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Adaptive Vision Transformer for Event-Based Human Pose
Estimation
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ABSTRACT
Human pose estimation has made progress based on deep learning.
However, it still faces challenges when encountering exposure, low
light, and high-speed scenarios such as motion blur and miss hu-
man contours in low light scenes. Moreover, due to the extensive
operations required for large-scale convolutional neural network
(CNN) inference, marker-free human pose estimation based on stan-
dard frame-based cameras is still slow and power consuming for
real-time feedback interaction. Event-based cameras quickly out-
put asynchronous sparse moving-edge information, which is low
latency and low power consumption for real-time interaction with
human pose estimators. For further study. this paper proposed a
high-frame rate labeled event-based human pose estimation dataset
named Event Multi Movement HPE (EventMM HPE). It consists of
records from synchronized event camera, high frame rate camera
and Vicon motion capture system, with each sequence recording
multiple action combinations and high frame rate (240Hz) annota-
tions. This paper also proposed an event-based human pose estima-
tion model, which utilizes adaptive patches to efficiently achieves
good performance for the sparse and reduced input data from DVS.
The source code, dataset, and pre-trained models will be released
upon acceptance.

CCS CONCEPTS
• Human Centered Computing→ Human Computer Interac-
tion (HCI).

KEYWORDS
Event camera, Artificial intelligence, Silicon retina, Biomimetic
vision, Graph learning, Semantic segmentation

1 INTRODUCTION
Human Pose Estimation is a computer vision task that involves esti-
mating the positions and orientations of body joints and bones from
2D images or videos, which can be used in a variety of applications,
such as virtual reality, human-computer interaction, and motion
analysis. Although RGB-based human pose estimation [3, 4, 10, 22]
has made notable advancements, these approaches frequently en-
counter barriers due to sensor constraints when confronted with
rapid human movements and challenging lighting conditions. By
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Figure 1: Comparison of event data and RGB image in low-
light scenario. Event cameras providemore information than
traditional cameras.

contrast, event cameras as bio-inspired sensors, offer high tempo-
ral resolution, high dynamic range, and low energy consumption.
Therefore, event cameras can robustly function in degraded con-
ditions, Figure 1 illustrates an example where event data outper-
forms RGB image in low-light scenarios. Event cameras have been
employed for a multitude of vision tasks, such as optical flow esti-
mation [8, 20] and object detection [14, 26]. Particularly, abundant
spatial and temporal information provided by event cameras opens
up new possibilities for advancing human pose estimation.

In effectively harnessing the spatiotemporal information inher-
ent in event data, a common approach involves initially converting
such data into a frame format, followed by the utilization of Con-
volutional Neural Networks (CNNs) to capture pertinent features.
Nonetheless, CNNs inherently lack the ability to extract temporal
cues, constraining the overall performance of human pose esti-
mation. Therefore, some works have introduced Recurrent Neural
Networks (RNNs) and Long Short-TermMemory Networks (LSTMs)
to enhance the capability in modeling temporal dynamics. However,
these methods require significant memory allocation to preserve
historical data. Based on this, the Spiking Neural Networks (SNNs)
have also been utilized to extract temporal features from event
data; however, it has yet to achieve satisfactory performance due
to challenges such as training difficulties.

In contrast to the aforementioned methods, the transformer ex-
hibits the capability to model global spatiotemporal characteristics
through the utilization of the self-attention mechanism, thereby
offering the potential to leverage the advantages of events. For
example, Fu et al. [7] introduced transformers to extract target
and motion cues for event-based tracking; Gehrig et al. [9] showed
that recurrent vision transformers can reach state-of-the-art perfor-
mance in object detection with event cameras. However, these meth-
ods ignore that the computational complexity of the self-attention
in transformers is quadratic in the number of patches and tokens,
resulting in an unaffordable inference time. This defeats the pur-
pose of using event cameras for high temporal resolution and low
latency.

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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In this paper, we propose an adaptive and efficient visual trans-
former framework for event-based human pose estimation to tackle
the aforementioned issues, based on the unique characteristics of
event data. Specifically, our approachmainly contains two key adap-
tive strategies: (i) adaptive patch sampling: since the event camera
records data solely based on lighting changes, the resulting event
data is highly sparse, presenting significant activity and inactivity
at pixel locations over time. Therefore, the purpose of our adaptive
patch sampling scheme is to eliminate inactivity patches by as-
sessing the entropy of the events before inputting to transformers;
(ii) adaptive token reduction: this strategy selectively removes less
informative tokens in transformers layers utilizing a dynamic token
pruning algorithm. This is achieved by evaluating the contribution
of each token based on entropy or attention scores, ensuring only
tokens with significant informational value are retained. These two
mechanisms allow our approach to maintain high performance
while reducing computational overhead, making it highly effective
for event-based human pose estimation in complex environments.

To exploit event-based visual cues in human pose estimation, we
construct a large-scale event-based human pose estimation dataset,
named EventMM HPE. It collects 76 human pose estimation se-
quences consisting of 21 different actions of 7 subjects. The anno-
tation frequency is up to 240Hz. To facilitate future research on
multimodal human pose estimation, our dataset provides synchro-
nized event data and RGB images. To the best of our knowledge,
EventMMHPE is the dataset with the highest annotation frequency,
which is more in line with the original intention of using event
cameras.

To sum up, our contributions are as follows:
• We propose a novel adaptive vision transformer architecture
for human pose estimation, allowing us to effectively and
efficiently extract spatial-temporal features from events.

• We construct a large-scale event-based dataset for human
pose estimation. The dataset provides a wide diversity in
action and offers high annotation frame rate.

• Extensively experimental results validate that the proposed
approach outperforms state-of-the-art methods.

2 RELATEDWORK
2.1 Event-based human pose estimation
Most existing event-based human pose estimation methods directly
apply existing traditional framed-based methods [4, 5, 17, 22] by
accumulating asynchronous events into frames [2, 13]. However,
the sparsity of event data limits the performance of these methods,
as event cameras only output events asynchronously in locations
with significant brightness changes in the scene. It can be seen
that event cameras can only capture moving body parts and ignore
some stationary body parts, resulting in incomplete or even missing
body parts. Therefore, in long-term sequences, the body will always
partially "disappear" in certain frames.

To solve above question, Zhanpeng Shao et al. [18] pproposed
using LSTM recurrent networks to achieve geometric consistency
and temporal dependence between frames, in order to help recover
and complete these lost information. Through a basic cyclic archi-
tecture, a newly proposed time dense connection is adopted in a
series of time steps to capture the geometric consistency of human

pose between local and distant frames, in order to recover lost
human pose information in event frames. Shihao Zou et al. [28]
proposed a two-stage deep learning method called EventHPE. This
method aims to use two modalities, event and optical flow, to more
accurately estimate the three-dimensional human pose. Firstly, in
the first stage, FlowNet is used for unsupervised learning to infer
the optical flow in the event, where event frame is input into a
CNN model to predict optical flow. This optical flow can provide
clear geometric information to describe human motion. Then, in
the second stage, the output of FlowNet is used as the input of
ShapeNet. In this module, the CNN module is used to extract the
vectorized feature representation and pass it to the RNN module to
infer Internal pose change Δ𝜃𝑡𝑖 in the time interval (𝑡𝑖−1, 𝑡𝑖 ). In a
clear starting posture 𝜃𝑡0 and shape, then estimate each time point
𝑡𝑖 The human posture of 𝑖 . more accurately. This method trains
without supervision, thus reducing the need for manual annotation
of data. The use of event and optical flow modes to estimate human
posture has multiple advantages. Firstly, events and optical flow are
closely related to human movement, thus providing more accurate
information to describe human posture. Secondly, using optical
flow as an important information for estimating human posture
can greatly reduce the amount of input data required. This means
that grayscale image streams other than events can not be used
as input data and only require the use of a single camera. Finally,
using ShapeNet to estimate shape changes over time can provide a
more accurate estimation of human posture.

The existing methods for human pose estimation based on event
cameras mostly simply stack event information into event frames,
and then perform related processing such as human pose estimation.
The advantage of this method is that data processing is relatively
simple, but its disadvantage is also obvious, which is the loss of
time information inherent in event information, which cannot fully
leverage the advantages of event cameras. Therefore, how to fully
utilize event stream data and fully leverage the advantages of event
cameras to improve the accuracy of human pose estimation is
particularly crucial.

2.2 Vision transformer for human pose
estimation

Human pose estimation has undergone rapid development from
neural CNNs [22] to visual transformation networks. Early work
tended to view transformers as better decoders [11, 12, 24], for
example, TransPose [24] directly processed CNN extracted features
to model global relationships. TokenPose[12] proposes a token
based representation by introducing additional tokens to estimate
the position of occluded keypoints and modeling the relationships
between different keypoints. In order to remove the cellular neu-
ral network used for feature extraction, an HRFormer [25] using
a transformer to directly extract high-resolution features is pro-
posed. In order to gradually integrate the multi-resolution features
in HRFormer, a refined parallel transformer module is proposed.
These transformer based attitude estimationmethods have achieved
superior performance on popular keypoint estimation benchmarks.
However, they either require cellular neural networks for feature
extraction or require careful design of transformer structures. There
has been little effort made in exploring the potential of ordinary
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Figure 2: a-c) Prophesee camera, High frame-rate camera and Vicon IR Camera. d) Vicon key positions on the subject and
skeleton reputation. e) Schematic of the setup, with Prophesee master camera (position 1), High frame-rate camera (position 2)
and Vicon origins. 𝜑𝑁 .

visual transformers for pose estimation tasks. ViTPose[23] fill this
gap by adopting a simple yet effective baseline model. For further
efficiency, we propose a adaptive vision transformer based on the
plain vision transformers.

3 EVENTMM HPE DATASET
Recently, Calabrese et al. [2] constructed the first even-based dataset
for 3D human pose estimation by using synchronized 4 event cam-
eras. This work demonstrated that event cameras could enable
more efficient human pose estimation towards real-time and power-
constrained application. However, the motion sequences in the
DHP19 dataset are characterized by simplicity and slowness, thus
constraining the pre-trained model’s capacity for generalization
in real-world environments. The MMHPSD [28] dataset exhibits
diversity in human movement speed. However, the accuracy of
annotation cannot be guaranteed as it relies on predictions from
existing human pose estimation methods. The CDEHP [18] dataset
was collected under varying light conditions, but its size remains
relatively small. To enable further research on event-based huamn
pose estimation, we collect a large-scale dataset termed EventMM
HPE. Our dataset collects 76 human pose estimation sequences con-
sisting of 21 different actions of 7 subjects. Each subject is labeled

with 33 joint points. The annotation frequency is up to 240Hz. To en-
courage community research on multi-modal fusion, we have also
gathered synchronous high-frame-rate RGB images with 120FPS.
Table 1 provides a comparison of different datasets in terms of
number of actions, scenes, resolution, number of frames, mark, and
annotation rate.

In summary, compared to other event-based human pose es-
timation datasets, our dataset offers several advantages: (i) high
resolution (1280×720) and high annotation frequency (240Hz), max-
imizing the utilization of event cameras; (ii) provision of 120FPS
RGB images, enabling the fusion of high frame rate multi-modal
data; and (iii) diverse action sequences. During data collection, each
action sequence captures a wide range of movement speeds and
poses, resembling real-life scenarios more closely.

3.1 Data Collection and Annotation
Setup. As shown in Figure 2 (a)-(c), our EventMM HPE dataset
is recorded by the Prophesee EVK3 GEN4.1 event camera, which
equips a 1280×720 pixels dynamic vision sensor (DVS). The simul-
taneous RGB images are recorded by a high-frame-rate camera
LUCID ATLAS10 at 120FPS. The ground truth pose location of a
human is provided by the VICON motion capture system, which
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Table 1: Table notes: Act represents the type of action, Scenes
represents the scene, Resolution represents the camera reso-
lution, Frames represents the number of event frames or the
size of data, Mark represents the annotation method used,
and Annotation rate represents the frame rate of data anno-
tation.

Dataset Act Scenes Resolution Frames Mark Anno. rate

DHP19 33 Indoor 344*260 87k Vicon (8) 100
MMHPSD 12 Indoor 1280*800 240k RGB-D 15
CDEHP 25 Outdoor 1280*800 82k RGB-D 60
Ours 26 Indoor 1280*720 1,296k Vicon (11) 240

captures motion with a high sampling rate (up to 330Hz) and sub-
millimeter precision. The VICON motion capture system records
the 3D coordinates of the subject’s 33 marked joints, identified by
markers located on the head, neck, spine, left/right shoulders, chest,
left/right elbows, left/right hands, hips, left/right hips, left/right
knees, and left/right feet, etc, as shown in Figure 2 (d). Figure 2 (e)
illustrates an example of capturing human joint positions using
VICON motion capture system. The synchronization method for
all three devices is the same as in DHP19 [2].
Collection and Annotation. The dataset collection and annota-
tion are divided into three steps: (i) data collection: markers are
placed in human body, and the three-dimensional spatial positions
of joints are captured under the VICON system, while event data
and RGB images are captured using the Prophesee EVK3 GEN4.1
and LUCID ATLAS10, respectively. (ii) event camera intrinsic cali-
bration: the event camera’s intrinsic parameters are first calibrated
by capturing images of a calibration board using Zhang’s calibra-
tion method [27]; (iii) data annotation: intrinsic parameters will
aid in coordinate system transformation between the event camera
and VICON system, facilitating the transformation from 3D points
to 2D points.

Table 2: List of recorded movements

S1: Simple Action S2: Sports Action S3: Combination Action

1. Limp 1. Play hopscotch 1. Sweep + mop the floor
2. Use crutches 2. Lift dumbbells 2. Kick + walk
3. Climb 3. Play badminton 3. Shoot hoops + play ball
4. Goose-step 4. Hold a toy gun 4. Walk + wave
5. Sweep the floor 5. Play table tennis 5. Squat + stretch
6. Push/pull objects 6. Box 6. Run + walk
7. Drink water 7. Move freely 7. One-leg jump + jump rope

3.2 Action Analysis
As shown in Table 2, we categorize human body actions into three
types: (i) Simple actions, comprising sequences with only basic
hand and foot movements; (ii) Sports actions, which involve activi-
ties related to sports; and (iii) Combination actions, encompassing
sequences with combinations of various poses. Figure 3 provides
some visual examples. Figure 3 further demonstrates three sessions

Figure 3: Movement Samples of different sessions

Figure 4: Data distribution

of movements including simple session, sports session and combi-
nation session, which is more diversity and general. Movements
sample of three sessions are as shown in Figure 4. Among them, the
combination sessions includes a combination of two consecutive
movements. And the three sessions of movement sequences all
follow a normal distribution pattern. These statistics indicate the
captured EventMM HPE offers wide action and pose diversity.

4 PROPOSED METHOD
In this section, we introduce our human pose estimation method
based on event cameras. As the original event stream of event
camera is asynchronous and discrete, to further improve event
utilization, we first process the event streaming data using Locally-
Normalised Event Surfaces (LNES)[16], which retains both events’
spatial information and temporal information. In section4.2, we
introduce our method (Adaptive Transformer) that adaptively ad-
justs the inference cost of vision transformer (ViT)[6] for handling
variable event input length. We validate our method with the ex-
perimental results on our EventMM HPE dataset and public DHP19
dataset in Sec.5.



465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Adaptive Vision Transformer for Event-Based Human Pose Estimation ACM MM, 2024, Melbourne, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Figure 5: Overview of Adaptive Vision Transformer for event-based human pose estimation, which mainly consist of adaptive
patches sampling and adaptive tokens dropout. First adaptive patches sampling module select 85% active patches to retain
through information entropy of patches. The remained sharpness patches with more information entropy will be flattened
and linearly projected then added with position embeddings. During inference, we propose a information entropy score to
adaptive tokens dropout for vision transformers and c) shows the final tokens for using.

4.1 Event Processing
Event cameras report local changes of brightness through an asyn-
chronous stream of output events, where consists of spatial coordi-
nate, polarity and temporal timestamp. As temporal information is
critical in 3D human pose estimation, we utilize Locally-Normalised
Event Surfaces (LNES [16]) to represent event streaming data, re-
taining both events’ spatial information and temporal information.
This processing method encodes all events within a fixed time win-
dow 𝐿 as an image 𝐼 ∈ R𝑊 ×𝐻×2 (see Fig. 6, left), which divides
them into positive and negative channels based on event polarity,
preserving as much information as possible. In contrast to existing
representation (e.g. [1]), LNES operates with windows-normalised
time stamps, specifically as follows:

𝐼 (𝑥𝑖 , 𝑦𝑖 , 𝑝𝑖 ) =
𝑡𝑖 − 𝑡0
𝐿

(1)

where 𝑥𝑖 . 𝑦𝑖 represents pixel position, 𝑝𝑖 represents polarity, 𝑡𝑖
represents the time of the current event, 𝑡0 represents the starting
time of the time window, and 𝐿 represents the length of the time
window.

700 
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800 1000 1200 

Figure 6: Events representation LNES

4.2 Adaptive vision transformer
In this Section, we describe the details of proposed pipeline and
motivation. We propose adaptive patches sampling and adaptive
tokens dropout based on a vision transformer (ViT) architecture to
improve its feature extraction ability and automatically reduce the
number of tokens in vision transformers, those are processed in
the network as inference proceeds, which is vital for exploiting the
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spatial sparsity of event data and the accompanying computation
reduction.

4.2.1 Adaptive patches sampling. For a vision transformer network
that takes an event image 𝐼 ∈ R𝐶×𝐻×𝑊 (C, H, and W represent
channel, height, and width respectively) as input to make a predic-
tion through:

𝑦 = C ◦ F 𝐿 ◦ F 𝐿−1 ◦ · · · ◦ F 1 ◦ E(𝐼 ), (2)

where the encoding network E(·) tokenizes the event image
patches from 𝐼 into the patch embeddings 𝑡 ∈ R𝑁×𝐸 , each patch
are projected an embedding 𝐸 ∈ R(𝑃2 ·𝐶 )×𝐷 , patches are divided
from 𝐼 ∈ R𝐶×𝐻×𝑊 with patch size 𝑃2, 𝐶 is the number of patch
channels and 𝐷 is the embedding dimension for each token. 𝑁
being the total number of tokens, where 𝑁= (𝐻/𝑃 ) * (𝑊 /𝑃 ). C(·)
post-processes the transformed class token after the entire stack,
while the 𝐿 intermediate transformer blocks F (·) transform the
input via self-attention.

Not all 𝑁 patches from LNES event representation contain clear
human contours, and patches with low clarity have little informa-
tion entropy. Some of 𝑁 patches have low information entropy with
no human contour information, which is not valuable for feature
extraction in the task and increases unnecessary computational
complexity. Our adaptive patches sampling choose 85%𝑁 patches
to patch embedding, where the patches with more information
entropy.

The selected image patches are tokenied an embedding 𝐸. As
shown in Eq. 3 in the first layer of the DVS ViT, the 𝑁 flattened
patches 𝑥1, . . . , 𝑥𝑛 from event image 𝐼 are embedded as:

z0 = [xclass; x1𝐸; x2𝐸; . . . ; x𝑛𝐸] + 𝐸pos, (3)

where 𝐸𝑝𝑜𝑠 ∈ R(𝑁+1)×𝐷 is the positional embedding matrix and
𝑥class ∈ R𝐷 is the additional class embedding. Then the embedded
vector 𝑧0 ∈ R(𝑁+1)×𝐷 is passed into the 𝐿 transformer encoder
layers. To make our adaptive vision transformer more efficiency, we
introduce adaptive tokens dropout during the network inference,
which means tokens are reducing as our vision transformer block
deepens.

4.2.2 Adaptive tokens dropout. Consider the transformer block at
layer 𝑙 that transforms all tokens from layer 𝑙 − 1 via:

𝑡𝑙1:𝑛 = F 𝑙 (𝑡𝑙−11:𝑛 ), (4)

where 𝑡𝑙1:𝑛 denotes all the 𝑛 updated token, with 𝑡01:𝑛 = E(𝑥1:𝑛).
Note that the internal calculation process of transformer blocks
F (·) allows the number of tokens 𝑛 can be changed from a layer
to another. This offers out-of-the-box computational gains when
tokens are dropped due to low information entropy score. Vision
transformer [6, 19] utilizes a consistent feature dimension 𝐸 for all
tokens throughout layers. This makes it easy to learn and capture
the global information entropy of all layers in the monitoring joint
manager. Compared to CNNs that require clear handling of different
structural dimensions at different depths (such as the number of
channels), this also makes adaptive tokens dropout easier.

To utilize tokens adaptively, we introduce an input-dependent
information entropy score for each token as a using 𝑠𝑙𝑛 for a token

𝑛 at layer 𝑙 :
𝑠𝑙𝑛 = 𝐼𝐸 (𝑡𝑙𝑛), (5)

where 𝐼𝐸 (·) is a information entropy score. The mechanism of im-
plementing adaptive tokens dropout using changes in information
entropy is used in subsequent components in each transformer
encoder layer.

The two most important components in each transformer en-
coder layer are multi-head self attention (MSA) and multi-layer
perception (MLP), which are also computationally heavy. The 𝑙-th
transformer encoder layer shown in Fig. 5(b) can be written as:

𝑧′
𝑙
= 𝑀𝑆𝐴(𝐿𝑁 (𝑧𝑙 )) + 𝑧𝑙 (6)

𝑧𝑙+1 = 𝑀𝐿𝑃 (𝐿𝑁 (𝑧′
𝑙
)) + 𝑧′

𝑙
, (7)

where 𝑙 ∈ {1, 2, . . . , 𝐿} and 𝐿𝑁 (·) is the layer normalization func-
tion.

The MSA consists of 𝑘 individual self-attention (SA) heads. Each
SA head is formulated as:

𝑆𝐴(𝑧𝑙 ) = softmax(𝑞𝑇
𝑘
/
√︁
𝐷ℎ) · 𝑣, (8)

where
[𝑞, 𝑘, 𝑣] = [𝑧𝑙𝑈𝑞, 𝑧𝑙𝑈𝑘 , 𝑧𝑙𝑈𝑣] . (9)

The three learnable matrices 𝑈𝑞,𝑈𝑘 ,𝑈𝑣 ∈ R𝐷×𝐷ℎ projects em-
bedding 𝑧𝑙 ∈ R(𝑛+1)×𝐷 to R(𝑁+1)×𝐷ℎ , where 𝐷ℎ is a dimension of
our choice. Thus, each SA head is in R(𝑁+1)×𝐷ℎ . The 𝑘 SA heads
operate individually on the embedded patches and then their out-
puts are concatenated and projected back to R𝐷 by the trainable
projection𝑈𝑀𝑆𝐴 ∈ R𝑘 ·𝐷ℎ×𝐷 in the MSA, formulated as:

𝑀𝑆𝐴(𝑧𝑙 ) = [𝑆𝐴1 (𝑧𝑙 ); 𝑆𝐴2 (𝑧𝑙 ); . . . ; 𝑆𝐴𝑘 (𝑧𝑙 )]𝑈𝑀𝑆𝐴 . (10)

5 EXPERIMENTS
5.1 Experiments Setup
Implementation.We implement the proposed network in PyTorch.
The model is trained using a stochastic gradient descent (SGD)
optimizer with a momentum of 0.9 and a weight decay of 5e5. Our
network is trained for 20 epochs with batch size 32 on an NVIDIA
RTX4090 GPU. The learning rate in [1e-2, 5e-3, 1e-3, 5e-4, 1e-4]
decreases as training progresses; for the first 10 epochs, the learning
rate is 1e-2; for the remaining 20 epoch, adjusted every 5 epochs.
Evaluation Metric. We select MPJPE as our evaluation metric,
which means much of the literature reports mean per joint position
error. For a frame 𝑓 and a skeleton 𝑆 , MPJPE is computed as

𝐸𝑀𝑃 𝐽 𝑃𝐸 (𝑓 , 𝑆) =
1
𝑁𝑆

𝑁𝑆∑︁
𝑖=1

𝑚𝑓 ,𝑆 (𝑖) −𝑚𝑔𝑡,𝑆 (𝑖)

2 (11)

where 𝑁𝑆 is the number of joints in skeleton 𝑆 . For a set of frames
the error is the average over the MPJPEs of all frames.

Depending on the evaluation setup, the joint coordinates will be
in 3D, and the measurements will be reported in millimeters (mm),
or in 2D, where the error will be reported in pixels. For systems
that estimate joint angles, we offer the option to automatically
convert the angles into positions and compute MPJPE, using direct
kinematics on the skeleton of the test subject (the ground truth
limb lengths will not be used within the error calculation protocol).
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5.2 Comparison with State-of-the-art
To validate the effectiveness of our method, we compare the pro-
posed approach with the following three state-of-the-art pose es-
timation approaches: PointNet[15], DGCNN [21], and DHP19 [2].
The overall pose estimation performance is reported in Table 3
and some samples are shown in Figure 7, which indicate the pro-
posed method offers state-of-the-art pose estimation performance
on our proposed EventMMHPE dataset. In particular, our approach
outperforms the runner-up by 5.71% and 3.59% in terms of MPJPE
on two evaluation subject (i.e., S1 and S2), respectively. We also
provide performance on each sequence, which contains a variety of
actions and gestures. These results demonstrate the effectiveness
of our proposed method. The analysis related to another dataset is
provided in the Supplementary Material.

5.3 Ablation Study
Impact of Transformer Parameters. We choose ViT as the base
model and evaluate the effects of different parameters in it on our
proposed dataset. Specifically, we exploit the impact of the feature
dimension input into the transformer block (embed_dim), the num-
ber of multi-attention heads (heads), the number of transformer
blocks (depth), the dimension output from the transformer block
(mlp_dim). As shown in Table 4 and samples shown in Fig, the
network performed optimally with an embedding dimension of 512,
6 heads, a depth of 6, and an MLP dimension of 512. Contrary to
popular belief, a larger network does not necessarily result in better
performance. It appears that the discrepancy lies in the difference

Table 3: The performance ofMPJPE onEventMMHPEdataset.
S1 and S2 denote two evaluation subject.

Seq PointNet DGCNN DHP19 Ours

Session1
M4 107.75 104.95 740.84 104.34
M5 106.28 103.89 732.69 93.86
M3 99.5 97.95 746.32 98.53

Session2 M4 97.85 94.84 725.87 100.31
M5 96.41 92.58 743.36 94.7

Session3

M4 107.47 105.59 741.17 95.38
M2 107.42 105.51 726.67 104.76
M6 106.83 104.73 726.67 103.77
M5 108.24 105.78 728.55 100.91
M3 106.23 103.93 693.10 98.87

Mean 104.40 101.98 730.52 99.54

Session1 M4 100.45 96.42 690.28 95.38
M5 100.05 96.95 700.99 87.85

Session2
M4 107.02 104.56 751.95 93.06
M6 105.67 103.35 708.04 93.15
M5 95.32 91.19 723.94 89.85

Session3

M4 106.04 102.94 709.56 97.74
M2 101.03 97.83 714.93 96.61
M6 105.19 101.96 700.42 97.27
M5 93.81 89.93 750.05 91.43
M3 106.23 93.72 742.37 88.24

Mean 102.08 97.89 719.25 93.06

Figure 7: Event-based human pose estimation Samples on
our method

Table 4: Ablation results on the ViT-based network.

Network params
embed_dim heads depth mlp_dim MPJPE

1024 12 2 256 104.56
512 6 6 512 98.54
512 6 12 512 103.31
512 12 6 512 103.31
512 12 12 512 100.45

in data size between our dataset and ImageNet, which boasts a
staggering 1.28 million images. However, our dataset remains the
event-based pose estimation dataset with the highest frame rate
that is currently accessible to the public.
Impact of Adaptive Patches Sampling. Our adaptive patches
sampling scheme is to eliminate inactive event patches from the
input side. To demonstrate its effectiveness, we performed two sets
of experiments varying the number of input patches: (i) 400 input
patches were downsampled to 340 patches; (ii) 144 input patches
were downsampled to 122 patches. The results presented in Ta-
ble 5 demonstrate that eliminating inactive event blocks leads to
an enhancement in prediction accuracy. This is due to the fact that
inactive blocks typically lack significant information and may even
contain noise that hinders the representation of the network. Since
transformer architecture has quadratic memory and time complex-
ity with respect to the number of input patches, thus removing
inactive events patches facilitates the deployment of transformers
on hardware devices with limited compute resource. For example,
by employing our adaptive patches sampling scheme to downsam-
ple 400 input patches to 340 patches, the FLOPS of network is
diminished from 1.79G to 1.49G. Among two sets, we add random
sampling operation with "random" in contrast to our adaptive sam-
pling module, and the results show that with the patches decrease,
the performance become better and our adaptive sampling have
good performance than random sampling.
Impact of Adaptive Tokens Dropout Module. The adaptive
tokens dropout module is another key component of our method,
as it determines which tokens to discard based on the amount of
information they contain during the forward process. To verify the
effectiveness of our adaptive tokens dropout module, we conducted
ablation experiments on ViT (i.e., head and depth are both 12) and
its variants (i.e., head and depth are both 6) respectively with and
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Table 5: Ablation results of using our adaptive patches sam-
pling scheme.

Input Patches Adaptive FLOPS MPJPE
400 400 2.99G 112.55
400 340(random) 1.84G 106.01
400 340 1.84G 98.54
144 144 1.07G 104.48
144 122(random) 892.97M 103.01
144 122 534.21M 98.25

without using our adaptive tokens dropout module. The results in
Table 6 show that using this module slightly improves the perfor-
mance of the base ViT yet significantly reduces the computational
complexity. Specifically, when only 32 tokens are retained in the
forward process, FLOPs is reduced by 7.47G and the MPJPE error is
reduced by 0.94. While in variant ViT, our approach achieves better
performance with significantly fewer parameters. These results
demonstrate the significance of selectively eliminating irrelevant
tokens in discrete event data to enhance pose estimation.

Table 6: Ablation results of using our adaptive tokens dropout
module. X∼Y indicates that there are X input patches and Y
remaining tokens.

Input A_patches FLOPs heads depth max_token mlp_dim MPJPE
400 340 13.13G 12 12 (400∼400) 512 103.11
400 340 5.66G 12 12 (400∼32) 512 102.17
400 340 3.25G 6 6 (400∼400) 512 99.69
400 340 1.85G 6 6 (400∼32) 512 98.54

6 CONCLUSION
This paper presents Adaptive Vision Transformer for event-based
human pose estimation. It demonstrates scalability, flexibility, and
transfer ability for the pose estimation tasks, which have been
well justified through extensive experiments on EventMM HPE
dataset, which is first proposed for its high frame rate annotations
(240Hz). Adaptive Vision Transformer for human pose estimation
model with adaptive patches sampling and adaptive tokens dropout
obtains the best 99.34 MPJPE on the EventMM HPE test set. We
hope this work could provide useful insights to the community
and inspire further study on exploring the potential of plain vision
transformers in more computer vision tasks.
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