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ABSTRACT

Several recent works questioned the value of inheriting weights in structured neu-
ral network pruning because they empirically found training from scratch can
match or even outperform finetuning a pruned model. In this paper, we present ev-
idence that this argument is actually inaccurate because of using improperly small
finetuning learning rates. With larger learning rates, our results consistently sug-
gest pruning outperforms training from scratch on multiple networks (ResNets,
VGG11) and datasets (MNIST, CIFAR10, ImageNet) over most pruning ratios.
To deeply understand why finetuning learning rate holds such a critical role, we
examine the theoretical reason behind through the lens of dynamical isometry, a
nice property of networks that can make the gradient signals preserve norm during
propagation. Our results suggest that weight removal in pruning breaks dynamical
isometry, which fundamentally answers for the performance gap between a large
finetuning LR and a small one. Therefore, it is necessary to recover the dynamical
isometry before finetuning. In this regard, we also present a regularization-based
technique to do so, which is rather simple-to-implement yet effective in dynamical
isometry recovery on modern residual convolutional neural networks.

1 INTRODUCTION

Pruning is a time-honored methodology to reduce parameters in a neural network without seriously
compromising its performance (Reed, 1993; Sze et al., 2017). The prevailing pipeline of pruning
comprises three steps: 1) pretraining: train a dense model; 2) pruning: prune the dense model
based on certain rules; 3) finetuning: retrain the pruned model to regain performance. Most existing
research focuses on the second step, seeking the best criterion to select unimportant weights so as to
incur as less performance degradation as possible. This 3-step pipeline has been practiced for more
than 30 years (Mozer & Smolensky, 1989; LeCun et al., 1990) and is still extensively adopted in
today’s pruning methods (Sze et al., 2017).

These said, several recent works (Crowley et al., 2018; Liu et al., 2019) questioned the necessity of
inheriting weights from a pretrained model because they empirically found the small model trained
from scratch can match (or sometimes outperform) the counterpart pruned from the pre-trained large
model. This acutely challenges the past wisdom as well as our common belief about pruning. As far
as we know, there is no formal response to this critical conflict. A theoretical-level understanding of
this problem is even more elusive.

Meanwhile, the pruning community has been observing even more open questions. Specifically,
(Renda et al., 2020; Le & Hua, 2021) found that the learning rate (LR) in finetuning holds a critical
role in the final performance. A proper learning rate schedule (e.g., a larger initial LR 10−2 vs. 10−3

with step-decay schedule) can improve the top-1 accuracy of a pruned ResNet-34 model (He et al.,
2016) by more than 1% on ImageNet (Deng et al., 2009). This discovery calls for more attention
being paid to the finetuning step when comparing different pruning methods. Unfortunately, they did
not present more theoretical insights to explain its occurrence. This also remains an open question
in the community up to date.

In this paper, we will show these two open questions actually point to the same one. Specifically, we
rerun the experiments of (Crowley et al., 2018; Liu et al., 2019) and find simply using a larger fine-
tuning LR (10−2 vs. 10−3 and decay it) can significantly improve the final performance. Compared
to the improved pruning performance, training from scratch does not compete or surpass pruning
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anymore (see Tab. 1 and Tab. 2 on ImageNet). This observation invites many questions immediately:
(1) Theoretical understanding: Why does this happen? What is the theoretical reason behind it? (2)
Practical solution: If this is a problem, how to fix it? Can the understanding of this problem lead us
to better pruning algorithms?

This paper will present answers to all these questions. The key tool we employ to unveil the mys-
teries is dynamical isometry (Saxe et al., 2014), which describes a kind of nice property in neural
networks that are easy to optimize. We carefully design an explanatory experiment using a linear
MLP (multi-layer perceptron) network to demonstrate how finetuning LR affects the final perfor-
mance by affecting dynamical isometry. In brief, we observe the finetuning process can recover
dynamical isometry; a larger LR can help recover it faster (or better), hence the better final per-
formance. The proposed explanation is validated by our empirical results and resonates with many
empirical observations. Furthermore, by the explanation, we learn dynamical isometry recovery is
rather imperative. To achieve so, we present a very simple regularization-based method for prun-
ing and show its effectiveness in recovering dynamical isometry on modern residual convolutional
neural networks (CNNs).

Contributions. (1) We empirically demonstrate the questioning about the value of inheriting
weights in structured pruning in previous works is inaccurate and point out that the direct cause
is improperly using a small finetuning LR. Our finding justifies the value of inheriting weights in
structured pruning. (2) On top of the empirical finding, more importantly, we present a theoretical
explanation through examining the dynamical isometry of networks in pruning. This explanation is
empirically validated by our carefully designed control experiments. (3) In addition to the theoreti-
cal understanding, we also propose a regularization-based method for dynamical isometry recovery.
Despite its brutal simplicity, it is shown effective to recover the broken dynamical isometry on mod-
ern residual convolutional neural networks.

2 RELATED WORK

Conventional pruning. Pruning aims to remove as many parameters as possible in a neural network
meanwhile maintaining its performance. There are many ways to categorize pruning methods. The
most popular two are grouping by pruning structure and methodology.

(1) In terms of pruning structure, pruning can be specified into unstructured pruning (Han et al.,
2015; 2016) and structured pruning (Wen et al., 2016; Li et al., 2017; He et al., 2017). For the former,
a single weight is the basic pruning element. Unstructured pruning can deliver a high compression
ratio; whereas, without regularization, the pruned locations usually spread randomly in the network,
which is hard to exploit for acceleration. On the opposite, structured pruning introduces certain
patterns in the pruned locations, which benefit subsequent acceleration while cannot achieve as much
compression. Choices between unstructured and structured pruning depend on specific application
needs. For structured pruning, there are still many sub-groups (Mao et al., 2017). In the literature,
without specific mention, structured pruning means filter pruning or channel pruning. This paper
focuses on structured (filter) pruning because the “no value of inheriting weights” argument is
mainly discussed in this context (Liu et al., 2019).

(2) In terms of pruning methodology (i.e., how to select unimportant weights to prune), pruning falls
into two paradigms in general: importance-based and penalty-based. The former prunes weights
based on some established importance criteria, such as magnitude (for unstructured pruning) (Han
et al., 2015; 2016) or L1-norm (for filter pruning) (Li et al., 2017), saliency based on 2nd-order
gradients (e.g., Hessian or Fisher) (LeCun et al., 1990; Hassibi & Stork, 1993; Theis et al., 2018;
Wang et al., 2019a; Singh & Alistarh, 2020). The latter adds a penalty term to the objective function,
drives unimportant weights towards zero, then removes those with the smallest magnitude. Note,
the two groups are not starkly separated. Many methods take wisdom from both sides. For exam-
ple, (Ding et al., 2018; Wang et al., 2019b; 2021b) select unimportant weights by magnitude (akin
to the first group) while also employing the regularization to penalize weights (akin to the second
group). There is no conclusion about which paradigm is better, yet empirically, the state-of-the-art
pruning methods are closer to the second paradigm, i.e., deciding weights via training instead of
some derived formulas. Although no theories have formally discussed the reason, we can take a
rough guess with the knowledge from this paper: Training can recover dynamical isometry, which
is beneficial to subsequent finetuning.
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For more comprehensive literature, we refer interested readers to several surveys: an outdated
one (Reed, 1993), some recent surveys of pruning alone (Gale et al., 2019; Blalock et al., 2020)
or pruning as a sub-topic under the general umbrella of model compression and acceleration (Sze
et al., 2017; Cheng et al., 2018a;b; Deng et al., 2020).

Pruning at initialization (PaI). Recent years have seen several new pruning paradigms. The most
prominent one is pruning at initialization. Different from the conventional pruning, which prunes a
pretrained model, PaI methods prune a randomly initialized model. Existing PaI approaches mainly
include (Lee et al., 2019; 2020; Wang et al., 2020; Frankle et al., 2021; Ramanujan et al., 2020)
and the series of lottery ticket hypothesis (Frankle & Carbin, 2019; Frankle et al., 2020). Interested
readers may refer to (Wang et al., 2021a) for a comprehensive summary about PaI.

This topic is relevant to this work mainly because one PaI paper (Lee et al., 2020) also examines
pruning using the tool of dynamical isometry. The similarity between our paper and theirs is that we
both employ dynamical isometry as a tool to examine the property of network pruning. However,
our paper is significantly different from theirs in many axes: (1) Basic setting. The most obvious
difference is that we focus on pruning a pretrained model while (Lee et al., 2020) focuses on pruning
at initialization (PaI). They are two different tracks in pruning (as such, PaI methods typically do not
compare with the methods of pruning pretrained models) and the latter was shown to consistently
underperform the former (Frankle et al., 2021; Wang et al., 2021a). (2) Motivation. Despite the
same tool (mean JSV), (Lee et al., 2020) uses it to select unimportant weights to prune (i.e., for a
new pruning criterion), while we use it to analyze why finetuning LR has a significant impact on
final performance. The role of finetuning LR in pruning is not mentioned at all in their paper. (3)
Proposed technical method. (Lee et al., 2020) focuses on unstructured pruning, while we focuses
on structured pruning. This further leads to fundamental difference when designing the dynamical
isometry recovery (DIR) methods – In (Lee et al., 2020), their proposed method is to use iterative
optimization for approximated isometry (due to the irregular sparsity); while in our case, since the
pruned filers can be completely removed from the network, one of our DIR method (OrthP) has
closed-form solution and can achieve exact isometry. (4) Finally, in terms of empirical results, (Lee
et al., 2020) only conducts experiments on MNIST (LeCun et al., 1998) and CIFAR (Krizhevsky,
2009), while we have extensive results on the large-scale ImageNet dataset (Deng et al., 2009).

2.1 EMPIRICAL STUDY: LARGER FINETUNING LR IS CRITICAL

As far as we know, mainly two papers question the value of inheriting weights from a pretrained
model: (Crowley et al., 2018; Liu et al., 2019). Both papers draw two similar conclusions. (1)
Inheriting weights from a pretrained model in pruning has no value, i.e., training from scratch the
small model can match (or outperform sometimes) the counterpart pruned from a big pretrained
model. (2) Given the fact of (1), what really matters in pruning may lie in the pruned architecture
instead of the inherited weight values. As such, both papers propose to view pruning as a form of
neural architecture search (Zoph & Le, 2017; Elsken et al., 2019). In this section, we first reexamine
the empirical studies in (Crowley et al., 2018; Liu et al., 2019) to show that the “no value of inheriting
weights” argument is actually inaccurate owing to improper finetuning LR schedules.

Reexamination of (Liu et al., 2019). Before presenting results, here are some important comparison
setting changes worth particular attention: (1) In (Liu et al., 2019), they compare training from
scratch with six pruning methods (five structured pruning methods (Li et al., 2017; Luo et al., 2017;
Liu et al., 2017; He et al., 2017; Huang & Wang, 2018) and one unstructured pruning method (Han
et al., 2015)). Here, we only focus on the L1-norm pruning (Li et al., 2017) on ImageNet. The
main reason is that, L1-norm pruning is well-known a very basic filter pruning method. If we can
show it outperforms training from scratch already, it will be no surprise to see other more advanced
pruning methods also outperform training from scratch. In this sense, L1-norm pruning is the most
representative method here for our investigation. (2) In (Liu et al., 2019), they have two variants
for the number of epochs in scratch training, “Scratch-E” and “Scratch-B”. For the former, different
small models are trained for a fixed number of epochs; for the latter, smaller models are trained
for more epochs to maintain the same computation budget (Scratch-B was shown to be better than
Scratch-E in (Liu et al., 2019)). Also, they decay LR only to 10−3 following the official PyTorch
ImageNet example1. Here, we simply train all the networks for the same number of epochs but

1https://github.com/pytorch/examples/tree/master/imagenet
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Table 1: Top-1 accuracy comparison of different implementations of the L1-norm pruning (Li et al.,
2017) on ImageNet. We adopt the torchvision models as unpruned models for fair comparison.
ResNet-34-A speedup: 1.18×. ResNet-34-B speedup: 1.32×. The results of (Li et al., 2017) and
(Liu et al., 2019) are directly cited from their papers. The best cases in our training from scratch and
pruning are randomly repeated for 3 times (± indicates stddev) to prevent random variation.

Implementation Unpruned (%) Pruned model Scratch (%) Pruned-Finetuned (%) Finetuning LR schedule

(Li et al., 2017) 73.23
ResNet-34-A (Not reported) 72.56 20 epochs, initial 10−3, fixed
ResNet-34-B (Not reported) 72.17 20 epochs, initial 10−3, fixed

(Liu et al., 2019) 73.31
ResNet-34-A 73.03 72.56 20 epochs, initial 10−3, fixed
ResNet-34-B 72.91 72.29 20 epochs, initial 10−3, fixed

Our rerun 73.31 ResNet-34-A 73.51±0.12

72.91 20 epochs, initial 10−3, fixed
72.94 90 epochs, initial 10−3, fixed
73.88 90 epochs, initial 10−3, decay

73.92±0.03 90 epochs, initial 10−2, decay

Our rerun 73.31 ResNet-34-B 73.16±0.12

72.50 20 epochs, initial 10−3, fixed
72.58 90 epochs, initial 10−3, fixed
73.61 90 epochs, initial 10−3, decay

73.62±0.04 90 epochs, initial 10−2, decay

Table 2: Top-1 accuracy comparison between scratch training (“Scratch”) and L1-norm pruning (Li
et al., 2017) on ImageNet. “PR” means pruning ratio. †We adopt the official torchvision mod-
els as unpruned models. “Finetuned-1” and “Finetuned-2” refers to two finetuning LR schedules
(“Finetuned-1”: 90 epochs, initial 10−3, decay 30/60/75; “Finetuned-2”: 90 epochs, initial 10−2,
decay 45/68). Best results are in bold, second best underlined, each averaged by 3 random runs.

Network PR Params reduc. (%) FLOPs reduc. (%) Scratch (%) Pruned-Finetuned-1 (%) Pruned-Fintuned-2 (%)

ResNet-18

0 0 0 69.76† / /
0.1 9.56 9.58 70.15±0.02 70.43±0.02 70.48±0.10

0.3 28.32 28.18 68.90±0.10 69.29±0.07 69.54±0.09

0.5 47.03 46.20 67.03±0.01 67.36±0.03 67.71±0.05

0.7 65.99 64.93 64.21±0.10 63.72±0.03 64.45±0.04

0.9 84.75 83.52 56.70±0.17 53.49±0.10 55.89±0.11
0.95 89.51 88.03 51.83±0.14 44.46±0.15 49.99±0.10

ResNet-34

0 0 0 73.31† / /
0.1 9.84 9.92 73.53±0.10 73.86±0.05 74.04±0.05

0.3 29.15 29.26 72.50±0.17 73.11±0.06 73.31±0.08

0.5 48.41 48.12 71.27±0.03 71.71±0.06 71.85±0.07

0.7 67.95 67.63 68.69±0.10 68.90±0.08 69.33±0.04

0.9 87.26 86.97 62.08±0.12 60.34±0.03 62.26±0.06

0.95 92.16 91.69 57.21±0.15 52.83±0.11 56.69±0.23

VGG11 BN

0 0 0 70.37† / /
0.1 9.19 17.78 68.51±0.04 71.45±0.07 71.74±0.04

0.3 26.80 47.63 66.60±0.11 70.00±0.03 70.53±0.05

0.5 43.86 70.56 65.85±0.13 67.34±0.05 68.01±0.10

0.7 60.54 87.03 61.56±0.06 62.14±0.09 63.14±0.08

0.9 76.50 96.49 48.34±0.12 45.11±0.07 48.52±0.06

0.95 80.49 97.76 35.47±0.09 33.50±0.10 38.47±0.13

ensure the epochs are abundant (120 epochs) and decay LR to a very small amount (10−5). These
two changes are to make sure the networks are trained to full convergence. As we will show, one
primary cause possibly leading (Liu et al., 2019) to an inaccurate conclusion is exactly that the
pruned networks are not fully converged (see Tab. 1).

With the LR schedule changes, we rerun the experiments using the released code of (Liu et al.,
2019). Results are presented in Tab. 1. In the implementations of (Liu et al., 2019), the finetuned
model is outperformed by the scratch training one, hence their “no value of inheriting weights”
argument. We also reproduce their settings (the two rows of “20 epochs, initial 10−3, fixed” in “Our
rerun”) for confirming their argument. However, the finetuning LR schedule “20 epochs, initial
10−3, fixed” is actually sub-optimal; the network is not fully converged. Using the proper ones (“90
epochs, initial 10−3, decay” or “90 epochs, initial 10−2, decay”), pruning outperforms training from
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scratch for both ResNet-34-A and ResNet-34-B. (We note the pruned models even outperform the
original models. This is probably because pruning reduces the network redundancy, thus curbing
overfitting. This phenomenon is also widely observed in past pruning works (Han et al., 2016; Wen
et al., 2016; He et al., 2017) especially under small pruning ratios as in Tab. 1.)

Tab. 1 only presents two ResNet models and their speedups are actually quite small. To see if the
finetuning LR effect still holds across the full spectrum of pruning ratios and on other types of
networks, we vary the pruning ratios from 0.1 to 0.95 and include experiments on VGG11 BN (Si-
monyan & Zisserman, 2015).

Results are presented in Tab. 2. With a more proper finetune LR scheme (column “Pruned-Fintuned-
2” vs. “Pruned-Fintuned-1”), the performance can be improved significantly. A clear pattern is, the
larger the pruning ratio, the more of the improvement. Now, comparing the results of “Pruned-
Fintuned-2” to those of “Scratch”, we can see pruning outperforms scratch-training in most cases.
Exceptions appear on ResNet-34/18 under extreme pruning ratios (90% and 95%). Despite them,
we believe it is fair to say inheriting weights has value given the fact that 17/20 experiments
in Tabs. 1 and 2 show pruning is better than training from scratch, especially under the prun-
ing ratios of practical interest (i.e., non-extreme pruning ratios). Retrospectively, (Liu et al., 2019)
concluded oppositely because they faithfully re-implemented the L1-norm pruning method just ac-
cording to the description in the original paper (Li et al., 2017): fixed LR 10−3, 20 epochs, which
turns out far from optimal as we know now.

Reexamination of (Crowley et al., 2018). Coincidentally, (Crowley et al., 2018) adopted a very
similar finetuning LR scheme to (Liu et al., 2019): They finetuned the pruned network with the
lowest LR (8 ∗ 10−4, close to 10−3 in (Liu et al., 2019)) during scratch training and also fixed. Like
the empirical study above, we reproduce the experiments of (Crowley et al., 2018) and rerun them
with a larger initial LR (10−2) and decay it during finetuning.

Detailed results are deferred to the Appendix (Tab. 10) due to the limited length here. We summarize
the observation here – Exactly the same as the case in (Liu et al., 2019), when the proper finetuning
LR is used, pruning actually outperforms the best scratch training scheme consistently.

Up to now, the results above have shown that the “no value of inheriting weights” argument in
previous works is largely attributed to sup-optimal finetuning settings. A larger LR (e.g., 10−2) can
significantly improve the finetuning performance than a small one (e.g., 10−3). In fact, we are not the
only one to discover this. Previous works (Renda et al., 2020; Le & Hua, 2021) also reported similar
observation. Nevertheless, they do not link the phenomenon with the “value of inheriting weights”
argument and do not conduct systematical empirical studies as we do here. More importantly, neither
of them presented theoretical explanations about its occurrence – next, we are about to bridge this
gap. We present a faithful theoretical explanation through the lens of dynamical isometry.

3 DYNAMICAL ISOMETRY IS THE KEY

3.1 PREREQUISITE: DYNAMICAL ISOMETRY

Dynamical isometry (DI) is studied under the topic of trainability of deep neural networks. It was
first brought up in (Saxe et al., 2014). Specifically, the dynamical isometry is defined as the singular
values of the Jacobian matrix being around 1 (Saxe et al., 2014). It is easy to see that the networks
with dynamical isometry is easy to train, because JSVs around 1 imply the gradient signals will
not be amplified or attenuated seriously during propagation, preventing the network from gradient
exploding or vanishing, which are well-known the main difficulties in deep network training (Glorot
& Bengio, 2010; Sutskever et al., 2013). For linear networks, dynamical isometry can be achieved
exactly by the orthogonal initialization proposed in (Saxe et al., 2014); while for neural networks
with non-linearity (like ReLU (Nair & Hinton, 2010)) and convolution, it can only be approximated
up to date (see Tab. 3).

Mean Jacobian singular values. Since dynamical isometry is measured by the Jacobian singular
values (JSV’s), we adopt the mean of Jacobian singular values (denoted by S̄) as a scalar metric
for analysis. Specifically, for a Jacobian J ∈ RC×Din (C stands for the output dimension, i.e., the
number of classes, Din for the input dimension), apply singular value decomposition (Trefethen &
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Table 3: JSVs (Jacobian singular values) of orthog-
onal initialization (Saxe et al., 2014) on different
types of neural networks on MNIST dataset. Note,
only the linear MLP network can achieve dynamical
isometry exactly (i.e., all the JSVs equal to 1).

Network Mean JSV Max JSV Min JSV

MLP-7-Linear 1.0000±0.0000 1.0000 1.0000
MLP-7-ReLU 1.2268±0.5519 3.2772 0.2282
LeNet-5-Linear 0.9983±0.0842 1.2330 0.7896
LeNet-5-ReLU 1.8331±0.5731 3.6007 0.6151

0.0 0.2 0.4 0.6 0.8
Pruning ratio

0

2

M
ea

n 
JS

V

MLP-7-Linear
MLP-7-ReLU
LeNet-5-Linear
LeNet-5-ReLU

Figure 1: Mean JSV (Eq. (1)) of pruned net-
works w.r.t. different pruning ratios on the
MNIST dataset. Note, with a larger pruning
ratio, mean JSV is hurt more.

Bau III, 1997) to it,

U,Σ, V = svd(J), S̄ =
1

K

K∑
i=1

Σii, (1)

where Σ is the singular value matrix and K = min(C,Din).

Pruning as poor initialization. We investigate how the pruning affects S̄. The results are shown in
Fig. 1. As seen, the mean JSV is consistently damaged by pruning; and a larger pruning ratio, more
decrease of the mean JSV. This means, pruning actually servers as a very poor initialization scheme
for the subsequent finetuning.

In stark contrast to the broad awareness that initialization is rather critical to neural network train-
ing (Glorot & Bengio, 2010; Sutskever et al., 2013; Mishkin & Matas, 2016; Krähenbühl et al.,
2015; He et al., 2015), the initialization role of pruning has received negligible research attention,
however. As far as we know, no prior works have noted this issue when pruning a pretrained network
or tried to recover the broken dynamical isometry before finetuning.

Simply put, our goal next is to show it is this broken dynamical isometry that answers for the
performance gap between LR 10−2 and 10−3. If dynamical isometry is fully recovered before
finetuning, LR 10−2 vs. 10−3 should not cause significant performance difference anymore. To
validate this explanation, we need a method to fully recover dynamical isometry in filter pruning, as
is introduced next.

3.2 DYNAMICAL ISOMETRY RECOVERY IN FILTER PRUNING

In (Saxe et al., 2014), they propose a weight orthogonalization scheme to achieve dynamical isom-
etry for neural network initialization, namely, the initial weights are randomly sampled. Different
from their case, here the initial weights are inherited from a pretrained model by pruning. Therefore,
we need to adapt it to our application.

For a fully-connected layer parameterized by a matrix W0 ∈ RJ×K (for a convolutional layer param-
eterized by a 4-d tensor of shape RN×C×H×W , it can be reshaped to a matrix of shape RN×CHW ),
it reduces to matrix W of size RJ1×M1 (J1 ≤ J,K1 ≤ K) after structured pruning. Then, we apply
the weight orthogonalization technique (Mezzadri, 2006) based on QR decomposition (Trefethen &
Bau III, 1997) to W ,

Q,R = qrd(W ),

W ∗ = Q� sign(diag(R)),
(2)

where qrd(·) means QR decomposition; Q is an orthogonal matrix of the same size as W (RJ1×K1 );
R is an an upper triangular matrix of size RK1×K1 ; sign(·) is the sign function which returns the
positive or negative sign of its argument;� represents the Hadamard (element-wise) product aligned
to the last axis (since Q and sign(diag(R)) share the same dimension at the last axis).

As an orthogonalized version of W , W ∗ recovers the dynamical isometry damaged by pruning.
Therefore, we propose to employ W ∗ instead of the original W as the initialization weights for later
finetuning. We dub this weight orthogonalization method for pruned models as OrthP. With this
method, we can fully recover broken dynamical isometry and continue our analysis as follows.
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Table 4: Mean JSV of the first 10 epochs under different finetuning settings. Epoch 0 refers to the
model just pruned, before any finetuning. Pruning ratio is 0.9. Note, with OrthP, the mean JSV is 1
because OrthP can achieve exact isometry.

Epoch 0 1 2 3 4 5 6 7 8 9 10
LR=10−2, w/o OrthP 0.0004 0.6557 0.8946 1.0191 0.9826 1.0965 1.1253 1.2595 1.3298 1.2940 1.4238
LR=10−3, w/o OrthP 0.0004 0.0004 0.0006 0.0014 0.1103 0.2765 0.3501 0.4320 0.5167 0.7478 0.8501
LR=10−2, w/ OrthP 1.0000 1.2318 1.4144 1.4277 1.4017 1.4709 1.5171 1.5551 1.6082 1.6538 1.6648
LR=10−3, w/ OrthP 1.0000 1.5135 1.6630 1.7449 1.8250 1.8720 1.9193 1.9556 1.9943 2.0084 2.0409

Table 5: Test accuracy (%) of the first 10 epochs corresponding to Tab. 4 under different finetuning
settings. Epoch 0 refers to the model just pruned, before any finetuning. Pruning ratio is 0.9.

Epoch 0 1 2 3 4 5 6 7 8 9 10
LR=10−2, w/o OrthP 9.74 63.86 79.96 79.74 80.06 85.79 85.82 86.11 86.45 86.53 85.95
LR=10−3, w/o OrthP 9.74 9.74 9.74 12.09 21.74 27.95 33.55 35.92 49.19 65.50 69.90
LR=10−2, w/ OrthP 9.74 91.05 91.39 91.33 91.37 91.74 91.69 90.74 91.39 91.58 91.44
LR=10−3, w/ OrthP 9.74 90.81 91.59 91.77 91.85 92.04 92.12 92.22 92.12 92.33 92.25

3.3 ANALYSIS WITH MLP-7-LINEAR ON MNIST

Evaluated network. The network for analysis is a 7-layer linear MLP. We are aware that this
toy network has little practical meaning, but it is very appropriate here for two reasons. First, as
mentioned above, in our analysis we need a method to recover DI exactly. Up to date, this can
only be achieved on linear networks (see Tab. 3). Second, the linear MLP network is free from
the intervention of modern CNN features (e.g., BN (Ioffe & Szegedy, 2015), residual (He et al.,
2016)). By our observation, these features will make the problem complex and prevent us from
seeing consistent results at the early analysis stage.

LR schedule setup. When we set different LR schedules with different initial LRs, we will (1) keep
the total number of epochs the same, (2) keep the last LR the same, (3) intentionally use prolonged
training epochs (like 90 or even 900 epochs on MNIST dataset. Typically, it only needs 30 epochs to
reach convergence on MNIST). All of these are to ensure the networks are fully converged, helping
us render a faithful conclusion. Step decay LR schedule is employed given its broad use.

Proposed explanation and its deducted hypotheses. We list the first 10-epoch mean JSV and test
accuracy of pruning MLP-7-Linear (at pruning ratio 0.9) under different finetuning setups in Tab. 4
and Tab. 5, respectively. The following observations are worth our attention.

• In Tab. 4, one important fact is that, the mean JSV can recover itself without any extra help
during finetuning, regardless of different setups.

• In Tab. 4, without OrthP, the mean JSV of LR 10−2 arises much faster than that of LR 10−3.
By our analysis in the Appendix (Sec. D), a larger mean JSV implies better dynamical
isometry, which further implies easier optimization. Easier optimization finally leads to the
better test accuracy of LR 10−2 against 10−3 when the training epoch is insufficient, as
shown in Tab. 5.

• In Tab. 4, with OrthP, the broken dynamical isometry is exactly recovered (note at epoch 0,
the mean JSV is 1). Then the accuracy advantage of LR 10−2 over 10−3 is not significant
anymore, e.g., in Tab. 5, at epoch 10, LR 10−2 is better than LR 10−3 by 16.05% without
OrthP; while it is not better (actually worse) than LR 10−3 with OrthP.

• Particularly note how the mean JSV trend in Tab. 4 correlates well with the test accuracy
trend in Tab. 5. This promotes the plausible idea that it is dynamical isometry that answers
for the accuracy gap fundamentally.

These observations inspire us to the following plausible explanation about how a larger finetuning
LR can improve performance significantly:

A larger finetuning LR helps the network update faster, thus the dynamical isometry (measured by
mean JSV) recovers faster (and possibly better), which further leads to faster (and possibly better)
optimization. For deep networks nowadays, better optimization typically implies better generaliza-
tion, thus the larger finetuning LR eventually leads to the better test accuracy as we see.
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Table 6: Summary of finetuning LR setups corresponding to the 4 proposed hypotheses in Sec. 3.3.

Initial LR 10−2 Initial LR 10−3

For Hypothesis 1 90 epochs, Initial 10−2, decay 30/60 90 epochs, Initial 10−3, decay 45
For Hypothesis 2 900 epochs, Initial 10−2, decay 300/600 900 epochs, Initial 10−3, decay 450
For Hypothesis 3 OrthP, 90 epochs, Initial 10−2, decay 30/60 OrthP, 90 epochs, Initial 10−3, decay 45
For Hypothesis 4 OrthP, 900 epochs, Initial 10−2, decay 300/600 OrthP, 900 epochs, Initial 10−3, decay 450

That is, a larger finetuning LR shows performance advantage only if dynamical isometry is broken
by pruning first. If dynamical isometry is fully recovered before finetuning, a larger LR should not
pose performance advantage anymore. The validation of this explanation can be specified into the
following 4 deducted hypotheses:

• Hypothesis 1: Given a small number of epochs, mean JSV cannot be fully recovered by
training, then the larger LR should show a significant advantage over the smaller LR.

• Hypothesis 2: With sufficient training epochs, mean JSV can be fully recovered by train-
ing. Then the larger LR should have less advantage over the smaller LR.

• Hypothesis 3: If we employ OrthP to exactly recover the mean JSV, given the small number
of epochs again, the larger LR should have much less advantage now.

• Hypothesis 4: If we combine abundant epochs with OrthP, mean JSV will be recovered
even completely, then the performance advantage of the larger LR over the smaller one
should be even weaker.

Corresponding to these four hypotheses, the eight finetuning LR settings are summarized in Tab. 15.
The unpruned MLP model is trained with LR schedule “90 epochs, initial 10−2, decay 30/60”. For
filter pruning, we employ L1-norm pruning (Li et al., 2017) throughout this paper. Specifically, it
sorts the neurons (or filters) by their L1 norms in ascending order and prunes those with the least
norms by a predefined pruning ratio r.

The final accuracy results are shown in Tab. 7. We first analyze the results of pruning ratio 0.8 in
Tab. 7. As seen, when finetuned for 90 epochs, LR 10−2 shows an advantage over LR 10−3 by
0.82% accuracy. It is tempting to draw a conclusion based on this comparison that LR 10−2 is much
better than LR 10−3. However, this is not the whole story:

• With 900 epochs, LR 10−2 is greatly surpassed by LR 10−3 (91.64 vs. 92.54). The reason
by our proposed explanation is that, with abundant epochs, the dynamical isometry can be
recovered more completely, hence LR 10−2 does not show advantages anymore over 10−3.

• When OrthP applied, LR 10−2 does not show significant advantages either, similar to the
effect of increasing the number of training epochs. This is because that finetuning shares
the same role of recovering dynamical isometry with OrthP. Just OrthP is more effective
since it is analytically targeting exact dynamical isometry.

• When the best setting used (OrthP + 900 epochs), LR 10−3 is slightly better than 10−2.
Comparing “OrthP, 900 epochs” with “OrthP, 90 epochs”, the gains are only marginal.
This is because the dynamical isometry has already been fully recovered by OrthP, thus
more training epochs do not show much value anymore.

A different pruning ratio 0.9 is also explored. Its results are in line with those of pruning ratio 0.8
as shown in Tab. 7. In short, these empirical observations are fully in line with our expectations,
justifying the validity of the proposed explanation.

Explaining LR effect on ImageNet. In Tab. 2, there is an apparent trend that the larger pruning
ratio, the more performance advantage of LR 10−2 over 10−3 (this also appears on CIFAR10 dataset,
see Tab. 8). Using our explanation, this phenomenon can also be explained now – When the pruning
ratio is greater, more dynamical isometry is damaged. LR 10−2 can find more use in these cases
since it is faster/better to recover dynamical isometry, hence the more pronounced advantage.

A closer look and more lessons. In the ResNet34 results above (Tab. 1) reported by (Li et al., 2017)
and (Liu et al., 2019)), it is still easy to notice their finetuning LR schedule may be sub-optimal given
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Table 7: Test accuracies (%) of the 4 hypotheses in Tab. 15 with MLP-7-Linear network on MNIST.
Accuracy of unpruned model: 92.77%. Each setting is randomly run 5 times, mean accuracy and
stddev reported. “Acc. gain” refers to the mean accuracy improvement of LR 10−2 over 10−3.
Hyper-parameters: batch size 100, SGD optimizer, weight decay 0.0001, LR schedule: initial LR
0.01, decayed at epoch 30 and 60 by factor 0.1, total epochs: 90. The LR schedule is used for both
scratch training and finetuning.

Finetuning setting Pruning ratio 80% Pruning ratio 90%

LR 10−3 LR 10−2 Acc. gain LR 10−3 LR 10−2 Acc. gain

90 epochs 90.54±0.02 91.36±0.02 0.82 87.59±0.01 87.81±0.03 0.22
900 epochs 92.54±0.03 91.64±0.41 −0.90 90.44±0.01 87.83±0.04 −2.61
OrthP, 90 epochs 92.77±0.03 92.79±0.03 0.02 92.72±0.03 92.77±0.04 0.05
OrthP, 900 epochs 92.84±0.03 92.81±0.04 −0.03 92.86±0.03 92.79±0.03 −0.07
Scratch (Kaiming uniform) 92.60±0.14 91.48±0.23
Scratch (Orthogonal init) 92.76±0.03 92.76±0.04

their finetuning process (20 epochs) is obviously shorter than training from scratch (90 epochs). For
Tab. 7, quite differently, the “90 epochs” finetuning setting appears nothing wrong (considering the
unpruned network is trained for 90 epochs, finetuning for 90 epochs is not short; besides, the LR
is also decayed to a very small amount). However, the results of this setting actually lead us to a
partial conclusion that the larger LR is better than the smaller LR. This particular example shows
how misleading the comparison results can be, even though they look perfectly fair, if we are not
aware of the effect of dynamical isometry in structured pruning.

4 DYNAMICAL ISOMETRY RECOVERY (DIR)

By our analysis above, dynamical isometry recovery before finetuning is rather important. An effec-
tive dynamical isometry recovery method is supposed to (1) close up the performance gap between
finetuning LR 10−2 and 10−3, (2) improve the final performance (otherwise, there is no point using
it at all). As shown in Tab. 7, the proposed OrthP method for linear MLP networks can meet these
two requirements; and since it recovers DI exactly, it actually completely closes the performance
gap between finetuning LR 10−2 and 10−3. Unfortunately, this method does not generalize to more
practical non-linear convolutional neural networks, as shown in Tab. 8, where using OrthP degrades
the final performance. As a remedy, in this section we introduce a very simple regularization-based
method that can work on practical CNNs.

Strong L2 regularization as a drop-in remedy. In a typical structured pruning algorithm, unim-
portant filters are selected by some criterion. Then they are removed (zeroed out), followed by a
finetuning process. We propose to apply a super strong L2 regularization (e.g., regularization factor
equals to 1) to push the unimportant filters to rather close to zero first, before permanently removing
them. This simple technique can readily work as a drop-in step into any structured pruning algorithm
and it is very easy to implement on any deep learning framework.

In Appendix (Sec. E), we provide more explanation regarding how StrongReg is related to dynamical
isometry.

Results in Tab. 8 demonstrate the effectiveness of this simple technique on ResNet56. It improves
the final pruning performance and also shrinks the performance gap between finetuning LR 10−2

and 10−3 (especially when the pruning ratio is large), meeting the two requirements above. We
are aware that this technique is preceded by several variants in the past literature (e.g., GReg-1 in
(Wang et al., 2021b)), but they do not link their method with dynamical isometry recovery as we do
here. Also, our technique is even simpler than theirs – in (Wang et al., 2021b), L2 regularization is
increased gradually to a very strong level, while here we use a fixed strong regularization, which
probably is the simplest form of utilizing a strong regularization.

5 RECTIFIED ARGUMENT ON VALUE OF PRUNING

When addressing concerns from the reviewers, we find a phenomenon against our “pruning has
value” argument. Specifically, in Tab. 7, we provide the scratch training results with two random
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Table 8: Test accuracies (%) of pruning ResNet56 on CIFAR10. Unpruned accuracy: 93.78%. Each
setting is randomly run 3 times. “Acc. gain” means the accuracy gain of initial LR 10−2 over 10−3.

Pruning ratio r 0.5 0.7 0.9 0.95
Sparsity/Speedup 49.82%/1.99× 70.57%/3.59× 90.39%/11.41× 95.19%/19.31×

Finetuning LR schedule: 120 epochs, initial 10−2, decay 60/90
Train from scratch 92.78±0.23 92.11±0.12 88.36±0.20 84.60±0.14
L1 (Li et al., 2017) 93.51±0.07 92.26±0.17 88.71±0.15 84.63±0.28
L1 + OrthP 93.36±0.19 91.96±0.06 86.01±0.34 82.62±0.05
StrongReg 93.55±0.06 92.38±0.09 89.24±0.16 85.90±0.19

Finetuning LR schedule: 120 epochs, initial 10−3, decay 80
L1 (Li et al., 2017) 93.12±0.10 91.77±0.11 87.57±0.09 83.10±0.12
StrongReg 93.44±0.06 91.96±0.11 88.69±0.19 85.45±0.25

Acc. gain. (L1) 0.39 0.49 1.14 1.53
Acc. gain. (StrongReg) 0.11 0.42 0.55 0.45

initialization schemes, kaiming uniform and orthogonal initialization. The former is the default
PyTorch initialization scheme for convolutional and linear layers2; the latter is proposed by Saxe
et al. (2014) which can achieve exact isometry. The problem is, the best pruning results in Tab. 7
using OrthP are generally on par with the scratch training results using orthogonal initialization.
Namely, pruning is shown no value therein. How should we respond to this observation against our
prior claim and how does it affect our conclusions?

We present another set of results – We use MLP-7-ReLU as evaluation network instead of MLP-7-
Linear above. Clearly, here we want to see if the non-linearity can make any difference. Results
are shown in Tab. 9, where the dynamical isometry recovery method is changed from OrthP to
StrongReg because OrthP is proposed for linear MLP networks while here the MLP is non-linear.

Table 9: Test accuracies (%) of L1-norm pruning with MLP-7-ReLU network on MNIST. Accuracy
of unpruned model: 98.16%. Each setting is randomly run 5 times, mean accuracy and stddev
reported. Hyper-parameters: batch size 100, SGD optimizer, weight decay 0.0001, LR schedule:
initial LR 0.01, decayed at epoch 30 and 60 by factor 0.1, total epochs: 90. The LR schedule is used
for both scratch training and finetuning.

Finetuning setting Pruning ratio 80% Pruning ratio 90%

LR 10−2, 90 epochs 96.75±0.09 94.76±0.15
LR 10−2, StrongReg, 90 epochs 96.98±0.04 95.10±0.13
Scratch (Kaiming uniform) 96.60±0.16 94.64±0.24
Scratch (Orthogonal init) 96.52±0.17 92.56±1.90

As seen, now, either using kaiming uniform or orthogonal initialization, pruning is consistently
better than scratch training by a fair margin. The advantage is amplified when using StrongReg.

Then, a worthy question here is: Why on the MLP-7-Linear, pruning is not better than orthog-
onal initialization, while on MLP-7-ReLU, it is?

This is actually straightforward to see if we see pruning as a kind of initialization. As mentioned
above, on linear MLP networks, orthogonal initialization is proven to be the optimal in the sense
of exact isometry. That is, no other initialization can be better. Pruning is essentially also a kind
of initialization for the subsequent fine-tuning, so not surprisingly, it cannot beat the (optimal) or-
thogonal initialization, hence no value. However, when it comes to the MLP-7-ReLU network,
orthogonal initialization is no longer optimal (as mentioned, there has been no method up to date
that can achieve exact isometry for non-linear networks). Then, it is likely that pruning provides
better initialization weights than orthogonal initialization or kaiming uniform. It just turns out that
pruning really achieves this, and archives more with the help of StrongReg.

There are at least 3 key takeaways from the above toy but inspiring comparisons:

2https://github.com/pytorch/pytorch/blob/68d8ab0cc60536db5a9af4c08ff39e43b252802f/torch/nn/modules/linear.py#L96
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• First, the comparison above shows that whether pruning has value seriously hinges on the
network type, initialization scheme, and pruning ratios (and maybe more). Looking at
pruning as a kind of initialization as we do in this paper (and examine it through the lens
of dynamical isometry) is actually a pretty good perspective, from which many results that
appear inconsistent or random start to be explainable and logically consistent.

• Second, pruning shows the value in the non-linear case, but no value in the linear case. On
the whole, we believe it is fair to say pruning has value considering the non-linear case is
more practical.

• Third, more profoundly, the above results actually suggest, if dynamical isometry is fully
recovered, pruning will (probably) have no value indeed because it cannot beat the initial-
ization scheme that can achieve exact isometry. Acquired with this knowledge, we update
our prior “pruning has value” argument to a more rigorous one: “pruning has the poten-
tial to be valuable if the random initialization of scratch training cannot achieve exact
isometry”. Practically, up to date, for non-linear networks (not to mention BN, residuals,
convolution), there has been no such method that can achieve exact isometry. Thus, it is
still likely for pruning to be valuable at present.

6 CONCLUSION

In this work, we present extensive empirical evidences to show the “no value of inheriting weights”
argument in prior works is inaccurate because of improper finetuning LR schedules. We further
tap into dynamical isometry to explain why the finetuning LR has such a great impact on the final
performance, through carefully designed control experiments with 4 hypotheses. We show whether
pruning has value seriously depends on the context (e.g., network type, random initialization scheme,
pruning ratio). Looking at pruning as a kind of initialization is a favorable perspective that can make
seemingly inconsistent and random results become predictable and coherent. For practically amend-
ing the broken dynamical isometry, we also present a rather simple regularization-based technique
that works effectively on residual convolutional networks.

The finding of dynamical isometry in structured pruning in this paper justifies the value of inheriting
weights, in line with the past research wisdom and our common beliefs. It also helps us towards
a better understanding of pruning and possibly can inspire more advanced pruning algorithms as
dynamical isometry recovery has been shown a worthy direction in the paper. In addition, the
awareness of dynamical isometry in structured pruning can help us render a more faithful conclusion
when comparing different pruning methods.
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A RESULTS OF REEXAMINATION OF (CROWLEY ET AL., 2018)

Table 10: Test accuracy comparison between 2 pruning schemes and 4 scratch training schemes
in (Crowley et al., 2018). Network: WRN-40-2 (unpruned accuracy: 95.08%, params: 2.24M).
Dataset: CIFAR-10. Results above the dashline are directly cited from (Crowley et al., 2018);
results below the dashline are from our reproducing (with the official code of (Crowley et al., 2018)
at https://github.com/BayesWatch/pytorch-prunes for fair comparison). “Rerun” means we rerun the
code of (Crowley et al., 2018) as it is. “LR 10−2” means we redo the finetuing for the pruned models
in “Rerun” using our finetuning LR schedule (120 epochs, initial 10−2, decay 60/90). Finetuning
is randomly repeated for 3 times, mean (stddev) accuracies reported. The main point here is that
(Crowley et al., 2018) draws the conclusion that scratch training is better than pruning because of an
improper finetuning LR scheme. With the proper finetuning LR scheme, pruning is actually better
than scratch training.

Method Scratch? 500K params budget 1M params budget 1.5M params budget
Params (M) Acc. (%) Params (M) Acc. (%) Params (M) Acc. (%)

L1-norm pruning (Li et al., 2017) 7 0.51 90.86 1.02 92.61 1.52 93.63
Fisher pruning (Theis et al., 2018) 7 0.52 92.59 1.02 93.51 1.52 94.51
Varying Depth 3 0.69 93.56 1.08 94.54 1.47 94.64
Varying Width 3 0.50 93.45 0.98 94.30 1.48 94.66
Varying Bottleneck 3 0.50 93.69 1.00 94.40 1.49 94.79
Fisher Scratch 3 0.52 93.72 1.02 94.65 1.52 94.86
L1-norm pruning (Li et al., 2017) (Rerun) 7 0.50 91.23 1.00 92.80 1.51 93.52
L1-norm pruning (Li et al., 2017) (LR 10−2) 7 0.50 93.88 (0.10) 1.00 94.49 (0.10) 1.51 94.92 (0.16)
Fisher pruning (Theis et al., 2018) (Rerun) 7 0.52 92.17 0.98 93.57 1.48 94.67
Fisher pruning (Theis et al., 2018) (LR 10−2) 7 0.52 94.27 (0.09) 0.98 94.80 (0.02) 1.48 95.10 (0.13)

B TRAINING SETTING SUMMARY

There are three datasets in our experiments in the paper: MNIST, CIFAR10, and ImageNet. Apart
from some key settings stated in the paper, a more detailed training setting summary is shown as
Tab. 11. We use 8 NVIDIA V100 GPUs for all our experiments.

Table 11: Training setting summary in finetuning. For the SGD solver, in the parentheses are the
momentum and weight decay.

Dataset MNIST CIFAR10 ImageNet
Solver SGD (0.9, 1e-4) SGD (0.9, 5e-4) SGD (0.9, 1e-4)

LR schedule (Initial 1e-2) Multi-step (decay 30/60) Multi-step (decay 60/90) Multi-step (decay 30/60/75)
LR schedule (Initial 1e-3) Multi-step (decay 45) Multi-step (decay 80) Multi-step (decay 45/68)

Total epoch 90 120 90
Batch size 100 128 256

Data augmentation None Random crop and horizontal flip Random crop and horizontal flip

A typical finetuning LR schedule looks like this in our paper: “90 epochs, initial 10−2, decay 30/60”.
Its meaning is: the total number of training epochs is 90; initial LR is 10−2; at epoch 30 and 60, LR
is multiplied by a default factor 0.1. The others can be inferred likewise.

C WHY OUR REPRODUCED RESULTS ARE BETTER THAN (LIU ET AL., 2019)

In Tab. 1, we present the results of ResNet34 on ImageNet, pruned by the L1-norm pruning
method (Li et al., 2017). Readers may be curious that why our scratch-training results are much
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Figure 2: Mean JSV and test accuracy during finetuning with different setups. Note that with OrthP
(c, d), mean JSV recovers faster; so does the test accuracy. The pruning ratio in this case is 0.9.
(This figure is best viewed in color).

higher than those of Rethinking (Liu et al., 2019) (by 0.4-0.6%). This has a historical reason. (Liu
et al., 2019)3 refers to the official PyTorch ImageNet example4, where the LR is only decayed twice
(from 1e-1 to 1e-2, then to 1e-3). However, by our empirical observation, 1e-3 is still not the lowest
LR that the network converges. If the LR is decayed another time (to 1e-4), the top-1 accuracy
can still bump by round 0.5-0.8% point, which is a significant improvement for ImageNet thus not
negligible. Therefore, we choose to decay the LR further to 1e-4 and finally to 1e-5 to ensure the
network is fully converged. This reiterates the comparison rule of our paper: comparing different
methods in their best shape. Comparing scratch training to L1-norm pruning before the finetuned
network finally converges may appear fair (given the same number of epochs) but is of less practical
meaning and may hide the true picture.

D HOW TO Properly LOOK AT THE MEAN JSV METRIC FOR DYNAMICAL
ISOMETRY

In the main paper, we use mean JSV as the metric to measure dynamical isometry, for the following
3 specific reasons: (1) It was used by Lee et al. (2020), which analyzes the dynamical isometry
for randomly initialized network. Given its success there, it is very natural for us to also employ
this metric for analyzing pretrained networks here. (2) We currently do not have a better alternative,
either. (3) In practice, we find mean JSV is informative (e.g., in Tab. 7, the mean JSV trend is
well-correlated with the test accuracy trend), as long as we see it properly.

This section is meant to provide more background regarding how to look at the mean JSV for dy-
namical isometry properly. It is not a new invention of our paper but a general practical guideline
about the relationship between mean JSV and dynamical isometry in order to help readers better
understand our paper.

DI (dynamical isometry) is defined by mean JSV close to 1 in Saxe et al. (2014). Rigorously, in Saxe
et al. (2014), DI describes the distribution of all JSVs. Mean JSV is only an average sketch of the
distribution. Nevertheless, this average approximation is accurate enough for analysis. In other
words, if a network has mean JSV close to 1, we can say this network has dynamical isometry.

Then, a non-trivial technical question is: When we deal with practical DNNs in the real world,
how close is the so-called “close to 1”? To our best knowledge, there is no outstanding theory to
quantify this, so we resort to empirical analysis, specifically on the MLP-7-Linear network used in
the main paper.

As seen, there is a clear trend in Tab. 12: larger pruning ratio, smaller mean JSV, and lower test
accuracy (either before or after finetuning).

Particularly note the mean JSV range where the pruned network can be finetuned back to the original
accuracy (92.77%), which is >= 0.0151. This means, for networks with mean JSV greater than

3https://github.com/Eric-mingjie/rethinking-network-pruning/tree/master/imagenet/l1-norm-pruning
4https://github.com/pytorch/examples/tree/master/imagenet
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Table 12: Mean JSV and test accuracies (%) of MLP-7-Linear on MNIST under different pruning
ratios. Each result is randomly run for 3 times. We report the mean accuracy and (std). “ft.” is short
for finetuning.

Pruning ratio 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

mean JSV 2.4987 1.7132 0.9993 0.5325 0.2711 0.1180 0.0452 0.0151 0.0040 0.0004
Acc. before ft. 92.77 91.35 78.88 62.21 32.14 11.47 9.74 9.74 9.74 9.74
Acc. after ft. / 92.82 (0.05) 92.80 (0.04) 92.80 (0.01) 92.77 (0.01) 92.77 (0.02) 92.77 (0.00) 92.78 (0.02) 91.37 (0.03) 87.82 (0.03)

0.0151, in spite that their immediate accuracies (without finetuning) can be distinct (e.g., 91.35% at
PR 0.1 vs. 9.74% at PR 0.7), intrinsically, they are equivalently potential after finetuning.

DI theory suggests that mean JSV equal to 1 is the best case. Then we would ask, how about mean
JSV equal to 2? 1.5? 0.8? Are they really worse than the ideal value 1? Tab. 12 above shows
not necessarily, because a network with mean JSV 0.2711 can reach comparable accuracy to the
network with mean JSV 1. Only when the mean JSV is smaller than some threshold (in this case,
0.0151), it leads to an irrecoverable damage to the network optimization, which eventually results
in lower generalization ability (i.e., test accuracy).

By this “trainable with equivalent potential” rule, if a mean JSV lies in the range of >= 0.0151,
we can regard it as “close to 1” because they can do just as well as 1.

Here, we only mention the lower bound, how about the upper bound? Can mean JSV 10, 000 also
be regarded as “close to 1”? This is a good question worth further dedicated investigation. Yet, for
now, we do not need to worry much about it, because in practice, a normally trained network rarely
presents a very large mean JSV by our empirical observation, but is quite likely to have a very small
mean JSV (0.0004 at pruning ratio 0.9 in Tab. 12 is a concrete example).

E HOW STRONGREG IS RELATED TO DYNAMICAL ISOMETRY

The intuition behind StrongReg. Dynamical isometry describes a nice state of the network that
signals can propagate through it without serious magnitude explosion or attenuation. Since the
weights in a network are dependent on each other, removing some of them will definitely hurt the
isometry because it is based upon all the weights. When we use a strong regularization to push these
unimportant parameters to zero, it explicitly makes the other parameters learn to not rely on them,
that is, encouraging the gradients not to pass through these weights/neurons because they are going
to be cleaned out. This way, when the unimportant parameters are physically removed, it will incur
much less damage to the left parameters, thus maintaining the network dynamical isometry well.

StrongReg works by improving dynamical isometry. Here we apply StrongReg to pruning the
MLP-7-Linear network at pruning ratio 0.8 and 0.9.

Table 13: Test accuracies (%) of applying StrongReg to pruning MLP-7-Linear network on MNIST.
Accuracy of unpruned model: 92.77%. Each setting is randomly run 5 times, mean accuracy and
stddev reported. “Acc. gain” refers to the mean accuracy improvement of LR 10−2 over 10−3.
Hyper-parameters: batch size 100, SGD optimizer, weight decay 0.0001, LR schedule: initial LR
0.01, decayed at epoch 30 and 60 by factor 0.1, total epochs: 90. The LR schedule is used for both
scratch training and finetuning.

Finetuning setting Pruning ratio 80% Pruning ratio 90%

LR 10−3 LR 10−2 Acc. gain LR 10−3 LR 10−2 Acc. gain

90 epochs 90.54±0.02 91.36±0.02 0.82 87.59±0.01 87.81±0.03 0.22
OrthP, 90 epochs 92.77±0.03 92.79±0.03 0.02 92.72±0.03 92.77±0.04 0.05
StrongReg, 90 epochs 92.80±0.04 92.80±0.02 0.00 92.48±0.02 92.52±0.04 0.04

As seen in Tab. 13, (1) similar to OrthP, StrongReg can rectify the test accuracy from the under-
rated ones to 92.48 ∼ 92.80, close to the best possible performance (around 92.77); (2) StrongReg
can close the performance gap between LR 10−3 and 10−2, just like OrthP. In short, in terms of
performance, StrongReg behaves very similarly to OrthP.
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To further show StrongReg really works by maintaining dynamical isometry, like Tab. 4 and Tab. 5
above, we list the first 10-epoch mean JSV and test accuracies (at PR 0.9) and get the following
summarized results:

Table 14: Mean JSV of the first 10 epochs under different finetuning settings. Epoch 0 refers to the
model just pruned, before any finetuning. Pruning ratio is 0.9. Note, with OrthP, the mean JSV is 1
because OrthP can achieve exact isometry.

Epoch 0 1 2 3 4 5 6 7 8 9 10
LR=10−2, w/o OrthP 0.0004 0.6557 0.8946 1.0191 0.9826 1.0965 1.1253 1.2595 1.3298 1.2940 1.4238
LR=10−3, w/o OrthP 0.0004 0.0004 0.0006 0.0014 0.1103 0.2765 0.3501 0.4320 0.5167 0.7478 0.8501
LR=10−2, w/ OrthP 1.0000 1.2318 1.4144 1.4277 1.4017 1.4709 1.5171 1.5551 1.6082 1.6538 1.6648
LR=10−3, w/ OrthP 1.0000 1.5135 1.6630 1.7449 1.8250 1.8720 1.9193 1.9556 1.9943 2.0084 2.0409
LR=10−2, w/ StrongReg 3.0275 2.1538 2.0390 1.0191 1.9696 2.1011 1.9734 2.0810 2.0541 2.0563 2.0581
LR=10−3, w/ StrongReg 3.0275 2.9691 2.9514 2.9921 2.9869 3.0101 3.0448 3.0516 3.0555 3.0441 3.0244

Table 15: Test accuracy (%) of the first 10 epochs corresponding to Tab. 14 under different finetuning
settings. Epoch 0 refers to the model just pruned, before any finetuning. Pruning ratio is 0.9.

Epoch 0 1 2 3 4 5 6 7 8 9 10
LR=10−2, w/o OrthP 9.74 63.86 79.96 79.74 80.06 85.79 85.82 86.11 86.45 86.53 85.95
LR=10−3, w/o OrthP 9.74 9.74 9.74 12.09 21.74 27.95 33.55 35.92 49.19 65.50 69.90
LR=10−2, w/ OrthP 9.74 91.05 91.39 91.33 91.37 91.74 91.69 90.74 91.39 91.58 91.44
LR=10−3, w/ OrthP 9.74 90.81 91.59 91.77 91.85 92.04 92.12 92.22 92.12 92.33 92.25
LR=10−2, w/ StrongReg 89.13 91.68 91.11 91.37 91.84 91.47 90.11 91.32 90.78 91.55 91.29
LR=10−3, w/ StrongReg 89.13 92.03 91.84 92.13 92.05 91.85 92.00 92.02 92.09 92.08 92.08

(1) First, in Tab. 14, at epoch 0, the mean JSV is around 3 (which can be considered close to the exact
isometry 1, by our analysis in Sec. D) vs. 0.0004 when the dynamical isometry is not recovered. (2)
Second, the test accuracy also has a high starting point: at epoch 1, using StrongReg achieves 91.68
(LR 10−2) and 92.03 (LR 10−3) vs. 63.86 (LR 10−2) and 9.74 (LR 10−3) when the dynamical
isometry is not recovered.

Particularly note StrongReg can achieve similar mean JSV and test accuracy to OrthP, showing that
StrongReg works by maintaining dynamical isometry, as OrthP does.
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