
Under review as a conference paper at ICLR 2024

ADALOMO: LOW-MEMORY OPTIMIZATION WITH
ADAPTIVE LEARNING RATE

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models have achieved remarkable success, but their extensive pa-
rameter size necessitates substantial memory for training, thereby setting a high
threshold. While the recently proposed low-memory optimization (LOMO) re-
duces memory footprint, its optimization technique, akin to stochastic gradient
descent, is sensitive to hyper-parameters and exhibits suboptimal convergence,
failing to match the performance of the prevailing optimizer for large language
models, AdamW. Through empirical analysis of the Adam optimizer, we found
that, compared to momentum, the adaptive learning rate is more critical for bridg-
ing the gap. Building on this insight, we introduce the low-memory optimization
with adaptive learning rate (AdaLomo), which offers an adaptive learning rate for
each parameter. To maintain memory efficiency, we employ non-negative ma-
trix factorization for the second-order moment estimation in the optimizer state.
Additionally, we suggest the use of a grouped update normalization to stabilize
convergence. Our experiments with instruction-tuning and further pre-training
demonstrate that AdaLomo achieves results on par with AdamW, while signifi-
cantly reducing memory requirements, thereby lowering the hardware barrier to
training large language models.

1 INTRODUCTION

Large language models (Scao et al., 2022; Zhang et al., 2022; Touvron et al., 2023a;b) have garnered
increasing attention due to their exceptional capabilities across a diverse range of tasks. Either
supervised fine-tuning or further pre-training can lead to enhanced performance. As the number of
parameters grows, the substantial GPU memory required for training sets a high hardware threshold.
Recently, Lv et al. (2023) has proposed low-memory optimization (LOMO) to train large language
models in a memory-saving approach by simultaneously backpropagating gradients and updating
parameters during the backward pass, enabling the fine-tuning of all parameters of a 7B model on a
consumer-grade RTX 3090.

While LOMO’s performance on the SuperGLUE (Wang et al., 2019) benchmark is comparable to
popular parameter-efficient fine-tuning methods (Ding et al., 2023; Hu et al., 2022), it falls short on
a broader range of tasks against adaptive optimization methods like Adam (Kingma & Ba, 2015),
exhibiting a convergence gap. We attribute this to its reliance on the naive stochastic gradient descent
optimization approach. We analyze the differences in optimization methods between Adam and
LOMO. Compared to LOMO, Adam incorporates both the first and second moment estimation in its
optimizer state, which are the moving averages of the gradient and the squared gradient, respectively.
Based on our empirical analysis, we identifie that the second moment estimation is the pivotal factor
influencing the convergence of training large language models between LOMO and Adam.

The second-order moment estimation in Adam serves to offer an adaptive learning rate for each pa-
rameter. Expanding on this concept, we introduce the low-memory optimization with adaptive learn-
ing rate (AdaLomo), which similarly provides an adaptive learning rate for each parameter. To retain
memory efficiency, inspired by Adafactor (Shazeer & Stern, 2018), we employ non-negative matrix
factorization (Yu et al., 2018) for the second-order moment estimation in the optimizer state. Fur-
thermore, we advocate for the use of a grouped update normalization to stabilize convergence. The
number of trainable parameters and the GPU memory consumption for model state under mixed-

1

Under review as a conference paper at ICLR 2024

Table 1: Trainable parameter number and memory usage under mixed-precision training. N ≪ M
and O(M + N) = O(M), where M is the number of model parameters. AdaLomo’s memory
consumption is comparable to LoRA, and its trainable parameter number is equivalent to AdamW.

Method Trainable Params Memory (GB)
(Billion) Param Gradient Optimizer State Total

LoRA N 2M O(N) O(N) ∼ 2M
AdamW M 2M 2M 12M 16M
AdaLomo M 2M O(N) O(N) ∼ 2M

precision training among AdaLomo, the popular LoRA (Hu et al., 2022) method, and the AdamW
optimizer (Loshchilov & Hutter, 2019) are compared in Table 1. Our contributions are as follows:

1. We examined the distinctions between the LOMO and Adam optimization techniques. Em-
pirical analysis revealed that the primary difference in performance between LOMO and
Adam, especially when training large language models, stems from Adam’s incorporation
of second-moment estimation to furnish an adaptive learning rate for each parameter.

2. We introduce AdaLomo, which provides an adaptive learning rate for each parameter while
maintaining memory efficiency, democratizing the training of large language models. In
AdaLomo, we also employ grouped update normalization to stabilize the training process.

3. We evaluate the performance of large language models post instruction-tuning with
AdaLomo across five benchmarks spanning diverse tasks. The results are comparable to
both AdamW and LoRA. Furthermore, when AdaLomo is used for additional pre-training
on Chinese and Python code, its performance is on par with that of AdamW.

4. We profile the memory consumption and throughput of AdaLomo. Its reduced memory
usage and reasonable computational overhead make it a viable option for training large
language models.

2 PRELIMINARIES

In the subsequent sections of this paper, we use θt to denote the parameters of the model at the tth

step of the training process. θt,i represents the parameter at the ith gradient computation during
the backpropagation process of θt. We use gt to represent the gradient of θt, and gt,i to denote
the gradient of θt,i. The first and second moment estimation at the tth training step, which are the
moving averages of the gradient and the square of the gradient respectively, are represented by mt

and vt. The symbol α represents the learning rate.

2.1 FUSED BACKWARD

In the training process, the memory is primarily consumed by the optimizer states, parameters,
and gradients. The fused backward proposed in LOMO refers to the process that simultaneously
calculates gradients and updates parameters during backpropagation. This can effectively reduce
the memory consumption of gradients.

For a given parameter θt,i, its gradient gt,i resides in the GPU memory until the gradient gt,i+1

corresponding to the subsequent parameter θt,i+1 is computed. Subsequently, LOMO utilizes a
standard gradient descent approach for parameter updates, as depicted by the following equation:

θt,i = θt−1,i − α× gt,i. (1)

For transformer-based language models, gt,i is unnecessary in subsequent backpropagation steps
and can be eliminated from memory. Consequently, at any given moment, the memory retains the
gradients of only two consecutive parameters. The memory usage for gradients remains constant
regardless of the language model’s scale, yielding an O(1) memory footprint. In the case of large
language models, such as LLaMA-65B (Touvron et al., 2023a) with its 82 layers and 723 weight
matrices, the memory consumption for gradients becomes negligible compared to that for parameters
or optimizer states.

2

Under review as a conference paper at ICLR 2024

Gradient Normalization Gradient normalization is instrumental in mitigating gradient vanishing
and explosion. Nevertheless, its integration into LOMO presents challenges. Specifically, gradient
normalization necessitates the computation of a scaling factor derived from the gradients of all
parameters. This factor subsequently informs parameter updates. In the context of LOMO, however,
the gradients for all parameters have not yet been computed. To incorporate gradient normalization
within LOMO, two backward passes are essential:

1. Execute the first backward pass without updating the parameters and record the sum of the
squares of all parameter gradients.

2. Based on the recorded values above, compute the overall gradient scaling factor.
3. Conduct the second fused backward pass, updating the parameters using the derived scaling

factor.

2.2 EMPIRICAL ANALYSIS ON THE TWO MOMENTS IN ADAM

-2 8

Adam
SGD
SGD with momentum
SGD with variance
Global minimum

(a) Loss trajectories of different optimizers starting
from the same initial point. Both Adam and SGD
with variance converge to the global optimum on the
left, while SGD and SGD with momentum converge
to the local optimum on the right.

0 200 400 600 800 1000 1200
Step

0.2

0.4

0.6

0.8

1.0

1.2

Tr
ai

ni
ng

 L
os

s

SGD
Adam
SGD with momentum
SGD with variance

(b) Training loss curves of different optimizers on the
same dataset. Both Adam and SGD with variance ex-
hibit a stepwise decline in loss as the training epochs
increase, ultimately achieving a lower loss than both
SGD and SGD with momentum.

Figure 1: Empirical analysis on different optimizers.

LOMO exhibits efficient memory usage, essentially pushing the optimization of large language mod-
els with gradients to the extreme. However, the naive gradient descent method shown in Equation 1
faces challenges such as the propensity to get trapped in saddle points and sensitivity to the learning
rate (Dauphin et al., 2014; Darken et al., 1992). Building upon SGD, a series of advanced optimiza-
tion methods have been proposed that have been proven both theoretically and practically to address
these challenges (Ruder, 2016). These methods typically introduce additional optimizer states, such
as momentum (Qian, 1999), Nesterov accelerated gradient (Nesterov, 1983), and moving averages
of squared past gradients (Duchi et al., 2011; Zeiler, 2012; Kingma & Ba, 2015), leading to extra
memory consumption. Among these, the Adam series of optimizers are most widely used in training
large language models, simultaneously incorporating first-moment (mt) and second-moment (vt)
estimation for parameter updates, as demonstrated in the following equation,

mt = β1mt−1 + (1− β1)gt ,

vt = β2vt−1 + (1− β2)g
2
t ,

m̂t =
mt

1− βt
1

,

v̂t =
vt

1− βt
2

,

θt = θt−1 − α
m̂t√
v̂t + ϵ

,

(2)

3

Under review as a conference paper at ICLR 2024

where ϵ is a small quantity introduced to prevent division by zero in calculations. The hyper-
parameters β1, β2 ∈ [0, 1) dictate the exponential decay rates of the respective moving averages.

We empirically investigated the differences in convergence behaviors between Adam and SGD under
the function f(x, y) = x2 + y2 − 2e−5[(x−1)2+y2] − 3e−5[(x+1)2+y2] and the fine-tuning of large
language models. To ablatively analyze the roles of the first and second moments of the gradients in
Adam, we conducted experiments retaining only the first-order moment estimate or the second-order
moment estimation in Adam, respectively. The update rule retaining only the first-order moment
estimation (or momentum) is:

mt = β1mt−1 + (1− β1)gt ,

m̂t =
mt

1− βt
1

,

θt = θt−1 − α× m̂t .

(3)

Meanwhile, the update rule retaining only the second-order moment estimation (or variance) is:
vt = β2vt−1 + (1− β2)g

2
t ,

v̂t =
vt

1− βt
2

,

θt = θt−1 − α
gt√
v̂t + ϵ

.

(4)

The results of the convergence analysis are shown in Figure 1. In Figure 1a, starting from the same
initial point, Adam converges to the global optimum while SGD gets trapped at a local optimum. In
the instruction-tuning scenario depicted in Figure 1b, we trained LLaMA-7B (Touvron et al., 2023a)
with the Alpaca dataset (Taori et al., 2023; Wang et al., 2023) for three epochs. The loss curve
of Adam during these three epochs exhibits a step-like decline, achieving a significantly smaller
empirical loss compared to SGD.

Through our ablation study on Adam, we found that its second-order moment estimation has a
significantly greater impact on its convergence than the first-order moment estimation. The second-
order moment estimation is particularly effective for handling sparse data, allowing parameters that
are infrequently updated to receive larger update steps.

Furthermore, the second-order moment in the optimizer’s state has been proven to be decomposable
or compressible to reduce memory usage. For example, Adafactor decomposes the second moment
vt,i ∈ Rm×n by minimizing the I-divergence into rt,i ∈ Rm×1 and ct,i ∈ R1×n such that

vt,i = rt,ict,i. (5)

The update formulas for rt,i and ct,i in Adafactor are as follows:

rt,i = β1rt−1,i + (1− β1)g
2
t,i 1n, (6)

ct,i = β2ct−1,i + (1− β2)1
T
mg2t,i, (7)

where 1n and 1T
m are all-ones vectors of dimensions n× 1 and 1×m, respectively.

3 METHOD

In this section, we introduce our proposed memory-efficient optimization algorithm, Adalomo. This
algorithm has demonstrated performance comparable to the current de facto optimization method
for large language models, AdamW, requiring less memory consumption.

3.1 ADALOMO

Based on the analysis in Section 2.2, to achieve improved optimization while maintaining low mem-
ory consumption, we decided to incorporate a second-order moment estimation and discard the

4

Under review as a conference paper at ICLR 2024

Algorithm 1 AdaLomo

Require: model f(·) with parameter θ , learning rate α, max step T , training dataset D, loss func-
tion L, decay coefficient β, regularization constant ϵ

1: for t = 1 to T do
2: sample batch B = (x,y) ⊂ D
3: ŷ ← f(x,θ) ▷ forward pass
4: ℓ← L(y, ŷ)
5: for each parameter θi in the order of backpropagation do
6: gt,i = ∇θt−1,i

ℓ ▷ gt,i−1 needed for computing gt,i
7: rt,i = βrt−1,i + (1− β)g2t,i1n

8: ct,i = βct−1,i + (1− β)1T
mg2t,i

9: vt,i = rt,ist,i
10: ut,i = gt,i/vt,i
11: ût,i = ut,i/max(1, RMS(ut,i))×max(ϵ, RMS(θt−1,i))
12: θt,i = θt−1,i − αtût,i

13: gt,i−1 ← None ▷ clear gt,i−1

14: end for
15: end for

first-order moment. In our pursuit of further memory efficiency, we applied non-negative matrix
factorization to the second-order moment, inspired by Adafactor. For each parameter θi within the
model parameters θ, we introduce two optimizer states, ri and ci. For parameters of size m × n,
we store only ri and ci instead of storing vi. The size of the optimizer states is m + n, which is
negligible compared to the size of the parameters.

In contrast to Adafactor, we update the optimizer state during the gradient backpropagation process.
During parameter updates, we compute vi = rici using ri and ci to provide adaptive learning rate
for the parameters. Compared to LOMO, this introduces additional computational overhead. Our
experiments in Section 4.3 demonstrate that this added computational burden is acceptable. The
details of the algorithm are presented in Algorithm 1.

3.2 GROUPED UPDATE NORMALIZATION

We utilize grouped update normalization in the AdaLomo update process, which entails adaptive
modifications for the update of each parameter and helps maintain model stability especially during
large-scale training. Grouped update normalization ensures that each parameter’s update is meaning-
ful and not overshadowed by large gradient values from other parameters, facilitating faster conver-
gence and sustained stability. In contrast, global update normalization, where all parameters share
a single scaling factor, might lead to some parameters updating too rapidly or too slowly, thereby
affecting both convergence speed and stability. This is especially evident in large language models
where different layers and parameters can exhibit considerable variations in gradient magnitudes,
rendering global scaling potentially less effective.

As shown in line 11 of Algorithm 1, for the update matrix ui for parameter θi, before applying it to
the weight matrix, we divide it by the parameter-wise root-mean-square (RMS) of ui

1. Addition-
ally, we utilize the parameter-wise RMS of θi to ensure the update step size is proportional to the
magnitude of the parameter.

Furthermore, it’s worth noting that grouped update normalization integrates seamlessly with
AdaLomo’s fused backward process. While global update normalization requires two backward
passes as gradient normalization mentioned in Section 2.1, grouped update normalization allows us
to normalize the update matrices within a single fused backward pass.

1The root-mean-square (RMS) of u is given by RMS(u) =

√∑i=n
i=1 ui

n
, where n is the number of elements

in u.

5

Under review as a conference paper at ICLR 2024

Table 2: Performance of the LLaMA series models on various benchmarks after instruction-tuning
with different optimization techniques. Bolded numbers indicate the best results for models of the
same size on a given benchmark. “N/A” denotes that no instruction-tuning is performed.

Model Method MMLU BBH GSM8K HumanEval AlpacaFarm Avg.

LLaMA-7B

N/A 31.5 32.3 10.9 11.6 4.2 18.1
LoRA 33.5 34.8 12.3 11.0 41.1 26.5
AdamW 39.3 34.4 9.6 11.6 50.6 29.1
LOMO 30.7 34.0 12.0 12.8 30.6 24.0
AdaLomo 39.5 36.0 14.4 11.0 53.3 30.8

LLaMA-13B

N/A 45.2 38.5 19.5 14.0 5.3 24.5
LoRA 48.3 40.3 20.2 19.5 49.1 35.5
AdamW 49.4 40.2 21.8 18.9 61.0 38.2
LOMO 44.2 38.9 21.3 16.5 38.4 31.8
AdaLomo 50.0 41.5 25.3 18.9 62.9 39.7

LLaMA-30B

N/A 57.7 51.8 40.3 20.1 7.1 35.4
LoRA 59.3 52.3 42.8 26.2 63.3 48.8
AdamW 57.3 49.5 36.6 21.3 65.5 46.1
LOMO 56.3 51.5 44.4 18.9 57.8 45.8
AdaLomo 59.4 52.1 48.5 25.6 69.6 51.0

LLaMA-65B

N/A 62.4 58.7 53.9 20.7 4.7 40.1
LoRA 62.7 58.7 60.5 32.9 69.6 56.9
AdamW 63.0 57.9 55.3 28.1 73.1 55.5
LOMO 62.1 56.9 57.6 28.1 65.2 54.0
AdaLomo 62.7 59.0 59.7 29.9 73.4 56.9

4 EXPERIMENTS

In this section, we evaluate the efficacy of AdaLomo in instruction-tuning and further pre-training.
Additionally, we assess memory usage and throughput. Experiments are performed using the
LLaMA series of models, which have parameter sizes ranging from 7 billion to 65 billion.

4.1 INSTRUCTION TUNING

We utilized GPT-4-Alpaca (Peng et al., 2023) as the training data to fine-tune LLaMA, incorporating
52k instruction-following demonstrations generated by GPT-4 using the Alpaca method. Besides the
unaltered vanilla model and LOMO, we compared LoRA and AdamW, two prevalent methods for
instruction-tuning large language models, which act as strong baselines.

We evaluated the trained models across diverse tasks: knowledge-based tasks (MMLU (Hendrycks
et al., 2021)), general reasoning tasks (BBH (Suzgun et al., 2023)), mathematical tasks
(GSM8K (Cobbe et al., 2021)), coding tasks (HumanEval (Chen et al., 2021)), and instruction-
following tasks (AlpacaFarm (Dubois et al., 2023)). For MMLU, BBH, and GSM8K, the answers
are obtained by generating, and are assessed using accuracy. The HumanEval task is evaluated us-
ing pass@1. The AlpacaFarm task is assessed by comparing the win rate of responses against those
from GPT-3.5 (Brown et al., 2020), as scored by GPT-4 (OpenAI, 2023). Training and evaluation
are conducted using templates provided in the Alpaca repository. Detailed hyper-parameters and
templates can be found in Appendix B.

The results are presented in Table 2. Compared to the vanilla model, models trained using
these methods generally exhibit improved performance, especially in instruction-following capa-
bilities. LOMO’s performance on general reasoning (BBH), mathematics (GSM8K), and coding
(HumanEval) tasks was comparable to that of LoRA and AdamW across all model sizes. However,
its performance on knowledge-based tasks (MMLU) and instruction-following tasks (AlpacaFarm)
is relatively inferior. The performance gap between LOMO and both LoRA and AdamW on these
two tasks decreases as the model size increases. By incorporating the second-order moment estima-

6

Under review as a conference paper at ICLR 2024

tion, AdaLomo addresses LOMO’s limitations, achieving comparable results with AdamW across
various benchmarks for all model sizes.

4.2 FURTHER PRE-TRAINING

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

 L
os

s

AdamW
AdaLomo

(a) Training loss curve for LLaMA-7B.

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

 L
os

s

AdamW
AdaLomo

(b) Training loss curve for LLaMA-13B.

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

3.0

3.5

4.0

4.5

5.0

5.5

6.0

Va
lid

at
io

n
PP

L

LLaMA-7B with AdaLomo
LLaMA-7B with AdamW
LLaMA-13B with AdaLomo
LLaMA-13B with AdamW

(c) Perplexity of the validation set.

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

0.60

0.62

0.64

0.66

0.68

0.70

0.72

0.74

Va
lid

at
io

n
Ac

cu
ra

cy

LLaMA-7B with AdaLomo
LLaMA-7B with AdamW
LLaMA-13B with AdaLomo
LLaMA-13B with AdamW

(d) Next-token accuracy of the validation set.

Figure 2: Results of further pre-training in the Chinese domain.

Further pre-training refers to the additional large-scale unsupervised learning applied to a pre-trained
model. We conduct further pre-training on the LLaMA model with parameter sizes of 7B and 13B
in two domains: Chinese and Python code. The LLaMA model had limited exposure to data from
these two domains during its initial pre-training phase. Baidu-baike is a Chinese online encyclope-
dia. We scraped 2 million entries from Baidu-baike for further pre-training in the Chinese domain.
Additionally, we extracted 2.2 million entries from the Python subset of the StarCoder (Li et al.,
2023) training dataset for further pre-training in the Python code domain. Beyond this, we set aside
2,000 entries as a validation set.

We choose AdamW as the baseline for comparison. The training hyper-parameters and data samples
are detailed in Appendix C. We plot the loss curve during the model’s training process and tested
the perplexity and accuracy of the next-token prediction every 100 steps on the validation set.

As shown in Figure 2a and 2b, during the further pre-training in Chinese, the loss curves of
AdaLomo and AdamW overlap significantly, with AdaLomo’s curve slightly below that of AdamW.
The fluctuation range of their losses is at a similar level. Figure 2c and 2d also indicate that AdaLomo
ultimately achieved a slightly lower perplexity and accuracy on the validation set than AdamW. Both
methods effectively reduced LLaMA’s perplexity in Chinese, enhancing the model’s performance in
the Chinese domain.

Figure 3 presents the results of further pre-training in the Python code domain. The overall findings
are similar to those in the Chinese domain, with some differences. Relative to Chinese, the en-
hancement of LLaMA’s capabilities in the Python code domain through further pre-training is less
pronounced. This is because, in terms of perplexity, the original LLaMA performs better on Python
code than on Chinese. Although AdaLomo exhibited some fluctuations during the initial warmup
phase (with a perplexity difference of less than 0.02), it converged to a more optimal point at a
faster rate thereafter. The LLaMA-13B model exhibited less fluctuation than the LLaMA-7B model.

7

Under review as a conference paper at ICLR 2024

0 2500 5000 7500 10000 12500 15000 17500
Steps

0.7

0.8

0.9

1.0

1.1

Tr
ai

ni
ng

 L
os

s

AdamW
AdaLomo

(a) Training loss curve for LLaMA-7B.

0 2500 5000 7500 10000 12500 15000 17500
Steps

0.7

0.8

0.9

1.0

1.1

Tr
ai

ni
ng

 L
os

s

AdamW
AdaLomo

(b) Training loss curve for LLaMA-13B.

0 2500 5000 7500 10000 12500 15000 17500
Steps

2.15

2.20

2.25

2.30

2.35

2.40

2.45

Va
lid

at
io

n
PP

L

LLaMA-7B with AdaLomo
LLaMA-7B with AdamW
LLaMA-13B with AdaLomo
LLaMA-13B with AdamW

(c) Perplexity of the validation set.

0 2500 5000 7500 10000 12500 15000 17500
Steps

0.790

0.795

0.800

0.805

0.810

0.815

0.820

Va
lid

at
io

n
Ac

cu
ra

cy

LLaMA-7B with AdaLomo
LLaMA-7B with AdamW
LLaMA-13B with AdaLomo
LLaMA-13B with AdamW

(d) Next-token accuracy of the validation set.

Figure 3: Results of further pre-training in the Python code domain.

10 20 30 40 50 60
Model Size (Billion)

0

200

400

600

800

1000

1200

1400

1600

M
em

or
y

Fo
ot

pr
in

t (
GB

)

AdamW
Adafactor
LoRA
LOMO
AdaLomo

(a) Memory usage with different methods.

10 20 30 40 50 60
Model Size (Billion)

500

1000

1500

2000

2500

3000

Th
ro

ug
hp

ut
 (T

GS
)

AdamW
Adafactor
LoRA
LOMO
AdaLomo

(b) Throughput with different optimization methods.

Figure 4: Memory footprint and throughput using different optimization methods.

We attribute these fluctuations to AdaLomo’s reliance on g2
t over vt−1 during the early stages of

training, and the fact that AdaLomo does not utilize momentum.

Grouped update normalization effectively substitutes the role of gradient normalization to a certain
extent. It enables stable training even without the use of gradient normalization, which is essential
to prevent gradient explosion but with a decrease in throughput for LOMO. A detailed comparison
regarding gradient normalization are shown in Appendix A.

4.3 MEMORY AND THROUGHPUT PROFILE

We evaluate the max allocated memory and throughput of AdamW, Adafactor, LoRA, LOMO, and
AdaLomo, with the results in Figure 4. We employ ZeRO-3 (Rajbhandari et al., 2020) for distributed
training. Throughput is measured in terms of tokens processed per GPU per second (TGS). Detailed
numerical results and more specific experimental settings can be found in Appendix D.

8

Under review as a conference paper at ICLR 2024

Among the evaluated methods, AdamW exhibits the highest memory consumption. Adafactor re-
duces memory usage compared to AdamW by decomposing the second-order moment, resulting in
memory savings proportional to the model’s parameter size. AdaLomo, in comparison to LOMO,
introduce an adaptive learning rate for each parameter. Nevertheless, its memory consumption re-
mains close to that of LOMO and is comparable to LoRA, which trains with very few parameters.
Due to fewer trainable parameters requiring communication during training, LoRA achieves the
highest throughput. AdaLomo, which necessitates additional computations during parameter up-
dates, shows slightly lower throughput than LOMO. All methods are tested with a consistent batch
size, yet AdaLomo retains residual memory capacity, suggesting the potential for an increased batch
size and greater throughput. Overall, the throughput of these methods is at the same level.

5 RELATED WORK

Previous research has extensively explored memory-efficient optimizers. Adafactor (Shazeer &
Stern, 2018) employs non-negative matrix factorization and approximates the second-order moment
estimate v ∈ Rm×n using the outer product of r ∈ Rm×1 and c ∈ R1×n, achieving sublinear mem-
ory consumption. The SM3 algorithm (Anil et al., 2019) introduces the cover of the parameters or,
more specifically, a set of k non-empty parameter groups. Each parameter is assigned an adaptive
learning rate based on this cover. For a parameter matrix of size m × n, the sets can be divided by
rows and columns, resulting in m+n sets. This reduces the memory requirement from O(m×n) to
O(m + n), analogous to Adafactor’s memory consumption. Another line to reduce memory usage
is by utilizing low-precision storage for the optimizer state. Research in DALL-E (Ramesh et al.,
2021) and Gopher (Rae et al., 2021) explored the stability of 16-bit optimizers. The 8-bit Opti-
mizer (Dettmers et al., 2022), using block-wise and dynamic exponent quantization, quantizes the
optimizer states of SGDM and Adam to 8 bits. The 4-bit optimizer (Sun et al., 2020), employing
the newly proposed FP4 format and the adaptive gradient scaling technique, is the first to reduce
training precision to 4 bits. This results in memory consumption being reduced to one-eighth com-
pared to 32-bit full-precision training. To decrease the memory used by gradients, LOMO updates
parameters simultaneously during the gradient computation in the backward pass, a process termed
as fused backward.

Additionally, there exists a series of memory-efficient optimization methods designed exclusively for
fine-tuning. BBT (Sun et al., 2022b) and BBTv2 (Sun et al., 2022a) utilize evolutionary gradient-
free algorithms to optimize continuous prompts without model updates. MeZO (Malladi et al., 2023)
employs zeroth-order optimization methods, estimating gradients using two forward passes and op-
timizing the model in-place, thus equating memory consumption with inference. Parameter-efficient
fine-tuning (PEFT) (Ding et al., 2023) methods selectively add or pick a subset of parameters for
optimization, freezing the majority of the model parameters. For example, LoRA (Hu et al., 2022)
integrates a trainable low-rank decomposition matrix into the self-attention module, thereby reduc-
ing the number of parameters to train. In comparison, AdaLomo updates all parameters using a
gradient-based method, suitable for both pre-training and fine-tuning, with memory consumption
comparable to PEFT methods.

6 CONCLUSION

In this paper, we introduce AdaLomo, designed to reduce the training barriers for large lan-
guage models. By incorporating an adaptive learning rate and utilizing grouped update normal-
ization, AdaLomo achieves results comparable to AdamW in both instruction-tuning and further
pre-training. Concurrently, the memory footprint of AdaLomo is on par with the PEFT methods.

While AdaLomo is memory-efficient when training large language models, it primarily reduces
the memory occupied by gradients and the optimizer states. Therefore, for models with a signif-
icant amount of activation values occupying memory, the reduction in memory usage by employ-
ing AdaLomo is limited. Thus, AdaLomo is best suited for training models with a large number
of parameters. Additionally, while our experiments show that the throughput decrease is minimal,
AdaLomo introduce some extra computational overhead, suggesting a direction for further improve-
ment. This framework can be extended to optimizers using other update methods, such as SM3, and
can also be adapted to methods related to optimizer states compression.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Rohan Anil, Vineet Gupta, Tomer Koren, and Yoram Singer. Memory efficient adap-
tive optimization. In Hanna M. Wallach, Hugo Larochelle, Alina Beygelzimer, Flo-
rence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in Neural In-
formation Processing Systems 32: Annual Conference on Neural Information Process-
ing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
9746–9755, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de Oliveira Pinto, Jared
Kaplan, Harrison Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavar-
ian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plap-
pert, Fotios Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol,
Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William
Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Pe-
ter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech
Zaremba. Evaluating large language models trained on code. CoRR, abs/2107.03374, 2021.
URL https://arxiv.org/abs/2107.03374.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021. URL
https://arxiv.org/abs/2110.14168.

Christian Darken, Joseph Chang, John Moody, et al. Learning rate schedules for faster stochastic
gradient search. In Neural networks for signal processing, volume 2, pp. 3–12. Citeseer, 1992.

Yann N. Dauphin, Razvan Pascanu, Çaglar Gülçehre, KyungHyun Cho, Surya Ganguli, and Yoshua
Bengio. Identifying and attacking the saddle point problem in high-dimensional non-convex op-
timization. In Zoubin Ghahramani, Max Welling, Corinna Cortes, Neil D. Lawrence, and Kil-
ian Q. Weinberger (eds.), Advances in Neural Information Processing Systems 27: Annual Con-
ference on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Que-
bec, Canada, pp. 2933–2941, 2014. URL https://proceedings.neurips.cc/paper/
2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html.

Tim Dettmers, Mike Lewis, Sam Shleifer, and Luke Zettlemoyer. 8-bit optimizers via block-wise
quantization. In The Tenth International Conference on Learning Representations, ICLR 2022,
Virtual Event, April 25-29, 2022. OpenReview.net, 2022. URL https://openreview.net/
forum?id=shpkpVXzo3h.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu,
Yulin Chen, Chi-Min Chan, Weize Chen, Jing Yi, Weilin Zhao, Xiaozhi Wang, Zhiyuan Liu,
Hai-Tao Zheng, Jianfei Chen, Yang Liu, Jie Tang, Juanzi Li, and Maosong Sun. Parameter-
efficient fine-tuning of large-scale pre-trained language models. Nat. Mac. Intell., 5(3):220–
235, 2023. doi: 10.1038/s42256-023-00626-4. URL https://doi.org/10.1038/
s42256-023-00626-4.

10

https://proceedings.neurips.cc/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/8f1fa0193ca2b5d2fa0695827d8270e9-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2110.14168
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://proceedings.neurips.cc/paper/2014/hash/17e23e50bedc63b4095e3d8204ce063b-Abstract.html
https://openreview.net/forum?id=shpkpVXzo3h
https://openreview.net/forum?id=shpkpVXzo3h
https://doi.org/10.1038/s42256-023-00626-4
https://doi.org/10.1038/s42256-023-00626-4

Under review as a conference paper at ICLR 2024

Yann Dubois, Xuechen Li, Rohan Taori, Tianyi Zhang, Ishaan Gulrajani, Jimmy Ba, Carlos
Guestrin, Percy Liang, and Tatsunori B. Hashimoto. Alpacafarm: A simulation framework for
methods that learn from human feedback. CoRR, abs/2305.14387, 2023. doi: 10.48550/arXiv.
2305.14387. URL https://doi.org/10.48550/arXiv.2305.14387.

John C. Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning
and stochastic optimization. J. Mach. Learn. Res., 12:2121–2159, 2011. doi: 10.5555/1953048.
2021068. URL https://dl.acm.org/doi/10.5555/1953048.2021068.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. In 9th International Confer-
ence on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenRe-
view.net, 2021. URL https://openreview.net/forum?id=d7KBjmI3GmQ.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. In The Tenth Inter-
national Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In Yoshua
Bengio and Yann LeCun (eds.), 3rd International Conference on Learning Representations, ICLR
2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http:
//arxiv.org/abs/1412.6980.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov, Chenghao
Mou, Marc Marone, Christopher Akiki, Jia Li, Jenny Chim, Qian Liu, Evgenii Zheltonozh-
skii, Terry Yue Zhuo, Thomas Wang, Olivier Dehaene, Mishig Davaadorj, Joel Lamy-Poirier,
João Monteiro, Oleh Shliazhko, Nicolas Gontier, Nicholas Meade, Armel Zebaze, Ming-Ho Yee,
Logesh Kumar Umapathi, Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo Wang,
Rudra Murthy V, Jason Stillerman, Siva Sankalp Patel, Dmitry Abulkhanov, Marco Zocca, Manan
Dey, Zhihan Zhang, Nour Moustafa-Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam Singh,
Sasha Luccioni, Paulo Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri Dao, Mayank
Mishra, Alex Gu, Jennifer Robinson, Carolyn Jane Anderson, Brendan Dolan-Gavitt, Danish
Contractor, Siva Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine Jernite, Carlos Muñoz Ferran-
dis, Sean Hughes, Thomas Wolf, Arjun Guha, Leandro von Werra, and Harm de Vries. Starcoder:
may the source be with you! CoRR, abs/2305.06161, 2023. doi: 10.48550/arXiv.2305.06161.
URL https://doi.org/10.48550/arXiv.2305.06161.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th International
Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019.
OpenReview.net, 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

Kai Lv, Yuqing Yang, Tengxiao Liu, Qinghui Gao, Qipeng Guo, and Xipeng Qiu. Full parameter
fine-tuning for large language models with limited resources. CoRR, abs/2306.09782, 2023. doi:
10.48550/arXiv.2306.09782. URL https://doi.org/10.48550/arXiv.2306.09782.

Sadhika Malladi, Tianyu Gao, Eshaan Nichani, Alex Damian, Jason D. Lee, Danqi Chen, and San-
jeev Arora. Fine-tuning language models with just forward passes. CoRR, abs/2305.17333,
2023. doi: 10.48550/arXiv.2305.17333. URL https://doi.org/10.48550/arXiv.
2305.17333.

Yurii Nesterov. A method for unconstrained convex minimization problem with the rate of conver-
gence o (1/k2). In Dokl. Akad. Nauk. SSSR, volume 269, pp. 543, 1983.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/arXiv.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Baolin Peng, Chunyuan Li, Pengcheng He, Michel Galley, and Jianfeng Gao. Instruction tuning
with GPT-4. CoRR, abs/2304.03277, 2023. doi: 10.48550/arXiv.2304.03277. URL https:
//doi.org/10.48550/arXiv.2304.03277.

11

https://doi.org/10.48550/arXiv.2305.14387
https://dl.acm.org/doi/10.5555/1953048.2021068
https://openreview.net/forum?id=d7KBjmI3GmQ
https://openreview.net/forum?id=nZeVKeeFYf9
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.48550/arXiv.2305.06161
https://openreview.net/forum?id=Bkg6RiCqY7
https://doi.org/10.48550/arXiv.2306.09782
https://doi.org/10.48550/arXiv.2305.17333
https://doi.org/10.48550/arXiv.2305.17333
https://doi.org/10.48550/arXiv.2303.08774
https://doi.org/10.48550/arXiv.2304.03277
https://doi.org/10.48550/arXiv.2304.03277

Under review as a conference paper at ICLR 2024

Ning Qian. On the momentum term in gradient descent learning algorithms. Neural Networks, 12
(1):145–151, 1999. doi: 10.1016/S0893-6080(98)00116-6. URL https://doi.org/10.
1016/S0893-6080(98)00116-6.

Jack W. Rae, Sebastian Borgeaud, Trevor Cai, Katie Millican, Jordan Hoffmann, H. Francis
Song, John Aslanides, Sarah Henderson, Roman Ring, Susannah Young, Eliza Rutherford,
Tom Hennigan, Jacob Menick, Albin Cassirer, Richard Powell, George van den Driessche,
Lisa Anne Hendricks, Maribeth Rauh, Po-Sen Huang, Amelia Glaese, Johannes Welbl, Sumanth
Dathathri, Saffron Huang, Jonathan Uesato, John Mellor, Irina Higgins, Antonia Creswell, Nat
McAleese, Amy Wu, Erich Elsen, Siddhant M. Jayakumar, Elena Buchatskaya, David Budden,
Esme Sutherland, Karen Simonyan, Michela Paganini, Laurent Sifre, Lena Martens, Xiang Lor-
raine Li, Adhiguna Kuncoro, Aida Nematzadeh, Elena Gribovskaya, Domenic Donato, Ange-
liki Lazaridou, Arthur Mensch, Jean-Baptiste Lespiau, Maria Tsimpoukelli, Nikolai Grigorev,
Doug Fritz, Thibault Sottiaux, Mantas Pajarskas, Toby Pohlen, Zhitao Gong, Daniel Toyama, Cy-
prien de Masson d’Autume, Yujia Li, Tayfun Terzi, Vladimir Mikulik, Igor Babuschkin, Aidan
Clark, Diego de Las Casas, Aurelia Guy, Chris Jones, James Bradbury, Matthew J. Johnson,
Blake A. Hechtman, Laura Weidinger, Iason Gabriel, William Isaac, Edward Lockhart, Simon
Osindero, Laura Rimell, Chris Dyer, Oriol Vinyals, Kareem Ayoub, Jeff Stanway, Lorrayne
Bennett, Demis Hassabis, Koray Kavukcuoglu, and Geoffrey Irving. Scaling language mod-
els: Methods, analysis & insights from training gopher. CoRR, abs/2112.11446, 2021. URL
https://arxiv.org/abs/2112.11446.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: memory optimizations
toward training trillion parameter models. In Christine Cuicchi, Irene Qualters, and William T.
Kramer (eds.), Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2020, Virtual Event / Atlanta, Georgia, USA, November
9-19, 2020, pp. 20. IEEE/ACM, 2020. doi: 10.1109/SC41405.2020.00024. URL https:
//doi.org/10.1109/SC41405.2020.00024.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen,
and Ilya Sutskever. Zero-shot text-to-image generation. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July
2021, Virtual Event, volume 139 of Proceedings of Machine Learning Research, pp. 8821–8831.
PMLR, 2021. URL http://proceedings.mlr.press/v139/ramesh21a.html.

Sebastian Ruder. An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747,
2016. URL http://arxiv.org/abs/1609.04747.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilic, Daniel Hesslow, Roman
Castagné, Alexandra Sasha Luccioni, François Yvon, Matthias Gallé, Jonathan Tow, Alexan-
der M. Rush, Stella Biderman, Albert Webson, Pawan Sasanka Ammanamanchi, Thomas Wang,
Benoı̂t Sagot, Niklas Muennighoff, Albert Villanova del Moral, Olatunji Ruwase, Rachel Baw-
den, Stas Bekman, Angelina McMillan-Major, Iz Beltagy, Huu Nguyen, Lucile Saulnier, Samson
Tan, Pedro Ortiz Suarez, Victor Sanh, Hugo Laurençon, Yacine Jernite, Julien Launay, Margaret
Mitchell, Colin Raffel, Aaron Gokaslan, Adi Simhi, Aitor Soroa, Alham Fikri Aji, Amit Alfassy,
Anna Rogers, Ariel Kreisberg Nitzav, Canwen Xu, Chenghao Mou, Chris Emezue, Christo-
pher Klamm, Colin Leong, Daniel van Strien, David Ifeoluwa Adelani, and et al. BLOOM:
A 176b-parameter open-access multilingual language model. CoRR, abs/2211.05100, 2022. doi:
10.48550/arXiv.2211.05100. URL https://doi.org/10.48550/arXiv.2211.05100.

Noam Shazeer and Mitchell Stern. Adafactor: Adaptive learning rates with sublinear memory cost.
In Jennifer G. Dy and Andreas Krause (eds.), Proceedings of the 35th International Conference
on Machine Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018,
volume 80 of Proceedings of Machine Learning Research, pp. 4603–4611. PMLR, 2018. URL
http://proceedings.mlr.press/v80/shazeer18a.html.

Tianxiang Sun, Zhengfu He, Hong Qian, Yunhua Zhou, Xuanjing Huang, and Xipeng Qiu. Bbtv2:
Towards a gradient-free future with large language models. In Yoav Goldberg, Zornitsa Kozareva,
and Yue Zhang (eds.), Proceedings of the 2022 Conference on Empirical Methods in Natu-
ral Language Processing, EMNLP 2022, Abu Dhabi, United Arab Emirates, December 7-11,
2022, pp. 3916–3930. Association for Computational Linguistics, 2022a. doi: 10.18653/v1/2022.
emnlp-main.259. URL https://doi.org/10.18653/v1/2022.emnlp-main.259.

12

https://doi.org/10.1016/S0893-6080(98)00116-6
https://doi.org/10.1016/S0893-6080(98)00116-6
https://arxiv.org/abs/2112.11446
https://doi.org/10.1109/SC41405.2020.00024
https://doi.org/10.1109/SC41405.2020.00024
http://proceedings.mlr.press/v139/ramesh21a.html
http://arxiv.org/abs/1609.04747
https://doi.org/10.48550/arXiv.2211.05100
http://proceedings.mlr.press/v80/shazeer18a.html
https://doi.org/10.18653/v1/2022.emnlp-main.259

Under review as a conference paper at ICLR 2024

Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvári, Gang Niu, and Sivan Sabato (eds.), International Conference on Machine Learning,
ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA, volume 162 of Proceedings of Machine
Learning Research, pp. 20841–20855. PMLR, 2022b. URL https://proceedings.mlr.
press/v162/sun22e.html.

Xiao Sun, Naigang Wang, Chia-Yu Chen, Jiamin Ni, Ankur Agrawal, Xiaodong Cui,
Swagath Venkataramani, Kaoutar El Maghraoui, Vijayalakshmi Srinivasan, and Kailash
Gopalakrishnan. Ultra-low precision 4-bit training of deep neural networks. In Hugo
Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and Hsuan-Tien
Lin (eds.), Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12, 2020,
virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
13b919438259814cd5be8cb45877d577-Abstract.html.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed Chi, Denny Zhou, and Jason Wei. Challenging big-bench
tasks and whether chain-of-thought can solve them. In Anna Rogers, Jordan L. Boyd-Graber, and
Naoaki Okazaki (eds.), Findings of the Association for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pp. 13003–13051. Association for Computational Linguistics,
2023. URL https://aclanthology.org/2023.findings-acl.824.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurélien Rodriguez, Ar-
mand Joulin, Edouard Grave, and Guillaume Lample. Llama: Open and efficient foundation
language models. CoRR, abs/2302.13971, 2023a. doi: 10.48550/arXiv.2302.13971. URL
https://doi.org/10.48550/arXiv.2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023b. doi: 10.48550/arXiv.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Amanpreet Singh, Julian Michael, Felix Hill,
Omer Levy, and Samuel R. Bowman. Superglue: A stickier benchmark for general-purpose
language understanding systems. CoRR, abs/1905.00537, 2019. URL http://arxiv.org/
abs/1905.00537.

Yizhong Wang, Yeganeh Kordi, Swaroop Mishra, Alisa Liu, Noah A. Smith, Daniel Khashabi, and
Hannaneh Hajishirzi. Self-instruct: Aligning language models with self-generated instructions.
In Anna Rogers, Jordan L. Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st An-
nual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), ACL
2023, Toronto, Canada, July 9-14, 2023, pp. 13484–13508. Association for Computational Lin-
guistics, 2023. doi: 10.18653/v1/2023.acl-long.754. URL https://doi.org/10.18653/
v1/2023.acl-long.754.

13

https://proceedings.mlr.press/v162/sun22e.html
https://proceedings.mlr.press/v162/sun22e.html
https://proceedings.neurips.cc/paper/2020/hash/13b919438259814cd5be8cb45877d577-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/13b919438259814cd5be8cb45877d577-Abstract.html
https://aclanthology.org/2023.findings-acl.824
https://github.com/tatsu-lab/stanford_alpaca
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
http://arxiv.org/abs/1905.00537
http://arxiv.org/abs/1905.00537
https://doi.org/10.18653/v1/2023.acl-long.754
https://doi.org/10.18653/v1/2023.acl-long.754

Under review as a conference paper at ICLR 2024

Jinshi Yu, Guoxu Zhou, Andrzej Cichocki, and Shengli Xie. Learning the hierarchical parts
of objects by deep non-smooth nonnegative matrix factorization. IEEE Access, 6:58096–
58105, 2018. doi: 10.1109/ACCESS.2018.2873385. URL https://doi.org/10.1109/
ACCESS.2018.2873385.

Matthew D. Zeiler. ADADELTA: an adaptive learning rate method. CoRR, abs/1212.5701, 2012.
URL http://arxiv.org/abs/1212.5701.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer,
Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettle-
moyer. OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022. doi:
10.48550/arXiv.2205.01068. URL https://doi.org/10.48550/arXiv.2205.01068.

14

https://doi.org/10.1109/ACCESS.2018.2873385
https://doi.org/10.1109/ACCESS.2018.2873385
http://arxiv.org/abs/1212.5701
https://doi.org/10.48550/arXiv.2205.01068

Under review as a conference paper at ICLR 2024

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

1.0

1.2

1.4

1.6

1.8

2.0

Tr
ai

ni
ng

 L
os

s

AdaLomo with grad norm
AdaLomo without grad norm

(a) Training loss curve.

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n
PP

L

AdaLomo with grad norm
AdaLomo without grad norm

(b) Validation perplexity.

0 2000 4000 6000 8000 10000 12000 14000 16000
Steps

0.60

0.62

0.64

0.66

0.68

0.70

0.72

Va
lid

at
io

n
Ac

cu
ra

cy

AdaLomo with grad norm
AdaLomo without grad norm

(c) Validation next-token accuracy.

Figure 5: Results of further pre-training of LLaMA-7B with AdaLomo in the Chinese domain with
and without gradient normalization.

0 2500 5000 7500 10000 12500 15000 17500
Steps

0.7

0.8

0.9

1.0

1.1

Tr
ai

ni
ng

 L
os

s

AdaLomo with grad norm
AdaLomo without grad norm

(a) Training loss curve.

0 2500 5000 7500 10000 12500 15000 17500
Steps

2.20

2.25

2.30

2.35

2.40

2.45
Va

lid
at

io
n

PP
L

AdaLomo with grad norm
AdaLomo without grad norm

(b) Validation perplexity.

0 2500 5000 7500 10000 12500 15000 17500
Steps

0.795

0.800

0.805

0.810

0.815

Va
lid

at
io

n
Ac

cu
ra

cy

AdaLomo with grad norm
AdaLomo without grad norm

(c) Validation next-token accuracy.

Figure 6: Results of further pre-training of LLaMA-7B with AdaLomo in the Python code domain
with and without gradient normalization.

A GRADIENT NORMALIZATION FOR ADALOMO

We conduct experiments on the LLaMA-7B to assess the effects of using gradient normalization
during the further pre-training of AdaLomo. Comparative experiments in the Chinese domain are
illustrated in Figure 5, while those in the Python code domain are shown in Figure 6. Our results
indicate that the convergence performance of AdaLomo is unaffected by the use or absence of gra-
dient normalization. We attribute this to the grouped update normalization feature within AdaLomo.
Avoiding the use of gradient normalization can eliminate the need for two backward passes, thus
preventing computational redundancy during training.

B INSTRUCTION TUNING

B.1 HYPER-PARAMETERS

Hyper-parameters used by different optimization methods and models for instruction-tuning are
shown in Table 3.

B.2 TEMPLATES

Templates used for instruction-tuning on Alpaca-GPT4 are shown in Table 4.

C FURTHER PRE-TRAINING

C.1 HYPER-PARAMETERS

Hyper-parameters used for further pre-trianing are shown in Table 5.

15

Under review as a conference paper at ICLR 2024

Table 3: Hyper-parameters for instruction-tuning.

LLaMA-7B LLaMA-13B
LoRA AdamW LOMO AdaLomo LoRA AdamW LOMO AdaLomo

Learning
Rate 3E-04 2E-05 1E-02 5E-04 3E-04 2E-05 1E-02 5E-04

Batch
Size 128

Ecochs 3

Warmup
Steps 0.03 * Total Steps

LLaMA-30B LLaMA-65B
LoRA AdamW LOMO AdaLomo LoRA AdamW LOMO AdaLomo

Learning
Rate 3E-04 2E-05 1E-02 5E-04 3E-04 1E-05 1E-02 5E-04

Batch
Size 128

Ecochs 3

Warmup
Steps 0.03 * Total Steps

Table 4: Templates used for instruction-tuning.

Template for entries with input
Below is an instruction that describes a task, paired with an input that provides further context.
Write a response that appropriately completes the request.

Instruction:
{instruction}

Input:
{input}

Response:{response}
Template for entries without input
Below is an instruction that describes a task. Write a response that appropriately completes the
request.

Instruction:
{instruction}

Response:{response}

C.2 DATA SAMPLES

Chinese A Chinese data sample is shown in Figure 7.

Python code A Python code data sample is is shown in Figure 8.

D MEMORY AND THROUGHPUT PROFILE

The hyper-parameters used to profile memory and throughput and the detailed results are shown in
Table 6. The experiments are conducted on A800 with NVLink.

16

Under review as a conference paper at ICLR 2024

《孕产保健实用宝典》是2010年9月1日浙江科学技术出版社出
版的图书，作者是杨惠民。
本书主要对胎教的含义和胎教的具体方法进行了详细的介绍。
##内容简介
如果说孩子是爱情结晶的话，那么面对父母的首要问题，就是如
何提高和培养孩子的智能和如何使孩子健康的成长，顺利快乐的
度过每一天。
在这个纷繁复杂的社会，人人都想让自己的孩子与众不同，虽然
这一切主要受社会环境的影响，但其更大是受胎教的影响？
##目录
第一章
如何选择最佳怀孕时机
最佳的生育年龄
妊娠年龄过小有何缺点
妊娠年龄过大有何缺点
最佳身体条件
最佳的营养和受孕环境
第二章 ……

Figure 7: A Chinese data sample for further pre-training.

−*− c od i ng : u t f −8 −*−
Genera ted by Django 1 . 1 1 . 1 on 2017−05−25 23:26
from f u t u r e import u n i c o d e l i t e r a l s

from d j an go . db import m i g r a t i o n s , models

c l a s s M i g r a t i o n (m i g r a t i o n s . M i g r a t i o n) :

d e p e n d e n c i e s = [
(’ p o d c a s t ’ , ’ 0006 p o d c a s t l a n g u a g e ’) ,

]

o p e r a t i o n s = [
m i g r a t i o n s . RemoveField (

model name= ’ e p i s o d e ’ ,
name= ’ f i l e o g g ’ ,

) ,
m i g r a t i o n s . AddFie ld (

model name= ’ e p i s o d e ’ ,
name= ’ d u r a t i o n ’ ,
f i e l d =models . D u r a t i o n F i e l d (d e f a u l t = ’ 10 ’) ,
p r e s e r v e d e f a u l t = F a l s e ,

) ,
]

Figure 8: A Python code data sample for further pre-training.

17

Under review as a conference paper at ICLR 2024

Table 5: Hyper-parameters used for further pre-training.

Method AdamW AdaLomo

Sequence Length 2048
Learning Rate 1E-05 3E-01

Batch Size 128
Warmup Steps 0.03 * Total Steps

Table 6: Hyper-parameters and detailed results in memory and throughput profile.

Model Optimizer GPUs Micro Batch Size Memory (GB) Throughput (TGS)

LLaMA-7B

AdamW

4 8

169.4 3169.4
Adafactor 144.3 3169.5

LoRA 70.6 3344.6
LOMO 59.6 3228.2

AdaLomo 59.6 2997.4

LLaMA-30B

AdamW

16 4

786.2 728.6
Adafactor 665.0 726.5

LoRA 303.7 811.6
LOMO 264.3 669.1

AdaLomo 272.8 589.0

LLaMA-13B

AdamW

8 4

320.7 1679.6
Adafactor 272.3 1683.4

LoRA 110.0 1829.8
LOMO 94.4 1659.9

AdaLomo 95.8 1456.3

LLaMA-65B

AdamW

32 2

1532.6 349.1
Adafactor 1289.4 341.1

LoRA 510.5 405.7
LOMO 473.8 303.3

AdaLomo 507.7 238.1

18

	Introduction
	Preliminaries
	Fused Backward
	Empirical Analysis on the Two Moments in Adam

	Method
	AdaLomo
	Grouped Update Normalization

	Experiments
	Instruction Tuning
	Further Pre-training
	Memory and Throughput Profile

	Related Work
	Conclusion
	Gradient Normalization for AdaLomo
	Instruction Tuning
	Hyper-parameters
	Templates

	Further Pre-training
	Hyper-parameters
	Data Samples

	Memory and Throughput Profile

