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ABSTRACT

We have been witnessing remarkable success led by the power of neural networks
driven by a significant scale of training data in handling various computer vision
tasks. However, less attention has been paid to monitoring the camouflaged an-
imals, the masters of hiding themselves in the background. Robust and precise
segmentation of camouflaged animals is challenging even for domain experts due
to their similarity to the environment. Although several efforts have been made
in camouflaged animal image segmentation, to the best of our knowledge, limited
work exists on camouflaged animal video understanding (CAVU). Biologists of-
ten prefer videos for monitoring and understanding animal behaviors, as videos
provide redundant information and temporal consistency. However, the scarcity of
labeled video data significantly hinders progress in this area. To address these chal-
lenges, we present CamoVid60K, a diverse, large-scale, and accurately annotated
video dataset of camouflaged animals. This dataset comprises 218 videos with
62,774 finely annotated frames, covering 70 animal categories, which surpasses all
previous datasets in terms of the number of videos/frames and species included.
CamoVid60K also offers more diverse downstream tasks in computer vision, such
as camouflaged animal classification, detection, and task-specific segmentation
(semantic, referring, motion), etc. We have benchmarked several state-of-the-art
algorithms on the proposed CamoVid60K dataset, and the experimental results
provide valuable insights for future research directions. Our dataset serves as a
novel and challenging benchmark to stimulate the development of more powerful
camouflaged animal video segmentation algorithms, with substantial room for
further improvement.

1 INTRODUCTION

The continuous evolution of neural networks (e.g., Convolutional Neural Networks (CNNs) (He
et al., 2016) and Vision Transformers (ViTs) (Dosovitskiy et al., 2020)) has provided powerful and
efficient tools for visual understanding based on captured images and videos. Enhancements in both
data and algorithm have led to significant progress and success in the field. Large-scale datasets
(e.g., COCO (Lin et al., 2014), ADE20K (Zhou et al., 2017) and Object365 (Shao et al., 2019))
with supervised annotations serve as essential stimuli for developing powerful visual perception
algorithms (Xie et al., 2022) and benchmarking them to reveal future research directions. However,
most existing datasets mainly contain everyday objects (e.g., 80 categories in COCO). This work
focuses on camouflaged animals, a less explored area of research. In addition, monitoring and
understanding camouflaged animals is crucial for biodiversity conservation (Rands et al., 2010; Soofi
et al., 2022), as it helps protect species that are otherwise difficult to detect and are at risk of unnoticed
population declines. Furthermore, studying camouflaged animals provides insights into evolutionary
biology and adaptation mechanisms, enriching our scientific understanding of natural selection.

However, unlike everyday objects, collecting images and videos of camouflaged animals is more
challenging, and annotation procedures usually involve domain experts. Segmentation, which involves
generating precise masks for objects of interest, is a fundamental task in computer vision. Camou-
flaged animal segmentation helps accurately identify and isolate these animals from their backgrounds
in images, facilitating detailed study and analysis. The resulting masks aid in gathering precise data
on their behavior, habitat, and population dynamics, enhancing our overall understanding of their
ecology (Troscianko et al., 2017; Lv et al., 2021). Recently, several efforts Xie et al. (2022); Cheng
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Table 1: Comparison with existing video animal datasets. Class.: Classification Label, B.Box: Bound-
ing Box, Motion: Motion of Animal, Pseudo OF: Pseudo-label Optical Flow, Expres.: Referring
Expression. Note that, MVK Truong et al. (2023) dataset mostly consists of normal marine animals
with only some camouflaged animals. The frequency of annotations refers to how often each frame
is annotated. For instance, MoCA-Mask provides annotations for every 5 frames, resulting in only
4,691 annotated frames of 22,939 frames. In contrast, our CamoVid60K dataset offers a significantly
larger volume of data with more frequent annotations and a wider variety of annotation types.

Dataset Venue # videos / frames # species Frequency Class. B.Box Mask Motion Pseudo OF Expres.

CAD ECCV’16 9 / 839 6 every 5 frames ✓ ✓

MoCA ACCV’20 141 / 37,250 67 every frames ✓ ✓ ✓

MoCA-Mask CVPR’22 87 / 22,939 44 every 5 frames ✓ ✓

MVK MMM’23 1379 / ∼ 992,880 - every 30 frames ✓ ✓

CamoVid60K - 218 / 62,774 70 every frames ✓ ✓ ✓ ✓ ✓ ✓

et al. (2022b); Lamdouar et al. (2023); Vu et al. (2023) have been made to perform camouflaged
animal segmentation. Specifically, camouflage is a powerful biological mechanism for avoiding
detection and identification, making it more challenging to achieve precise segmentation.

Various datasets (e.g., CAMO-COCO Le et al. (2019), COD10K Fan et al. (2022), CAM-LDR Lv
et al. (2023), S-COD He et al. (2023b)) have been collected for image-level camouflaged animal
segmentation. However, image-level camouflaged animal segmentation cannot fully satisfy biological
monitoring and surveying purposes, where the activity and behavior (Yang et al., 2021) should
be recorded. For video level, the MoCA dataset Lamdouar et al. (2020) is the most extensive
compilation of videos featuring camouflaged objects, yet it only provides detection labels. We argue
that bounding box annotations alone cannot adequately delineate camouflaged animals, especially
those with irregular boundaries, poses, and patterns (e.g., the transparent fins of fish). Furthermore,
despite the shift from images to videos, the data annotations remain insufficient in both volume
and accuracy for developing a reliable video understanding model capable of effectively handling
complex camouflaged situations.

To fill this gap and advance camouflaged animal video understanding (CAVU) in real-world scenarios,
we present CamoVid60K, a comprehensive video dataset dedicated to studying camouflaged animals.
It comprises 218 videos with 62,774 finely annotated frames, covering 70 animal categories. Table 1
compares our proposed dataset with previous ones (CAD (Pia Bideau, 2016), MoCA (Lamdouar et al.,
2020), MoCA-Mask (Cheng et al., 2022b), MVK (Truong et al., 2023)), showing that CamoVid60K
surpasses all previous datasets in terms of the number of videos, frames, and species included. Unlike
previous datasets that annotated every 5 frames, our dataset offers annotations for every single frame.
Additionally, we provide a wider variety of annotation types (animal categories, bounding boxes,
annotated masks, pseudo-label optical flow, referring expressions), making it a more effective
benchmark for CAVU tasks. Our dataset supports a broad range of downstream tasks, as shown
in Figure 1, including classification, detection, segmentation (semantic, referring, motion), and optical
flow estimation, etc.

We propose baselines for each task and corresponding benchmarks to explore the capabilities of
advanced algorithms in performing robust and precise video understanding. Our CamoVid60K serves
as a novel and important testing set for both the computer vision and wildlife research communities.

Our main contributions are summarized as follows:

• We present a large-scale and comprehensive video dataset dedicated to the understanding of
camouflaged animals, featuring significantly more data and annotation types than existing datasets.

• We propose a simple pipeline for camouflaged animal detection and segmentation that achieves
performance comparable to state-of-the-art methods.

• We benchmark various camouflaged animal video understanding tasks, including image classifica-
tion, object detection, and motion segmentation using several state-of-the-art models.
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Frames B.Box and Mask Opt. Flow Expressions

There is a flounder moving around

A flounder is blending into the sand

A flounder is swimming to the left

Figure 1: Example from our proposed CamoVid60K dataset with bounding box, mask, pseudo-label
optical flow, and referring expressions.

2 RELATED WORKS

2.1 CAMOUFLAGED SCENE UNDERSTANDING

Camouflaged scene understanding (CSU) is a hot computer vision topic aiming to learn discriminative
features that can be used to discern camouflaged target objects from their surroundings (Fan et al.,
2023). CSU tasks can be divided into image-level and video-level categories. Image-level CSU
tasks include five main types: camouflaged object counting (Sun et al., 2023), camouflaged object
localization (Lv et al., 2021; 2023), camouflaged object segmentation (Fan et al., 2022; Ji et al., 2023;
He et al., 2023a), camouflaged instance ranking (Lv et al., 2021; 2023), and camouflaged instance
segmentation (Pei et al., 2022; Le et al., 2021). These tasks can be further categorized based on
their semantic focus: object-level and instance-level. Object-level tasks focus on identifying objects,
while instance-level tasks aim to differentiate various entities. Additionally, camouflaged object
counting is considered a sparse prediction task due to its nature, while the other tasks are classified
as dense prediction tasks. In addition, CSU video-level task includes video camouflaged object
segmentation (Ji et al., 2014; Xie et al., 2019; Cheng et al., 2022b) and video camouflaged object
detection (Lamdouar et al., 2020; 2021; Yang et al., 2021; Xie et al., 2022; Meunier et al., 2022;
Kowal et al., 2022). Overall, the progress of video-level CSU has been somewhat slower than image-
level CSU, primarily because the process of collecting and labeling video data is labor-intensive and
time-consuming.

2.2 VIDEO CAMOUFLAGED OBJECT DETECTION AND SEGMENTATION

We review two kinds of perception tasks for camouflaged animal videos: detection (Lamdouar
et al., 2020; 2021; Yang et al., 2021; Xie et al., 2022; Meunier et al., 2022; Kowal et al., 2022) and
segmentation (Ji et al., 2014; Xie et al., 2019; Cheng et al., 2022b; Lamdouar et al., 2023). The former
video camouflaged object detection (VCOD) yields bounding box sequences for the camouflaged
animals, while the latter video camouflaged object segmentation (VCOS) generates dense pixel-level
masks. MoCA Lamdouar et al. (2020) proposed the first large-scale moving camouflaged animals
video dataset with bounding box annotations and additional optical flows to boost the detection of
camouflaged animals. Further work Lamdouar et al. (2021) incorporated visual appearance from a
static scene as additional clues to promote the ability of the model to detect camouflaged animals.
However, the bounding box annotations could not accurately describe camouflaged objects’ pose,
appearance, and patterns. To address this issue, Xie Xie et al. (2019) proposed a novel pixel-trajectory
RNN to cluster fore-ground pixels and generate dense segmentation masks for object discovery in
videos. MoCA-Mask Cheng et al. (2022b) proposed the first large-scale dataset and benchmark with
pixel-level handcrafted ground truth masks for camouflaged animal videos. However, MoCA-Mask
provides bounding boxes and pixel-wise masks for only every 5 frames, totaling just 4,691 frames,
which is insufficient for deep learning approaches. In contrast, our dataset offers annotations for
every frame, resulting in 62,774 annotated frames (13 times larger). This substantial increase can
significantly enhance the performance of various downstream tasks. Our dataset and benchmark pave
the way for future exploration and a deeper understanding of camouflaged animal analysis.

3 CAMOVID60K DATASET

Collecting video datasets of camouflaged animals is quite challenging, even without focusing on
long-form videos. Manually collecting, observing, and annotating videos with multiple annotation
types is labor-intensive, time-consuming, and expensive. In addition to these costs, ensuring visual
data diversity and high-quality annotations adds to the difficulty. In this section, we propose a
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Collecting RGB 
videos from 

public datasets 
and crawling 
videos from 

internet

Checking and 
filtering blurry or 
irrelevant videos 

with obvious 
animals.

Stage I: Data curation and Filtering

Extracting all 
frames from 

filtered videos

Stage II: Annotations

Labeling 
Bounding Box 
and Mask for 
each frame Labeling Motion Types

Estimating and filtering Coarse 
Optical Flow

Generating and filtering 
Expressions

Removing videos 
with low Perceptual 
Camouflage Score

Figure 2: CamoVid60K data pipeline. Stage I includes data curation, filtering irrelevant videos, and
extracting all frames. Stage II includes data annotation, generation, and filtering.

staged data collection and processing pipeline, as shown in Figure 2. Associated datasheets (Gebru
et al., 2021) and data cards (Pushkarna et al., 2022) for our CamoVid60K dataset are provided
in Appendix B.

3.1 DATA CONSTRUCTION AND PROCESSING

Data Sources and Pre-Processing. We built our dataset by incorporating previous datasets (Table 1)
and crawling additional videos from the internet to cover a variety of camouflaged animals. We
initially collected 1,929 videos, then manually checked and filtered out any blurry or irrelevant videos,
retaining those with clear depictions of animals. Next, we extracted every frame of each video
(instead of every 5 frames as proposed in existing datasets, see Table 1) before annotating them. At
the end, our dataset comprises 218 videos with 62,774 frames of 70 animal species. We provide more
details in Appendix A.1.

Bounding Box and Mask Annotation. We utilized the annotation tool from (Zheng et al., 2023a),
which is heavily based on the Segment Anything Model (SAM) (Kirillov et al., 2023) for mask
initialization and bounding box creation, and XMem (Cheng & Schwing, 2022) for mask and
bounding box propagation. We then manually checked and refined every frame to provide accurate
bounding boxes and segmentation masks. In addition, we adopted the perceptual camouflage score
(Sp) from (Lamdouar et al., 2023) to quantify the effectiveness of animals’ camouflage, i.e., how
successfully an animal blends into its background. Based on this score, we retained videos with a
score higher than a threshold (e.g., Sp > 0.3).

Note that, due to the nature and characteristics of camouflaged animals and also the low resolution of
videos, some frames or videos may contain errors or mislabeling at the boundaries between animals
and the background. We will continue improving the quality of the mask annotations and also provide
rotated bounding boxes (RBbox) in the next version. RBbox excels over traditional axis-aligned
bounding boxes in three main areas: better localization (accurate fit for elongated and rotated objects),
reduced overlap of different objects or instances, and improved isolation of objects (capturing the
proper aspect ratio and containing fewer background pixels).

Pseudo-label Optical Flow Annotation. Previous optical flow datasets, such as Flying
Chairs (Dosovitskiy et al., 2015), KITTI (Menze & Geiger, 2015), Sintel (Butler et al., 2012),
and FlyingThings3D (Mayer et al., 2016), utilized either simulation software or real images with
additional heavy sensor information (depth, LiDAR, etc.) and algorithms to create optical flow ground
truth. This process is time-consuming and requires significant effort. Recently, with the development
of deep learning techniques, many methods (Teed & Deng, 2020; Wang et al., 2023) can produce
accurately estimated optical flow. Therefore, we utilized these methods for our pseudo-label optical
flow annotation, using the algorithm shown in Algorithm 1. We used the pre-trained model of RAFT
on FlyingThings3D (Mayer et al., 2016) and the pre-trained DINO model of ViT-B architecture.

Note that, even though our processing pipeline for optical flow annotation produces accurate and
dense optical flow, it is still estimated optical flow. Therefore, it is reasonable and suitable to use
as additional input to boost performance for other tasks such as motion segmentation. It is not
recommended to use it as ground truth for evaluation.
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Algorithm 1 Optical Flow Computation and Filtering

Input: Sequence of frames
Output: Sequence of computed optical flows

1: for each pair of frames (i, j) do
2: Computing all pairwise optical flows using RAFT (Teed & Deng, 2020)
3: Computing DINO features (Caron et al., 2021; Oquab et al., 2024) for each frame
4: Filtering flows using cycle consistency and appearance consistency check
5: Applying chain cycle consistent correspondences to create denser correspondences
6: end for

Motion Annotation. Following Lamdouar et al. (2020), we manually labeled our dataset according
to the types of motion, as shown below. Based on these motion types, we can further annotate the
camouflage methods of animals (concealing coloration, disruptive coloration, disguise, mimicry,
transparency, and counter-shading), which we plan to provide in the next version.

• Locomotion: when the animal makes movements that significantly change its location.

• Deformation: when the animal engages in more subtle movements that only change its pose while
remaining in the same location.

• Still: when the animal remains stationary.

Referring Expression Annotation. We first utilized GPT-4V (OpenAI, 2023) to create concise
descriptions within 30 words that accurately represent the target object for every frame. How-
ever, we found that the captions for aquatic animals were less accurate; therefore, we utilized
MarineGPT (Zheng et al., 2023b), the first vision-language model specially designed for the marine
domain, to generate captions for aquatic animals. After the initial annotation, we verified and refined
all captions and selected the best three for each video sequence. Objects that could not be localized
using language or referring expressions were removed. We provide more details on the definition and
usage in Appendix A.3.

3.2 DATASET SPECIFICATIONS AND STATISTICS

Figure 3: Data organization of our dataset.

Data Organization. As shown
in Figure 3, we split our dataset into
two subsets based on the degree
of displacement between frames:
small displacement (every single
frame) and large displacement
(every 5 frames). This division is
beneficial for evaluating motion
segmentation methods, as it provides
a robust framework for analyzing
algorithms’ performance under
varying motion and displacement
conditions. Each subset includes
training and testing sets with im-
ages, pre-computed optical flows,
and annotations. We name each
image using the following format:
"SuperClass-SubClass-SubNumber-MotionType-FrameNumber". This systematic
naming convention ensures clarity and ease of reference within the dataset.

Dataset Features and Statistics. We now discuss the proposed dataset and provide some statistics.

• Category diversity: The distributions of camouflaged animals, categorized hierarchically based on
biology within three supergroups (flying, terrestrial, and aquatic), are visually represented through
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taxonomic structures in Figure 4 (Left) and word clouds in Figure 5. Subsequently, we describe the
70 prevalent subclass groups derived from our collected data in Figure 6.

• Spatial distribution of animals’ positions: Figure 4 (Right-Top) and Figure 5 (Bottom) showcase
examples with different animal positions and present the total sum of normalized bounding boxes
across the entire dataset.

• Resolution distribution: Using high-resolution data is beneficial as it offers more detailed object
boundary information for model training, thereby improving performance during testing (Zeng
et al., 2019). In Figure 4 (Right-Bottom), the resolution distribution of CamoVid60K is displayed,
highlighting the inclusion of numerous HD (720p) and Full HD (1080p) resolution videos.

Figure 4: Left: Taxonomic structure of our dataset by their biology-inspired hierarchical categoriza-
tion. It encompasses various animals, spanning 70 categories across flying, terrestrial, and aquatic
groups. Right-Top: Spatial distribution of animals’ position based on bounding box. It reveals that
annotations are more densely concentrated in the central region, while there is a comparatively lower
density of annotations towards the edges. Right-Bottom: The distribution of our CamoVid60K
dataset w.r.t resolution ranging from 480×360 to 3840×2160.

Evaluation Protocol. Our dataset supports a broad range of downstream tasks. Therefore, we will
evaluate each task using different metrics.

• Motion Segmentation: we adopt the same metrics as in (Cheng et al., 2022b) to assess the pixel-
wise masks: Mean Absolute Error (M ), Enhanced-alignment measure (Eϕ) (Fan et al., 2018),
Structure-measure (Sα) (Fan et al., 2017), Weighted F-measure (Fw

β ) (Margolin et al., 2014), mean
Intersection Over Union (mIoU), mean Dice (mDic).

• Object Detection: we use the mean Average Precision (mAP).

• Image Classification: we use the mean Accuracy (mAcc).

• Referring Segmentation: we utilize the mIoU, region similarity J and contour accuracy F , and
their average J&F for video object segmentation.

4 A SIMPLE PIPELINE TO DISCERN CAMOUFLAGED ANIMALS

After constructing the dataset, we propose a simple pipeline based on the Mask2Former architec-
ture (Cheng et al., 2022a; Lamdouar et al., 2023) for both object detection and motion segmentation
tasks. As shown in Figure 7, our pipeline processes sequences of images or videos by employing any
off-the-shelf flow estimation method. In our case, we directly use the refined optical flow provided in
our dataset instead of utilizing the RAFT method (Teed & Deng, 2020) to estimate raw optical flow,
as done in (Lamdouar et al., 2023). The images and associated estimated flows are passed into two

6
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Aquatic AnimalsTerrestrial AnimalsFlying Animals

Figure 5: Word cloud of category distribution of camouflaged animals with corresponding examples
showing bounding box, segmentation mask (bottom).

Figure 6: Category distribution (ranging from 100 to 4,500 frames) and some visual examples
(extracted animal masks) of our dataset. The variety ensures a wide range of camouflaged animals,
allowing for comprehensive evaluation across various scenarios.

separate encoders for feature extraction. Subsequently, the image and flow features at each timestamp
are aggregated before being fed into the decoder to predict the segmentation mask.

Visual Encoder. We adopt the SINet-v2 (Fan et al., 2022) architecture, which takes an RGB
sequence as input Iv = {Iv1 , Iv2 , . . . , Ivn} ∈ Rn×dv×h×w, where n is the number of frames, dv is the
dimension of each frame, and h and w are the height and width, respectively. The visual encoder
outputs visual features {fv

1 , f
v
2 , . . . , f

v
n} = Φvisual(I

v).

Motion Encoder. Inspired by the motion segmentation architecture (Lamdouar et al., 2021), we use
a lightweight ConvNet that takes as input a sequence of optical flows If = {If1 , I

f
2 , . . . , I

f
n} ∈

Rn×df×h×w, where df is the dimension of the flow field, and outputs motion features
{fm

1 , fm
2 , . . . , fm

n } = Φmotion(I
f ). We then concatenate the motion features with learned spa-

tial and temporal positional encodings to produce a set of enriched motion features.
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Figure 7: Our simple pipeline takes a sequence of images (or a video) and the associated pre-computed
optical flow (provided in our dataset) as input. They are fed into separated encoders for feature
extraction. Then, the motion features with spatial and temporal positional encoding are passed to
Pixel Decoders to produce a set of enriched motion features. Next, the Transformer Decoder takes
the visual features and enriched motion features to produce mask embedding for the moving object
and bounding box.

Decoder. We adopt the Mask2Former (Cheng et al., 2022a) architecture, which includes Trans-
former and pixel decoders. The Transformer decoder combines a trainable query for mask embedding
with the outputs of the motion encoder and visual features. Similar to Mask2Former, this query
attends to multi-scale motion features and visual features, resulting in mask embedding for the
moving object. Additionally, like the pixel decoder in Mask2Former, a ConvNet decoder with low
computational complexity utilizes skip connections to generate high-resolution segmentation masks
and bounding boxes from the motion features and mask embedding.

Training and Loss. To optimize our pipeline, we utilize the L1 loss for bounding box regres-
sion, cross-entropy loss for the confidence score, and binary cross-entropy (BCE) loss for motion
segmentation. The total loss for training our pipeline is defined as follows:

L = LBCE + LL1 + LCE, (1)

where LBCE is the binary cross-entropy loss for motion segmentation, LL1 is the L1 loss for bounding
box regression, and LCE is the cross-entropy loss for the confidence score.

5 EXPERIMENTS

This section introduces the baselines and training details for each task. We thoroughly analyze each
task in our experiments and discuss the effectiveness of each method, including ours.

5.1 BASELINES

For the motion segmentation task, we selected recent state-of-the-art (SOTA) methods for compari-
son, including two frame-based methods (PraNet (Fan et al., 2020) and SINet-v2 (Fan et al., 2022))
and two video-based methods (MG (Yang et al., 2021) and SLT-Net (Cheng et al., 2022b)). For a fair
comparison, we utilized the implementations provided by the authors and trained all methods using
the same training set.

For the object detection task, we compared our approach with three well-known detection methods:
Faster R-CNN (Ren et al., 2015), DETR (Carion et al., 2020), and DINO (Zhang et al., 2023). We

8
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Table 2: Quantitative results of motion segmentation on
CamoVid60K dataset. Our model achieves performance compa-
rable to that of other competitors on certain metrics.

Methods Sα ↑ Fw
β ↑ Eϕ ↑ M ↓ mDic ↑ mIoU ↑

Image-based
PraNet 0.526 0.161 0.547 0.045 0.198 0.144
SINet-v2 0.529 0.166 0.553 0.042 0.206 0.149

Video-based
MG 0.522 0.153 0.541 0.043 0.197 0.141
SLT-Net 0.576 0.253 0.591 0.039 0.268 0.249
Ours 0.566 0.249 0.589 0.041 0.270 0.252

Table 3: Quantitative results
of object detection on our
CamoVid60K dataset.

Methods AP ↑

F-RCNN 28.71

DETR 37.56
DINO 39.84

Ours 38.39

followed the 1× (12-epoch) training setting and used the same ResNet50 (He et al., 2016) backbone
for all methods.

For the zero-shot image classification task, we tested three recent methods: CLIP (Radford et al.,
2021), UniCL (Yang et al., 2022), and K-LITE (Shen et al., 2022). We used the Swin-T model for
both UniCL and K-LITE (pre-trained on the ImageNet-21K dataset (Deng et al., 2009)) and the
ViT-B/32 pre-trained model from OpenAI’s CLIP.

All methods were trained and tested on the same NVIDIA RTX 3090 GPU, except for the pre-trained
models used in the zero-shot image classification task, where we utilized the pre-trained models
provided by the authors.

5.2 BENCHMARKS AND DISCUSSIONS

Comparison with Image-Based and Video-Based Motion Segmentation Methods. Table 2
compares the performance of our method with other approaches. Compared to image-based methods,
our approach demonstrates significantly superior performance due to the incorporation of temporal
information. When evaluated against video-based methods, our approach also surpasses MG (Yang
et al., 2021), which relies solely on estimated optical flows as input. However, compared to the
recent state-of-the-art method SLT-Net (Cheng et al., 2022b), our method performs worse on certain
metrics. This is because SLT-Net excels at modeling both short-term dynamics and long-term
temporal consistency from videos, allowing for joint optimization of motion and camouflaged object
segmentation through a single optimization target.

Comparison with Object Detection Methods. As shown in Table 3, our proposed model demon-
strates performance comparable to other specialized methods, owing to its dual capabilities in object
detection and motion segmentation. Specifically, our method significantly outperforms conventional
CNN-based methods. This advantage stems from dual optimizations in the detection and segmen-
tation streams, along with the integration of additional optical flow information. However, when
compared to DETR-like methods (Carion et al., 2020; Zhang et al., 2023), our approach shows mixed
results. It surpasses the standard DETR model (Carion et al., 2020), yet falls short of DINO (Zhang
et al., 2023), an advanced variant of DETR. DINO enhances performance through several innovative
techniques: it employs contrastive denoising training to refine one-to-one matching, a mixed query
selection method to better initialize the queries, and a ‘look forward twice’ method that utilizes
gradients from subsequent layers to adjust parameters more accurately.

Additional Analysis and Discussions. As shown in Table 4, optical flow plays a crucial role in
the motion segmentation of camouflaged animals. By analyzing the motion vectors between frames,
optical flow can detect subtle movements, distinguishing moving animals from static backgrounds.
This capability is particularly useful in identifying the slight movements of camouflaged animals.

State-of-the-art methods, including foundation models trained on large datasets such as CLIP (Radford
et al., 2021), UniCL (Yang et al., 2022), and K-LITE (Shen et al., 2022), struggle with zero-shot
image classification of camouflaged animals, as shown in Table 5. This is due to the subtle and
complex patterns of camouflaged animals, the lack of specific training data, and the difficulty in
generalizing across different backgrounds and lighting conditions. Improving these methods involves

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Ablation study on the impact of flow
information on our method.

no OF raw OF refined OF

mIoU 28.34 32.16 32.81

Table 5: Zero-shot Image Classification perfor-
mance on our CamoVid60K dataset.

CLIP UniCL K-LITE

mAcc 30.06 30.89 31.44

curating specialized training data (or fine-tuning on our dataset), using enhanced techniques like data
augmentation, few-shot learning, and developing context-aware models.

6 CONCLUSION

In this paper, we introduced CamoVid60K, a large-scale video dataset for camouflaged animal
understanding, aiming to foster further research on camouflaged animals. This dataset provides a
significant benchmark for camouflaged animal video understanding tasks, enabling the evaluation
of various algorithms and methods. We also plan to scale up our dataset and utilize it to build
foundational models for studying camouflaged animals.

Limitations and Future Work. As mentioned in Section 3, the annotation quality in some cases is
suboptimal. We plan to enhance these annotations and introduce more types of annotations in the
future. Additionally, our current pipeline requires images and pre-computed optical flow as inputs,
which restricts the generation of new data due to the necessity of pre-computed optical flow. To
address this limitation, we will propose a learnable module to estimate the implicit optical flow field.

New Benchmark. CamoVid60K is a diverse and comprehensive benchmark curated from publicly
accessible datasets and the internet to enhance the assessment and exploration of camouflaged animal
understanding. It includes various camouflaged animals across different environments, providing a
robust framework for testing and developing new models.

Impact on Animal Studies. By providing detailed and varied data on camouflaged animals, the
CamoVid60K dataset significantly contributes to studying animal behavior, ecology, and evolution.
Researchers can utilize this dataset to explore how different species employ camouflage in their
natural habitats, leading to deeper insights into predator-prey interactions and survival strategies.
Furthermore, this dataset can aid conservation efforts by improving the detection and monitoring of
endangered species in their natural environments (Troscianko et al., 2017; Norouzzadeh et al., 2018;
Beery et al., 2018; Simões et al., 2023).

Broader Impact. The study of camouflaged objects has several important applications, such as
identifying and safeguarding rare animal species, preventing wildlife trafficking, detecting medical
conditions like polyps or lung infections, and aiding in search-and-rescue operations. Our dataset
deliberately excludes any military or sensitive scenes, ensuring its focus remains on benign and
beneficial applications. Besides the significant applications mentioned, our work advances the
understanding of video content in the presence of distorted motion information, contributing to the
broader field of video analysis and computer vision.

Licenses. We built our dataset from previous datasets and crawled online videos. Therefore, we will
follow their Terms of Use or Licenses (MoCA, MVK) for our dataset, which is under the CC-BY-4.0
license. The copyright remains with the original owners of the videos. In addition, the dataset shall
be used only for non-commercial research and educational purposes.
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T. Brox. FlowNet: Learning optical flow with convolutional networks. In ICCV, 2015.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Deng-Ping Fan, Ming-Ming Cheng, Yun Liu, Tao Li, and Ali Borji. Structure-measure: A New Way
to Evaluate Foreground Maps. In ICCV, 2017.

Deng-Ping Fan, Cheng Gong, Yang Cao, Bo Ren, Ming-Ming Cheng, and Ali Borji. Enhanced-
alignment Measure for Binary Foreground Map Evaluation. In IJCAI, 2018.

Deng-Ping Fan, Ge-Peng Ji, Tao Zhou, Geng Chen, Huazhu Fu, Jianbing Shen, and Ling Shao. Pranet:
Parallel reverse attention network for polyp segmentation. In MICCAI, pp. 263–273. Springer,
2020.

Deng-Ping Fan, Ge-Peng Ji, Ming-Ming Cheng, and Ling Shao. Concealed object detection. IEEE
T-PAMI, 2022.

Deng-Ping Fan, Ge-Peng Ji, Peng Xu, Ming-Ming Cheng, Christos Sakaridis, and Luc Van Gool.
Advances in deep concealed scene understanding. Visual Intelligence, 2023.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan, Hanna Wallach,
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A CAMOVID60K DESCRIPTION

A.1 DATA CURATION

We built our dataset from published datasets (Camouflaged Animals Dataset (CAD) (Pia Bideau,
2016), Moving Camouflaged Animals (MoCA) (Lamdouar et al., 2020), MoCA-Mask (Cheng et al.,
2022b), Marine Video Kit (MVK) (Truong et al., 2023)) and crawled video from internet.

The CAD dataset includes nine short video sequences obtained from YouTube videos. Hand-labeled
ground truth masks are provided for every 5 frames.

The MoCA dataset comprises approximately 37,000 frames extracted from 141 YouTube video
sequences. Most videos are presented at an image resolution of 1280× 720 and 3840× 2160 pixels,
and the videos have a frame rate of 24 FPS. This dataset includes 67 distinct species of animals in
locomotion within their native habitats, although it contains a few instances of animals with less
camouflaged characteristics.

The MoCA-Mask dataset is built upon the MoCA dataset with some modifications. This new subset
consists of 87 video sequences with 22,939 frames. It offers precise human-labeled segmentation
masks for every 5 frames. Consequently, the ground truth (GT) is available in two formats: 4,691
bounding box annotations and 4,691 pixel-level masks.

The MVK dataset comprises 1,379 underwater videos recorded at 36 unique geographical sites during
various seasons. These videos exhibit a broad duration spectrum, ranging from as short as 2 seconds
to almost 5 minutes, with a total duration slightly above 12 hours. On average, the videos are roughly
29.9 seconds long, with a median length of around 25.4 seconds. Notably, the dataset presents videos
recorded under different conditions, such as variable light levels, points of view, water clarity, and
environmental conditions. They also offer approximately 40,000 frames (extracted at one FPS or
every 30 frames) with associated referring expression annotations.

To crawl videos from the internet, we curated a list of animal names that potentially have camouflage
abilities. We then created a template for searching and downloading videos: “video of camou-
flaged/concealed + animal’s name”. Combining these with the videos from the above datasets, we
collected 1,929 videos.

A.2 DATA FILTERING

Initially, we manually reviewed and removed blurry or irrelevant videos (e.g. those with clearly visible
animals), resulting in 218 videos for annotation. To further filter images and annotations with less
camouflaged characteristics, we adopted the perceptual camouflage score (Sp) from (Lamdouar et al.,
2023) to quantify the effectiveness of animals’ camouflage, i.e., how successfully an animal blends
into its background. Based on the perceptual camouflage score, we retained videos with a score
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Figure 8: The example of low ranking and high ranking camouflage of single frame.

Figure 9: The example of low ranking and high ranking camouflage of consecutive frames.

higher than the threshold (Sp > 0.5). Below, we explain how to compute the perceptual camouflage
score Sp:

Sp = (1− α)SR + αSB (2)

where SR is the reconstruction fidelity score, SB is the boundary score, and α is the weighting
parameter.

In detail, given an image I and a segmentation mask mS , the reconstruction fidelity score SR
is computed by assessing the difference between the foreground region and its reconstruction.
Specifically, it counts the number of foreground pixels (Ifg = I ⊙ erode(mS)) that have been
successfully reconstructed from the background (Ibg = I ⊙ (1− dilate(mS))):
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SR(I,mS) =
1

Nfg

∑
(i,j)∈Ifg

R(i, j), (3)

R(i, j) =

{
1, if

∥∥Ifg(i, j)−ΨIbg(Ifg(i, j))
∥∥
2
< λ ∥Ifg(i, j)∥2 ,

0, otherwise,
(4)

where ΨIbg(·) denotes the reconstruction operation, Nfg = |erode(mS)| is the total number of pixels
in the foreground region, and λ is a threshold.

Then, the boundary visibility score SB aims to measure the animal’s boundary properties (or contour
visibility) by penalizing the boundary pixels that are predicted as contours in both the image’s contour
(C) and the ground truth animal’s contour (Cgt) using the F1 metric:

SB(I,mS) = 1− F1(mb ⊙ Cgt, mb ⊙ C), (5)

where mb = dilate(mS)− erode(mS).

We used the same parameter values as in (Lamdouar et al., 2023), specifically α = 0.35 and λ = 0.2.
In addition, we illustrate the difference between low-ranking and high-ranking camouflage in Figure 8
and Figure 9.

A.3 REFERRING EXPRESSION ANNOTATION

Referring expression annotations are used for the Referring Video Object Segmentation (RVOS)
task. RVOS differs from traditional Video Object Segmentation (VOS), where a mask is provided
for the first frame, and the model predicts the segmentation for the remaining video frames. In
RVOS, the initial frame mask is replaced with a referring expression (i.e. a sentence) that accurately
describes the target object throughout the entire video, e.g. “the yellow fish swimming toward the
camera.” This approach also differs from Referring Image Segmentation (RIS), which uses different
referring expressions for each image. Referring expression annotations can be utilized for various
video understanding tasks, such as RVOS (Seo et al., 2020; Yang et al., 2024), video retrieval systems
with semantic understanding (Ha et al., 2023), video grounding (Mu et al., 2024), etc.

A.4 VISUALIZATION

We show some samples in alphabetical order of our CamoVid60K dataset in the attachment (in-
dex.html).

B CAMOVID60K DATASHEET

Motivation

For what purpose was the dataset created? Was there a specific task in mind? Was
there a specific gap that needed to be filled? Please provide a description.

There are some studies about camouflaged animal segmentation, and most of them are image-
based methods. While some prior works have proposed video datasets for camouflaged animal
understanding, they only provided a small amount of data with limited annotation types. To address
those challenges and promote more studies on biological monitoring and understanding of animals’
behavior, we introduce our CamoVid60K dataset and related benchmarks for a broad range of video
understanding tasks. Please see Section 3 and Section 5 in the main paper for more details.

Who created this dataset (e.g. which team, research group) and on behalf of which
entity (e.g. company, institution, organization)?
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The authors created the dataset from the XXX and YYY Institutions. The authors created it for the
public at large without reference to any particular organization or institution.

Composition

What do the instances that comprise the dataset represent (e.g. documents, photos,
people, countries)? Are there multiple types of instances (e.g. movies, users, and ratings;
people and interactions between them; nodes and edges)? Please provide a description.

Each instance in the dataset represents a sequence of extracted frames from a video with different
annotations (category, bounding box, mask, motion type, pseudo-label optical flow, and three referring
expressions.

How many instances are there in total (of each type, if appropriate)?

CamoVid60K has a total of 218 instances, each containing frames, associated bounding box, mask,
motion type, pseudo-label optical flow, one category, and three referring expressions. You can see
further statistics on the whole data in Section 3 of the main paper.

Does the dataset contain all possible instances, or is it a sample (not necessarily
random) of instances from a larger set? If the dataset is a sample, then what is the
larger set? Is the sample representative of the larger set (e.g. geographic coverage)? If so,
please describe how this representativeness was validated/verified. If it is not representative
of the larger set, please describe why not (e.g. to cover a more diverse range of instances
because instances were withheld or unavailable).

The dataset contains all instances from previous datasets with additional new data that are crawled
from the internet to provide a larger volume of data with more frequent annotations and types and
cover a wider variety of species ranging from flying to terrestrial and aquatic animals. The detailed
statistics are shown in Table 1 and Section 3 of the main paper.

What data does each instance consist of? ”Raw” data (e.g. unprocessed text or
images) or features? In either case, please provide a description.

Each instance in our dataset comprises raw mp4 video data, captured at 24-30 frames per second and
with resolution from 480×360 to 3840×2160.

Is there a label or target associated with each instance? If so, please provide a
description.

Each instance is associated with a bounding box, mask, motion type, pseudo-label optical flow, one
category, and three referring expressions.

Is any information missing from individual instances? If so, please provide a description,
explaining why this information is missing (e.g., because it was unavailable). This does not
include intentionally removed information but might include, e.g. redacted text.

All instances are complete.

Are relationships between individual instances made explicit (e.g. users’ movie
ratings, social network links)? If so, please describe how these relationships are made
explicit.

Some instances may have the same category name and similar referring expressions because they
belong to the same category. However, each instance will have its unique ID.

Are there recommended data splits (e.g. training, development/validation, testing)? If
so, please provide a description of these splits, explaining the rationale behind them.

CamoVid60K is explicitly designed for learning both small and large motion displacement of
camouflaged animals. Therefore, it is split into two subsets: small displacement (every single
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frame) and large displacement (every 5 frames). This division is beneficial for evaluating motion
segmentation methods, as it provides a robust framework for analyzing algorithms’ performance
under varying motion and displacement conditions. Each subset will include training (168 instances)
and testing sets (50 instances), as mentioned in Section 3.2 of the main paper.

Are there any errors, sources of noise, or redundancies in the dataset? If so, please
provide a description.

The dataset was carefully manually curated to mitigate any errors within the questions and answers.
However, due to the nature and characteristics of camouflaged animals and their resolution, some
frames will contain errors/mislabelled at the boundary between the animals and the background. We
will keep improving the quality of the mask annotations in the next version.

Is the dataset self-contained, or does it link to or otherwise rely on external resources
(e.g. websites, tweets, other datasets)? If it links to or relies on external resources, a) are
there guarantees that they will exist, and remain constant, over time; b) are there official
archival versions of the complete dataset (i.e. including the external resources as they
existed at the time the dataset was created); c) are there any restrictions (e.g. licenses,
fees) associated with any of the external resources that might apply to a future user? Please
provide descriptions of all external resources and any restrictions associated with them, as
well as links or other access points, as appropriate.

Entirety of the dataset will be made publicly available at our CamodVid60K website (we will update
our website later). CamoVid60K will be publicly released under the CC-BY-4.0 license, which
allows public use of the video and annotation data for both research and commercial purposes.

Does the dataset contain data that might be considered confidential (e.g. data that is
protected by legal privilege or by doctor-patient confidentiality, data that includes the
content of individuals non-public communications)? If so, please provide a description.

No

Does the dataset contain data that, if viewed directly, might be offensive, insulting,
threatening, or might otherwise cause anxiety? If so, please describe why.

No

Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

No, CamoVid60K only contains animals.

Does the dataset identify any subpopulations (e.g. by age, gender)? If so, please
describe how these subpopulations are identified and provide a description of their respective
distributions within the dataset.

No

Is it possible to identify individuals (i.e. one or more natural persons), either directly or
indirectly (i.e. in combination with other data) from the dataset? If so, please describe
how.

No

Does the dataset contain data that might be considered sensitive in any way (e.g. data
that reveals racial or ethnic origins, sexual orientations, religious beliefs, political
opinions or union memberships, or locations; financial or health data; biometric or
genetic data; forms of government identification, such as social security numbers;
criminal history)? If so, please provide a description.

No
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Collection Process

How was the data associated with each instance acquired? Was the data directly
observable (e.g. raw text, movie ratings), reported by subjects (e.g. survey responses), or
indirectly inferred/derived from other data (e.g. part-of-speech tags, model-based guesses
for age or language)? If data was reported by subjects or indirectly inferred/derived from
other data, was the data validated/verified? If so, please describe how.

The raw video data, which is directly observable, was procured from the publicly accessible
datasets (Camouflaged Animals Dataset (CAD) (Pia Bideau, 2016), Moving Camouflaged Ani-
mals (MoCA) (Lamdouar et al., 2020), MoCA-Mask (Cheng et al., 2022b), Marine Video Kit
(MVK) (Truong et al., 2023) and crawled video from internet) as shown in Table 1 and Section 3 in
the main paper. We utilized an annotation tool from (Zheng et al., 2023a), which is heavily based
on Segment Anything Model (SAM) (Kirillov et al., 2023) for mask initialization and bounding
box and XMem (Cheng & Schwing, 2022) for mask and bounding box propagation. We utilized
the RAFT method (Teed & Deng, 2020) to produce an accurate estimated optical flow and refined
it using Algorithm 1. To construct referring expression annotations, we utilized GPT-4V (OpenAI,
2023) to create a concise description for flying and terrestrial animals, and MarineGPT (Zheng et al.,
2023b) for aquatic animals.

What mechanisms or procedures were used to collect the data (e.g. hardware appara-
tus or sensor, manual human curation, software program, software API)? How were
these mechanisms or procedures validated?

The videos were downloaded in accordance with the official guidelines for data access of other
datasets. For additional videos, we manually curated from the internet. See Section 3 in the main
paper for a more detailed explanation.

If the dataset is a sample from a larger set, what was the sampling strategy (e.g.
deterministic, probabilistic with specific sampling probabilities)?

We used all samples from the published datasets. So, there is no sampling strategy.

Who was involved in the data collection process (e.g. students, crowd-workers,
contractors) and how were they compensated (e.g. how much were crowd-workers
paid)?

The authors were involved in the data collection process. No crowd-workers were involved during
the data collection process.

Over what timeframe was the data collected? Does this timeframe match the creation
timeframe of the data associated with the instances (e.g. recent crawl of old news
articles)? If not, please describe the timeframe in which the data associated with the
instances was created.

The original videos within the published datasets were collected across various occasions spanning
from 2011 to 2022. As for the CamoVid60K, the new videos were collected over several sprints
during the first half of 2024.

Were any ethical review processes conducted (e.g. by an institutional review board)?
If so, please provide a description of these review processes, including the outcomes, as
well as a link or other access point to any supporting documentation.

No

Does the dataset relate to people? If not, you may skip the remaining questions in this
section.

No

Did you collect the data from the individuals in question directly or obtain it via third
parties or other sources (e.g. websites)?
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NA

Were the individuals in question notified about the data collection? If so, please
describe (or show with screenshots or other information) how notice was provided, and
provide a link or other access point to, or otherwise reproduce, the exact language of the
notification itself.

NA

Did the individuals in question consent to the collection and use of their data? If so,
please describe (or show with screenshots or other information) how consent was requested
and provided, and provide a link or other access point to, or otherwise reproduce, the exact
language to which the individuals consented.

NA

If consent was obtained, were the consenting individuals provided with a mechanism
to revoke their consent in the future or for certain uses? If so, please provide a
description, as well as a link or other access point to the mechanism (if appropriate).

NA

Has an analysis of the potential impact of the dataset and its use on data subjects (e.g.
a data protection impact analysis) been conducted? If so, please provide a description
of this analysis, including the outcomes, as well as a link or other access point to any
supporting documentation.

NA

Preprocessing/cleaning/labeling

Was any preprocessing/cleaning/labeling of the data done (e.g. discretization or
bucketing, tokenization, part-of-speech tagging, SIFT feature extraction, removal of
instances, processing of missing values)? If so, please provide a description. If not, you
may skip the remainder of the questions in this section.

There was no preprocessing done on the videos, and we only did the frame extraction from the videos.

Was the ”raw” data saved in addition to the preprocessed/cleaned/labeled data (e.g.
to support unanticipated future uses)? If so, please provide a link or other access point
to the ”raw” data.

The raw data in our CamoVid60K dataset is video. However, all methods will extract videos into
frames, so we only provide the extracted frames in our CamoVid60K dataset.

Is the software used to preprocess/clean/label the instances available? If so, please
provide a link or other access point.

We used the FFmpeg library to extract the frames. The packages, executable files, and sources for
Windows, macOS, Linux, or build from source are available in their official website.

Distribution

Will the dataset be distributed to third parties outside of the entity (e.g. company,
institution, organization) on behalf of which the dataset was created? If so, please
provide a description.
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The dataset will be made publicly available and can be used for non-commercial research and
educational purposes under the CC-BY-4.0 license.

How will the dataset be distributed (e.g. tarball on website, API, GitHub) Does the
dataset have a digital object identifier (DOI)?

The dataset will be distributed at our CamodVid60K website (we will update our website later) upon
acceptance to preserve anonymization.

When will the dataset be distributed?

The complete dataset will be made available upon the acceptance of the paper before the camera-ready
deadline.

Will the dataset be distributed under a copyright or other intellectual property (IP)
license, and/or under applicable terms of use (ToU)? If so, please describe this license
and/or ToU, and provide a link or other access point to, or otherwise reproduce, any relevant
licensing terms or ToU, as well as any fees associated with these restrictions.

CamoVid60K dataset will be publicly released under the CC-BY-4.0 license, which allows direct
public use of the video/frames and annotation data for non-commercial research and educational
purposes.

Have any third parties imposed IP-based or other restrictions on the data associated
with the instances? If so, please describe these restrictions and provide a link or other
access point to, or otherwise reproduce, any relevant licensing terms, as well as any fees
associated with these restrictions.

No

Do any export controls or other regulatory restrictions apply to the dataset or to
individual instances? If so, please describe these restrictions and provide a link or other
access point to, or otherwise reproduce, any supporting documentation.

No

Maintenance

Who will be supporting/hosting/maintaining the dataset?

The authors of the paper will be maintaining the dataset, pointers to which will be hosted on our
CamodVid60K website (we will update our website later) along with the guideline for download and
preprocessing if needed.

How can the owner/curator/manager of the dataset be contacted (e.g. email address)?

We will post the contact information on our website, primarily contact through email.

Is there an erratum? If so, please provide a link or other access point.

In the future, we will host an erratum on our CamodVid60K website (we will update our website
later) to host any approved errata suggested by the authors or the video research community.

Will the dataset be updated (e.g. to correct labeling errors, add new instances, delete
instances)? If so, please describe how often, by whom, and how updates will be communi-
cated to users (e.g. mailing list, GitHub)?

Yes, we plan to host an erratum publicly. There are no specific plans for a v2 version, but there seem
to be plenty of opportunities for exciting future dataset work based on CamoVid60K.

If the dataset relates to people, are there applicable limits on the retention of the data
associated with the instances (e.g. were individuals in question told that their data
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would be retained for a fixed period of time and then deleted)? If so, please describe
these limits and explain how they will be enforced.

No.

Will older versions of the dataset continue to be supported/hosted/maintained? If so,
please describe how. If not, please describe how its obsolescence will be communicated to
users.

N/A There are no older versions at the current moment. All updates regarding the current version
will be communicated via our website.

If others want to extend/augment/build on/contribute to the dataset, is there a mech-
anism for them to do so? If so, please provide a description. Will these contributions
be validated/verified? If so, please describe how. If not, why not? Is there a process
for communicating/distributing these contributions to other users? If so, please provide a
description.

Contributions will be made possible using comment functions in our CamodVid60K website (we
will update our website later). The CamoVid60K team will verify any new contributions before
publishing them on our website, and then we will host any approved errata suggested by the video
research community.
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