =

{
1, statei > 0
0, statei ≤ 0

(7)

Where M4 ∈ Rh×h is a learnable memory unit and u ∈ R1×h is the learnable uniform vector
to integrate the value features of each variable. VCN can produce a complete solution directly
by simultaneously considering all variables through a single classification action. Compared to
other DRL policy models that rely on sequential decisions, our solver can significantly reduce the
computational complexity from O(kn2) (where the sequence length k can potentially expand to 2n

when the flip of all variables is enumerated) to O(n2).

The Trainer GST. It is known that the classification model usually requires labeled solutions for
training. Unfortunately, in the case of QUBO, acquiring optimal solutions is rather expensive and
may be infeasible for large-size problems. For this reason, we propose a Greedy-guided Self Trainer
(GST), which effectively avoids the need for pre-labeled optimal solutions. The GST is outlined in
Algorithm 1 and its working logic is shown in Figure 2, which consists of three components: a VCM,
a Batch Greedy Flip (BGF) algorithm, and a historical best solution set (HB) XL, where the BGF
and HB are two featured ingredients of the GST.

GST

Solution Batch Greedy Flip

(BGF) Algorithm

Historical Best

Solution
BCE Loss

Label

Initial

OFV Update

Training

Output

DVN&VCN

Problem

Problem

Input

Figure 2: Working logic of the GST.

The Greedy Flip algorithm employs a flip operation to change the assignment for each variable xi
between 0 and 1 (detailed in Appendix B.1). At each step, the algorithm first calculates the Objective
Function Value Increment (OFI) for each variable, which quantifies the change of OFV resulting
from flipping xi (detailed in Appendix B.2). The flip operation with the highest positive OFI is
selected. The above process continues until all variables are processed. However, computing the OFI
at each step is computationally expensive, making it impractical for batch training.

To overcome this computational bottleneck, we propose a batch OFI calculation technique (detailed in
Appendix B) that leverages matrix computation acceleration to significantly enhance efficiency. Based
on this, we develop a Batch Greedy Flip (BGF) method (detailed in Appendix C), a GPU-accelerated
heuristic that improves on the VCM (termed VCM-BGF) by identifying and correcting obvious
sub-optimal classification in the current VCM solution.

5

Algorithm 1 The Greedy-guided Self Trainer
Input: The training dataset D with Ndata instances, the epoch size E, the batch size B, the
training steps per epoch Nsteps = ceil(Ndata/B)
Output: The trained VCM with parameters θ∗
Initialize the VCM parameters θ, Adam optimizer and the label set XL

steps = XL
1 ∪ ... ∪XL

Nsteps

for epoch = 1 to E do
for step = 1 to Nsteps do
datastep ← SampleInput(D)
XL

step ← SampleInput(XL
steps)

statestep, X
V CM
step ← V CM(datastep)

XG
step ← BatchGreedyF lip(XV CM

step , datastep)

XL
step ← argmaxX∈{XG

step,X
L
step}OFV (X)

Loss← BCELoss(XL
step, (statestep + 1)/2)

θ ← Adam(θ, Loss)
end for

end for

Finally, we introduce a historical best solution set XL. During the multi-epoch training process,
the training dataset is fixed, ensuring that each instance is used once in each training epoch. This
allows us to use the VCM-BGF solution XG at each epoch to maintain and update the historical best
solution setXL. The updated historical best solutions serve as the training labels for our neural solver.
This VCM-based, data-driven label-generating process yields adaptive, high-quality labels at low
cost. The Binary Cross Entropy (BCE) is applied to calculate the training loss, with the optimization
handled by the well-known Adam optimizer [44].

4 Experiments

4.1 Experimental Details

Datasets. The datasets used in our experiments include generated instances (G), benchmarks (B), and
well-known instances (P), described in the format: dataset+instance size+(number of instances). For
the G set, the Q matrix is uniformly generated at random within [-100,100], following the benchmark
data format. The B set is B2500(10) consisting of ten ORLIB instances of size 2500 [45]. The P
set includes 21 very-large instances [46] including P3000(5), P4000(5), P5000(5), P6000(3), and
P7000(3). The average OFV gap to the current optimal baseline (GAP in %) and the average running
time (ART in milliseconds for default, ms) are used as the evaluation indicators.

Parameter setting. Following the Parameters Study (see Appendix F), the default values for VCM
parameters are set as h = 128, α = 4, and d = 40. VCM is trained for 100 epochs under four sets of
small-size instances (with 10, 20, 50, and 100 variables) with a batch size of 512, resulting in 400
VCMs. Each set includes 512,000 G instances (limited by memory). For fair validation, the test batch
size is fixed at 1. Each model is initialized with Xavier initialization [47], and the Adam optimizer
is applied with a 10−4 learning rate and 0.975 decay factor. Experiments were run on an NVIDIA
GeForce RTX 3090 and an Intel i9-9900K CPU with 64GB RAM and Ubuntu 18.04 using Pytorch
1.90 in a Python 3.7 environment.

Competitors. Our evaluation includes several types of competitors: 1) The exact optimizer Gurobi
[48]. We set the max allowed time to 1s and 1h. 2) Heuristic classification methods, Diag and SR,
proposed in [18]. 3) Heuristic construction algorithm BGF, part of GST. 4) The physics-inspired
neural solver, PI-GNN [49], with varying numbers of layers. 5) Three learning-based sequential-
decision construction models: one PN-based model called DRLH [18] (which is the state-of-the-art),
two GNN-based models called S2V-DQN [15] and ECO-DQN [35] (which are the most relevant
state-of-the-art models for solving optimization problems over graphs). These models use the same
parameter setting as VCM and are accelerated by our batch OFI calculation technique, resulting in
competitors DRLH-B, S2V-DQN-B, and ECO-DQN-B. To assess the stability of VCM, we also
include its enhanced version VCM-BGF as a competitor. In addition, for each instance of the datasets,
we obtain a high-quality reference solution using an integrated model (called VCM-BGF-HB)

6

composed of 400 trained VCM-BGFs under depth d = 100. VCM-BGF-HB is deemed a high-quality
baseline since it is able to achieve an average 0.012% deviation from benchmark optimality (see
Table 1).

4.2 Experimental Results

We use the B set and P set to validate the performance of the trained VCMs. The results in Table 1
show that PN-based DRLH-B requires seconds to obtain suboptimal solutions. In terms of solution
quality, DRLH-B is outperformed by the ECO-DQN-B, yet it incurs substantial time increases and
computational costs due to graph embedding, resulting in an insurmountable GPU memory limitation
to preclude their execution on P7000. Among the learning-based competitors, the 2-layer PI-GNN
demonstrates the best performance in terms of solution quality. Interestingly, our proposed BGF
easily outperforms these learning-based models in both solution quality and speed. Yet it is still
dominated by the VCM which is the best solver. Indeed, it surpasses all competitors across the
whole instance set in both quality and computational efficiency with the highest Wilcoxon P-value of
3.09E-03 (see Appendix D). Taking VCM50 as an example, it can achieve near-optimal solutions
with an average gap of only 0.362% within 8ms for benchmarks. Such a solution speed is rather
impressive. The results of the very large instances from the P set show that our proposed VCM
maintains near-optimal performance. Particularly, the VCM trained on instances with 10 variables
achieves an average gap of 0.569% on P7000, displaying significant generalization ability. The
results of the VCM-BGF-HB and Gurobi are also presented as a reference to the VCM. They produce
optimal or near-optimal solutions. However, Gurobi can only solve problems in a sequential way and
incurs substantial time cost (over 1h for each G100 instance in Appendix G).

Table 1: Results on benchmarks and large well-known instances.
B2500(10) P3000(5) P4000(5) P5000(5) P6000(3) P7000(3)

ALGORITHM

OBJECTIVE FUNCTION VALUE BASELINE (OPTIMAL)

1479921.4 5134727.2 7869134.2 10973791.4 13950582.0 17725010.33

GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS)

DIAG 81.842 0.7 99.262 1.7 97.374 2.9 98.256 4.4 99.273 11.1 98.843 14.3
SR 26.867 0.1 32.861 0.0 33.510 0.1 33.428 0.2 33.679 0.0 32.758 0.4

VCM10 0.368 7.8 0.566 7.9 0.440 8.1 0.508 8.5 0.645 8.8 0.569 9.1
VCM20 0.488 7.7 0.598 7.9 0.673 8.1 0.657 8.3 0.712 8.6 0.646 9.1
VCM50 0.362 7.7 0.861 7.9 0.669 8.1 0.783 8.1 0.806 8.7 0.702 9.1

VCM100 0.401 7.8 0.763 7.9 0.668 8.0 0.803 8.0 0.914 8.7 0.772 9.1

BGF 0.807 800.8 0.979 984.4 0.834 999.4 0.914 994.7 0.966 999.9 0.730 983.6
DRLH-B 1.640 1.5E+03 2.044 2.4E+03 1.884 5.0E+03 1.853 8.9E+03 2.030 1.5E+04 1.825 2.2E+04

S2V-DQN-B 21.657 1.6E+04 13.172 2.7E+04 13.255 6.3E+04 14.050 1.2E+05 14.403 2.1E+05 - -
ECO-DQN-B 0.937 2.8E+04 1.371 5.4E+04 1.333 1.2E+05 1.270 2.3E+05 1.467 4.0E+05 - -
VCM10-BGF 0.230 40.8 0.382 70.6 0.297 107.4 0.322 196.3 0.374 444.4 0.335 613.6
VCM20-BGF 0.227 52.3 0.260 87.8 0.342 135.8 0.310 282.6 0.316 506.8 0.312 634.7
VCM50-BGF 0.136 44.1 0.277 100.2 0.214 170.0 0.262 326.0 0.267 523.3 0.224 770.2

VCM100-BGF 0.139 49.2 0.203 106.0 0.178 186.7 0.245 298.2 0.271 549.7 0.212 770.4

PI-GNN(2-LAYER) 1.689 4.4E+04 2.13 6.2E+04 1.636 7.1E+04 1.418 8.6E+04 1.986 1.1E+05 1.437 1.6E+05
PI-GNN(3-LAYER) 1.909 5.7E+04 2.523 7.2E+04 2.092 8.0E+04 1.945 1.0E+05 2.18 1.3E+05 2.076 1.9E+05
PI-GNN(5-LAYER) 3.28 1.2E+05 3.047 1.0E+05 2.761 1.1E+05 2.463 1.3E+05 2.584 1.8E+05 2.289 2.7E+05

GUROBI-1S 0.034 1.0E+03 0.070 1.0E+03 0.108 1.0E+03 0.091 1.0E+03 0.122 1.0E+03 0.145 1.0E+03
GUROBI-1H 0.0023 3.6E+06 0.0028 3.6E+06 0.0109 3.6E+06 0.0096 3.6E+06 0.0144 3.6E+06 0.0169 3.6E+06

VCM-BGF-HB 0.012 1.9E+04 0.020 3.6E+04 0.027 6.0E+04 0.040 1.1E+05 0.030 2.0E+05 0.057 2.8E+05

1 The Bold indicates the best average result in different classes of methods.

To further investigate the generalization ability of the VCM, we conduct experiments on an additional
1,000 generated G instances with 20, 50, 100, 200, 500, and 1,000 variables. We use VCM-BGF-HB
as the optimal baseline. The results, illustrated in Figure 3 and detailed in Appendix G, demonstrate
that a VCM trained at a specific size performs well on instances of other sizes. For example, the gap
between VCM10 and VCM100 on G100 instances is merely 0.056%, demonstrating the remarkable
generalization ability of VCM. The results also show that BGF can further enhance the performance
of the VCM, with a solution quality improvement of 0.27% on average. Meanwhile, this improvement
afforded by BGF is limited, reflecting the inherent stability of VCM.

In comparison to MDP-based methods, VCM replaces this complex sequential decision-making
process with a simple classification process, providing an inherent advantage in solving efficiency
that becomes more pronounced as the instance size increases. Notably, the VCM achieves this
performance without using OFI (which is essential in sequential decision-based methods), thereby

7

G20
(1000)

G50
(1000)

G100
(1000)

G200
(1000)

G500
(1000)

G1000
(1000)

B2500
(10)

P3000
(5)

P4000
(5)

P5000
(5)

P6000
(3)

P7000
(3)

Datasets

VCM10

VCM20

VCM50

VCM100

0.060 0.108 0.151 0.248 0.338 0.414 0.368 0.566 0.440 0.508 0.645 0.569

0.121 0.112 0.196 0.257 0.409 0.507 0.488 0.598 0.673 0.657 0.712 0.646

0.200 0.129 0.167 0.230 0.382 0.523 0.362 0.861 0.669 0.783 0.806 0.702

0.244 0.117 0.207 0.207 0.357 0.508 0.401 0.763 0.668 0.803 0.914 0.772

0.0

0.2

0.4

0.6

0.8

1.0

O
FV

 G
ap

 (%
)

(a) The average gap in % of VCMs.

G20
(1000)

G50
(1000)

G100
(1000)

G200
(1000)

G500
(1000)

G1000
(1000)

B2500
(10)

P3000
(5)

P4000
(5)

P5000
(5)

P6000
(3)

P7000
(3)

Datasets

VCM10-BGF

VCM20-BGF

VCM50-BGF

VCM100-BGF

0.025 0.058 0.089 0.148 0.209 0.258 0.230 0.382 0.297 0.322 0.374 0.335

0.010 0.037 0.066 0.107 0.173 0.223 0.227 0.260 0.342 0.310 0.316 0.312

0.036 0.019 0.044 0.064 0.113 0.163 0.136 0.277 0.214 0.262 0.267 0.224

0.052 0.027 0.042 0.050 0.094 0.138 0.139 0.203 0.178 0.245 0.271 0.212

0.0

0.2

0.4

0.6

0.8

1.0

O
FV

 G
ap

 (%
)

(b) The average gap in % of VCM-BGFs.

Figure 3: The size generalization ability of VCM and VCM-BGF under different datasets.

considerably reducing computational overhead. The computing time is thousands of times less on
average. Also, the computing time increases moderately as the problem size enlarges (see Figure 4).
Across the whole datasets (with variables ranging from 20 to 7000), the computing time is always
under 10ms. In contrast, other sequential-decision competitors, especially GNN-based models,
exhibit excessive time growth as the problem size grows, since the number of decision-making steps
increases significantly.

0

200

400

A
R

T
(s

)

0.0
2.5
5.0
7.5

10.0

A
R

T
(s

)

G20(1000) G50(1000) G100(1000) G200(1000) G500(1000) G1000(1000) B2500(10) P3000(5) P4000(5) P5000(5) P6000(3) P7000(3)
Datasets

0.0
2.5
5.0
7.5

10.0

A
R

T
(m

s)

ECO-DQN-B S2V-DQN-B DRLH-B BGF VCM-BGF VCM

Figure 4: Avearge running time of different datasets in seconds and milliseconds.

4.3 Model Study

Efficiency of GST. We introduce three training competitors, UnS [49], LHB, and LGF, to validate
our Trainer GST. The UnS is an unsupervised training method that directly uses the optimization
objective function as the loss function and relaxes the 0-1 variables for optimization. The labels for
LHB are obtained by VCM-BGF-HB. The LHB can be considered supervised learning with optimal
labels. The labels for LGF are obtained using the current VCM-BGF, which is GST without the
historical best solution set. We adopt VCM-BGF-HB as the optimal baseline and illustrate the training
curves in Figure 5. The results indicate that GST outperforms competitors in terms of both efficiency
and stability. Specifically, GST demonstrates a more efficient and stable training process compared
to the unsupervised trainer UnS, which suffers from considerable fluctuations. GST achieves the
same performance as the supervised LHB in the early stages of the training process while requiring
at least 50% fewer epochs. Although LGF can reach local optimum from time to time, its training
process experiences fluctuations due to the unstable quality of the labels outputted by VCM-BGF
alone. Therefore, the integration of BGF and historical solutions within GST enables a rapid, stable,
and adaptive formation of VCM, and circumvents the substantial costs associated with supervised
learning.

Distribution Generalization of VCM. The G set, whose default distribution is denoted as R-1, with
all elements of the matrix non-zero. To assess the generalization ability of VCM across diverse
data distributions, we generate new datasets by following a standard normal random distribution
(RN-1) and deactivating the matrix elements to 0 with probabilities of 10% (R-0.9), 40% (R-0.6),
70% (R-0.3), and 90% (R-0.1). We conduct tests on these instances of diverse distributions with
20, 50, and 100 variables using our trained corresponding-sized VCMs. For each distribution, we
generate 1,000 G instances and apply VCM-BGF-HB as the optimal baseline to measure the gap.
The results (summarized in Figure 6 and detailed in Appendix H) demonstrate that VCM maintains

8

0 20 40 60 80 100
Epoch

0.0

0.2

0.4

0.6

0.8

1.0

1.2

O
FV

 G
ap

 (%
)

VCM-UnS
VCM-LHB
VCM-LGF
VCM-GST

Figure 5: VCM training process under different
methods at instance size 50.

RN-1
R-0.1

R-0.3
R-0.6

R-0.9R-1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8

O
FV

 G
ap

 (%
)

G20(1000)

RN-1
R-0.1

R-0.3
R-0.6

R-0.9R-1

Datasets

0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 G50(1000)

RN-1
R-0.1

R-0.3
R-0.6

R-0.9R-1
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.8 G100(1000)

BGF VCM VCM-BGF

Figure 6: VCM results under different distribution
instances.

near-optimal across various data distributions. The VCM performance on the R-0.1 instance set with
100 variables, where 90% Q matrix elements are zero, manages to sustain a performance gap no larger
than 0.15%. Besides, since the MaxCut problem can be re-casted into UQBO, with the difference
in the data distribution, we extend our evaluation to MaxCut benchmarks to validate our findings.
Results detailed in Appendix I further confirm the practical applicability of VCM. These observations
imply that the Extractor in VCM can be considered a generic module with distribution-independent
and problem-specific in QUBO, thereby bringing VCM a remarkable generalization ability and
wide-spread applicability.

The Study of DVN Depth. The depth is crucial for ensuring interaction and coherence between row
and column features in DVN graph convolution. As shown in the Parameter Study in Appendix F.2,
increasing the training depth of DVN improves feature extraction precision, leading to consistent
enhancement in VCM performance. It is logical to hypothesize that a VCM trained at a particular
depth d would perform better at deeper testing depths. To investigate this hypothesis, we evaluate six
VCMs on benchmark B2500 across eight testing depths. The results (illustrated in Figure 7(a) and
detailed in Appendix J) show that all VCMs exhibit significant performance gains as testing depth
increases. Even at the training depth of 10, VCM already learns an iterative feature extraction pattern.
However, when the testing depth retracts below the training depth, VCM presents a perceptible but
tolerable performance degradation, reinforcing the premise that reaching the training depth threshold
is essential for DVN stabilization.

To further investigate the rationale behind this performance, we apply the t-SNE [50] on the output
V (d),D of Extractor DVN from the trained VCM50-d10 with varying testing depths. Figure 8 shows
that as d increases, clustering transitions into binary clusters gradually. When d = 1, it converges
to a number of lines, and when d > 100, the binary clustering occurs. This demonstrates that our
DVN overcomes the limitation of GCN (i.e., its performance degrades as the depth increases, as
shown in our evaluation in Appendix K), thus effectively supporting the Classifier VCN. For instance,
the default VCM50-d40 achieves an average gap of merely 0.034% when the testing d hits 300, as
opposed to its original gap of 0.362%. This performance enhancement can be generalizable to very
large instances, as demonstrated by our evaluations on well-known instances (see Appendix J) and
G instance with 10,000 and 20,000 variables (see Appendix L), and is achieved without additional
training costs. As shown in Figure 7(b), the computational time increases linearly (on average 0.17ms
per depth) as the testing depth enlarges, which verifies the remarkable performance of the VCM and
extends its applications.

d10 d20 d30 d40 d50 d100
VCM50-

0.0

0.5

1.0

1.5

2.0

O
FV

 G
ap

 (%
)

d10 d20 d30 d40 d50 d100 d200 d300

(a) Different testing depth d on B2500(10).

0 50 100 150 200 250 300
Testing Depth d

0

10

20

30

40

50

A
R

T
(m

s)

VCM50-d40

(b) Computational time of VCM50-d40 on B2500(10).

Figure 7: VCM results under different testing depth d.

9

Figure 8: The t-SNE visualizations of V (d),D on the first instance of B2500 under VCM50-d10.

5 Conclusions and Future Work

Our neural solver VCM is a new state-of-the-art learning-based model designed for efficiently solving
QUBO from a classification perspective. It applies the Extractor DVN based on graph convolution
and exploits the symmetry property in Q to auto-grasp value features. Utilizing these resultant
value features of each variable, VCM generates solutions directly through the Classifier VCN in a
classification way. Trained by a highly efficient model-tailored Trainer GST which does not require
any priori optimal labels, VCM shows near-optimality, high efficiency, and generalization ability in
problem-solving. In particular, it can achieve an average gap to benchmark optimality of 0.362% in
milliseconds and steadily narrow it down to 0.034% by simply extending the testing depth, which
brings only a linearly increased computational time (average 0.17ms per depth).

Although VCM reaches such a performance by single classification decision-making, its optimality
may be potentially limited by the VCN utilization of value features from DVN. This limitation
poses challenges in achieving the optimal solution. Future research could explore enhancing VCM
capabilities, including the development of more accurate classification networks and more efficient
trainers, as well as adapting it to address other combinatorial optimization problems and real-world
applications.

Acknowledgments and Disclosure of Funding

This work was supported in part by the National Natural Science Foundation of China (No. 72271240,
72201272, 62307015 and 62437002); in part by the Natural Science Foundation of Hunan Province
(No. 2022JJ30671 and 2024JJ4047); in part by the Hubei Provincial Natural Science Foundation
of China (No. 2024AFB169, 2023AFB295 and 2023AFA020); in part by the China Postdoctoral
Science Foundation (No. 2023M741304); and in part by the Scientific Research Foundation of Hunan
Provincial Education Department (No. 22C0050).

References
[1] Fred Glover, Gary Kochenberger, Rick Hennig, and Yu Du. Quantum bridge analytics i: a tutorial on

formulating and using qubo models. Annals of Operations Research, 314(1):141–183, 2022.

[2] Fred Glover, Gary Kochenberger, Moses Ma, and Yu Du. Quantum bridge analytics ii: Qubo-plus,
network optimization and combinatorial chaining for asset exchange. Annals of Operations Research,
314(1):185–212, 2022.

[3] Seo Woo Hong, Pierre Miasnikof, Roy Kwon, and Yuri Lawryshyn. Market graph clustering via qubo and
digital annealing. Journal of Risk and Financial Management, 14(1):34, 2021.

[4] Lee Braine;Daniel J. Egger;Jennifer Glick;Stefan Woerner. Quantum algorithms for mixed binary op-
timization applied to transaction settlement. IEEE Transactions on Quantum Engineering, pages 1–8,
2021.

[5] Bahram Alidaee, Gary Kochenberger, Karen Lewis, Mark Lewis, and Haibo Wang. A new approach for
modeling and solving set packing problems. European Journal of Operational Research, 186(2):504–512,
2008.

[6] Mark Lewis, Bahram Alidaee, Fred Glover, and Gary Kochenberger. A note on xqx as a modelling
and solution framework for the linear ordering problem. International Journal of Operational Research,
5(2):152–162, 2009.

10

[7] Iain Dunning, Swati Gupta, and John Silberholz. What works best when? a systematic evaluation of
heuristics for max-cut and qubo. INFORMS Journal on Computing, 30(3):608–624, 2018.

[8] Gary Kochenberger, Jin-Kao Hao, Fred Glover, Mark Lewis, Zhipeng Lü, Haibo Wang, and Yang Wang.
The unconstrained binary quadratic programming problem: a survey. Journal of combinatorial optimization,
28:58–81, 2014.

[9] Endre Boros and Peter L Hammer. Pseudo-boolean optimization. Discrete applied mathematics, 123(1-
3):155–225, 2002.

[10] Pierre Hansen. Methods of nonlinear 0-1 programming. In Annals of Discrete Mathematics, volume 5,
pages 53–70. Elsevier, 1979.

[11] Cong Zhang, Yaoxin Wu, Yining Ma, Wen Song, Zhang Le, Zhiguang Cao, and Jie Zhang. A review on
learning to solve combinatorial optimisation problems in manufacturing. IET Collaborative Intelligent
Manufacturing, 5(1):e12072, 2023.

[12] Zhixiao Xiong, Fangyu Zong, Huigen Ye, and Hua Xu. Neuralqp: A general hypergraph-based optimization
framework for large-scale qcqps, 2024.

[13] Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. Robotica, 17(2):229–235,
1999.

[14] Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural information
processing systems, 28, 2015.

[15] Elias Khalil, Hanjun Dai, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial optimization
algorithms over graphs. Advances in neural information processing systems, 30, 2017.

[16] Jianan Zhou, Yaoxin Wu, Wen Song, Zhiguang Cao, and Jie Zhang. Towards omni-generalizable neural
methods for vehicle routing problems. arXiv preprint arXiv:2305.19587, 2023.

[17] Maria Chiara Angelini and Federico Ricci-Tersenghi. Modern graph neural networks do worse than
classical greedy algorithms in solving combinatorial optimization problems like maximum independent set.
Nature Machine Intelligence, 5(1):29–31, 2023.

[18] Ming Chen, Yuning Chen, Yonghao Du, Luona Wei, and Yingwu Chen. Heuristic algorithms based on
deep reinforcement learning for quadratic unconstrained binary optimization. Knowledge-Based Systems,
207:106366, 2020.

[19] Peter L Hammer and Sergiu Rudeanu. Pseudo-boolean programming. Operations Research, 17(2):233–261,
1969.

[20] Panos M Pardalos and Somesh Jha. Complexity of uniqueness and local search in quadratic 0–1 program-
ming. Operations research letters, 11(2):119–123, 1992.

[21] VP Gulati, SK Gupta, and AK Mittal. Unconstrained quadratic bivalent programming problem. European
Journal of Operational Research, 15(1):121–125, 1984.

[22] Francisco Barahona, Michael Jünger, and Gerhard Reinelt. Experiments in quadratic 0–1 programming.
Mathematical Programming, 44(1-3):127–137, 1989.

[23] Christoph Helmberg and Franz Rendl. Solving quadratic (0, 1)-problems by semidefinite programs and
cutting planes. Mathematical programming, 82:291–315, 1998.

[24] Panos M Pardalos, Oleg A Prokopyev, and Stanislav Busygin. Continuous approaches for solving discrete
optimization problems. Handbook on modelling for discrete optimization, pages 39–60, 2006.

[25] Hong-Xuan Huang, Panos M Pardalos, and Oleg A Prokopyev. Lower bound improvement and forcing
rule for quadratic binary programming. Computational Optimization and Applications, 33:187–208, 2006.

[26] Yang Wang, Zhipeng Lü, Fred Glover, and Jin-Kao Hao. Effective variable fixing and scoring strategies
for binary quadratic programming. In Evolutionary Computation in Combinatorial Optimization: 11th
European Conference, EvoCOP 2011, Torino, Italy, April 27-29, 2011. Proceedings 11, pages 72–83.
Springer, 2011.

[27] Yang Wang, Zhipeng Lü, Fred Glover, and Jin-Kao Hao. Backbone guided tabu search for solving the
ubqp problem. Journal of Heuristics, 19:679–695, 2013.

11

[28] Jialong Shi, Qingfu Zhang, Bilel Derbel, and Arnaud Liefooghe. A parallel tabu search for the unconstrained
binary quadratic programming problem. In 2017 IEEE Congress on Evolutionary Computation (CEC),
pages 557–564. IEEE, 2017.

[29] Kengo Katayama and Hiroyuki Narihisa. Performance of simulated annealing-based heuristic for the
unconstrained binary quadratic programming problem. European Journal of Operational Research,
134(1):103–119, 2001.

[30] Arnaud Liefooghe, Sébastien Verel, Luis Paquete, and Jin-Kao Hao. Experiments on local search for
bi-objective unconstrained binary quadratic programming. In International Conference on Evolutionary
Multi-Criterion Optimization, pages 171–186. Springer, 2015.

[31] Murilo Zangari, Aurora Pozo, Roberto Santana, and Alexander Mendiburu. A decomposition-based binary
aco algorithm for the multiobjective ubqp. Neurocomputing, 246(JUL.12):58–68, 2017.

[32] Zhipeng Lü, Jin-Kao Hao, and Fred Glover. A study of memetic search with multi-parent combination for
ubqp. In Evolutionary Computation in Combinatorial Optimization: 10th European Conference, EvoCOP
2010, Istanbul, Turkey, April 7-9, 2010. Proceedings 10, pages 154–165. Springer, 2010.

[33] Yang Wang, Zhipeng Lü, Fred Glover, and Jin-Kao Hao. Probabilistic grasp-tabu search algorithms for the
ubqp problem. Computers and Operations Research, 40:3100–3107, 12 2013.

[34] Yuan Jiang, Zhiguang Cao, and Jie Zhang. Learning to solve 3-d bin packing problem via deep reinforce-
ment learning and constraint programming. IEEE transactions on cybernetics, 2021.

[35] Thomas Barrett, William Clements, Jakob Foerster, and Alex Lvovsky. Exploratory combinatorial opti-
mization with reinforcement learning. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pages 3243–3250, 2020.

[36] Irwan Bello, Hieu Pham, Quoc V Le, Mohammad Norouzi, and Samy Bengio. Neural combinatorial
optimization with reinforcement learning. International Conference on Learning Representations, 2017.

[37] Wouter Kool, Herke van Hoof, and Max Welling. Attention, learn to solve routing problems! International
Conference on Learning Representations, 2019.

[38] Yeong-Dae Kwon, Jinho Choo, Byoungjip Kim, Iljoo Yoon, Youngjune Gwon, and Seungjai Min. Pomo:
Policy optimization with multiple optima for reinforcement learning. Advances in Neural Information
Processing Systems, 33:21188–21198, 2020.

[39] Jieyi Bi, Yining Ma, Jiahai Wang, Zhiguang Cao, Jinbiao Chen, Yuan Sun, and Yeow Meng Chee.
Learning generalizable models for vehicle routing problems via knowledge distillation. Advances in Neural
Information Processing Systems, 35:31226–31238, 2022.

[40] Fu Luo, Xi Lin, Fei Liu, Qingfu Zhang, and Zhenkun Wang. Neural combinatorial optimization with heavy
decoder: Toward large scale generalization. Advances in Neural Information Processing Systems, 36, 2024.

[41] Jinbiao Chen, Zizhen Zhang, Zhiguang Cao, Yaoxin Wu, Yining Ma, Te Ye, and Jiahai Wang. Neural
multi-objective combinatorial optimization with diversity enhancement. Advances in Neural Information
Processing Systems, 36, 2024.

[42] Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks. In
International Conference on Learning Representations, 2017.

[43] Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. In Proceedings of the AAAI conference on artificial intelligence, volume 32,
2018.

[44] D Kinga, Jimmy Ba Adam, et al. A method for stochastic optimization. In International conference on
learning representations (ICLR), volume 5, page 6. San Diego, California;, 2015.

[45] John E Beasley. Obtaining test problems via internet. Journal of Global Optimization, 8:429–433, 1996.

[46] Gintaras Palubeckis. Multistart tabu search strategies for the unconstrained binary quadratic optimization
problem. Annals of Operations Research, 131:259–282, 2004.

[47] Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and statistics,
pages 249–256. JMLR Workshop and Conference Proceedings, 2010.

12

[48] LLC Gurobi Optimization. Gurobi optimizer reference manual, 2024.

[49] Martin JA Schuetz, J Kyle Brubaker, and Helmut G Katzgraber. Combinatorial optimization with physics-
inspired graph neural networks. Nature Machine Intelligence, 4(4):367–377, 2022.

[50] Laurens Van der Maaten and Geoffrey Hinton. Visualizing data using t-sne. Journal of machine learning
research, 9(11), 2008.

[51] Ankur Nath and Alan Kuhnle. A benchmark for maximum cut: Towards standardization of the evaluation
of learned heuristics for combinatorial optimization. arXiv preprint arXiv:2406.11897, 2024.

13

A The Neural Architecture within VCM

The overall neural architecture of solver VCM is plotted in Figure 9.

···

······

Instance Input

···

1
/0

1
/0

···
1

/0

···

tanh

tanh-1

Scaling

tanh
···

···

··· ···

···

··· Cover

Depth d

Value Classification Network Depth Value Network

···

Compressed Value Feature SolutionValue Feature Learnable ParameterOperation

Relu

[;]

tanh-2

Figure 9: The neural architecture within VCM. The input Q is initially scaled by a scaling factor
λ to improve value compression efficiency for the post-order Extractor DVN. Subsequently, DVN
utilizes problem-tailored convolution to iteratively auto-grasp value features for each variable based
on the specified iterative depth d and hidden size h. Finally, leveraging the acquired value features,
the Classifier VCN generates the solution directly through a classification way.

Initially, in the Extractor DVN in VCM, the value featureV of tasks is denoted as V 0 with elements
initialized to 1, so that all elements of the first QV 0 represent the sum of Q’s row rs. These values
are significantly influenced by the instance size and dataset distribution, which may vary in magnitude.
Therefore, preprocessing of the input data is crucial. To enhance value compression efficiency in
DVN, we scale Q using a scaling function. For each Q, we take λQ to perform uniform scaling,
where λ is the scaling factor calculated as:

s = argmax(abs(rs1, rs2, ..., rsn)) (8)

λ = α/(s+ sB) (9)

Here, α is a handcrafted scaling constant, and sB is the mean of s in each training batch. The
proposed scaling function proves effective and plays a significant role in the performance of VCM
(refer to the experimental results in Appendix F).

B Batch Calculation of Objective Function Increment

B.1 The Flip Operation

In the MDP for QUBO, the flip operation is fundamental, wherein a binary variable within the current
solution transforms between 0 and 1 based on a specific strategy. The diagram of the flip operation is
shown in Figure 10. The key basis for performing the flip operation is the calculation of the Objective
Function Value Increment (OFI) after each variable is flipped, which is also an essential element of
iterative search algorithms.

Flip Flip Flip
Initial Solution

Figure 10: The flip operation in the MDP of QUBO.

14

B.2 Batch OFI Calculation Method

Traditional OFI computation, however, as depicted on the left side of Figure 11, suffers from
inefficiency and resource wastage due to its instance-by-instance serial execution. To address the
computational inefficiencies inherent in the traditional OFI computation and to accommodate batch
instance requirements pivotal for the existing deep learning model, we propose an innovative batch
OFI calculation method. As depicted on the right side of Figure 11, the batch OFI calculation allows
for simultaneous OFI calculations across n variables in B instances.

-1

Batch Calculation of OFI

Flip Flip Flip

Traditional

Process

Batch Calculation

Process

Flip

Figure 11: The OFI calculation process at each decision step of the traditional process and the
proposed batch process in B instances. The traditional process entails a sequential, instance-by-
instance approach in which the OFI for each variable xi is serially and independently calculated
at every decision step. In contrast, our proposed batch calculation process exploits the matrix
computation to simplify and speed up the calculation process, enabling the determination of the OFI
for n variables across batch B instances, with the potential for further acceleration through GPU.

We utilize matrix computation, presenting a detailed derivation process accordingly. We consider an
n× n-dimensional symmetric QUBO matrix Q = {qij}n×n where qij = qji, i = 1..n, j = 1..n.

Q =


q11 q12
q21 q22

· · · q1n
q2n

...
. . .

...
qn1 qn2 · · · qnn

 (10)

The current QUBO solution x = {x1, x2, ..., xn} is an n-dimensional vector. N = {1, 2, ..., n}
indexes the elements of x and both the rows and columns of Q. Thus, Equation (1) is expanded as
follows.

f (x) =

n∑
i=1

qiixi
2 +

n∑
i=1

i−1∑
j=1

qijxixj +

n∑
i=1

n∑
j=i−1

qijxixj (11)

We examine the effect of flipping the k-th variable on the solution, yielding a new solution x′ in
which x′i is defined by:

x′i =

{
1− xi, i = k
xi, i 6= k

(12)

The OFV for x′ is then determined.

f (x′) =

n∑
i=1

qiix
′
i
2
+

n∑
i=1

i−1∑
j=1

qijx
′
ix
′
j +

n∑
i=1

n∑
j=i−1

qijx
′
ix
′
j (13)

15

Subsequently, the OFI of the variable xk is calculated as follows:

OFI(xk) = f(x′)− f(x) = (x′k − xk)qkk (x′k + xk) +
∑

i∈N,i6=k

qikxi +
∑

j∈N,j 6=k

qkjxj

 (14)

Because of x′k+xk = 1 and qij = qji, the function simplifies to:

OFI(xk) = (x′k − xk)

qkk + 2
∑

i∈N,i6=k

qikxi

 (15)

In this case, we define the sum of the k-th row Qsum
k as follows:

Qsum
k =

∑
j∈N

qkjxj (16)

All the Qsum across all variables can be calculated as follows:
Qsum = Q · x (17)

Then, the flip of OFI(xk) can be divided into two cases: 0 to 1 and 1 to 0. In the first case where
xk = 0 and x′k = 1, the difference x′k − xk = 1, which modifies Equation (15) to:

OFI(xk) = qkk + 2
∑

j∈N,j 6=k

qkjxj (18)

Since xk = 0, we have qkkxk = 0, thereby expanding OFI(xk) as:

OFI(xk) = qkk + 2
∑

j∈N,j 6=k

qkjxj

= qkk + 2
∑

j∈N,j 6=k

qkjxj + 2qkkxk

= qkk + 2Qsum
k

(19)

Conversely, when xk = 1 and x′k = 0, the difference x′k − xk = −1, adjusting Equation (15) to:

OFI(xk) = −qkk − 2
∑

j∈N,j 6=k

qkjxj (20)

Because of qkkxk = qkk when xk = 1. The OFI(xk) can be expanded as follows.

OFI(xk) = −qkk − 2
∑

j∈N,j 6=k

qkjxj

= qkk − 2
∑
j∈N

qkjxj

= qkk − 2Qsum
k

(21)

Hence, the calculation of OFI(xk) can be concluded as follow:

OFI(xk) =

{
qkk + 2Qsum

k , xk = 0
qkk − 2Qsum

k , xk = 1
(22)

Finially, we define the diagonal elements of the matrix Q as Qdiag ∈ RN×1 and propose the OFI
batch calculation as follows:

OFI(x) = Qdiag + 2(1− 2x)Qsum (23)

We evaluate the effectiveness of the proposed batch calculation of OFI using the following Greedy
Flip method.

16

C Batch Greedy Flip Algorithm

During the MDP of QUBO, we execute the flip with the highest positive OFI at each state in a greedy
manner to derive the Greedy Flip algorithm. In Figure 12, we provide a comprehensive illustration of
the Greedy Flip algorithm’s execution within a specific QUBO instance comprising four variables.
Notably, variable x1 undergoes two repeated flips.

Graph

Initialization Transform

Greedy Flip

-35 42 -68 38

36 -68 92

-89 38 92 24

49 -35 36 -89

-30

Q Instance

Solution

1 0

00

1 0

01

1 0

11

0 0

11

Flip

0 0

00

Flip Flip Flip

-49 -28 42 -15449 42 -30 24 -121 -164 -42 30 57 -88 -226 -30 -57 -18 -154 -208

Action

Step 2 Step 3Step 1 Step 4

Figure 12: The Greedy Flip algorithm of QUBO.

Enhanced by the proposed OFI batch calculation method, we propose the Batch Greedy Flip (BGF)
method for supporting the proposed GST. Besides, BGF is not only used as a competitor to validate
the effectiveness of VCM but also as an enhancement component for VCM to integrate a powerful
hybrid construction method VCM-BGF. The pseudo-code of BGF is presented in Algorithm 2. It
is worth noting that the length of the solution for the batch calculation is N + 1, consisting of the
problem solution with a set-aside point. In case the OFI of all variables in the current solution is
non-positive OFI, the value of this set-aside point will be flipped.

Algorithm 2 The Batch Greedy Flip (BGF) algorithm

Input: the batch size B, the matrix of the batch Q = {Qt|t = 1, ..., B}, Qt ∈ R(N+1)×(N+1),
the initial solution of the batch x = {xt|t = 1, ..., B}, xt ∈ R(N+1)×1

Output: the improved solution x∗

Calculate Qdiag ∈ RB×(N+1)×1

while True do
OFIt ← Qdiag

t + 2(1− 2xt)Q
sum
t

if ∀OFIti ≤ 0, t = {1, ..., B}, i = {1, ..., N} then
break

else
for t = 1 to B do

if ∀OFIti ≤ 0, i = {1, ..., N} then
k ← N + 1

else
k ← argmaxk∈{1,...,N}OFItk

end if
xtk = 1− xtk

end for
end if

end while

17

C.1 The Efficiency of Batch Calculation

To investigate the effectiveness of the proposed OFI batch calculation, we conduct tests on 1,000
generated G instances with 20, 50, 100, 200, 500, and 1,000 variables, using BGF with batch sizes
of 1, 32, 64, 128, and 256. For comparative validation, we apply the Traditional Greedy Flip (TGF)
method as the competitor, which calculates the OFI in a sequential and instance-by-instance way. We
plot the running time curve in Figure 13 and detail the data in Table 2. The results reveal that the
OFI batch calculation can significantly enhance the computing efficiency of the Greedy Flip method,
which brings orders of magnitude efficiency improvement. With a batch size of 1, BGF-01 operates
similarly to TGF, calculating instance by instance, where the difference between these two methods
lies in the OFI calculation process of all variables in each decision step. Based on the batch calculation,
BGF distinguishes itself by calculating the OFI for all variables simultaneously within a single step,
as opposed to the sequential approach of TGF. This capability affords BGF a marked efficiency edge
which grows with problem size, exemplified by its requirement of only 0.696% of the traditional
calculation time for G1000 instances. The efficiency gains from OFI batch calculation are even more
pronounced when dealing with batch instance computing. This improvement stems from the lower
computational complexity afforded by the matrix computation process and the GPU acceleration.
Consequently, the proposed OFI batch calculation method represents a potent computational tool for
QUBO research, with promising applications beyond the scope of this work to potentially expedite a
broad range of existing QUBO methods.

0
10000
20000
30000

0
25
50
75

100

To
ta

l R
un

ni
ng

 T
im

s (
s)

G20(1000) G50(1000) G100(1000) G200(1000) G500(1000) G1000(1000)
Datasets

0.00
0.25
0.50
0.75
1.00

TGF BGF-B1 BGF-B32 BGF-B64 BGF-B128 BGF-B256

Figure 13: Total running time (s) of TGF and BGFs in different instances.

Table 2: Total running time of TGF and BGFs in different instances.

INSTANCE
TGF BGF-B1 BGF-B32 BGF-B64 BGF-B128 BGF-B256

TIME (S) TIME (S) TIME (S) TIME (S) TIME (S) TIME (S)

G20(1000) 21.92 5.01 0.30 0.18 0.13 0.04
G50(1000) 106.08 11.34 0.58 0.34 0.24 0.10

G100(1000) 428.49 21.20 1.02 0.56 0.40 0.16
G200(1000) 1549.55 56.41 2.38 1.37 0.92 0.59
G500(1000) 9283.51 144.51 8.94 6.62 5.66 5.10

G1000(1000) 37365.85 260.12 40.04 36.87 36.42 35.32

C.2 BGF with Different Initial Solution

To investigate the effect of the initial solution on the BGF, we apply various initial solutions with
different percentages of 1, including 0, 25%, 50%, 75%, and 100%. We set the test batch size to
256 and take the generated instances for testing, including G20(1000), G50(1000), G100(1000),

18

G200(1000), G500(1000), and G1000(1000). Except for 0 and 100%, all BGFs are run ten times on
average. The results of average OFV and total running time are shown in Table 3, where we can
find that the BGF with 100% of 1 outperforms all other test sizes in terms of both quality and speed.
Therefore, we take the BGF-100% as the default BGF.

Table 3: Average OFV and total running time of BGF with different initial solutions.

INSTANCE
BGF-0 BGF-25% BGF-50% BGF-75% BGF-100%

OFV TIME (S) OFV TIME (S) OFV TIME (S) OFV TIME (S) OFV TIME (S)

G20(1000) 2838 0.09 2841 0.06 2859 0.05 2888 0.05 2916 0.04
G50(1000) 11659 0.18 11687 0.13 11736 0.12 11800 0.11 11901 0.10

G100(1000) 33381 0.34 33460 0.27 33522 0.26 33679 0.22 33892 0.16
G200(1000) 94907 1.21 95036 1.04 95251 0.91 95556 0.76 96022 0.59
G500(1000) 379096 11.75 379624 9.74 380133 8.16 380816 6.65 382412 5.10

G1000(1000) 1075398 88.50 1076710 71.81 1077693 59.09 1079293 48.13 1082420 35.32

D Wilcoxon Signed-rank Tests

We perform Wilcoxon signed-rank tests on the gap results obtained from the trained VCMs in
comparison to other algorithms across 31 instances from the B and P sets. The results are summarized
in Table 4, which clearly show significant differences between the VCM results and those of other
algorithms, with the highest P-value being 3.09E-03 between VCM100 and BGF.

Table 4: The P-value results of Wilcoxon signed-rank test between VCMs and other algorithms.

ALGORITHM VCM10 VCM20 VCM50 VCM100

DIAG 1.17E-06 1.30E-06 4.53E-06 4.97E-06
SR 1.77E-05 1.43E-06 5.46E-06 2.56E-06

BGF 1.17E-06 1.94E-05 2.12E-04 3.09E-03
DRLH-B 1.17E-06 1.17E-06 1.17E-06 1.17E-06

S2V-DQN-B 3.79E-06 3.79E-06 4.23E-06 3.79E-06
ECO-DQN-B 3.79E-06 3.79E-06 3.79E-06 3.79E-06
VCM10-BGF 1.17E-06 1.17E-06 1.30E-06 2.56E-06
VCM20-BGF 2.56E-06 1.17E-06 2.56E-06 1.43E-06
VCM50-BGF 1.17E-06 1.17E-06 1.17E-06 1.17E-06

VCM100-BGF 1.74E-06 1.17E-06 1.74E-06 1.17E-06

PI-GNN(2-LAYER) 1.17E-06 1.17E-06 1.17E-06 1.17E-06
PI-GNN(3-LAYER) 1.17E-06 1.17E-06 1.17E-06 1.17E-06
PI-GNN(5-LAYER) 1.17E-06 1.17E-06 1.17E-06 1.17E-06

GUROBI-1S 1.17E-06 1.17E-06 1.17E-06 1.17E-06
GUROBI-1H 1.17E-06 1.17E-06 1.17E-06 1.17E-06

VCM-BGF-HB 2.52E-05 1.30E-06 1.30E-06 1.17E-06

E Ablation Study

To validate the rationally designed network architecture of our VCM, we test the training performance
of VCM by selectively ablating specific modules. We employ the VCM-() with the ablation module to
distinguish different VCMs. Specifically, we select the VCM-(ReLU), VCM-(tanh1), VCM-(tanh2),
VCM-(M1) and VCM-(M2) for validation. The ablation module can be quickly queried in Figure
9. The corresponding impacts of these ablations are captured in Figure 14, illustrating that any
deficient module degrades VCM performance, notably ReLU and tanh2 modules. ReLU is pivotal for
extracting value features, while tanh2 normalizes value features within a range of (-1, 1), essential for
the unification of DVN extraction.

19

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
FV

 G
ap

 (%
)

VCM
VCM-(ReLU)
VCM-(tanh-1)
VCM-(tanh-2)
VCM-(M1)
VCM-(M2)

Figure 14: The VCM training process of ablation study at instance size 50.

F Parameter Study

F.1 The Scaling Parameter α

We train the VCM with α of 2, 4 (default), 6, and None (without scaling function) at instance size 50.
The training process is shown in Figure 15, where we observe that the α can improve the performance
of the VCM. Notably, the default VCM (α = 4) achieves most of the training lead. We believe the
scaling function of data compression makes tanh-1 more sensitive to input processing in the early
stages. According to Equation (9), the optimal α = 4 can compress the first input value (sum of each
row) of DVN to an average of about 2, regardless of instance size and dataset distribution. It should
be noted that when the input value exceeds 2, there is a negligible difference in the output by tanh.
Therefore, using tanh-1 in the first depth of the default VCM can better compress and distinguish
features, thereby accelerating model learning.

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

O
FV

 G
ap

 (%
)

VCM- None
VCM- 2
VCM
VCM- 6

Figure 15: Training process of VCM with different α at instance size 50.

F.2 The DVN Depth d

A certain depth of DVN extraction is mandatory for ensuring interaction and coherence between the
row and column features. To assess the impact of varying depths d on the performance of VCM,
we set the training d of VCM50 to 10, 20, 30, 40 (default), 50, and 100 within an instance size
of 50 for validation. As depicted in Figure 16 in Appendix E, the training trajectories of these
six VCMs demonstrate that increasing depth (within our test range) enhances feature extraction
precision, yielding a consistent improvement in VCM performance. Notably, the performance gain is
pronounced as the depth extends from 10 to 30, but it plateaus thereafter. This trend suggests that a
certain threshold of DVN depth is required to accomplish thorough value feature extraction from Q.
While deeper d can enhance performance, the training costs also incur greater. Therefore, we elected
to set d at the most cost-efficient value of 40 by default.

20

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
FV

 G
ap

 (%
)

VCM-d10
VCM-d20
VCM-d30
VCM-d40
VCM-d50
VCM-d100

Figure 16: Training process of VCM with DVN depth d at instance size 50.

F.3 The Value Feature Size h

To evaluate the impact of h on VCM performance, we train the model with various values of h =32,
64, 128 (default), and 256 for an instance size of 50. As shown in Figure 17, the results indicate a
significant improvement in VCM performance with the increase of h. Notably, the default setting of
h = 128 achieves the highest training advancement, indicating that increasing the value feature size
within a reasonable range enhances model performance effectively.

0 20 40 60 80 100
Epoch

0.0

0.1

0.2

0.3

0.4

0.5

0.6

O
FV

 G
ap

 (%
)

VCM-h32
VCM-h64
VCM-h128
VCM-h256

Figure 17: Training process of VCM with value feature size h at instance size 50.

G Results of Size Generalization

This section details the results of the size generation experiment. We conduct tests on an additional
1,000 generated G instances with 20, 50, 100, 200, 500, and 1,000 variables. The VCM-BGF-HB is
applied as the current optimal baseline for gap calculation. The detailed results are depicted in Table
5. Notably, Gurobi incurs a significant time cost, and the results for G set with over 100 variables are
omitted as each instance takes more than 1 hour.

H Results of Distribution Generalization

This section details the results of the distribution generation experiment in the Model Study. We
conduct tests with five different distributions on these G instances with 20, 50, and 100 variables
using our trained corresponding-sized VCMs, including the standard normal random (RN-1) and the
uniform random with probabilities of 0 for 10% (R-0.1), 30% (R-0.3), 60% (R-0.6), 90% (R-0.9).
For each test dataset, we generate 1,000 G instances and also apply VCM-BGF-HB as the current
optimal baseline to measure the gap. The results are detailed in Table 6, with heatmaps provided in
Figure 18.

21

Table 5: Results on generated datasets.
G20(1000) G50(1000) G100(1000) G200(1000) G500(1000) G1000(1000)

METHOD

OBJECTIVE FUNCTION VALUE BASELINE

2965.095 12070.455 34350.38 97260.38 386638.40 1093972.99

GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS)

DIAG 84.098 0.1 90.229 0.1 92.569 0.1 94.882 0.2 96.561 0.4 97.632 0.9
SR 31.637 3.5E-02 32.594 3.9E-02 32.628 3.5E-02 33.189 4.5E-02 32.915 4.6E-02 33.054 4.6E-02

VCM10 0.060 4.4 0.108 4.4 0.151 4.8 0.248 7.4 0.338 7.4 0.414 7.5
VCM20 0.121 4.4 0.112 4.7 0.196 4.7 0.257 7.3 0.409 7.4 0.507 7.5
VCM50 0.200 4.4 0.129 4.4 0.167 4.8 0.230 7.3 0.382 7.4 0.523 7.5

VCM100 0.244 4.4 0.117 4.4 0.207 4.8 0.207 7.3 0.357 7.4 0.508 7.5

BGF 1.642 5.2 1.401 11.7 1.335 23.1 1.273 60.8 1.093 158.1 1.056 294.2
DRLH-B 2.034 8.4 1.871 17.8 1.848 34.3 1.926 91.5 1.930 220.4 1.914 397.3

ECO-DQN-B 0.321 43.2 0.362 109.5 0.471 216.6 0.731 636.2 1.004 2.3E+03 1.160 1.3E+04
S2V-DQN-B 4.007 22.9 4.966 57.1 5.758 115.0 6.414 338.5 7.173 1.2E+03 7.567 6.4E+03
VCM10-BGF 0.025 5.1 0.058 5.2 0.089 5.7 0.148 9.3 0.209 11.6 0.258 16.5
VCM20-BGF 0.010 5.1 0.037 5.5 0.066 5.7 0.107 9.3 0.173 12.6 0.223 18.8
VCM50-BGF 0.036 5.1 0.019 5.2 0.044 5.7 0.064 9.3 0.113 12.4 0.163 19.6

VCM100-BGF 0.052 5.1 0.027 5.1 0.042 5.7 0.050 9.2 0.094 12.3 0.138 19.6

GUROBI 0* 54.3 0* 3.7E+03 - >1H - - - - - -
VCM-BGF-HB 0.0003 509.1 0.0005 526.0 0* 572.3 0* 926.6 0* 1.2E+03 0* 1.9E+03

1 The Bold indicates the best average result in different classes of methods.
2 The * indicates the provider of the applied OFV baseline.

Table 6: Distribution generalization results on generated datasets.

INSTANCE G-RN-1 G-R-0.1 G-R-0.3 G-R-0.6 G-R-0.9

SIZE METHOD OFV
GAP
(%)

ART
(MS) OFV

GAP
(%)

ART
(MS) OFV

GAP
(%)

ART
(MS) OFV

GAP
(%)

ART
(MS) OFV

GAP
(%)

ART
(MS)

20

BGF 5089.9 1.34 5.9 793.9 1.32 3.7 1560.5 1.74 4.7 2234.4 1.55 4.7 2770.7 1.49 4.8
VCM 5154.2 0.09 4.7 803.4 0.14 4.4 1586.8 0.08 4.4 2266.6 0.13 4.4 2809.2 0.12 4.3

VCM-BGF 5157.8 0.02 5.4 804.4 0.02 5.1 1587.9 0.01 5.1 2269.0 0.02 5.1 2811.9 0.02 5.1

VCM-BGF-HB 5158.9* - 2.2E+03 804.5* - 2.0E+03 1588.1* - 2.0E+03 2269.5* - 2.0E+03 2812.5* - 2.0E+03

50

BGF 20457.5 1.40 12.3 3557.7 1.64 10.1 6392.9 1.64 10.6 9121.7 1.51 10.8 11280.1 1.36 11.1
VCM 20724.8 0.11 4.6 3611.1 0.17 4.4 6495.0 0.07 4.4 9247.4 0.15 4.4 11421.5 0.12 4.4

VCM-BGF 20743.0 0.02 5.5 3616.2 0.02 5.2 6498.4 0.02 5.1 9259.3 0.03 5.1 11433.4 0.02 5.1

VCM-BGF-HB 20747.9* - 2.2E+03 3617.1* - 2.1E+03 6499.8* - 2.0E+03 9261.6* - 2.1E+03 11435.5* - 2.1E+03

100

BGF 58031.7 1.38 23.3 10505.5 1.64 20.7 18462.2 1.48 24.4 26199.1 1.47 20.9 32279.1 1.27 22.4
VCM 58756.3 0.15 5.0 10664.7 0.15 4.8 18713.0 0.14 4.8 26556.2 0.13 5.2 32641.2 0.16 4.7

VCM-BGF 58824.2 0.04 6.0 10676.8 0.04 5.6 18732.2 0.04 5.7 26584.1 0.03 6.2 32683.1 0.03 5.7

VCM-BGF-HB 58844.9* - 2.4E+03 10680.6* - 2.2E+03 18739.1* - 2.3E+03 26591.2* - 2.5E+03 32693.5* - 2.3E+03

1 The Bold indicates the best average result in different datasets.
2 The * indicates the provider of the applied OFV baseline.

G-RN-1 G-R-0.1 G-R-0.3 G-R-0.6 G-R-0.9 G-R-1
Distributions

G20(1000)

G50(1000)

G100(1000)

0.091 0.144 0.082 0.128 0.118 0.121

0.111 0.167 0.073 0.154 0.122 0.129

0.151 0.149 0.139 0.132 0.160 0.207

0.0

0.2

0.4

0.6

0.8

1.0

O
FV

 G
ap

 (%
)

(a) The average gap in % of VCMs.

G-RN-1 G-R-0.1 G-R-0.3 G-R-0.6 G-R-0.9 G-R-1
Distributions

G20(1000)

G50(1000)

G100(1000)

0.023 0.022 0.012 0.021 0.023 0.010

0.024 0.025 0.021 0.025 0.018 0.019

0.035 0.036 0.037 0.027 0.032 0.042

0.0

0.2

0.4

0.6

0.8

1.0

O
FV

 G
ap

 (%
)

(b) The average gap in % of VCM-BGFs.

Figure 18: Heatmaps of distribution generalization obtained by VCMs under G-R-1 with correspond-
ing instance size.

I Results of MaxCut Benchmarks

We extend our evaluation to MaxCut benchmarks, with the results presented below. Utilizing data
from [15], we compile the results shown in Table 7, using the average objective function value as

22

the key indicator. Additionally, based on data from [51], we present the results in Table 8, where the
average approximation ratios serve as the performance indicator.

The results confirm that VCM outperforms other methods, consistent with the advantages demon-
strated in our test instances. This validates the applicability and robustness of our VCM in problems
that can be recasted as QUBO across different scales and distributions.

Table 7: Results on MaxCut benchmarks.
INSTANCE OPT S2V-DQN VCM50-d100

G54100-G5410000 (10 INSTANCES) 110.6 108.2 109.6(5MS)

Table 8: Results on large MaxCut benchmarks.
INSTANCE TABU SOFTTABU S2V-DQN ECO-DQN VCM-d100 VCM-BGF-d100

G32-G34 (2000 NODES) 0.915 0.983 0.923 0.969 0.990(16MS) 0.991(23MS)

J Results of DVN depths

This section details the results of the DVN depth experiment in the Model Study. We train VCM50s
across various depths d including 10, 20, 30, 40, 50, and 100. Each trained specific-size VCM is
tested across an extended range of depths, including 10, 20, 30, 40, 50, 100, 200, and 300. The
average gap (GAP) and average running time (ART) on benchmarks B2500(10) are listed in Table 9.
The corresponding heatmap is illustrated in Figure 19.

d10 d20 d30 d40 d50 d100 d200 d300
Testing Depth d

VCM50-d10

VCM50-d20

VCM50-d30

VCM50-d40

VCM50-d50

VCM50-d100

0.633 0.255 0.152 0.110 0.097 0.090 0.088 0.086

1.518 0.609 0.331 0.191 0.167 0.092 0.096 0.080

1.586 0.724 0.396 0.251 0.150 0.077 0.072 0.071

1.343 0.874 0.492 0.362 0.273 0.087 0.043 0.034

1.494 1.046 0.666 0.462 0.391 0.093 0.056 0.051

2.107 1.447 0.918 0.596 0.436 0.184 0.089 0.079

0.0

0.2

0.4

0.6

0.8

1.0

O
FV

 G
ap

 (%
)

Figure 19: Heatmaps of test depths under VCM50 models with different training depths d.

Table 9: Results of DVN depths on benchmarks B2500(10).

METHOD
10 20 30 40 50 100 200 300

GAP
(%)

ART
(MS)

GAP
(%)

ART
(MS)

GAP
(%)

ART
(MS)

GAP
(%)

ART
(MS)

GAP
(%)

ART
(MS)

GAP
(%)

ART
(MS)

GAP
(%)

ART
(MS)

GAP
(%)

ART
(MS)

VCM50-d10 0.633 2.6 0.255 4.4 0.152 6.1 0.110 7.8 0.097 9.6 0.090 18.2 0.088 35.5 0.086 53.1
VCM50-d20 1.518 2.6 0.609 4.4 0.331 6.0 0.191 7.8 0.167 9.6 0.092 18.3 0.096 35.5 0.080 53.1
VCM50-d30 1.586 2.6 0.724 4.3 0.396 6.1 0.251 7.8 0.150 9.6 0.077 18.3 0.072 35.5 0.071 53.2
VCM50-d40 1.343 2.6 0.874 4.4 0.492 6.1 0.362 7.8 0.273 9.6 0.087 18.3 0.043 35.5 0.034 52.8
VCM50-d50 1.494 2.6 1.046 4.3 0.666 6.1 0.462 7.8 0.391 9.5 0.093 18.4 0.056 35.5 0.051 52.8

VCM50-d100 2.107 2.6 1.447 4.3 0.918 6.1 0.596 7.8 0.436 9.6 0.184 18.6 0.089 35.5 0.079 52.8

23

In addition, we evaluate the VCM50 and VCM50-BGF at the default testing depth of d = 40 and a
deeper depth of d = 300. The results on benchmarks and large well-known instances are presented in
Table 10. We use Gurobi-1s as the baseline for comparison.

Table 10: Results on benchmarks and large well-known instances.
B2500(10) P3000(5) P4000(5) P5000(5) P6000(3) P7000(3)

ALGORITHM

OBJECTIVE FUNCTION VALUE BASELINE (OPTIMAL)

1479921.4 5134727.2 7869134.2 10973791.4 13950582.0 17725010.33

GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS) GAP (%) ART (MS)

GUROBI-1S 0.034 1.0E+03 0.070 1.0E+03 0.108 1.0E+03 0.091 1.0E+03 0.122 1.0E+03 0.145 1.0E+03
VCM50 0.362 8 0.861 8 0.669 8 0.783 8 0.806 9 0.702 9

VCM50-d300 0.034 52 0.066 53 0.115 52 0.099 53 0.144 76 0.144 116
VCM50-BGF 0.136 44 0.277 100 0.214 170 0.262 326 0.267 523 0.224 770

VCM50-d300-BGF 0.027 64 0.04 79 0.088 108 0.078 145 0.109 249 0.108 331

K Results of Degradation in GCN

We apply GCN [42] to replace the DVN in VCM and confirm performance degradation with increased
layers, consistent with [42]. We train GCN and VCM by GST on size 50 under the same settings.
The training details are shown in Figure 20 and the optimal training gaps are shown in Figure 21.

Obviously, the GCN suffers from performance degradation, which is consistent with the conclusion
in [42]. However, the performance of VCM steadily improves with increasing depth. Besides, the
neural parameters in GCN layers are independent, whereas neural units in VCM depth are consistent,
resulting in lower training costs under the same neural settings.

0 20 40 60 80 100
Epoch

0

10

20

30

40

50

60

70

O
FV

 G
ap

(%
)

GCN-L1
GCN-L2
GCN-L3
GCN-L4
GCN-L5
GCN-L10
VCM-d1
VCM-d2
VCM-d3
VCM-d4
VCM-d5
VCM-d10

Figure 20: The training processes of GCN and VCM under different training layer L or depth d at
instance size 50.

L Results of Very Large Instances

This section presents the results obtained from testing very large instances. We conduct experiments
on a single generated G instance with sizes of 10,000 and 20,000, using distributions R-0.1 and R-0.3.

24

1 2 3 4 5 6 7 8 9 10
Training Depth or Layer

0

10

20

30

40

O
pt

im
al

 O
FV

 G
ap

(%
) VCM

GCN

Figure 21: The optimal training OFV gap of GCN and VCM under different training layer L or depth
d at instance size 50.

The model VCM50-d300 is evaluated against Gurobi, which served as the baseline with a maximum
allowable runtime of 1 second, referred to as Gurobi-1s.

To assess performance, we utilize the OFV gap between Gurobi-1s and VCM50-d300 as the metric.
The results are summarized in Table 11. Notably, VCM50-d300 consistently outperforms Gurobi-1s
in terms of both solution quality and execution speed, demonstrating its effectiveness on very large
instances across various distributions.

Table 11: Results on generated large size instances.

METHOD
G10000-R0.1(1) G10000-R0.3(1) G20000-R0.1(1) G20000-R0.3(1)

GAP (%) T (MS) GAP (%) T (MS) GAP (%) T (MS) GAP (%) T (MS)

GUROBI-1S 0.183 1.0E+03 0.045 1.0E+03 0.091 1.0E+03 0.108 1.0E+03
VCM50-d300 0 169 0 172 0 637 0 676

25

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we have provided a detailed and accurate
description of the scope of the research, related works in QUBO, limitations of current
research on learning-based models, and the contributions of this paper.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of our neural solver VCM in the Section 5,
Conclusion and Future Work. The optimality of VCM may be potentially limited by the
utilization of value features from the Extractor DVN by the Classifier VCN.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

26

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: We have provided the full set of assumptions and a complete (and correct)
proof in Section 3 and Appendix B. We detailed the proposed neural solver VCM in Section
3 and the derivation procedure of the proposed Batch Calculation of Objective Function
Increment (OFI).

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have fully disclosed all the information needed to reproduce the main exper-
imental results of the paper to the extent, including the neural architecture, hyperparameters
of our VCM, and the dataset generation format.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
• If the contribution is a dataset and/or model, the authors should describe the steps taken

to make their results reproducible or verifiable.
• Depending on the contribution, reproducibility can be accomplished in various ways.

For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

27

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: If the paper is accepted, the data and code will be considered for public release.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.
• The authors should provide instructions on data access and preparation, including how

to access the raw data, preprocessed data, intermediate data, and generated data, etc.
• The authors should provide scripts to reproduce all experimental results for the new

proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
• Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test detail in Section 4.1, Experimental
Details.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We have performed Wilcoxon signed-rank tests and detailed the results in
Appendix D.

Guidelines:

28

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided sufficient information on the computer resources in Section
4.1, Experimental Details, specifically in the subsection on Hyperparameters.
Guidelines:
• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

29

https://neurips.cc/public/EthicsGuidelines

Justification: We have discussed the potential impacts of the work performed in the Section
1, Introduction. The QUBO studied in this work is able to represent a remarkable spectrum
of applications in combinatorial optimization.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: They are properly credited and respected in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

30

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects

Guidelines:

31

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

32

	Introduction
	Related Works
	The Neural Solver VCM
	Experiments
	Experimental Details
	Experimental Results
	Model Study

	Conclusions and Future Work
	The Neural Architecture within VCM
	Batch Calculation of Objective Function Increment
	The Flip Operation
	Batch OFI Calculation Method

	Batch Greedy Flip Algorithm
	The Efficiency of Batch Calculation
	BGF with Different Initial Solution

	Wilcoxon Signed-rank Tests
	Ablation Study
	Parameter Study
	The Scaling Parameter
	The DVN Depth d
	The Value Feature Size h

	Results of Size Generalization
	Results of Distribution Generalization
	Results of MaxCut Benchmarks
	Results of DVN depths
	Results of Degradation in GCN
	Results of Very Large Instances

