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ABSTRACT

Contrastive learning has led to substantial improvements in the quality of learned
embedding representations for tasks such as image classification. However, a key
drawback of existing contrastive augmentation methods is that they may lead to
the modification of the image content which can yield undesired alterations of its
semantics. This can affect the performance of the model on downstream tasks.
Hence, in this paper, we ask whether we can augment image data in contrastive
learning such that the task-relevant semantic content of an image is preserved.
For this purpose, we propose to leverage saliency-based explanation methods to
create content-preserving masked augmentations for contrastive learning. Our
novel explanation-driven supervised contrastive learning (ExCon) methodology
critically serves the dual goals of encouraging nearby image embeddings to have
similar content and explanation, which we verify through t-SNE visualizations
of embeddings. To quantify the impact of ExCon’s embedding methodology, we
conduct experiments on CIFAR100 as well as the Tiny ImageNet dataset and
demonstrate that ExCon outperforms vanilla supervised contrastive learning both
in terms of classification accuracy and in terms of explanation quality of the model.

1 INTRODUCTION

Figure 1: Example t-SNE embeddings for SupCon - baseline (left) and ExConB - ours (right) on
the CIFAR-100 dataset with a batch size of 256. There are five different classes on the graph, where
each color represents a different class label. The cross (X) points represent the embeddings for
original input instances, while the dots represent the embeddings for input instances obtained using
augmentations. The number below an input image indicate in terms of percentage the softmax score
corrsponding to the predicted class. We take note of 4 observations when comparing ExConB to
SupCon: 1. The embeddings for instances associated with different classes are farther apart from
each other; 2. For instances within the same class, the embeddings between original images and their
augmentations are much closer. 3. The visual quality of the masked images is better. 4. activation
scores are either maintained or increased for the correct classes while it is largely decreased when
using the SupCon baseline. This illustrates the capability of ExConB to take into account task-relevant
features.
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Figure 2: Explanation-driven supervised contrastive learning framework with background maskd
images (ExConB). We produce explanation-driven masked images as well as randomly modified
(transformed) images and then decide whether to add the masked image into positive examples or
negative examples based on its prediction. The gray circle in the graph is the anchor. The orange
circles are positive examples of that anchor. The red circles correspond to the negative samples. The
left part of the figure corresponds to the scenario where the masked image yields a correct prediction.
In this case, we include the masked image as a positive example of the anchor. The right part of the
figure corresponds to the scenario where the masked image yields an incorrect prediction. In such a
case, we include the masked image as a negative example for the anchor.

Contrastive learning has recently seen an increasing popularity as it has led to state-of-the-art results
in the context of self-supervised learning (Oord et al., 2018; Chen et al., 2020a;b; He et al., 2020).
The goal of contrastive learning is is to learn useful representations by focusing on part of the input
which are task relevant. This is done by training a model using a contrastive objective allowing to
associate pairs of representations that are similar and identify those that are not. In a self-supervised
learning setting, labels are not provided and the goal is to train an encoder to learn the structure of
the data so that it could be later leveraged for downstream tasks. The instructive feedback is then
provided solely from the data itself instead of the labels. In contrastive self-supervised learning, the
association between similar representations is then achieved by means of stochastic augmentations
that transform a given input example randomly, resulting in two or more correlated views of the same
input. Uncorrelated views are obtained by drawing examples from the uniform random distribution.
Such sampling methods allow one to obtain different input instances that are associated together to
form dissimilar pairs with high probability.

Recently, self-supervised contrastive learning has been extended to the fully-supervised setting where
label information, when available, is taken into account for the association of similar representation
pairs and the identification of dissimilar ones (Khosla et al., 2020). This allows the model to
embed representations belonging to the same class within the same cluster in the embedding space.
Representations from different classes, for their part, are separated and pushed apart. The generation
of similar and dissimilar pairs is performed using random augmentations. The only information that
relates to the semantic of the input instances in the random augmentation process is their respective
labels. We argue that if an augmentation is performed such that it takes into account parts of the
input whose semantics match the information provided by the label, it could significantly improve
the performance of the model for the task at hand as well as to reduce the variance of the training
loss caused by random augmentations. This could be explicitly done by leveraging local explanation
methods (Selvaraju et al., 2017; Smilkov et al., 2017; Kim et al., 2018) where the model’s output for
an individual data instance is explained based on feature importance.

We propose in this work an explanation-driven supervised contrastive learning framework (ExCon)
where the augmentations are generated taking into account parts of the input that explain the model’s
decision for a given data example. This can be achieved using a local explanation method. We show
empirically as well as qualitatively that our method outperforms the supervised contrastive learning
baseline introduced by Khosla et al. (2020). Our training pipeline is trivial to implement and yields a
more stable training compared to the baseline.

Overall, we outline the following key contributions of our proposed ExCon methodology:

2



Under review as a conference paper at ICLR 2022

1. We leverage local explanation techniques to formulate a framework for explanation-driven
supervised contrastive learning presented in Section 3.

2. We formulate a new loss for explanation-driven supervised contrastive learning presented in
Section 3.4.

3. We outperform the baseline in supervised contrastive learning in terms of classification
performance as presented in Section 4.1.

4. We observe variance reduction in the training loss that yields more stable training as
discussed in Section 4.2.

5. We observe an overall increase of explanation quality as measured by a variety of metrics
presented in Section 4.3.

2 RELATED WORK

In this work, we are interested in leveraging existing saliency-based explanation methods for data
augmentation in the supervised contrastive learning setting. The main motivation is to preserve
the semantics of the original input that are matching the label information. In this section, we
present most relevant work in contrastive learning, similarity learning, and saliency-based explanation
methods.

Contrastive representation learning has seen a plethora of work that has lead to state-of-the-art results
in self-supervised learning (Oord et al., 2018; Hjelm et al., 2018; Tian et al., 2020; Arora et al., 2019;
Chen et al., 2020a). In the absence of labels, self-supervised contrastive learning relies on selecting
positive pairs for each original input example. The formation of positive pairs is performed through
data augmentation based on the original image (Chen et al., 2020a; Henaff, 2020; Hjelm et al., 2018;
Tian et al., 2020). Negative examples however are drawn from the random uniform distribution. It is
assumed that such sampling would result in an insignificant number of false negatives. An encoder
network is then pretrained to discriminate between these positive and negative pairs. This pretraining
allows the encoder to learn the structure of the data by encoding positive examples closer to each
other in the embedding space while distancing the negative ones and pushing them apart. Once
pretrained, the encoder could be used later for downstream tasks. It is clear that in the context of
contrastive learning, The formation of positive and negative pairs, by random augmentations and
uniform sampling respectively, does not take into account the semantics of the input that are relevant
to the downstream tasks.

Khosla et al. (2020) leverages label information to adapt the contrastive learning setting to the
supervised setup where instances of the same class are clustered together in the embedding space while
instances of different classes are spread apart. Taghanaki et al. (2021) leverages label information
in order to reduce the effect of irrelevant input features on downstream tasks. This is achieved by
training a transformation network using a a triplet loss (Schroff et al., 2015; Koch et al., 2015) that
computes similarity between examples from the same class. The triplet loss is also used to assess
the existing similarities between instances of different classes and sets of transformed inputs. The
similarities are captured using a structural similarity metric (Wang et al., 2004). Shared information
between examples of different classes is then associated to spurious input features and the shared
information within instances of the same class is leveraged to capture the task-relevant ones. It is
important to mention here that the framework proposed in Taghanaki et al. (2021) cannot be compared
with supervised contrastive learning frameworks such as ours and the one proposed in Khosla et al.
(2020) as it doesn’t rely on an encoder pretraining approach.

To make sure that the explanation-driven augmentations relate to the task-relevant semantics of the
input, one must guarantee that the provided local explanations are of good quality. A local explanation
describes the model’s behavior at the neighborhood of a given input example. An important number
of work on local explanation relies on post-hoc methods such as LIME (Ribeiro et al., 2016) and
SHAP (Lundberg & Lee, 2017) where the goal is to measure contributions of the input features to
the model’s output. The quality of a local explanation can be measured by how much it is aligned
(faithful) to the model’s prediction. The faithfulness aspect of an explanation reflects how accurate
is an explanation in its estimation of the features’ contributions to the model’s decision process.
In the context of convolutional neural networks (CNNs), gradient-based saliency map methods
are commonly adopted to produce saliency-based explanations. Such post-hoc local explanations
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highlight the input features which contribute the most to the model’s prediction for a given input
instance (Simonyan et al., 2013; Smilkov et al., 2017; Sundararajan et al., 2017; Selvaraju et al.,
2017). Under the assumption of linearity, which states that certain regions of the input contribute
more than others to the decision process of the model and that the contributions of different parts of
the input are independent from each other, saliency-based explanations can be considered as faithful
to the model’s behavior (Jacovi & Goldberg, 2020).

Our proposed explanation-driven supervised contrastive framework is explainer-agnostic. We can
then adopt any local explanation method in order to perform data augmentation. Given the faithful
aspect of saliency maps under the linearity assumption, it is then convenient to opt for a gradient-based
saliency map explanation method. In our case, we choose Grad-CAM (Selvaraju et al., 2017) as
our explainer. Grad-CAM provides a saliency-map visualization highlighting the most contributing
regions to the model’s output. The use of Grad-CAM is convenient in the context of explanation-
driven supervised contrastive learning as it is class-specific. Grad-CAM produces a separate heatmap
for each distinct class. The heatmaps are obtained by examining the gradient flowing from the output
to the final convolution layer.

To the best of our knowledge, our proposed framework is the first to explore explanation-driven
augmentations in the contrastive learning setup and demonstrates its usefulness in the supervised
setting. We believe that our proposed method could be further leveraged in the future on tasks with
complex and high-dimensional data sources as it exhibits rich semantics.

3 METHODOLOGY

We use a slightly different structure than the one presented in Khosla et al. (2020) for supervised
contrastive learning. We perform explanation-driven data augmentation to encourage the model to
consider the task-relevant features in its decision-making process. We also propose a new loss which
takes into account the erroneous prediction of the explanation-driven augmented instances so that the
model becomes implicitly aware of the internal mechanisms that induce it to erroneous predictions.
This allows the model to adapt its parameters accordingly. To achieve this, instead of training the
encoder and the classifier separately like it is done in Khosla et al. (2020), we iteratively train both
the encoder and the classifier at each epoch. Our training pipeline is presented in Algorithm 1. We
present in the next subsections the supervised contrastrive framework introduced in Khosla et al.
(2020) which we build upon to design our explanation-driven supervised contrastive frameworks
ExCon and ExConB.

3.1 PRELIMINARIES

We denote the augmentation used in supervised contrastive learning as Aug. We denote our ExCon
augmentation to be ExConAug. We denote our ExConB augmentation to be ExConBAug.

Given a set of images x1,x2, ...,xn of size n, we feed the images into the augmentation method and
get the augmented batches ISupCon, IExCon, where |ISupCon| = |IExCon| = 2n. We will denote
the augmented data points in the batch to be {x̃1, x̃2, ..., x̃2n}. The resulting batch for ExConB
will be IExConB = IExCon ∪B, where B = {x̃2n+1, ..., x̃2n+b} represents the set of background
masked images of size b, which will introduce later when we introduce ExConB.

For each augmented data point x̃i in the batch, it will go through the encoder Enc(·) and the project
head Proj(·) to get an embedded representation, like that in (Khosla et al., 2020). We call the
embedding ei. I.e.,

ei := Proj(Enc(x̃i)) (1)
where ei ∈ RDe , andDe represents the dimension of the embedding space. We denote the embedding
batches to be IeSupCon, IeExCon and IeExConB for SupCon, ExCon and ExConB accordingly.

We will use this notation in the following text to express the different losses.

3.2 SUPERVISED CONTRASTIVE LOSS

Supervised contrastive learning Khosla et al. (2020) goes through each example in the data batch and
uses it as an anchor to contrast with other examples. The positive examples are defined to be those
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images with the same labels and the negative examples are those with different labels. They came up
with the supervised contrastive loss which takes label information of the data into account. For each
embedding ei ∈ IeSupCon, the set of positive examples is denoted as P (i). Formally, the loss is as
follows:

LSupCon =
∑

i∈Ie
SupCon

−1
|P (i)|

∑
p∈P (i)

log


exp(ei · ep/τ)∑

a∈[I\{i}]

exp(ei · ea/τ)

 (2)

3.3 EXCON

In supervised contrastive learning, the two correlated views of any original data point are produced
using random augmentations like random cropping, random color jitting, etc. These random aug-
mentation can cause loss of important semantic information, especially when both correlated views
are randomly augmented and the original data is not used for the pretraining of the encoder. we
use GradCAM (Selvaraju et al., 2017) to assign importance scores to the input features. However,
we cannot ensure the explanation quality is always perfect, especially in the training process when
the model is not yet fully trained. Therefore, we need a way to separate the bad explanations from
good ones. We do this by checking the classifier prediction on the masked image that preserves
only the ‘salient regions’. If the ‘salient regions’ are truly important, then we expect the classifier to
give correct predictions based solely on them. If the classifier gives the incorrect prediction, then
this means the ‘salient region’ is not discriminative enough, and in this case, we do not include the
augmented image to train the encoder. Instead, we adopt two random augmentations following that
in (Khosla et al., 2020). If the classifier gives the correct prediction on the masked image, we use the
masked image together with a randomly modified image to form two correlated views of the original
image for training the encoder.

In order to ensure improving explanations along the training process, we need an improving classifier.
Therefore, we alter the training pipeline used in supervised contrastive learning (Khosla et al., 2020).
Instead of fully training the encoder first and then training the classifier, we train both the encoder
and the classifier under each epoch. The full training pipeline is shown in algorithm 1

ExCon Loss The loss of ExCon follows the supervised contrastive loss as shown in equation 2.

3.4 EXCONB LOSS - PROPOSED EXPLANATION-DRIVEN CONTRASTIVE LOSS WITH
BACKGROUND IMAGES

In ExCon, we only tell the encoder to reinforce the explanations that lead to correct predictions, but
never explicitly tell the encoder what to do with those masked image with incorrect predictions. Hence
we come up with ExConB that also utilizes masked images with incorrect predictions. We assume that
masked images with incorrect predictions contain the unimportant information/non-discriminative
features (such as the background part of the image) and hence we assign them a background label.
We append these background masked images with wrong prediction labels to the end of the batch.
However, we do not use them as anchors, i.e, we do not let background masked images contrast
with each other. We only include them as negative examples to contrast with other labels. The
intuition is that: if we include the background masked images as anchors, the background images
will learn to represent each other in the embedding space. However, this should not be the case given
that the masked background images possibly originate from different classes. Although they are all
backgrounds, but they could have totally different semantics. We name this version to be ExConB,
where ‘B‘ stands for masked images with incorrect predictions which are assigned a background
label.

The above intuition leads to a new loss function that allows more negative samples (i.e., those
background masked images) without ever using them as positive examples. The formulation is as
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follows:

LExConB =
∑

i∈Ie
ExCon

−1
|P (i)|

∑
p∈P (i)

log


exp(ei · ep/τ)∑

a∈[(Ie
ExConB)\{i}]

exp(ei · ea/τ)

 (3)

Difference Compared to Supervised Contrastive Loss The biggest difference of our ExConB
loss compared to the supervised contrastive learning loss (i.e., equation 2) is that the background
images B only appear in the denominator but never appear on the numerator, which means the
background images are never contrasted with each other. As a result, we will have more negative
examples for each anchor in the dataset and this property is crucial for contrastive learning (Chen
et al., 2020a; He et al., 2020).

We also include the gradient derviation of our proposed ExConB loss in the appendix.

Algorithm 1: Training Pipeline for ExCon/ExConB
Input: training data D, encoder E , classifier C, GradCAM explainer GC◦E(·)
// Repeat the process for a total number of E epochs.
for e ∈ {1, ..., E} do

// 1. Train the encoder (i.e., the representer).
for each input batch (X ,Y) from the training set D do

// There are two choices for the augmentation method:
// 1. ExCon (figure 4) if the masked images are included only when they give
// correct predictions.
// 2. ExConB (figure 5) if the masked images are included as negative examples
// when they are assigned a background label.
X̃ , Ỹ ← ExConAug(X ,Y, E , C, GC◦E(·))
E ← Train(E , X̃ , Ỹ)

end
// 2. Train the linear classifier.
for each input batch (X ,Y) from the training set D do
C ← Train(E , C, X̃ , Ỹ)

end
end

4 EXPERIMENTS

We verified the effectiveness of ExCon and ExConB on the Tiny ImageNet dataset (Le & Yang, 2015)
and CIFAR-100 dataset (Krizhevsky et al., 2009). We provide experimental results from both the
quantitative perspective and the qualitative perspective, showing that our ExCon and ExConB not only
improve the representation quality of the encoder, but also improve the fidelity of the explanations in
general.

Baseline Methods Here we adopted two baseline methods to fully verify our potential, SupCon
and SupConOri.

• SupConOri is the supervised contrastive learning training pipeline introduced in (Khosla et al.,
2020), where one firstly fully trains the encoder, and then train the linear classifier separately based
on the trained encoder.

• SupCon is our adapted training pipeline corresponding with ExCon and ExConB (please refer to
algorithm 1 for the specific procedure), where we train the encoder and the linear classifier in an
iterative manner (i.e., under each training epoch, first train the encoder, and then freeze the encoder
and train the linear classifier). For SupCon, we also adopted random data augmentations in order to
be consistent with SupConOri.

Our experimental settings for CIFAR-100 and Tiny ImageNet dataset are as follows:
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CIFAR-100 We did experiments based on the ResNet-50 network (He et al., 2016), with batch
sizes of 128 and 256 accordingly (we did not do larger batch sizes due to resource limitation). We
split the vanilla train set into the new train set and validation set with a ratio of 80% / 20%. We
tuned the starting epochs (i.e., on which epoch we start to produce explanation-driven augmentations,
before that, we use random data augmentations) for ExCon and ExConB based on their classfication
performance on the validation set. Here we noted that for ExConB, if we started our explanation-
driven augmentation from epoch 0, the model ran the risk of not being able to converge based on
its validation performance along the training epochs. However, this never happened on the Tiny
ImageNet dataset where the semantic information is much more enriched, and this never happened
on the training process with a later starting epoch (when the classifier is more stable). For the
hyperparamter tuning result, we chose the following starting epochs:

• For ExCon, we chose starting epoch 0 for batch size 128 and we chose starting epoch 100 for batch
size 256.

• For ExConB, we chose starting epoch 50 for both batch size 128 and batch size 256.

We then trained both the baselines methods (SupCon and SupConOri) and ExCon / ExConB on the
entire train set. Finally, for both ExCon/ExConB and the baseline methods, we picked out the best
validation accuracy models along the training epochs. We used those trained models to do evaluations
on the test set. We computed the mean and standard deviation over 5 models trained under different
seeds.

Tiny ImageNet We did experiments on the ResNet-50 network with a batch size of 128 (again,
due to time constraint and resource limitation, we have not tried larger batch sizes). We used the
train set to train the model and the validation set to test the model. We were using the same other
hyperparameters as the SupCon (Khosla et al., 2020) baseline. We used starting epoch 0 for our
training setting. Again, we evaluated the best validation accuracy models along the training epochs
under 5 seeds, for both baseline methods and ExCon/ExConB.

4.1 CLASSIFICATION ACCURACY

We adopted the top1 accuracy for verifying the classification performance. On the CIFAR-100
dataset, we can see that both ExCon and ExConB perform consistently better for different batch sizes,
outperforming the baseline SupCon methods with a maximum of over 1 percentage. This verifies our
assumption that explanation-driven augmentations provide more linearly separable embeddings in
the representation space.

Table 1: Top1 Accuracy

ExCon ExConB SupConOri SupCon
batch size 128 76.9± 0.659 76.84± 0.677 75.776± 0.771 76.176± 0.632
batch size 256 77.558±0.538 77.268± 0.554 76.864± 0.149 76.99± 0.352

(a) CIFAR-100 dataset

ExCon ExConB SupConOri SupCon
batch size 128 57.836±0.293 58.728±0.26 53.51±0.655 55.62±0.307

(b) Tiny ImageNet dataset

4.2 CONVERGENCE BEHAVIORS

Besides a better accuracy score, we also observed a smoother convergence curve for both ExCon
and ExConB compared to the SupCon baseline, as mentioned in figure 3. This stability is consistent
across seeds. This verifies that ExCon and ExConB are principled augmentation strategies that help
reduce the variance and noise during the training process.
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Figure 3: Average validation accuracies and average validation losses along the training epochs on
the Tiny ImageNet dataset. We can see that the proposed methods, ExConB and ExCon consistently
produce higher validation accuracies and lower losses compared to the baseline method SupCon
(Khosla et al., 2020). The training related to our proposed methods is more stable than the baseline.
This can be observed by taking into account the standard deviations of both the validation accuracy
and the loss. For each method, 5 models are trained using 5 random seeds. We can observe from
the plotted curves that our methods have an effect of reducing the standard deviation regarding the
accuracy and the loss function. Over 200 training epochs, ExCon and ExConB have mean standard
deviations of 0.63 and 0.69 respectively while the SupCon baseline has an average standard deviation
of 0.92.

4.3 EXPLANATION QUALITY

We adopted two metrics to evaluate the explanation quality, as introduced in the following two
subsections.

4.3.1 DROP & INCREASE SCORES

Drop and increase scores are causal metrics that measure the change in the softmax probability of the
target class after masking the unimportant region of the input data (Ramaswamy et al., 2020). Good
explanations should lead to a large increase in the softmax activation score or a small decrease.

4.3.2 INFIDELITY SCORES

Infidelity is the opposite term of fidelity or faithfulness that was first introduced in (Yeh et al., 2019).
It measures the mismatch between the weighted change in the input features (here the weights are the
feature importance scores) and the change in the function output. The smaller the infidelity score is,
the better the explanation quality is.

From table 2, we can see that ExCon and ExConB has consistently better infidelity scores in all
circumstances (i.e., both datasets and both batch sizes) compared to the SupCon and SupConOri
baselines. This further verifies the fact that our methods will lead to higher quality explanations. In
particular, the explanations coming out of our models are more faithful towards their predictions.

Table 2: The Infidelity Score

ExCon ExConB SupConOri SupCon
batch size 128 0.00147 ±0.0 0.00176± 0.0 0.00311± 0.001 0.00203± 0.0
batch size 256 0.0024 ± 0.0 0.00273± 0.001 0.00403± 0.0 0.00313± 0.0

(a) CIFAR-100 dataset

ExCon ExConB SupConOri SupCon
batch size 256 6e-05±1e-05 0.0001±2e-05 0.00012±1e-05 7e-05±1e-05

(b) Tiny ImageNet dataset
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Table 3: Drop & Increase Score (with 0.45 threshold), CIFAR-100 dataset

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.726±0.081 0.362±0.073 0.273±0.08 0.196±0.066
ExConB 0.799±0.113 0.541±0.154 0.201±0.113 0.247±0.131
SupConOri 0.993±0.001 0.91±0.008 0.007±0.001 0.005±0.002
SupCon 0.993±0.002 0.9±0.008 0.007±0.002 0.004±0.002

(a) batch size 128

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.659±0.042 0.302±0.037 0.336±0.042 0.263±0.039
ExConB 0.625±0.084 0.309±0.075 0.367±0.08 0.362±0.065
SupConOri 0.993±0.001 0.918±0.003 0.007±0.001 0.006±0.002
SupCon 0.994±0.002 0.916±0.004 0.006±0.002 0.005±0.002

(b) batch size 256

Table 4: Drop & Increase Score on the Tiny ImageNet dataset (with 0.45 threshold)

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.893±0.033 0.494±0.056 0.107±0.033 0.036±0.013
ExConB 0.806±0.011 0.386±0.006 0.194±0.011 0.08±0.009
SupConOri 0.953±0.005 0.667±0.015 0.047±0.005 0.022±0.004
SupCon 0.963±0.006 0.68±0.015 0.037±0.006 0.014±0.003

4.4 T-SNE EMBEDDINGS ON THE REPRESENTATION SPACE

In order to further verify that our ExCon and ExConB methods improve the embeddings such
that similar explanations or similar contents are embedded closer together, we performed a t-SNE
dimensionalty reduction (Van der Maaten & Hinton, 2008) and then visualize the 2D embeddings
using scatter plots. The SupCon and ExConB visualizations are shown in figure 1 and the SupConOri
and ExCon visualizations are shown in figure 6 (appendix). Since it is difficult to visualize all the
100 classes all at once, so we used 5 classes (with equal space label indices) to do the visualization.
From the comparisons, we can see that:

• ExCon and ExConB provide more distant embeddings between different classes (colors)
compared to the baseline methods.

• Within the same class (same colored embeddings), the masked images (the Xes) and the
original images (the dots) are closer together in ExCon and ExConB compared to the
baselines. This proves the fact that ExCon and ExConB embed similar data points closer
together.

5 CONCLUSION

We proposed a novel methodology for explanation-driven supervised contrastive learning, namely
ExCon and ExConB. ExConB further improves on ExCon by allowing us to embed more negative
samples without ever using them as positive examples. Empirically, we first verified our initial
motivation that ExCon and ExConB methods provide closer embeddings between similar examples
and farther embeddings between dissimilar examples through t-SNE visualizations. Second, we
observed that explanation-based augmentations have additional useful properties that facilitate
training, such as smaller variance in the training loss. Third and most importantly, we quantitatively
demonstrated that both ExCon and ExConB outperform supervised contrastive learning on two
image classification datasets and furthermore provide improved explanation quality. Beyond image
classification, we believe that the novel insights proposed in this paper to improve supervised
contrastive learning of representations may extend to other domains where preserving semantic
content is also possible through explanation-driven techniques.
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APPENDIX

GRADIENT OF EXCONB

(Khosla et al., 2020) provided a gradient derivation on the supervised contrastive loss. Here we derive
the gradient of our adapted loss on top of their derivation. The gradient is:

∂LExConB

∂ei
=

1

τ |P (i)|
∑

p∈P (i)


 ∑
a∈[(Ie

ExCon∪B)\{i}]

waea

− ep

 (4)

where

wa =
[exp(ei · ea/τ)]∑

a∈[(Ie
ExCon∪B)\{i}]

[exp(ei · ea/τ)]
(5)

AUGMENTATION PIPELINES FOR EXCON AND EXCONB

Figure 4: Augmentation pipeline for ExCon. The orange blocks represent the original image in the
batch (with no augmentation). The pink regions represent the random modifications of the original
image (e.g., random cropping and color jitting, etc.). The light blue blocks represent the explanation-
driven masked images through masking out the unimportant regions (low-saliency regions) and
reserving the important regions. The parenthesis contains their labels, where label ‘x’, ‘y’, ‘z’ are
a subset of example labels from the dataset. The above example shows a simple procedure for
augmenting a data batch with three images. For each original image, we produce two random
modifications of the original image following the work of (Khosla et al., 2020). If the masked image
gives the correct prediction, we adopt the masked image with the original label as well as one of the
random modifications of the original image in the data batch. If the masked image does not give the
correct prediction, we adopt two random modifications of this image in the data batch.

SOME MORE T-SNE EMBEDDINGS

SOME MORE EXPERIMENTAL RESULTS ON EXPLANATION QUALITY
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Figure 5: Augmentation pipeline for ExConB. The notations here are the same as 4, except the fact
that when the masked image gives an incorrect prediction, we assign it a background label ‘b‘ and
append two of the same masked images (in order to make up a pair) to the end of the batch.

Figure 6: t-SNE embeddings for SupConOri (left) and ExCon (right) on the CIFAR-100 dataset.

Table 5: Drop & Increase Score (with 0.15 threshold), CIFAR-100 dataset

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.959±0.024 0.795±0.06 0.041±0.024 0.04±0.026
ExConB 0.992±0.007 0.958±0.021 0.008±0.007 0.011±0.011
SupConOri 0.999±0.0 0.959±0.004 0.001±0.0 0.001±0.001
SupCon 0.999±0.001 0.946±0.007 0.001±0.001 0.001±0.001

(a) batch size 128

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.929±0.017 0.734±0.038 0.071±0.017 0.078±0.015
ExConB 0.946±0.043 0.8±0.127 0.054±0.043 0.066±0.051
SupConOri 0.999±0.001 0.954±0.002 0.001±0.001 0.001±0.001
SupCon 0.999±0.001 0.952±0.003 0.001±0.001 0.001±0.001

(b) batch size 256
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Figure 7: t-SNE embeddings for SupCon (top left), SupConOri (top right), ExCon (bottom left),
ExConB (bottom right) on the Tiny ImageNet dataset.

Figure 8: t-SNE embeddings for SupCon (top left), SupConOri (top right), ExCon (bottom left),
ExConB (bottom right) on the Tiny ImageNet dataset.
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Table 6: Drop & Increase Score (with 0.30 threshold), CIFAR-100 dataset

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.853±0.057 0.551±0.083 0.147±0.056 0.121±0.049
ExConB 0.947±0.045 0.825±0.11 0.053±0.045 0.08±0.06
SupConOri 0.997±0.001 0.944±0.006 0.003±0.001 0.002±0.001
SupCon 0.998±0.001 0.931±0.006 0.002±0.001 0.001±0.001

(a) batch size 128

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.796±0.035 0.473±0.044 0.202±0.035 0.188±0.036
ExConB 0.8±0.084 0.523±0.132 0.198±0.082 0.217±0.065
SupConOri 0.997±0.0 0.944±0.001 0.003±0.0 0.002±0.001
SupCon 0.998±0.001 0.941±0.003 0.002±0.001 0.001±0.001

(b) batch size 256

Table 7: Drop & Increase Score on the Tiny ImageNet dataset (with 0.30 threshold)

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.936±0.026 0.625±0.056 0.064±0.026 0.027±0.011
ExConB 0.866±0.009 0.507±0.006 0.134±0.009 0.069±0.006
SupConOri 0.977±0.004 0.772±0.008 0.023±0.004 0.012±0.003
SupCon 0.982±0.004 0.771±0.012 0.018±0.004 0.008±0.002

Table 8: Drop & Increase Score on the Tiny ImageNet dataset (with 0.15 threshold)

Drop Percent Drop Mag Increase Percent Increase Mag
ExCon 0.975±0.012 0.774±0.038 0.025±0.012 0.015±0.006
ExConB 0.937±0.006 0.681±0.006 0.063±0.006 0.046±0.006
SupConOri 0.993±0.001 0.874±0.003 0.007±0.001 0.006±0.001
SupCon 0.994±0.002 0.853±0.008 0.006±0.002 0.003±0.001
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